第五章 固体废物的生物处理技术

合集下载

固废、废气生物处理技术

固废、废气生物处理技术

生物发酵
利用微生物发酵作用将有机物 转化为酒精、乳酸等产品的技 术。
生物堆肥
将有机废弃物在一定的温度、 湿度和氧气条件下堆肥发酵, 实现有机物的稳定化和腐殖质
化的技术。
生物处理技术的应用范围
城市生活垃圾处理
通过厌氧和好氧生物处理技术,实现城市生 活垃圾的减量、无害和资源化。
农业废弃物处理
利用生物堆肥和生物发酵技术,将农业废弃 物转化为有机肥料和生物燃气等资源。
利用微生物的作用,将有机废气中的有害物质转化为无害的物质。
生物洗涤器
通过生物洗涤器中的微生物将有机废气中的有害物质吸收并降解。
生物滴滤器
利用微生物的作用,将有机废气中的有害物质转化为无害的物质, 同时收集产生的生物质用于能源利用。
06
固废、废气生物处理技 术的发展应器
相比物理或化学处理方法,生物处理技术 的设备投入和运营成本较低。
缺点
处理周期长
生物处理需要一定的时间,通常是数天或数 周,才能完成废物的降解。
对某些有毒有害物质敏感
某些有毒有害物质可能抑制微生物的生长, 影响处理效果。
对环境条件敏感
生物处理的效果受温度、pH值、氧气供应 等环境因素影响较大,需要精确控制。
THANKS FOR WATCHING
感谢您的观看
04
固废、废气生物处理技 术的优缺点
优点
环境友好性
能源效率
生物处理技术利用微生物降解有机废物, 最终产物为二氧化碳、水和稳定的微生物 群落,对环境影响小。
生物处理过程中可产生一定的热量,可用 于发电或供热,实现能源的循环利用。
处理效果好
低成本
针对不同类型的废物,生物处理技术可选 择性地培养相应的微生物,实现对废物的 有效降解。

固体废弃物处理工程第五章填埋1

固体废弃物处理工程第五章填埋1

(b)吸附/解吸:处置场产生的气体中的挥发性和 半挥发性有机化合物、渗滤液中的有机和无机污染 物质,会被所处置的废物和土壤所吸附;而在某些 条件下,也会发生解吸作用,使污染物进入气体或 液体。
(c)脱卤/降解:有机化合物的脱卤作用和水解、 化学降解作用;
(d)氧化还原:通过氧化还原反应影响金属和金属 盐的可溶性;
从土地处置场内释放进入环境的渗滤液和气体中 的污染物,在环境中的迁移途径如下图所示。由 此可能产生的环境问题有:污染水体、污染空气、 污染土壤和产生环境卫生问题。
土地处置场的污染物迁移转换
(1)渗滤液对水体的污染问题
渗滤液的无控释放会导致处置场附近地表水和地下水的 严重污染。含有高浓度有机污染物和还原态金属的的渗 滤液和含无机溶液进入地表水体后,将大量消耗水中氧 气,最终导致水体需氧生物的死亡。
如果渗滤液中含有生物降解的有机物时,这些有机物将 在水体中存在相当时间。当这种有机物进入食物链后就 会对水生生物产生育害影响。虽然单独某种有机化合物 对水生生物的影响可以进行估计或预测。但对多种有机 物的综合影响却难以估计。此外,温度、pH和溶解氧的 浓度等对某些水生生物的毒性程度都有一些影响。
如果饮用水井或灌溉井穿过污染的渗滤液层或渗滤液进 入地表水体,则可能会发生对环境和公众健康不利的影 响。地表水也可能被来自处置场地的径流所污染。
生长在处置场地的植被也可能由于废物粘附到叶 子上以及摄取重金属和其它化学物质而受到污染。
(3)环境卫生问题
对处置场的管理不善会产生卫生方面的问题,导 致疾病传播。
2 固体废物处置原则
固体废物的最终安全处置原则大体上可归纳为:
(1)区别对待、分类处置、严格管制危险废物 和放射性废物
固体质物种类繁多,危害特性和方式,处置要求 及所要求的安全处置年限均各有不同。就废物最 终安全处置的要求而言,可根据所处置固体废物 对环境危害程度的大小和危害时间的长短,大体 上将其分为以下六类:

第五章_固体废物的处理与资源化

第五章_固体废物的处理与资源化
易燃性、反应性、腐蚀性、传染性,因而可能对人类的生存环 境产生危害的废物。 (4)农业废物
农业生产(秸秆)、畜禽饲养(粪便)、农副产品加工以及 农村居民生活所产生的废物。
8
分类
矿业 废物
表4-1-1 固体废物的分类、来源和主要组成物 来源
主要组成物
矿山、选冶
废矿石、尾矿、金属、废木砖瓦、石灰等
冶金、交通、机械金属结构 金属、矿渣、砂石、模型、陶瓷、边角料、涂料、管道绝热材料、粘接剂、废木、
39
3 半封闭型填埋场
介于自然衰减型和全封闭型之间,顶部封闭系统
一般要求不高,底部一般设置单密封系统和渗滤 液收排系统,大气降水仍会部分进入填埋场,渗 滤液也可能会部分渗漏进入下包气带和地下含水 层,但大部分被收集排出。
处置城市生活垃圾的卫生填埋场一般属自然衰减
型或半封闭型填埋场
40
5、固体废物资源化
(1)资源化的含义 “资源化”,即废物的再循环利用,回收能源
和资源。 固体废物资源化:采取各种措施从固体废物中回 收有利用价值的物质和能源的过程。
随着工业发展速度的增长和生活水平的提高,固 体废物的数量以惊人的速度不断上升。在这种情况下, 如果能大规模地建立资源回收系统,必将减少原材料 的采用,减少废物的排放量、运输量和处理量。
4、固体废物的最终处置
海洋处置:包括深海投弃和海上焚烧 陆地处置:包括土地耕作、永久贮存或贮留地贮存、 土地填埋、深井灌注、深地层处置
36
第二节 固体废物的处理与处置
4、固体废物的最终处置——土地填埋
① 土地填埋处置的分类 ② 填埋场的基本构造
37
填埋场的构造
1 自然衰减型填埋场:
允许渗滤液由填埋场底部渗透,利用下部包气带

固体废物处理与处置(好氧堆肥)

固体废物处理与处置(好氧堆肥)
废物发生生物稳定作用(Biostablization)的过程。具体讲就是 依靠自然界广泛分布的细菌、放线菌、真菌等微生物,在一 定的人工条件下,有控制地促进可被生物降解的有机物向稳 定的腐殖质转化的生物化学过程,其实质是一种发酵过程。 废物经过堆肥化处理,制得的成品叫做堆肥(Compost )。它 是一类棕色的、泥炭般的腐殖质含量很高的疏松物质,故也 称为“腐殖土”。
理、建堆、翻堆和储存4个工序组成。主要技术环节有以
下几点:
(1)场地
①空间:应足够大。
②场地表面:必须坚固和有坡度。当采用坚硬的 材料(如道路沥青和混凝土)时,场地表面坡度 不小于1%;当采用不够坚硬的材料(如砾石和炉 渣)时,其坡度应不小于2%。 ③渗滤液收集和排除系统:至少包括排水沟和贮 水池。面积大于20,000m2的场地或雨量多的地 区都必须建贮水池,用以收集堆肥渗滤液和雨 水。 ④其它设施:屋顶、挡风墙。
3、堆肥无害化的机理——热灭活理论
好氧堆肥化能提供杀灭病原体所需要的热量,(病原体)细胞 的热死主要是由于酶的热灭活所致。其依据的理论主要是热 灭活理论。 热灭活有关理论指出:
(1)温度超过一定范围时,以活性型存在的酶将明显降低,大部 分将呈变性(灭活)型。细胞会失去功能而死亡。
(2)热灭活作用是温度与时间两者的函数,即经历高温短时间或 者低温长时间同样有效。 (3)在低温下,灭活是可逆的;而在高温下,则是不可逆的。 实际因素会限制热灭活效率,所以实际操作时,堆肥无害化 温度—时间条件要比理论上更高一些。即在较高的温度维持 较长时及主要技术环节
不同堆肥技术的主要区别在于维持堆体物料均匀 及通气条件所使用的技术手段的不同。堆肥化系 统有多种分类方法。 按堆制方式可分为间歇堆积法和连续堆积法; 按需氧程度分为有好氧堆肥和厌氧堆肥; 按温度分为有中温堆肥和高温堆肥; 按技术分为有露天堆肥(野积式堆肥)和机械密封 堆肥(工厂化机械堆肥) ; 按原料发酵所处状态分为静态发酵法和动态发酵法。

固体废物处理与资源化-第五章 第二节 厌氧消化

固体废物处理与资源化-第五章 第二节 厌氧消化
高分子有机物的水解速度很慢,主要受物料的性质、微生 物的浓度、温度和pH等条件的制约。
主要有机物的水解反应:
蛋白质+nH2O→氨基酸+脂肪酸+NH3+CO2+H2S
C3H5(RCO)3O3H2OC3H5(OH)33RCOOH
(脂肪)
(甘油) (脂肪酸)
2(C6H10O5)nnH2OnC12H22O112nC6H12O6 (碳水化合物)(双糖) (单糖)
70(CH4)+30(C02)
5950
700
67(CH4)+33(C02)
5650
a. 理论产气量的计算
在计算沼气发酵原料的理论产气量时,必须首先分别测定 各种发酵原料中碳水化合物(A)、蛋白质(B)和脂肪(C)的 含量,然后用下式计算出每克发酵原料的CH4和CO2的理论 产量。 CH4产量E(L)=0.37A+0.49B+1.04C CO2产量D(L)=0.37A+0.49B+0.36C 式中的A、B、C可在表中查到。
例 , 以 稻 草 为 原 料 , 其 A 、 B 、 C 值 分 别 为 : 0.6026 , 0.0316,0.0321。则: E=0.37×0.6026+0.49×0.0316+1.04×0.0321=0.2718(L/g) D=0.37×0.6026+0.49×0.0316+0.36×0.0321=0.2500(L/g)
发酵原料料浆的配制计算
将所需的各种发酵原料配制成料浆,可根据料浆中所 要求的总固体百分含量计算出加水量。
MTSXXM W10% 0
式中:MTS一发酵料浆中总固体Wt%; M 一各种原料的总固体Wt%; X一各种原料的重量(kg); W一需加入的水量(kg)

固体废弃物的生物处理

固体废弃物的生物处理
适宜的粒径范围是12~60mm。如果堆肥物质结 构坚固,不易挤压,粒径应小些,否则粒径应大些 。此外,决定垃圾粒径大小时,还应考虑它的经济 性,因为粒度,动力消耗,处理垃圾的费用。
垃圾前处理-破碎,分选
主发酵(一次发酵)
通常将堆肥开始到堆肥温度升高到开始降低为止的阶段, 称为主发酵阶段。主发酵阶段是堆肥生物化学反应的基本阶 段,在发酵池内进行。
3.3 高温发酵阶段
当肥堆温度升到45℃以上时,即进入高温 阶段。在这阶段,嗜温性微生物受到抑制甚 至死亡,嗜热性微生物逐渐代替了嗜温性微 生物的活动,堆肥中残留的和新形成的可溶 性有机物质继续分解转化,复杂的有机化合 物如半纤维素、纤维素和蛋白质等开始被强 烈分解。
通常在50℃左右进行活动的主要是嗜热性 真菌和放线菌;温度上升到60℃时,真菌几 乎完全停止活动,仅有嗜热性放线菌与细菌 在活动;温度升到70℃以上时,对大多数嗜 热性微生物已不适宜,微生物大量死亡或进 入休眠状态。
林业
矿业
工业
2、质量控制
密度(容重):适于堆肥的垃圾密度为350650kg/m3;
组分(湿质)%:有机物≥20%,并按照易腐 物(动物性+植物性)、灰渣(≥15mm称渣砾 ,<15mm为灰土)和废品(纸类、布类、塑 料、金属、玻璃)分别统计用于堆肥化处理 的城市生活垃圾组成成分。
含水率:适合堆肥的垃圾含水率为40-60%; 碳/氮比(C/N):适合堆肥的C/N比为20:
通风的作用: (1)提供氧气,以促进微生物的发酵过程 (2)通过供气量的控制,调节最适合的温度 (3)在维持最适温度的条件下,加大通风量可以去除水分
通风量主要决定于堆肥原料有机物含量、挥发度(%),可 降解系数(分解效率%)等 。

第五章-固体废物生物处理

第五章-固体废物生物处理
堆肥过程氧浓度应大于10%,最低不小于5%,若低 于此限,氧成为限制因素,易使堆肥产生恶臭,可确 定需要通风时刻。
例 固体废物好氧反应需氧量的计算。试计算氧化1000kg 有机固体废物的理论需氧量,已知:有机废物化学组成式 为C31H50NO26,反应后的残余物为200kg,残余有机物 的化学组成式为C11H14NO4,堆肥过程表示如下:
解:1、确定树叶和污泥的C、N量: 1kg树叶:干物质= 1*(1-50%)=0.5kg
N=0.5*0.7%=0.0035kg C=0.0035*50=0.175kg
1kg污泥:干物质=1*(1-75%)=0.25kg N=0.25*5.6%=0.014kg C=0.014*6.3=0.0882kg
2、堆肥的增产作用
增加土壤养分 提高农作物产量:10-30%
目前堆肥产品存在的问题
肥效低:混合收集;大量的街道清扫渣土;玻 璃;废电池;小石子,等等。
成本高:大量的前处理:人工分拣、磁选、破 碎、筛分、风力分选,等等;
第三节 固体废物的厌氧消化处理
1、厌氧消化定义
厌氧消化是指在厌氧状态下,利用厌氧微 生物,有控制地使废物中可生物降解的有 机物转化为CH4、CO2和稳定物质的生物化 学过程
好 氧 堆 肥 过 程
适应新 环境
嗜热性微生物、细菌;残留可溶性物质,纤 维素、半纤维素、蛋白质,温度↗45~70℃
嗜温性微生物、多为难分解物 质,温度↘
嗜温性细菌、酵母菌、放线菌分解最易分解的 可溶性物质,淀粉、糖类增多,温度↗45℃
三、堆肥化的影响因素及其控制

有机物含量

因 含水率

供氧量
含水率低于30%,分解速度缓慢,当水分低于 12%,微生物停止繁殖; 含水率超过65%,水会充满颗粒间空隙,使空气 含量减少,堆肥由好氧转向厌氧,温度急剧下降, 形成发臭的中间产物。

固体废物的生物处理

固体废物的生物处理
堆肥有机物 微生物 细胞物质 有机酸、醇类、CO2、NH3、 H2S等,能量,微生物
有机物的厌氧发酵分解
细胞物质 CO2、CH4 等、能量
一、厌氧消化原理
两段理论(重点)
将厌氧发酵分为产酸(酸性发酵)和产气(碱性发 酵)两个阶段,相应起作用的微生物分为产酸细菌和 产甲烷细菌。如下图所示
一、厌氧消化原理
二、好氧堆肥的工艺(重点)
1、前处理 以城市生活垃圾为堆肥原料时,包括破碎、分选、筛分 等工序 ;以家畜粪便、污泥等为堆肥原料时,主要任 务是调整水分和碳氮比,或者添加菌种和酶制剂,以促 进发酵过程正常或快速进行。 降低水分、增加透气性、调整碳氮比的主要方法是添 加有机调理剂和膨胀剂。 2、主发酵(一次发酵) 将堆肥化物料温度升高到开始降低为止的阶段,称为主 发酵阶段(或主发酵期)。堆肥过程的中温阶段和高温 阶段,时间约4~12天。
评估成熟堆肥的常用方法、指标和参数
化学方法 ⑤腐殖质:用NaOH提取的腐殖质(HS)可分为胡敏 酸/腐殖酸(HA)、富里酸(FA)及未腐殖化的组分 (NHF)。堆肥开始时一般含有较高的非腐殖质成分 及FA,较低的HA,随着堆肥过程的进行, FA保持 不变或稍有减少,而HA大量产生,成为腐殖质的主 要部分。 一些腐殖质参数相继被提出,如腐殖化指数(HI): HI=HA/FA;腐殖化率(HR):HR=HA/(FA+NHF) 。 当HI值达到3,HR达到1.35时堆肥已腐熟。
堆肥发酵周期的长短是评价堆肥工艺好坏的一个 重要指标。碳氮比、通风量、温度和水分等是否处 于最佳条件均能使发酵周期受到直接影响。传统的 静态堆肥法,依靠自然通风和翻堆来实现好氧堆肥 的全过程,因此,发酵周期需时2~3个月,有时甚至 长达半年。而目前一些高效快速动态堆肥技术,可 使堆肥发酵周期控制在7d以内,有的一次发酵时间 仅需2~3d。

固体废物处理与处置(厌氧发酵)ppt课件

固体废物处理与处置(厌氧发酵)ppt课件

(4)有毒物质
①重金属离子对甲烷发酵的抑制-使酶发生变性或者 沉淀。与酶结合产生变性;与氢氧化物使酶沉淀。
②阴离子的毒害:主要是S2- ,来源:无机硫酸盐还 原;蛋白质分解释放出S2-。
③氨的毒害: [NH4+]>150mg/L ,发酵受抑制。
物质浓度
碱金属和碱土金属Ca2+ , Mg2+ ,Na+ ,K+ 重金属Cu2+ ,Ni2+ ,Zn2+ , Hg2+ ,Fe2+ H+和OH ―
n 原料的收集和预处理; n 接种物的选择和富集; n 沼气发酵装置形状选择; n 启动和日常运行管理; n 副产品沼渣和沼液的处置等技术措施。
1、传统沼气发酵工艺类型
(1)根据发酵温度分类 高温发酵:产气率高,但CH4比例低且不稳定; 中温发酵:产气率较高,能量回收较理想,应用普遍。太阳
能保温。
④甲烷化阶段:乙酸和H2 被甲烷细菌(乙酸分解甲
烷细菌和H2氧化甲烷细 菌)利用生成甲烷。
(四)、影响发酵的环境条件
(1)温度因素:随着温度升高有机物分解速度加快,产气量增大。 温度变化范围为(±1.5~2.0)℃。
①低温发酵:低于20℃ ,产气量低,受气候影响大,不加料情 况下35d。
②中温发酵: 37℃ ,产气量约1~1.3m3/(m3 ·d);发酵时间20d , 卫生化低。
n 浮沉式气罩由水封池和气罩两部 分组成。当沼气压力大于气罩重 量时,气罩便沿水池内壁的导向 轨道上升,直至平衡为止。当用 气时,罩内气压下降,气罩也随 之下沉。
n 特点: 将发酵间与贮气间分开, 具有压力低、发酵好、产气多等 优点。 顶浮罩式沼气贮气池造价 比较低,但气压不够稳定。侧浮 罩式沼气贮气池气压稳定,比较 适合发酵工艺的要求,但对材料 要求比较高,造价昂贵。

固体废物处理(中)

固体废物处理(中)

一、固体废物生物处理技术——堆肥化1.生物处理是以固体废物中的可降解有机物为对象,使之转化为稳定产物、能源和其他有用物质的一种处理技术。

2.固体废物生物处理的作用:稳定化和消毒杀菌;废物减量化;回收能源;回收物质。

3.堆肥化:依靠自然界广泛分布的微生物,有控制地促进可生物降解的有机物转化为稳定的腐殖质的生物化学过程。

其产物称为堆肥、腐殖土。

4.堆肥化分类:按堆肥物料运动形式可分为:静态发酵法和动态发酵法;按堆制过程微生物需氧程度可分为:好氧法和厌氧法;按堆肥堆制方式可分为:野积式堆积法和装置式堆积法;按堆肥原料是否在一个发酵设施中完成生物降解的全过程可分为:一次性堆肥和二次性堆肥。

5.好氧堆肥化:是在有氧存在状态下,好氧微生物对废物中的有机物进行分解转化的过程;最终产物主要是CO2、H2O、热量和腐殖质。

好氧堆肥堆温高,一般在50~60 ℃。

具有发酵周期短,无害化程度高,易于操作等特点,被广泛采用。

也称为高温快速堆肥。

6.厌氧堆肥化:是在无氧存在状态下,利用厌氧微生物对废物中的有机物进行分解转化的过程;最终产物主要是CO2、CH4、热量和腐殖质。

堆制温度低,工艺简单,成品中氮素保留比较多,但堆制周期长,需3~12个月,异味浓烈,分解不充分。

7.我国所谓的简易堆肥化技术,就是建立在厌氧条件下的发酵分解过程。

8.堆肥中起重要作用的微生物是细菌和真菌。

9.堆肥化过程温度变化:四个阶段,每一阶段有其独特的微生物类群:潜伏阶段,中温阶段,高温阶段(微生物按其活性可为三个时期:对数生长期、减速生长期和内源呼吸期),熟化阶段。

10.堆肥化的影响因素:有机质含量(20%-80%)、粒度(25-75mm)、碳氮比(26-35:1)、含水率(50%-65%)、温度(35-55度)、通风、pH(6.5-8.5)、接种11.通风:提供氧气,通过供氧量的控制调节最适宜的温度,加大通风量取出水份;通风方式:自然扩散法,翻堆法,强制通风法,翻堆与强制通风相结合法,被动通气法。

固体废物生物处理

固体废物生物处理

堆肥中的微生物学
原核细胞类型
细菌 蓝绿藻
ห้องสมุดไป่ตู้
微生物 真核细胞类型
直菌 藻类
霉菌 酵母菌
原生动物
堆肥的微生物学过程
好氧堆肥的微生物学过程可大致分为如下三个阶段 ,每个阶段都有其独特的微生物类群:
1)、产热阶段:堆肥初期(通常在1-3天),肥堆 中嗜温性微生物利用可溶性和易降解性有机物作为营 养和能量来源,迅速增殖,并释放出热能,使肥堆温 度不断上升。此阶段温度在室温至45℃范围内,微生 物以中温、需氧型为主,通常是一些无芽胞细菌。
其发酵工艺流程见2-7
通常在堆置后每4-7天可翻堆一次,1个月后可停止翻堆,让其后 熟。 对于垃圾堆肥,堆肥前必须进行前处理,主要是对垃圾分选,去 除粗大的无机物,回收各种金属,玻璃,塑料等,提高物料中可 堆肥物质的比例。在前处理中有时需要对垃圾进行破碎处理,调 整垃圾的粒度,适宜的粒度范围是12~60mm。破碎与筛分可使原 料的表面积增大,便于微生物繁殖,提高发酵速度。垃圾堆肥通 常不需要加调理剂和蓬松剂,只有水分含量适宜,有机物含量达
3)、腐熟阶段:
➢在高温阶段末期,只剩下部分较难分解的有机物和新形成的腐 殖质,此时微生物活性下降,发热量减少,温度下降。此时嗜 温性微生物再占优势,对残留较难分解的有机物作进一步分解 ,腐殖质不断增多且趋于稳定化,此时堆肥进入腐熟阶段。
➢降温后,需氧量大量减少,肥堆空隙增大,氧扩散能力增强, 此时只需自然通风。在强制通风堆肥中常见的后熟处理,即是 将通气堆翻堆一次后,停止通气,让其腐熟。
废弃物经过堆肥处理后,结构蓬松,无臭,病原菌能被大 幅度灭活,体积减少,水分含量降低。另外,废弃物腐殖化程 度极大提高,农地利用不会出现烧苗,烧根的现象。而且能极 大改善土壤结构性能,提高土壤保水保肥能力,堆肥本身又富 有大量的微生物,因而施用堆肥可明显提高土壤的生物活性, 可有效加速土壤物质的生物化学循环。

固体废物处理与资源化-第五章 第一节好氧堆肥

固体废物处理与资源化-第五章 第一节好氧堆肥

(2)细胞物质的合成
细胞质的同化作用是以NH3作为氮源,细 胞质的合成作用包括有机物的氧化过程。
nxC H yO zN3H (n xn 4 yn 2 z5x)O 2 ( C 5H 7细 N2O + 胞 n( 质 5)C2) O n2 y4H 2O能量
(3)细胞物质的氧化
细胞质的分解反应是细胞质内源呼吸所 引起的反应:
2N 24 H 3O 2 7 4 C2 H H3 C 2 O N 1 3 O ( C 5 H 7N 细 2 O 2H 胞 0 2 O 4H 质 2
(4)腐熟阶段
由于硝化细菌生长缓慢,只有在低于40℃的温度 下才有活性,所以硝化反应通常是在有机物分解 完成后才开始进行。氮在转化为硝酸盐后才能被 植物吸收。因此熟化阶段对于生产优质堆肥是一 个很重要的过程。
(3)高温阶段
温度>45℃ 从废物堆积开始发酵,不到一周的时间,堆温一般可达到65~
70℃,或者更高。此时,嗜温菌受到抑制或死亡,嗜热菌大量 繁殖,逐渐替代嗜温菌的活动。 高温阶段最有利于有机物的降解,除前一阶段残留的和新形成 的可溶性有机物继续得到分解外,其它的固体有机物(纤维素、 半纤维素、木质素、蛋白质等)也开始强烈分解。 50℃左右时,嗜热性真菌和放线菌都很活跃。 60℃时,真菌不再适于生存,只有嗜热性放线菌和细菌仍
通风量主要决定于微生物的活动程度、有机物的分解速率、 物料的含水率以及物料颗粒的大小密切相关。可用下式推算出 理论上氧化分解需要的氧气量(该关系式反映堆肥化过程中有 机物氧化分解关系): CSHtNUOV·aH2O+bO2→CWHXNYOZ·CH2O+dH2O( 气 )+eH2O( 液)+fCO2+gNH3+能量

宁平《固体废物处理与处置》配套题库 章节题库(第五章 固体废物的生物处理)【圣才出品】

宁平《固体废物处理与处置》配套题库 章节题库(第五章 固体废物的生物处理)【圣才出品】

第五章固体废物的生物处理一、名词解释1.厌氧消化答:厌氧消化又称厌氧发酵,是指在厌氧状态下利用厌氧微生物使固体废物中有机物转变为CH4和CO2的过程。

厌氧消化具有过程可控性、降解快、生产过程全封闭且产物可再利用的特点。

厌氧消化可以去除废物中30%~50%的有机物并使之稳定化。

由于能源危机和石油价格的上涨,许多国家开始寻找新的替代能源,使得厌氧消化技术显示出其优势。

2.固体废物的生物处理答:固体废物的生物处理是指直接或间接利用生物体的机能,对固体废物的某些组成进行转化以建立降低或消除污染物产生的生产工艺,或者能够高效净化环境污染,同时又生产有用物质的工程技术。

利用生物处理有机固体废物是一种投资少、见效快、简单易行且效益高的工艺技术。

3.堆肥化答:堆肥化是指在人工控制的环境下,依靠自然界中广泛分布的细菌、放线菌、真菌等微生物人为地促进可生物降解的有机物向稳定的腐殖质转化的微生物学过程。

堆肥化实际上是利用微生物在一定条件下对有机物进行氧化分解的过程,因此根据微生物生长的环境可以将堆肥化分为好氧堆肥和厌氧堆肥两种。

4.一级发酵答:一级发酵又称主发酵,是指在堆肥时,由于原料和土壤中存在微生物的作用开始发酵,首先是易分解的物质分解,产生二氧化碳和水,同时产生热量,使堆温上升的过程。

微生物吸收有机物的碳氮营养成分,在细菌自身繁殖的同时,将细胞中吸收的物质分解而产生热量。

5.腐熟度答:腐熟度是指堆肥中的有机质经过矿化、腐殖化过程最后达到稳定的程度,是衡量堆肥进行程度的指标。

由于堆肥的腐熟度评价是一个很复杂的问题,迄今为止,还未形成一个完整的评价指标体系。

评价指标一般可分为物理学指标、化学指标、生物学指标以及工艺指标。

6.微生物浸出答:微生物浸出是指利用微生物及其代谢产物氧化、溶浸废物中的有价金属组分,使其得以利用的过程,又称生物冶金。

主要用于回收含硫矿业固体中的有价金属,如铜、金、铀、钴、镍、锰、锌、银、铂、钛。

第五章 固体废物的生物处理

第五章 固体废物的生物处理
m N = 0.5 × 0.007 = 0.0035 kg
m C = 50 × 0.0035 = 0.175 kg
对于1kg 1kg的污泥 ②对于1kg的污泥 m水 = 1 × 0.75 = 0.75kg
m干物质 = 1 − 0.75 = 0.25kg
mC = 6.3 × 0.014 = 0.0882kg
堆肥化原理和影响因素( 二、堆肥化原理和影响因素(P127) 好氧微生物使堆肥原料中的有机 (一)原理 物转化为稳定的腐殖质过程。 物转化为稳定的腐殖质过程。 1、好氧堆肥原理 、好氧堆肥原理 合成 腐殖 细胞物质 + 物质 堆肥有机物
(含C、H、O、N 、 S 、P), P), 氧,微生物 (同化作用) 同化作用) (微生物繁殖) 微生物繁殖)
s = a − nw
y=1,z=4,可得 由a=31,b=50,c=1,d=26,w=11,x=14, y=1,z=4,可得
] r = 0.5[50 − 0.76 × 14 − 3 × 1 − 0.76 × 1)= 19.32 (
s = 31 − 0 .76 × 11 = 22 .64
4)堆肥过程所需氧量
固体物质变成溶于水的 物质。细菌再将其分 物质。 解成不同的产物。 解成不同的产物。
0 .175 + x (0 .0882) = 25 0 .0035 + x (0 .0014) x = 0 .33 kg
计算混合后的C/N C/N和含水率 (3)计算混合后的C/N和含水率 对于0.33kg 0.33kg的污泥 ①对于0.33kg的污泥
m 水 = 0.33 × 0.75 = 0.25 kg
图5-2 好氧堆肥化过程示意图
潜伏阶段(驯化阶段) (1)潜伏阶段(驯化阶段): 中温阶段(产热阶段) (2)中温阶段(产热阶段) 嗜温性微生物利用废物中的可溶性物质大量繁殖, 可溶性物质大量繁殖 嗜温性微生物利用废物中的可溶性物质大量繁殖,并 释放热量,堆层温度不断上升。 释放热量,堆层温度不断上升。 (3)高温阶段 堆层温度达到45℃以上:以嗜热性微生物为主。可溶 堆层温度达到45℃以上:以嗜热性微生物为主。 45℃以上 性有机物质继续分解,复杂的有机物质开始被强烈分解 开始被强烈分解。 性有机物质继续分解,复杂的有机物质开始被强烈分解。 腐熟阶段:易分解的有机物大部分被分解, (4)腐熟阶段:易分解的有机物大部分被分解,微生物 活性下降,温度降低,腐殖质增多。 活性下降,温度降低,腐殖质增多。

第五章 固体废物的生物处理

第五章 固体废物的生物处理

第五章固体废物的生物处理--习题与思考
1.简述固体废物堆肥化的定义,并分析固体废物堆肥化的意义和作用。

2.分析好氧堆肥的基本原理,好氧堆肥化的微生物生化过程是什么?
3.简述好氧堆肥的基本工艺过程,探讨影响固体废物堆肥化的主要因素。

4.如何评价堆肥的腐熟程度?
5.何谓厌氧发酵?简述厌氧发酵的生物化学过程。

6.分析厌氧发酵的三阶段理论和两阶段理论的异同点。

7.影响厌氧发酵的因素有哪些?在进行厌氧发酵工艺设计时应考虑哪些问题?
8.厌氧发酵装置有哪些类型?试比较它们的优缺点。

9.简述生活垃圾蚯蚓处理的工艺流程。

为什么可以用蚯蚓处理农业废弃物?
10.分析蚯蚓处理固体废弃物的优点及其局限性。

11.用一种成分为C31H50NO26的堆肥物料进行实验室规模的好氧堆肥试验。

试验结果,每1000堆料
在完成堆肥化后仅剩200kg,测定产品成分为C11H14NO4,试求每1000kg物料的化学计算理论需
氧量。

12. 废物混合最适宜的C/N比计算:树叶的C/N比为50,与来自污水处理厂的活性污泥混合,活性污
泥的C/N比为6.3。

分别计算各组分的比例使混合C/N比达到25。

假定条件如下:污泥含水率为
75%;树叶含水率为50%;污泥含氮率为5.6%;树叶含氮率为0.7%。

固废的生物处理

固废的生物处理

固废的生物处理技术:利用微生物的新城代谢作用使固体废物分解,矿化或氧化的过程,称为固体废物的生物处理技术。

包括 生物转化技术生物冶金技术*利用微生物及其代谢产物氧化、溶浸废物中的有价组分,使废物中有价组分得以利用的过程,称为微生物浸出也称生物冶金。

*适用:回收矿物固体中的有价金属,如铜、金、锢、镍、锰等。

一、冶金用微生物生物冶金工业用的微生物种类很多,主要有氧化亚铁硫杆菌、氧化硫硫杆菌、铁氧化钩端螺菌和嗜酸热硫化叶菌等。

表11-5 浸矿细菌种类及其主要生理特征二.生物冶金机理:细菌的直接作用;细菌的间接催化作用(1)细菌的直接作用:认为附着于矿物表面的细菌能直接催化矿物而使矿物生物冶金 细菌名称 主要生理特征 最佳生存pH 氧化铁硫杆菌 氧化铁杆菌 氧化硫铁杆菌 氧化硫杆菌 聚生硫杆菌Fe 2+→Fe 3+,S 2O 32-→SO 42-Fe 2+→Fe 3+ S →SO 42-,Fe 2+→Fe 3+ S →SO 42-,S 2O 32-→SO 42 S →SO 42-,H 2S →SO 42-2.5~5.33.5 2.8 2.0~3.5 2.0~4.0氧化分解,并从中直接得到能源和其他矿物营养元素满足自身生长需要。

如细菌浸铜;(2)细菌的间接作用认为是依靠细菌的代谢产物—硫酸铁的氧化作用,细菌间接地从矿物中获得生长所需的能源和基质。

三、生物冶金方法:槽浸;堆浸;原位浸出(1)槽浸:一般适用于高品位、贵金属的浸出,将细菌酸性硫酸高铁浸出剂与废物在反应槽中混合,机械搅拌通气或气升搅拌,然后从浸出液中回收金属。

(2)堆浸:在倾斜的地面上,用水泥、沥青登台砌成不渗漏的基础盘床,把含量低的矿业固体废物堆积在其上,从上部不断喷洒细菌酸性硫酸高铁浸出剂,然后从流出的浸出液中回收金属。

OH CuSO O SO H S Cu OH SO Fe CuSO O SO H CuFeS 242422232424222212422182+−−→−++++−−→−++细菌细菌)(42422222272SO H FeSO O H O FeS +=++OH SO Fe O SO H FeSO 234224242224+−−→−++)(细菌O H SO Fe O SO H FeSO SO H O H O S SFeSO SO Fe FeS 2342242442220434222224223223+−−→−++−−→−+++=+)()(细菌细菌42422222272SO H FeSO O H O FeS +=++(3)原位浸出:利用自然或人工形成的矿区地面裂缝,将细菌酸性硫酸高铁浸出剂注入矿床中,然后从矿床中抽出浸出液回收金属。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章固体废物的生物处理技术一、名词解释固体废物的生物处理—以固体废物中可降解的有机物为对象,通过生物(微生物)的作用使之转化为水、二氧化碳或甲烷等物质的过程。

堆肥化—就是依靠自然界广泛分布的细菌、放线菌、真菌等微生物,以及由人工培养的工程菌等,在一定的人工条件下,有控制地促进可被生物降解的有机物向稳定的腐殖质转化的生物化学过程,其实质就是一种生物代谢过程。

堆肥—堆肥化的产物叫堆肥。

一次发酵—好氧堆肥的中温与高温两个阶段的微生物代谢过程称为一次发酵或主发酵。

二次发酵—物料经过一次发酵,还有一部分易分解和大量难分解的有机物存在,需将其送到后发酵室,堆成1~2m高的堆垛进行的再次发酵,使之腐熟的过程。

厌氧消化—在厌氧条件下通过利用微生物群落或游离酶对有机固体废物中的生物质分解降解作用,使其中的易腐生物质部分得以降解,并消除生物活性,转化为无腐败性的残渣的过程。

二、简答1.固体废物生物处理的意义何在?⑴对固体废物进行处理消纳,实现稳定化、减量化、无害化;⑵促进固体废物的适用组分重新纳入自然循环(如堆肥用于改土,重新回归农田生态系统);⑶将大量有机固体废物转化为有用物质和能源,实现固体废物的资源化(如沼气、生物蛋白、乙醇)。

2. 堆肥化的方式主要有哪几种?堆肥化的方式按照不同的方法有不同的分类。

根据温度要求,分为中温和高温堆肥;按照堆肥过程的操作方式,可分为动态和静态堆肥;按照堆肥的堆置情况可分为露天和机械密封堆肥。

最常用的分类方式是根据在生物处理过程中起作用的微生物对氧气要求的不同,把固体堆肥分为好氧堆肥化和厌氧堆肥化。

前者是在通风条件下,有游离氧存在时进行的分解发酵过程。

后者是利用厌氧微生物发酵造肥,特点是空气与堆肥相隔绝,温度低,工艺简单,但是堆制周期长,气味浓烈,产品分解不够完全稳定。

通常,仅按一种分类方式很难全面描述堆肥状况,因此常常兼用多种工艺加以说明。

3. 适于堆肥的原料有什么特性?包括哪些?适于堆肥的原料需要具备三个特性:固体废物密度一般为350~650kg/m3;含水率为40%~60%;碳氮比为(20~30):1堆肥的原料很广,主要包括以下几类:(1)城市垃圾指城市居民日常生活、商业活动、机关办公、市政维护等过程所产生的固体废物,其中金属、陶瓷、玻璃、塑料等要经过分选回收,余下的才适合堆肥处理。

(2)粪便粪便的碳氮比较低,非常适合作为堆肥原料。

(3)污泥主要来自城市生活污水和工业废水处理工程中产生的污泥。

(4)农业固体废物在我国堆肥的主要原料是生活垃圾与粪便的混合物,也有的是城市垃圾与生活污水、污泥的混合物。

4.试述好氧堆肥的基本原理。

好氧堆肥是在有氧的条件下,借好氧微生物(主要是好氧菌)的作用来进行的。

在堆肥过程中,生活垃圾中的溶解性有机物质透过微生物的细胞壁和细胞膜而为微生物所吸收,固体的和胶体的有机物先附在微生物体外,由生物所分泌的胞外酶分解为溶解性物质,再渗入细胞。

微生物通过自身的生命活动——氧化、还原、合成等过程,把一部分被吸收的有机物氧化成简单的无机物,并放出生物生长活动所需要的能量,把一部分有机物转化为生物体所必需的营养物质,合成新的细胞物质,于是微生物逐渐生长繁殖,产生更多的生物体。

5. 如何控制堆肥过程中的含水率?堆肥过程中水分作用在于:溶解有机物,参与微生物的新陈代谢;水分蒸发时散热以调节温度。

含水率50-60%为佳。

水分过多,降低游离孔隙率,影响空气扩散,易造成厌氧状态,同时产生渗滤液处理问题;水分低于40%,微生物活性降低,堆肥温度随之下降。

含水率偏低,可添加污水、污泥、人粪尿、粪便等来调节水分;对于高含水率的固体废物,可以采用机械压缩脱水,也可以在场地和时间允许的条件下将物料摊开进行水分蒸发,还可以在物料中加入稻草、木鞋、干叶等松散物或吸水物,还可以掺和调理剂,干调理剂对控制湿度较有利。

6. 堆肥过程中的碳氮比如何控制?碳为微生物生命活动提供能源,氮则用于合成细胞原生质。

堆肥发酵过程中,碳氮比逐渐下降。

碳氮比最佳为(25~35):1;低于20:1时,微生物繁殖因能量不足而受到抑制,分解缓慢且不彻底;高于40:1时,堆肥施入土壤导致“氮饥饿”,夺取土壤中的氮。

通过在垃圾中加入人粪尿、畜粪以及城市污泥等调节剂,使碳氮比调到30以下。

7. 堆肥过程中的通风操作具有哪些作用?通风操作时好氧堆肥能够成功的重要因素之一,其主要作用有:①提供氧气,以促进微生物的新陈代谢;②通过供气量的控制,调节最适温度;③在维持最适温度条件下,加大通风量可去除水分。

8.指出堆肥面临的问题和对策。

⑴堆肥面临的问题产品中N、P、K含量不高;堆肥杂质(废塑料、碎玻璃、碎陶瓷片等)影响堆肥质量;堆肥销路差;堆肥投资较大(25-36万元/t.d);分选费用、贮存费用较高。

⑵对策①控制堆肥原料的质量对生活垃圾应强化源头分类收集和前处理(破碎、分选、筛分)工序;对粪便及污泥,前处理着重是调整水分和碳氮比等。

②堆制生物活性肥料微生物接种剂本身不是肥料,只是增强土壤吸收、利用肥料的能力。

③堆制有机复混肥④其它新型垃圾肥料磁性有机肥;生物活性肥料(微生物有机肥)。

9. 什么是固体废物厌氧消化?有机废物的厌氧消化是指在特定的厌氧条件下,由厌氧微生物将有机质进行分解,使其中的易腐生物质部分得到降解,并且消除生物活性,转化为无腐败性的稳定残渣的过程。

该过程中,一部分碳素物质转化为甲烷和二氧化碳,其中被分解的有机碳化物中的能量大部分转化贮存在甲烷中,仅一小部分有机碳化物被氧化成二氧化碳,释放的能量作为微生物生命活动的需要。

因此在这一分解过程中,仅积贮少量的微生物细胞。

10. 厌氧消化过程中的微生物包括哪些?(1)不产甲烷菌种类繁多,有细菌、真菌和原生动物三大群。

其中细菌的种类最多,作用也最大,按呼吸类型分为专性厌氧菌、好氧菌和兼性厌氧菌。

其中以专性厌氧菌的种类和数量最多。

(2)产甲烷菌产甲烷菌在原核生物中由于它们能厌氧代谢产生甲烷而成为一个独特类群。

11.厌氧消化技术主要有哪些特点?厌氧消化技术主要有以下特点:①具有过程可控制、降解快、生产过程全封闭的特点;②能源化效果好,可以将潜在于废弃有机物中的低品位生物能转化为可以直接利用的高品位沼气;③易操作,与好氧处理相比厌氧消化不需要通风动力,设施简单,运行成本低,属于节能型处理方法;④产物可再利用,适于处理高浓度有机废水和废物,经厌氧消化后的废物基本得到稳定,可以作农肥、饲料或堆肥化原料;⑤厌氧微生物的生长速度慢,常规方法的处理效率低,设备体积大;⑥厌氧过程中会产生H2S等恶臭气体。

三、论述1. 使用堆肥能够产生哪些积极的作用?使用堆肥能带来一些积极的作用:(1)使土质松软,多孔隙,易耕作,改善土壤的物理性能,增加保水性、透水性及渗水性。

(2)有吸附阳离子的作用,有助于保住氮、钾、铵等以阳离子形态存在的肥料成分。

腐殖质阳离子交换容量是普通粘土的几倍到几十倍。

(3)腐殖化的有机物具有调节植物生长的作用,也有助于根系发育和伸长。

(4)腐殖质有缓冲作用当土壤中腐殖质多时,肥料施得过多或过少,气象条件的稍微恶化,都不易损害土壤的性能。

例如水分不足时,腐殖质多可起到类似于缓冲器的作用,防止植物枯萎。

(5)堆肥是缓效性肥料堆肥中的氮肥几乎都以蛋白质的形态存在,当施到田里时,蛋白质经氮微生物分解成氨氮,在旱地里部分变成硝酸盐氮,两者都是能被吸收的。

施用堆肥不会出现施化肥那样短暂有效或施肥过头的情况,由于经过上述过程缓慢持久地起作用,故不致对农作物产生损害。

(6)腐殖质中某种成分由螯合作用,和酸性土壤中含量较多的活性铝结合后,使其半数变成活性物质,因而能抑制活性铝和磷酸结合的有害作用。

(7)堆肥是二氧化碳的供给源如与外界空气隔绝的密封罩内二氧化碳浓度低,当大量施用堆肥后,罩内较高的温度可促使堆肥分解放出的二氧化碳。

总之,堆肥中的腐殖质能改善土壤的物理、化学、生物性质,使土壤环境保持适于农作物生长的良好状态。

堆肥的用途很广,既可以用作农田、绿地果园、苗圃、畜牧场、庭院绿化、风景区绿化等的种植肥料,也可以做过滤材料、隔音板机制作纤维板等。

2、好氧堆肥过程一般分为几个阶段?各阶段有何特点?固体废物好氧堆肥过程一般分为四个阶段:升温阶段、高温阶段、降温阶段、腐熟阶段。

(1)升温阶段(亦称中温阶段)堆层温度15~45℃,嗜温菌活跃,可溶性糖类、淀粉等消耗迅速,温度不断升高;以细菌、真菌、放线菌为主;堆肥初期,堆层基本呈中温、嗜温性微生物(中温放线菌、蘑菇菌等)较为活跃,并利用堆肥中可溶性有机物质(单糖、脂肪和碳水化合物)旺盛繁殖。

它们在转换和利用化学能的过程中,有一部分变成热能,由于堆料有良好的保温作用,温度不断上升。

(2)高温阶段当堆肥温度上升到45℃以上时,即进入堆肥过程的第二阶段一高温阶段。

堆层温度升至45℃以上,不到一周可达65~70℃,随后又逐渐降低。

温度上升到60℃时,真菌几乎完全停止活动,温度上升到70℃以上时,对大多数嗜热性微生物己不适宜,微生物大量死亡或进入休眠状态,除一些孢子外,所有的病原微生物都会在几小时内死亡,其它种子也被破坏。

其中:50℃左右,嗜热性真菌、放线菌活跃;60℃左右,嗜热性放线菌和细菌活跃;大于70℃,微生物大量死亡或进入休眠状态。

(3)降温阶段在此阶段,中温微生物又开始活跃起来,重新成为优势菌,对残余较难分解的有机物作进一步分解,腐殖质不断增多,且稳定化。

当温度下降并稳定在40℃左右时,堆肥基本达到稳定。

(4)腐熟阶段堆体温度降低后,嗜温微生物又重新占优势,对残余较难分解的有机物作进一步分解,腐殖质不断增多且稳定化,此时堆肥即进入腐熟阶段。

降温后,需氧量大大减少,含水量也降低,堆肥物孔隙增大,氧扩散能力增强,此时只需自然通风即可。

2. 分析堆肥过程中的主要影响因素。

堆肥过程中主要影响因素有化学因素和物理因素。

(1)化学因素①C/N比C/N比影响有机物被微生物分解的速度。

C/N比在10~25之间时,有机物的分界速率最大。

一般认为城市固体废物堆肥原料最佳C/N比在(20~35):1。

②C/P比磷的含量对发酵有很大影响。

堆肥料适宜的C/P比为75~150。

③供氧量对于好氧堆肥而言,氧气是微生物赖以生存的条件,供氧量要适当,通常实际所需空气量应为理论空气量的2~10倍。

④pH值一般认为PH在7.5~8.5时,可获得最大堆肥速率。

⑤有机质含量这一因素影响堆料温度与通风供氧要求。

如有机质含量过低,分解产生的热量不足以维持堆肥所需要的温度,影响无害化处理;如果有机质含量过高,则给通风供氧带来困难,有可能产生厌氧状态,研究表明堆料最适合的有机质含量为20%~80%。

(2)物理因素:①温度温度是影响微生物活动和堆肥工艺过程的重要因素。

相关文档
最新文档