高中数学选修2-2 北师大版 1.1 归纳与类比

合集下载

数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第1节归纳与类比

数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第1节归纳与类比

§1归纳与类比1.1 归纳推理学习目标核心素养1.了解归纳推理的含义,能利用归纳推理进行简单的推理.(重点)2.了解归纳推理在数学发展中的作用.(难点) 1.通过归纳推理概念的学习,体现了数学抽象的核心素养.2.通过归纳推理的应用的学习,体现了逻辑推理的核心素养.1.归纳推理的定义根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,这种推理方式称为归纳推理.2.归纳推理的特征归纳推理是由部分到整体,由个别到一般的推理.思考:由归纳推理得到的结论一定是正确的吗?[提示]不一定正确.因为归纳推理是由部分到整体、由个别到一般的推理,其结论还需要证明其正确性.1.下列关于归纳推理的说法错误的是( )①归纳推理是由一般到一般的推理过程;②归纳推理是一种由特殊到特殊的推理;③归纳推理得出的结论具有或然性,不一定正确;④归纳推理具有由具体到抽象的认识功能.A.①②B.②③C.①③ D.③④A[归纳推理是由特殊到一般的推理,故①②不正确,易知③④均正确,故选A.]2.若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.至多等于3 B.至多等于4C.等于5 D.大于5B [n =2时,可以;n =3时,为正三角形,可以;n =4时,为正四面体,可以;n =5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长相等,不可能.]3.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},……的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为________.2n[集合{a 1}有两个子集和{a 1},集合{a 1,a 2}的子集有,{a 1},{a 2},{a 1,a 2}共4个子集,集合{a 1,a 2,a 3}有8个子集,由此可归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为2n个.]数式中的归纳推理+b 10=( )A .28B .76C .123D .199(2)已知f(x)=x1-x ,设f 1(x)=f(x),f n (x)=f n -1(f n -1(x))(n>1,且n∈N +),则f 3(x)的表达式为________,猜想f n (x)(n∈N +)的表达式为________.思路探究:(1)记a n+b n=f(n),观察f(1),f(2),f(3),f(4),f(5)之间的关系,再归纳得出结论. (2)写出前几项发现规律,归纳猜想结果.(1)C (2)f 3(x)=x 1-4x f n (x)=x 1-2n -1x [(1)记a n +b n =f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n -1)+f(n -2)(n∈N+,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a 10+b 10=123. (2)f 1(x)=f(x)=x1-x,f 2(x)=f 1(f 1(x))=x 1-x 1-x 1-x =x1-2x ,f 3(x)=f 2(f 2(x))=x 1-2x 1-2·x 1-2x=x1-4x,由f 1(x),f 2(x),f 3(x)的表达式,归纳f n (x)=x1-2n -1x.]已知等式或不等式进行归纳推理的方法1.要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律; 2.要特别注意所给几个等式(或不等式)中结构形式的特征; 3.提炼出等式(或不等式)的综合特点; 4.运用归纳推理得出一般结论.1.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,……根据以上不等式的规律,试写出一个对正实数a ,b 都成立的条件不等式:________.当a +b =20时,有a +b<210,a ,b∈R + [从上面几个不等式可知,左边被开方数的和均为20,故可以归纳为a +b =20时,a +b<210.]数列中的归纳推理【例2】 (1)在数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2 019等于( )A .2B .-12C .-2D .1(2)古希腊人常用小石子在沙滩上摆成各种形状来研究数,如图:由于图中1,3,6,10这些数能够表示成三角形,故被称为三角形数,试结合组成三角形数的特点,归纳第n 个三角形数的石子个数.思路探究:(1)写出数列的前几项,再利用数列的周期性解答.(2)可根据图中点的分布规律归纳出三角形数的形成规律,如1=1,3=1+2,6=1+2+3;也可以直接分析三角形数与n 的对应关系,进而归纳出第n 个三角形数.C [(1)a 1=1,a 2=-12,a 3=-2,a 4=1,…,数列{a n }是周期为3的数列,2 019=673×3,∴a 2 019=a 3=-2.](2)[解] 法一:由1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,可归纳出第n 个三角形数为1+2+3+…+n =n (n +1)2.法二:观察项数与对应项的关系特点如下:项数 1 2 3 4 对应项1×222×323×424×52分析:各项的分母均为2,分子分别为相应项数与相应项数加1的积. 归纳:第n 个三角形数的石子数应为n (n +1)2.数列中的归纳推理在数列问题中,常常用到归纳推理猜测数列的通项公式或前n 项和. (1)通过已知条件求出数列的前几项或前几项和;(2)根据数列中的前几项或前几项和与对应序号之间的关系求解; (3)运用归纳推理写出数列的通项公式或前n 项和公式.2.已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…). (1)求a 2,a 3,a 4,a 5; (2)归纳猜想通项公式a n . [解] (1)当n =1时,知a 1=1, 由a n +1=2a n +1, 得a 2=3,a 3=7,a 4=15,a 5=31.(2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1, 可归纳猜想出a n =2n-1(n∈N +).几何图形中的归纳推理1.某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按如图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f(n)表示第n 堆的乒乓球总数,试求f(1),f(2),f(3),f(4)的值.[提示] 观察图形可知,f(1)=1,f(2)=4,f(3)=10,f(4)=20. 2.上述问题中,试用n 表示出f(n)的表达式.[提示] 由题意可得:下一堆的个数是上一堆个数加下一堆第一层的个数,即f(2)=f(1)+3;f(3)=f(2)+6;f(4)=f(3)+10;…;f(n)=f(n -1)+n (n +1)2.将以上(n -1)个式子相加可得 f(n)=f(1)+3+6+10+…+n (n +1)2=12[(12+22+…+n 2)+(1+2+3+…+n)] =12⎣⎢⎡⎦⎥⎤16n (n +1)(2n +1)+n (n +1)2=n (n +1)(n +2)6.【例3】 有两种花色的正六边形地面砖,按如图的规律拼成若干个图案,则第6个图案中有菱形纹的正六边形的个数是( )A .26B .31C .32D .36思路探究:解答本题可先通过观察、分析找到规律,再利用归纳得到结论. B [法一:有菱形纹的正六边形个数如下表:图案 123 … 个数6 1116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第6个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第6个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.]在题干不变的条件下,第6个图案中周围的边有多少条? [解] 各个图形周围的边的条数如下表:图案123…边条数18 26 34 …由表可知,周围边的条数依次组成一个以18为首项,8为公差的等差数列,解得第6个图形周围的边的条数为18+8×(6-1)=58条.归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数字之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是:3.根据图中线段的排列规则,试猜想第8个图形中线段的条数为________.509 [分别求出前4个图形中线段的数目,发现规律,得出猜想.图形①到④中线段的条数分别为1,5,13,29,因为1=22-3,5=23-3,13=24-3,29=25-3,因此可猜想第8个图形中线段的条数应为28+1-3=509.]1.归纳推理是由部分到整体、由个别到一般的推理.(1)由归纳推理得到的结论带有猜测的性质,所以“前提真而结论假”的情况是有可能发生的,结论是否正确,需要经过理论证明或实践检验,因此,归纳推理不能作为数学证明的工具.(2)一般地,如果归纳的个别情况越多,越具有代表性,那么推广的一般性命题就越可能为真.(3)归纳推理能够发现新事实,获得新结论,是科学发现的重要手段.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2.归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论.该过程包括两个步骤: (1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).1.判断(正确的打“√”,错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于归纳推理. (2)由个别到一般的推理称为归纳推理. ( ) (3)由归纳推理所得到的结论一定是正确的. ( )[答案] (1)√ (2)√ (3)× 2.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2C [a 1=8,a 2=14,a 3=20,猜想a n =6n +2.]3.已知12=16×1×2×3,12+22=16×2×3×5,12+22+32=16×3×4×7,12+22+34+42=16×4×5×9,则12+22+…+n 2=________.(其中n∈N *).16n(n +1)(2n +1) [根据题意归纳出12+22+…+n 2=16n(n +1)(2n +1),下面给出证明:(k +1)3-k 3=3k 2+3k +1,则23-13=3×12+3×1+1,33-23=3×22+3×2+1,……,(n +1)3-n 3=3n 2+3n +1,累加得(n +1)3-13=3(12+22+…+n 2)+3(1+2+…+n)+n ,整理得12+22+…+n 2=16n(n +1)(2n +1).]4.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2, (62+82)(22+122)≥(6×2+8×12)2, (202+102)(1022+72)≥(20×102+10×7)2.请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论. [解] 结论为:(a 2+b 2)(c 2+d 2)≥(ac+bd)2.证明:(a 2+b 2)(c 2+d 2)-(ac +bd)2=a 2c 2+a 2d 2+b 2c 2+b 2d 2-(a 2c 2+b 2d 2+2abcd) =a 2d 2+b 2c 2-2abcd =(ad -bc)2≥0.所以(a2+b2)(c2+d2)≥(ac+bd)2.1.2 类比推理学 习 目 标核 心 素 养1.通过具体实例理解类比推理的意义.(重点) 2.会用类比推理对具体问题作出判断.(难点)1.通过类比推理的意义的学习,体现了数学抽象的核心素养.2.通过应用类比推理对具体问题判断的学习,体现了逻辑推理的核心素养.1.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理. 2.合情推理合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.思考:合情推理的结果为什么不一定正确?[提示] 合情推理是由特殊到一般的推理,简单地说就是直接看出来的,没有通过证明,只归纳了一部分,属于不完全归纳,所以不一定正确.1.下面使用类比推理恰当的是( )A .“若a·3=b·3,则a =b ”类比推出“若a·0=b·0,则a =b”B .“(a+b)c =ac +bc”类比推出“(a·b)c=ac·bc”C .“(a+b)c =ac +bc”类比推出“a +b c =a c +bc (c≠0)”D .“(ab)n=a n b n”类比推出“(a+b)n=a n+b n” C [由实数运算的知识易得C 项正确.] 2.下列推理是合情推理的是( ) (1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; (3)a≥b,b≥c,则a≥c;(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n 边形内角和是(n -2)×180°.A .(1)(2)B .(1)(3)(4)C .(1)(2)(4)D .(2)(4)C [(1)为类比推理,(2)(4)为归纳推理,(3)不是合情推理,故选C.]3.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.①②③ [正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.]类比推理在数列中的应用【例1】 在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100.类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.试写出相应的结论,判断该结论是否正确,并加以证明.思路探究:结合已知等比数列的特征可类比等差数列每隔10项和的有关性质.[解] 数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下: ∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20)同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300.1.本例是由等比类比等差,你能由等差类比出等比结论吗?完成下题:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n (T n ≠0),则T 4,_______,_______,T 16T 12成等比数列.T 8T 4 T 12T 8[等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.]2.在本例条件不变的情况下,你能写出一个更为一般的结论吗?(不用论证)[解] 对于任意k∈N +,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d.1.在等比数列与等差数列的类比推理中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.2.类比推理的思维过程观察、比较→联想、类推→猜测新的结论.即在两类不同事物之间进行对比,找出若干相同或相似之处后,推测这两类事物在其他方面的相同或相似之处.1.在等差数列{a n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有a m +a n +a p =3a r ,类比该结论,写出在等比数列{b n }中类似的结论,并用数列知识加以证明.[解] 类似结论如下:在等比数列{b n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有b m b n b p=b 3r .证明如下:设等比数列{b n }的公比为q ,则b m =b 1q m -1,b n =b 1q n -1,b p =b 1qp -1,b r =b 1qr -1,于是b m b n b p =b 1qm -1·b 1qn -1·b 1q p -1=b 31qm +n +p -3=b 31q3r -3=(b 1qr -1)3=b 3r ,故结论成立.类比推理在几何中的应用【例2】 如图所示,在平面上,设h a ,h b ,h c 分别是△ABC 三条边上的高,P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p ch c=1.证明此结论,通过类比写出在空间中的类似结论,并加以证明.思路探究:三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.[解] p a h a =12BC·p a12BC·h a =S △PBCS △ABC,同理,p b h b =S △P AC S △ABC ,p c h c =S △PABS △ABC .∵S △PBC +S △PAC +S △PAB =S △ABC ,∴p a h a +p b h b +p c h c =S △PBC +S △PAC +S △PAB S △ABC=1. 类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p dh d=1.证明:p a h a =13S △BCD ·p a13S △BCD ·h a =V P­BCDV A­BCD,同理,p b h b =V P­ACD V A­BCD ,p c h c =V P­ABD V A­BCD ,p d h d =V P­ABCV A­BCD .∵V P­BCD +V P­ACD +V P­ABD +V P­ABC =V A­BCD , ∴p a h a +p b h b +p c h c +p d h d =V P­BCD +V P­ACD +V P­ABD +V P­ABCV A­BCD=1.1.在本例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A ,B ,C ,那么由a =b·cos C+c·cos B 可类比四面体的什么性质?[解] 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△PAB,△PBC,△PCA,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.2.在本例中,若r 为三角形的内切圆半径,则S △=12(a +b +c)r ,请类比出四面体的有关相似性质.[解] 四面体的体积为V =13(S 1+S 2+S 3+S 4)r(r 为四面体内切球的半径,S 1,S 2,S 3,S 4为四面体的四个面的面积.1.平面图形与空间图形类比平面图形 点 线 边长 面积 线线角 三角形 空间图形线面面积体积二面角四面体2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.类比推理在其他问题中的应用1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?[提示] 类比推理.2.已知以下过程可以求1+2+3+…+n 的和.因为(n +1)2-n 2=2n +1, n 2-(n -1)2=2(n -1)+1, ……22-12=2×1+1,有(n +1)2-1=2(1+2+…+n)+n , 所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2.类比以上过程试求12+22+32+…+n 2的和. [提示] 因为(n +1)3-n 3=3n 2+3n +1, n 3-(n -1)3=3(n -1)2+3(n -1)+1, ……23-13=3×12+3×1+1,有(n +1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n)+n , 所以12+22+…+n 2=13⎝ ⎛⎭⎪⎫n 3+3n 2+3n -3n 2+5n 2=2n 3+3n 2+n 6=n (n +1)(2n +1)6.【例3】 已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x2a 2-y2b2=1(a>0,b>0)具有类似特征的性质,并加以证明. 思路探究:双曲线与椭圆类比→椭圆中的结论 →双曲线中的相应结论→理论证明[解] 类似性质:若M ,N 为双曲线x 2a 2-y2b 2=1(a>0,b>0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n),(x ,y),则 N(-m ,-n).因为点M(m ,n)是双曲线上的点, 所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2,则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b2a2(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征.然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.2.我们知道: 12=1,22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,将以上各式的左右两边分别相加,整理得n 2=2×[1+2+3+…+(n -1)]+n , 所以1+2+3+…+(n -1)=n (n -1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解] 已知: 13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1, 将以上各式的左右两边分别相加,得(13+23+…+n 3)=[13+23+…+(n -1)3]+3[12+22+…+(n -1)2]+3[1+2+…+(n -1)]+n , 整理得n 3=3(12+22+…+n 2)-3n 2+3[1+2+…+(n -1)]+n , 将1+2+3+…+(n -1)=n (n -1)2代入整理可得12+22+…+n 2=2n 3+3n 2+n 6,即12+22+…+n 2=n (2n +1)(n +1)6.1.类比推理的特点(1)类比推理是从人们已经掌握的事物的特征,推测被研究的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.(2)类比推理以旧的知识作基础,推测新的结果,具有发现的功能,因此类比在数学发现中具有重要作用,但必须明确,类比并不等于论证.2.类比推理与归纳推理的比较 归纳推理类比类推相同点 根据已有的事实,经过观察、分析、比较、联想,提出猜想,都属于归纳推理不 同 点特点 由部分到整体,由个别到一般 由特殊到特殊推理过程 从一类事物中的部分事物具有的属性,猜测该类事物都具有这种属性两类对象具有类似的特征,根据其中一类对象的特征猜测另一类对象具有相应的类似特征1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误B [根据合情推理可知,合情推理必须有前提有结论.]2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( )A.r22 B.l 22 C.lr 2D .无法确定C [扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2.]3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.1∶8 [由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.]4.在计算“1×2+2×3+…+n(n +1)”时,有如下方法:先改写第k 项:k(k +1)=13[k(k +1)(k +2)-(k -1)k·(k+1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),……n(n +1)=13[n(n +1)(n +2)-(n -1)n(n +1)],相加得1×2+2×3+…+n(n +1)=13n(n +1)(n +2).类比上述方法,请你计算“1×3+2×4+…+n(n +2)”,将其结果写成关于n 的一次因式的积的形式.[解] 1×3=16×(1×2×9-0×1×7),2×4=16×(2×3×11-1×2×9),3×5=16×(3×4×13-2×3×11),……n(n +2)=16[n(n +1)(2n +7)-(n -1)n(2n +5)],各式相加,得1×3+2×4+3×5+…+n(n +2)=16n(n +1)(2n +7).。

高中数学选修2-2推理与证明类比推理

高中数学选修2-2推理与证明类比推理

以点(x0,y0,z0)为球心, r为半 径的球的方程为(x-x0)2+(yy0)2+(z-z0)2 = r2
10
例2 类比实数的加法和乘法,列出它们相似的运算性质.
类比角度 实数的加法
实数的乘法
运算结果 若a,b∈R,则a+b∈R
若a,b∈R,则ab∈R
运算律 (交换律和 结合律)
逆运算
Hale Waihona Puke a+b=b+a (a+b)+c=a+(b+c)
(2)从已知的相似性质中推出一种明确体现的 普通性命题(猜想).
3
从一种传说说起:春秋时代鲁国的公输班(后 人称鲁班,被认为是木匠业的祖师)一次去林 中砍树时被一株齿形的茅草割破了手,这桩晦 气事却使他发明了锯子. 他的思路是这样的:
茅草是齿形的;
茅草能割破手. 我需要一种能割断木头的工具;
它也能够是齿形的. 这个推理过程是归纳推理吗?
学数学、用数学,完善数学的对的数学意识。
二、教学重点:理解类比推理的含义,能运用类比进行简朴
的推理。
教学难点:培养学生“发现—猜想—证明”的推理能力。
三、教学办法:探析归纳,讲练结合
四、教学过程
2
复习
1.什么是归纳推理?
部分
整体
特殊
一般
2.归纳推理的普通环节:
(1)通过观察个别状况发现某些相似性质;
C

论 pa pb pc 1
ha hb hc
空间中
A
P
B
D
C
pa pb pc pd 1 ha hb hc hd
18
合情推理
归纳推理和类比推理都是根据已有的事实,通过 观察、分析、比较、联想,再进行归纳、类比,然后提 出猜想的推理,我们把它们统称为合情推理。

数学北师大选修22教材基础 第一章§1归纳与类比 含答案

数学北师大选修22教材基础 第一章§1归纳与类比 含答案

第一章推理与证明走近学科思想推理与证明是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式,合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.合情推理具有猜想和发现新结论、探究和提供解决问题思路的作用;演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程,演绎推理具有证明结论,整理和构建知识体系的作用,是公理体系中的基本推理方法.知识要点重要指数链接考题学习策略合情推理★★P5,例1(2007浙江高考,理8);P6,例2(2007福建高考,理16)通过对具体实例的推理过程的分析、体会,概括出合情推理的描述性定义和常用的归纳和类比的思维方法综合法和分析法★★★★P22,例4(2006辽宁高考,理18文19);P24,例5(2007海南、宁夏高考,理22(A))弄清综合法和分析法的证明方法特征,通过一些实例证明熟练两种证明方法的证明过程反证法★★★P42,例6(2007河南郑州模拟);P43,例7(2007江西高考,理16)弄清楚使用反证法的常见情形及适用条件,形成使用反证法的意识数学归纳法★★★★P60,例9(2007天津高考,理21);P60,例8(2006湖南高考,理19)关键是找出从n=k到n=k+1时的递推关系式§1 归纳与类比在日常生活中,人们常常需要进行各种各样的推理.如医生诊断病人的病症,警察侦破案件,数学家论证命题的真假等,其中都包含了推理活动.在数学中,证明的过程更离不开推理.本节就开始学习有关数学推理的知识.高手支招1细品教材一、推理1.推理的概念根据一个或几个已知的事实(或假设)得出一个判断,这种思维方式叫推理.推理一般由两部分组成:前提和结论.状元笔记合情推理中,当前提为真时,结论可能为真,也可能为假.2.合情推理(1)当前提为真时,结论可能为真的推理,叫做合情推理.合情推理是指“合乎情理”的推理.数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向,其推理过程为:(2)两种合情推理:归纳推理和类比推理.二、归纳推理1.概念根据一类事物的部分事物具有某种性质,推出这类事物中每一个都具有这种属性的推理方式,叫做归纳推理(有时简称归纳).归纳推理是从个别到一般.由部分到整体的过程. 状元笔记归纳推理的前提与结论不具有必然性联系,其结论不一定正确.2.特点(1)归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.(2)由归纳推理得到的结论具有猜测的性质,结论是否真实,还需要经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.(3)归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.3.归纳推理的步骤其一般步骤为:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题.示例:已知:数列{a n }的第1项a 1=1,且a n+1=nn a a +1(n=1,2,3,…),试归纳出这个数列的通项公式. 思路分析:数列{a n }的通项公式是第n 项a n 与序号n 之间的对应关系,我们可以先根据已知条件算出数列{a n }的前几项,然后去归纳出一般性的公式.解:当n=1时,a 1=1,当n=2时,a 2=21111=+,当n=3时,a 3=3121121=+,当n=4时,a 4=4131131=+,…… 通过观察可得:数列的前四项都等于相应序号的倒数,由此归纳出:a n =n1. 三、类比推理1.概念两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,这类推理叫做类比推理(简称类比).类比推理是数学推理的一种重要形式,它的实质是根据两对象之间的相似,把信息从一个对象转移到另外一个对象,类比推理不仅是一种从特殊到特殊的推理方法,也是一种探索解题思路、猜测问题答案或结论的一种有效的方法.这在事物规律的发现和事物本质的认识等方面都有着极其重要的作用.2.特点(1)类比推理是由特殊到特殊的推理.(2)类比推理是从人们已经掌握了的事物的特征,推测正在被研究的事物的特征,所以,类比推理的结果具有猜测性,不一定可靠.(3)类比推理以旧的知识作基础,推测新的结果,具有发现的功能.类比推理在数学发现中有重要作用.(4)由于类比推理的前提是两类对象之间具有某些可以清楚定义的类似特征,所以进行类比推理的关键是明确地指出两类对象在某些方面的类似特征.状元笔记类比推理是一种由特殊到特殊的推理形式,目的是寻找事物之间的共同或相似性质,它是一种似真推理.类比推理的结论需要进一步证明其正确性,类比的性质相似性越多,相似的性质与推测的性质之间就越相关,从而类比得出的结论就越可靠.例如,据科学史上的记载,光波概念的提出者,荷兰物理学家、数学家赫尔斯坦·惠更斯曾将光和声这两类现象进行比较,发现它们具有一系列相同的性质:如直线传播、有反射和干扰等.又已知声是由一种周期运动所引起的、呈波动的状态,由此,惠更斯作出推理,光也可能有呈波动状态的属性,从而提出了光波这一科学概念.惠更斯在这里运用的推理就是类比推理. 3.类比推理的步骤其一般步骤为:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).状元笔记类比推理是两类事物特征之间的推理,利用类比推理得出的结论可能是正确的,也可能是错误的.【示例】类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.A.①B.①②C.①②③D.③思路分析:因为正三角形的边和角可以与正四面体的面(或棱)和相邻的两面成的二面角(或共顶点的两棱夹角)类比,所以①②③都恰当.答案:C高手支招2基础整理推理是由一个或几个已知的判断推出一个新的判断的思维形式.任何推理都由前提和结论两部分组成,前提与结论的关系是理由与推断.原因与结果的关系.本节则主要讲述合情推理的两种类型:归纳推理和类比推理.其主要知识结构如下:。

【高中课件】北师大版选修22高考数学1.1归纳与类比课件ppt.ppt

【高中课件】北师大版选修22高考数学1.1归纳与类比课件ppt.ppt
归纳推理的特点: (1)归纳推理是由部分到整体、由个别到一般的推理; (2)归纳推理的前提是部分的、个别的事实,因此,归纳推理的结论超出 了前提所界定的范围,其前提和结论之间的联系不是必然性的,而是或然性 的,所以“前提真而结论假”的情况是有可能发生的; (3)人们在进行归纳推理的时候,先搜集一定的事实材料,有个别性的、 特殊性的事实作为前提,然后才能进行归纳推理,因此,归纳推理要在观察和 实验的基础上进行; (4)归纳推理能够发现新事实、获得新结论,是科学发现的重要手段.
答案:B
点评
归纳推理是立足于观察、经验或实验的基础上的,认真全面地分析已知 条件是得出正确结论的关键.
探究一
探究二
探究三
������变式训练 1������观察下列等式:
1=1,
13=1,
1+2=3,
13+23=9,
1+2+3=6, 13+23+33=36,
1+2+3+4=10, 13+23+33+43=100,
质为
.
解析:圆心类比椭圆焦点,圆外一点类比椭圆外一点,圆的切线类比椭圆
的切线,∠POA=∠POB 类比∠PFA=∠PFB,于是可得类比结论为:过椭圆
������2 ������2
+
������������22=1(a>b>0)外一点
P
作椭圆的两条切线
PA,PB,其中
A,B
为切点,若
F
为椭圆的一个焦点,则∠PFA=∠PFB.
探究三
探究二类比推理
1.类比推理的一般步骤: (1)找出两类事物之间的相似性或一致性; (2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题 (猜想). 2.类比推理得到的结论不一定正确,所以我们要进行验证或证明.

高中数学选修2-2 北师大版 1.1归纳与类比类比推理 教案

高中数学选修2-2 北师大版 1.1归纳与类比类比推理 教案

类比推理一、教学目标1、知识与技能:(1)结合已学过的数学实例,了解类比推理的含义;(2)能利用类比进行简单的推理;(3)体会并认识类比推理在数学发现和生活中的作用。

2、方法与过程:递进的了解、体会类比推理的思维过程;体验类比法在探究活动中:类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。

3、情感态度与价值观:体会类比法在数学发现中的基本作用:即通过类比,发现新问题、新结论;通过类比,发现解决问题的新方法。

培养分析问题的能力、学会解决问题的方法;增强探索问题的信心、收获论证成功的喜悦;体验数学发现的乐趣、领略数学方法的魅力!同时培养学生学数学、用数学,完善数学的正确数学意识。

二、教学重点:了解类比推理的含义,能利用类比进行简单的推理。

教学难点:培养学生“发现—猜想—证明”的推理能力。

三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:归纳推理的概念:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都具有这种属性。

我们将这种推理方式称为归纳推理。

注意:利用归纳推理得出的结论不一定是正确的。

①归纳推理的要点:由部分到整体、由个别到一般;②典型例子方法归纳。

(二)、引入新课:据科学史上的记载,光波概念的提出者,荷兰物理学家、数学家赫尔斯坦•惠更斯曾将光和声这两类现象进行比较,发现它们具有一系列相同的性质:如直线传播、有反射和干扰等。

又已知声是由一种周期运动所引起的、呈波动的状态,由此,惠更斯作出推理,光也可能有呈波动状态的属性,从而提出了光波这一科学概念。

惠更斯在这里运用的推理就是类比推理。

(三)、例题探析例1:已知:“正三角形内一点到三边的距离之和是一个定值”,将空间与平面进行类比,空间中什么样的图形可以对应三角形?在对应图形中有与上述定理相应的结论吗?解:将空间与平面类比,正三角形对应正四面体,三角形的边对应四面体的面。

得到猜测:正四面体内一点到四个面距离之和是一个定值。

2021-2022高二数学北师大版选修2-2课后作业:1.1 归纳与类比 Word版含解析

2021-2022高二数学北师大版选修2-2课后作业:1.1 归纳与类比 Word版含解析

第一章 推理与证明§1 归纳与类比课后作业提升1观看下列事实:|x|+|y|=1的不同整数解(x ,y )的个数为4,|x|+|y|=2的不同整数解(x ,y )的个数为8,|x|+|y|=3的不同整数解(x ,y )的个数为12,……,则|x|+|y|=20的不同整数解(x ,y )的个数为( ) A.76B.80C.86D.92解析:由已知条件得,|x|+|y|=n (n ∈N +)的不同整数解(x ,y )的个数为4n ,所以|x|+|y|=20的不同整数解(x ,y )的个数为80,故选B . 答案:B2将自然数0,1,2,…,依据如下形式进行摆放:依据以上规律判定,从2021到2022的箭头方向是( )解析:本题中的数字及箭头方向都有肯定的规律.箭头每经过四个数就要重复消灭,即以4为周期变化.2022恰好是4的倍数,2021应当与1的起始位置相同. 答案:B3已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S=底×高2,可推知扇形面积公式S 扇等于()A.r 22B.l 22C.lr 2D.不行类比解析:由扇形的弧长与半径分别类比三角形的底边与高,可得扇形的面积公式. 答案:C4三角形的面积为S=12(a+b+c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四周体的体积为( )A.V=13abcB.V=13ShC.V=13(S 1+S 2+S 3+S 4)r (S 1,S 2,S 3,S 4为四个面的面积,r 为内切球的半径)D.V=13(ab+bc+ac )h (h 为四周体的高)解析:设△ABC 的内心为O ,连接OA ,OB ,OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a ,b ,c ;类比:设四周体A BCD 的内切球的球心为O ,连接OA ,OB ,OC ,OD ,将四周体分割为四个以O 为顶点,以原来面为底面的四周体,高都为r ,所以有V=13(S 1+S 2+S 3+S 4)r. 答案:C5在平面几何里,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的13”.拓展到空间,类比平面几何的上述结论,则正四周体的内切球半径等于这个正四周体的高的 . 解析:三角形有三条边→13;而正四周体有四个面→14,可接受分割法证明. 答案:146观看下列不等式:①√2<1;②√2√6<√2;③√2√6√12<√3;……则第5个不等式为 .答案:√2+√6√12√20√30<√57已知a ,b 为正整数,设两直线l 1:y=b-b a x 与l 2:y=b ax 的交点为P 1(x 1,y 1),且对于n ≥2的自然数,两点(0,b ),(x n-1,0)的连线与直线y=b ax 交于点P n (x n ,y n ). (1)求点P 1,P 2的坐标;(2)猜想点P n 的坐标公式.分析:两直线的交点坐标可通过解方程组求出,由两点坐标又可写出新的直线方程,从而猜想出点P n 的坐标. 解:(1)解方程组{y =b -bax ,y =bax ,得P 1(a 2,b2).过(0,b ),(a 2,0)两点的直线方程为2x a +yb=1,与y=b a x 联立,解得P 2(a 3,b 3).(2)由(1)可猜想P n (a n+1,bn+1).8图(1)(2)(3)(4)为刺绣中较简洁的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越秀丽;现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n+1)与f (n )之间的关系式,并依据你得到的关系式求出f (n )的表达式; (3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解:(1)f (5)=41.(2)由于f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由以上规律,可得出f (n+1)-f (n )=4n , 由于f (n+1)-f (n )=4n , 所以f (n+1)=f (n )+4n , 所以f (n )=f (n-1)+4(n-1) =f (n-2)+4(n-1)+4(n-2)=f (n-3)+4(n-1)+4(n-2)+4(n-3) =……=f [n-(n-1)]+4(n-1)+4(n-2)+4(n-3)+…+4[n-(n-1)] =2n 2-2n+1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n), 所以1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12(1-12+12-13+13-14+…+1n -1-1n )=1+12(1-1n )=32−12n.。

2019-2020学年北师大版高中数学选修2-2同步配套课件:1.1 归纳与类比1.1.1

2019-2020学年北师大版高中数学选修2-2同步配套课件:1.1 归纳与类比1.1.1

目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
【做一做】 观察下列不等式:
1+
1 22
<
3 2
,
1
+
1 22
+
1 32
<
5 3
,
1
+
1 22
+
1 32
+
1 42
<
7 4
,


照此规律,第五个不等式为 .
解析:观察不等式的左边发现,第 n 个不等式的左边为
数是
.
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三
解析:(1)(方法一)有菱形纹的正六边形地面砖的块数如下表:
由表可以看出有菱形纹的正六边形地面砖的块数依次组成一个
以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三
【变式训练2】 将自然数0,1,2,…按照如下形式进行摆放:
根据以上规律判定,从2 017到2 019的箭头方向是 ( )
解析:本题中的数及箭头方向都有一定的规律.箭头每经过四个 数就要重复出现,即以4为周期变化.2 016恰好是4的倍数,2 017应该 与1的起始位置相同.
=
2×23 23+2
=
1 2
=
24,

北师大版高中数学选修2-2同步配套课件:1.1 归纳与类比1.1.2

北师大版高中数学选修2-2同步配套课件:1.1 归纳与类比1.1.2

【例 3】 有对称中心的曲线叫作有心曲线,显然,椭圆、双曲线
都是有心曲线.过有心圆锥曲线中心的弦叫作有心圆锥曲线的直径. 定理:过圆 x2+y2=r2(r>0)上异于直径两端点的任意一点与这条
直径的两个端点连线,则两条连线所在直线的斜率之积为定值-1.
(1)写出定理在椭圆
������2 ������2
侧棱长分别为������, ������, ������”, 类比上述处理方法,
可得该三棱锥的外接球半径������ =
.
解析:由求直角三角形外接圆的半径的方法,通过类比得出求三
棱锥的外接球的半径的方法为:将三棱锥补全为长方体,而长方体的
对角线长就是三棱锥的外接球的直径,从而得出该三棱锥的外接球
半径 R=
1.2 类比推理
-1-
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
D 典例透析 IANLI TOUXI
S 随堂演练 UITANGYANLIAN
1.理解类比推理的概念,能利用类比推理进行简单的推理,掌握类 比推理解决问题的思维过程.
2.理解合情推理的含义,体会并认识合情推理在数学发展中的作 用.
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
题型一 题型二 题型三
题型一 等差数列与等比数列之间的类比
D 典例透析 IANLI TOUXI
S 随堂演练 UITANGYANLIAN
���������3���
于是 bmbnbp=b1qm-1·b1qn-1·b1qp-1=������ 13qm+n+p-3=������13q3r-3=(b1qr-1)3=���������3��� ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[学习目标] 1.了解合情推理的含义,能利用归纳和类比进行简单的推理.2.体会归纳推理与类比推理的思维过程,增强实践与创新能力.
知识点一推理的定义与结构形式
1.定义:推理是人们思维活动的过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程.其作用是从已知的知识得到未知的知识,特别是可以得到不可能通过感觉经验掌握的未知知识.
2.结构形式:从结构上来说,推理一般分为两部分,一部分是已知的事实(或假设),叫作前提,另一部分是由已知判断推出的新的判断,叫作结论.
思考(1)依据部分对象得到的推理结论可靠吗?
(2)推理一般用哪些关联词?
答案(1)不一定完全可靠.
(2)推理一般可用关联词将“前提”和“结论”联结,常用的关联词有“因为……所以……”“根据……可知……”“如果……那么……”“若……则……”.
知识点二归纳推理与类比推理
思考 归纳推理和类比推理的结论一定正确吗?
答案 归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然性的,而是或然性的,结论不一定正确.类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠. 知识点三 合情推理
1.合情推理的含义:合情推理是根据实验和实践的结果、个人的经验和直觉,已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.
2.合情推理的过程
从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想 思考 由合情推理得到的结论可靠吗?
答案 一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠,例如,费马猜想就被数学家欧拉推翻了.
题型一 归纳推理的应用
例1 已知数列{a n }的第1项a 1=2,且a n +1=a n
1+a n (n =1,2,…),试归纳出这个数列的通项
公式.
解 ∵a 1=2,a n +1=a n
1+a n
(n =1,2,…),
∴a 1=21,a 2=21+2=23
,a 3=23
1+23=25,a 4=25
1+25=27.
由此发现分母依次为1,3,5,7,…,分子都是2. ∴归纳猜想得a n =2
2n -1
(n ↔N +).
反思与感悟 求数列{a n }的通项公式的一般方法:(1)根据已知条件求出数列的前几项(有时题目已给出),如a 1,a 2,a 3等;(2)通过这些项找出项与序号之间的一般规律,归纳出数列的一个通项公式.
跟踪训练1 已知数列11×3,13×5,15×7,…,1(2n -1)(2n +1)(n ↔N +)的前n 项的和为S n .
(1)求出S 1,S 2,S 3,S 4;
(2)猜想该数列的前n 项和S n 并证明. 解 (1)S 1=13,S 2=25,S 3=37,S 4=4
9.
(2)猜想S n =n
2n +1(n ↔N +).证明如下:

1(2n -1)(2n +1)=12⎝
⎛⎭⎫1
2n -1-12n +1,
∴S n =12⎝⎛⎭⎫1-13+13-15+15-1
7+…+12n -1-12n +1 =
n
2n +1
(n ↔N +). 题型二 类比推理的应用
例2 在矩形ABCD 中,对角线AC 与两邻边AB ,BC 所成的角分别为α,β,则cos 2α+cos 2β=1.在立体几何中,通过类比,给出猜想并证明.
解 如图(1),在矩形ABCD 中,cos 2
α+cos 2
β=⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2=a 2
+b 2
c 2=c
2
c 2=1.
于是类比到长方体中,猜想若其体对角线与共顶点的三条棱所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1. 证明如下:
如图(2),cos 2
α+cos 2
β+cos 2
γ=⎝⎛⎭⎫m l 2+⎝⎛⎭⎫n l 2+⎝⎛⎭⎫g l 2=m 2
+n 2
+g 2
l 2=l 2
l
2=1.
反思与感悟 类比推理是一种主观的不充分的推理,因此,要确认其猜想的正确性,还必须经过严格的逻辑论证.一般情况下,如果类比的相似性越多,相似的性质与推测的性质越相关,那么类比得到的命题就越可靠.
类比的关键是能把两个系统之间的某种一致性或相似性确切地表述出来,也就是要把相关对象在某些方面一致性的含糊认识说清楚.
跟踪训练2 “若直角三角形两直角边的长分别为a ,b ,将其补成一个矩形,则根据矩形的
对角线长可求得该直角三角形外接圆的半径r=a2+b2
2”.对于“若三棱锥三条侧棱两两垂
直,侧棱长分别为a,b,c”,类比上述处理方法,可得该三棱锥的外接球的半径R=__________.
答案a2+b2+c2
2
解析由求直角三角形外接圆的半径的方法,通过类比得出求三条侧棱两两垂直的三棱锥外接球的半径的方法为:首先将该三棱锥补全为长方体,而长方体的体对角线长就是三棱锥的
外接球的直径,从而得出该三棱锥的外接球的半径R=a2+b2+c2
2.
合情推理的应用
归纳推理、类比推理都是合情推理,归纳推理是由部分到整体、由个别到一般的推理;而类比推理则是通过某两类对象在对比中启发猜想结论.这些结论未必正确,要进一步验证(或证明)其正确性.
例3设f(n)=n2+n+41,n↔N+,计算f(1),f(2),f(3),f(4),…,f(10)的值,同时作出归纳推理,并用n=40验证猜想是否正确.
解f(1)=12+1+41=43,
f(2)=22+2+41=47,
f(3)=32+3+41=53,
f(4)=42+4+41=61,
f(5)=52+5+41=71,
f(6)=62+6+41=83,
f(7)=72+7+41=97,
f(8)=82+8+41=113,
f(9)=92+9+41=131,
f(10)=102+10+41=151.
∵43,47,53,61,71,83,97,113,131,151都是质数,
∴归纳猜想:当n↔N+时,f(n)=n2+n+41的值都为质数.
验证:当n=40时,f(40)=402+40+41=40×(40+1)+41=41×41.
∴f(40)是合数,∴由上面归纳推理得到的猜想不正确.。

相关文档
最新文档