什么是有源滤波装置

合集下载

有源电力滤波器的基本原理和分类

有源电力滤波器的基本原理和分类

有源电力滤波器的基本原理和分类有源电力滤波器(Active Power Filter,APF)是一种用于消除电力系统中谐波和电流不平衡问题的装置。

它是一种由电子器件组成的滤波器,能够注入特定频率的电流来抵消电网中的谐波,从而实现电流的纯正输出。

下面将介绍有源电力滤波器的基本原理和分类。

基本原理:有源电力滤波器由三相逆变器(Inverter)和控制系统组成。

首先,控制系统采集电网中的电压和电流信号,并进行处理和分析。

接下来,控制器确定电网的谐波特性并计算相应的注入电流。

最后,逆变器产生特定频率和幅度的电流,并通过与电网连接的线路与谐波电流相消。

这样,通过有源电力滤波器可以实现对电流谐波的消除和电流的纯正输出。

分类:根据滤波器的连接方式和使用场景,有源电力滤波器可以分为三种类型:单台型、平行型和串级型。

1.单台型有源电力滤波器:单台型有源电力滤波器适用于单台负载设备或供电点,用于对单一负载设备引起的谐波进行消除。

这种滤波器的工作方式简单,实施成本低,但只能解决单个设备引起的谐波问题。

2.平行型有源电力滤波器:平行型有源电力滤波器通常由多台滤波器并联连接,在一个供电点上对谐波进行消除。

这种连接方式可以同时处理多个电流不平衡或谐波扰动。

平行型滤波器具有相互独立工作的特点,其中一台滤波器的故障不会影响其他滤波器的工作。

3.串级型有源电力滤波器:串级型有源电力滤波器由多个滤波器串联连接在一个供电点上。

每个滤波器负责处理一定范围内的谐波频率。

串级型滤波器具有较大的容载能力,能够处理大电流负载和更复杂的谐波问题,但它的成本更高,并且在安装和维护过程中需要更多的配置。

总结:有源电力滤波器是一种用于消除电力系统中谐波和电流不平衡问题的装置。

通过逆变器产生特定频率和幅度的电流,有源电力滤波器可以实现对电流谐波的消除和电流的纯正输出。

根据滤波器的连接方式和使用场景,有源电力滤波器可以分为单台型、平行型和串级型三种类型。

有源滤波装置的原理

有源滤波装置的原理

有源滤波装置的基本原理
有源滤波装置是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能对大小和频率都变化的谐波以及变化的无功进行补偿,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点。

有源滤波装置采用与系统并联的方式,通过实时检测负载的谐波和无功分量,采用PWM变换技术,将与谐波和无功分量大小相等、方向相反的电流注入供配电系统中,实现消除谐波补偿无功的功能。

如图2-1 所示,主接触器闭合后,为防止上电后电网对直流母线电容器的瞬间冲击,首先通过软起电阻对直流母线的电容器充电,这个过程会持续几十秒,当母线电压Udc 达到预定值后,软起接触器闭合。

直流电容作为储能器件,为IGBT换流器和内部电抗器向外输出补偿电流提供能量。

通过外部CT实时采集电流信号送至信号调理电路,然后再送至FPGA控制器,控制器将基波成分分离并提取出谐波,将集到的谐波成分和已发出的补偿电流比较所得的差值作为实时补偿信号输出到驱动电路,触发IGBT换流器将补偿谐波电流注入到电网中,实现滤除谐波的功能。

有源滤波器工作原理

有源滤波器工作原理

有源滤波器工作原理有源滤波器是一种电子滤波器,它使用有源元件(如放大器)来增强和调节滤波器的性能。

有源滤波器可以用于信号处理、音频放大和频率选择等应用中。

本文将详细介绍有源滤波器的工作原理。

1. 滤波器的基本原理滤波器是一种电路,用于选择特定频率范围内的信号,而抑制其他频率范围的信号。

滤波器通常由电容器、电感器和电阻器等被动元件构成。

被动滤波器的性能受限于元件的品质因素,如电容器的损耗和电感器的串扰等。

有源滤波器通过引入放大器来解决这些问题,提高滤波器的性能。

2. 有源滤波器的基本结构有源滤波器通常由放大器和被动滤波器组成。

放大器可以是运算放大器、差分放大器或其他类型的放大器。

被动滤波器可以是低通、高通、带通或带阻滤波器。

放大器的作用是增强输入信号的幅度,并提供所需的增益和频率响应。

3. 低通滤波器工作原理低通滤波器用于通过低于截止频率的信号,并抑制高于截止频率的信号。

有源低通滤波器的基本工作原理如下:- 输入信号经过电容耦合,进入放大器的非反相输入端。

- 放大器的输出信号通过电容耦合,反馈到放大器的反相输入端。

- 通过调整反馈电阻和电容的数值,可以改变滤波器的截止频率和增益。

- 输出信号从放大器的输出端获取。

4. 高通滤波器工作原理高通滤波器用于通过高于截止频率的信号,并抑制低于截止频率的信号。

有源高通滤波器的基本工作原理如下:- 输入信号经过电容耦合,进入放大器的非反相输入端。

- 放大器的输出信号通过电容耦合,反馈到放大器的反相输入端。

- 通过调整反馈电阻和电容的数值,可以改变滤波器的截止频率和增益。

- 输出信号从放大器的输出端获取。

5. 带通滤波器工作原理带通滤波器用于通过位于两个截止频率之间的信号,并抑制低于和高于这两个频率的信号。

有源带通滤波器的基本工作原理如下:- 输入信号经过电容耦合,进入放大器的非反相输入端。

- 放大器的输出信号经过带通滤波器,该滤波器由电容和电感构成。

- 过滤后的信号通过电容耦合,反馈到放大器的反相输入端。

有源滤波器工作原理

有源滤波器工作原理

有源滤波器工作原理有源滤波器是一种电子滤波器,它通过使用有源元件(如操作放大器)来增强滤波器的性能。

有源滤波器可以实现更高的增益、更低的失真和更好的频率响应,相比于被动滤波器,它具有更好的性能和灵活性。

有源滤波器的工作原理可以分为两个部分:放大器和滤波器。

1. 放大器部分:有源滤波器使用放大器来增加电压或电流的幅度。

放大器可以是运算放大器(Op-Amp)或其他类型的放大器。

放大器的作用是将输入信号放大到适当的水平,以便进行后续的滤波处理。

2. 滤波器部分:有源滤波器的滤波器部分可以是低通滤波器、高通滤波器、带通滤波器或带阻滤波器。

滤波器的作用是根据信号的频率特性选择或屏蔽特定频率的信号。

滤波器可以通过电容、电感和电阻等元件来实现。

有源滤波器的工作原理可以通过以下步骤来说明:1. 输入信号:有源滤波器的输入信号可以是电压信号或电流信号。

输入信号的幅度和频率范围根据应用需求确定。

2. 放大器增益:输入信号通过放大器进行放大,以增加信号的幅度。

放大器的增益可以根据需要进行调整。

3. 滤波器设计:根据需要选择适当的滤波器类型(如低通、高通、带通或带阻),并设计滤波器的参数,如截止频率、通带增益、阻带衰减等。

4. 滤波器实现:根据滤波器设计的参数,选择合适的电容、电感和电阻等元件来实现滤波器。

这些元件可以根据滤波器类型和频率进行计算和选择。

5. 输出信号:经过滤波器处理后,输出信号将只包含滤波器所选择的频率范围内的信号。

输出信号的幅度和频率特性将根据滤波器的设计和放大器的增益来确定。

有源滤波器的工作原理可以通过以下示例来进一步说明:假设我们需要设计一个低通滤波器,截止频率为10kHz,通带增益为20dB。

1. 输入信号:假设输入信号是一个正弦波信号,频率为20kHz,幅度为1V。

2. 放大器增益:我们选择一个放大器,其增益为10倍。

因此,输入信号经过放大器后,幅度变为10V。

3. 滤波器设计:根据所需的低通滤波器参数,我们选择一个合适的电容和电阻来实现滤波器。

有源滤波器工作原理

有源滤波器工作原理

有源滤波器工作原理一、引言有源滤波器是一种电子滤波器,它利用有源元件(如运算放大器)来增强滤波器的性能。

本文将详细介绍有源滤波器的工作原理,包括有源滤波器的基本原理、常见的有源滤波器类型以及其工作原理的详细解释。

二、有源滤波器的基本原理有源滤波器是由有源元件(如运算放大器)和被动元件(如电容、电感和电阻)组成的电路。

有源元件在电路中起放大和增强信号的作用,从而改善滤波器的性能。

被动元件则用于构建滤波器的频率特性。

三、常见的有源滤波器类型1. 低通滤波器(Low Pass Filter):允许低频信号通过,阻断高频信号。

2. 高通滤波器(High Pass Filter):允许高频信号通过,阻断低频信号。

3. 带通滤波器(Band Pass Filter):只允许特定频率范围内的信号通过,阻断其他频率的信号。

4. 带阻滤波器(Band Stop Filter):阻断特定频率范围内的信号,允许其他频率的信号通过。

四、有源滤波器的工作原理详解1. 低通滤波器工作原理低通滤波器允许低频信号通过,阻断高频信号。

它的工作原理是利用运算放大器的放大特性和电容的频率特性。

当输入信号的频率较低时,电容的阻抗较高,导致输入信号几乎全部通过运算放大器。

而当输入信号的频率较高时,电容的阻抗较低,导致输入信号部分被电容吸收,从而实现了对高频信号的阻断。

2. 高通滤波器工作原理高通滤波器允许高频信号通过,阻断低频信号。

它的工作原理与低通滤波器相反。

当输入信号的频率较低时,电容的阻抗较低,导致输入信号部分被电容吸收,从而实现了对低频信号的阻断。

而当输入信号的频率较高时,电容的阻抗较高,导致输入信号几乎全部通过运算放大器。

3. 带通滤波器工作原理带通滤波器只允许特定频率范围内的信号通过,阻断其他频率的信号。

它的工作原理是将低通滤波器和高通滤波器结合起来。

通过选择合适的电容和电感参数,可以实现对特定频率范围内的信号的放大和传输,而阻断其他频率的信号。

有源滤波器工作原理

有源滤波器工作原理

有源滤波器工作原理有源滤波器是一种能够对信号进行滤波处理的电路,它利用了有源元件(如运算放大器)来增强滤波器的性能。

有源滤波器可以实现各种滤波功能,如低通滤波、高通滤波、带通滤波和带阻滤波等。

有源滤波器的工作原理可以分为两个方面:放大器的放大作用和反馈网络的调节作用。

首先,有源滤波器利用放大器的放大作用来增加信号的幅度。

放大器通常采用运算放大器,它具有高增益、低失真和宽带宽等特点。

通过放大器的放大作用,输入信号的幅度得以增加,从而提高滤波器的灵敏度和动态范围。

其次,有源滤波器利用反馈网络的调节作用来实现滤波功能。

反馈网络由电容、电感和电阻等元件组成,通过调节这些元件的数值和连接方式,可以实现不同类型的滤波器。

根据反馈网络的不同,有源滤波器可以分为RC(电容-电阻)滤波器、RL(电感-电阻)滤波器和LC(电感-电容)滤波器等。

在RC滤波器中,电容和电阻的组合可以实现不同的滤波特性。

当电容和电阻的数值确定时,可以实现低通、高通、带通和带阻滤波功能。

通过调节电容和电阻的数值,可以改变滤波器的截止频率和滤波特性。

在RL滤波器中,电感和电阻的组合也可以实现不同的滤波特性。

当电感和电阻的数值确定时,可以实现低通、高通、带通和带阻滤波功能。

通过调节电感和电阻的数值,可以改变滤波器的截止频率和滤波特性。

在LC滤波器中,电感和电容的组合可以实现不同的滤波特性。

当电感和电容的数值确定时,可以实现低通、高通、带通和带阻滤波功能。

通过调节电感和电容的数值,可以改变滤波器的截止频率和滤波特性。

有源滤波器的工作原理可以简单概括为:输入信号经过放大器的放大作用后,进入反馈网络进行滤波处理,最后输出滤波后的信号。

有源滤波器具有以下优点:1. 增益可调:有源滤波器可以通过调节放大器的增益来改变滤波器的放大倍数,从而适应不同的信号处理需求。

2. 灵便性高:有源滤波器可以通过调节反馈网络中的元件数值和连接方式来实现不同类型的滤波特性,具有较强的灵便性。

有源滤波器工作原理

有源滤波器工作原理

有源滤波器工作原理一、引言有源滤波器是一种基于放大器电路的滤波器,通过使用有源元件(如晶体管或运算放大器)来增强滤波器的性能和功能。

本文将详细介绍有源滤波器的工作原理、分类和特点。

二、工作原理有源滤波器的基本原理是利用放大器的放大特性来实现滤波功能。

它通过将输入信号经过放大器放大后,再进行滤波处理,最后输出滤波后的信号。

1. 放大器放大器是有源滤波器的核心部件,它可以将输入信号的幅度放大到所需的水平。

常用的放大器有晶体管放大器和运算放大器。

晶体管放大器是一种用晶体管作为放大元件的放大器,它具有高增益和宽频带的特点。

运算放大器是一种特殊的放大器,它具有高增益、低失真和大输入阻抗的特点。

2. 滤波器滤波器是有源滤波器的另一个重要组成部分,它可以根据需要选择不同的滤波特性。

常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

- 低通滤波器:允许低频信号通过,抑制高频信号。

- 高通滤波器:允许高频信号通过,抑制低频信号。

- 带通滤波器:只允许某个频率范围内的信号通过,抑制其他频率的信号。

- 带阻滤波器:只抑制某个频率范围内的信号,其他频率的信号均可通过。

3. 反馈有源滤波器还采用了反馈机制来增强性能。

反馈是将放大器的输出信号再次输入到放大器的输入端,通过调节反馈电阻和电容的数值,可以改变放大器的增益和频率响应。

反馈可以使放大器具有更好的稳定性、更低的失真和更宽的频带。

三、分类根据放大器的类型和滤波特性,有源滤波器可以分为多种类型。

1. RC滤波器RC滤波器是一种常见的有源滤波器,它由一个放大器和一个电容-电阻网络组成。

通过调节电容和电阻的数值,可以实现不同的滤波特性。

RC滤波器常用于低频信号的滤波。

2. LC滤波器LC滤波器是一种使用电感和电容组成的有源滤波器。

它可以实现更高的滤波性能和更宽的频带。

LC滤波器常用于高频信号的滤波。

3. Sallen-Key滤波器Sallen-Key滤波器是一种基于运算放大器的有源滤波器。

有源滤波器工作原理

有源滤波器工作原理

有源滤波器工作原理有源滤波器是一种电子滤波器,它利用有源元件(如放大器)来增强滤波器的性能。

它可以通过放大器的放大作用来提高滤波器的增益和带宽,并且可以实现各种滤波器的功能,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

有源滤波器通常由放大器、电容器和电感器组成。

放大器可以是运算放大器、场效应管放大器或其他类型的放大器。

电容器和电感器用于构建滤波器的频率响应。

有源滤波器的工作原理可以通过以下步骤来解释:1. 信号输入:将待处理的信号输入到有源滤波器的输入端口。

这个信号可以是音频信号、视频信号或其他类型的电信号。

2. 放大器增益:输入信号经过放大器放大,增益可以根据需求进行调整。

放大器的增益可以控制滤波器的信号强度。

3. 频率选择:有源滤波器根据电容器和电感器的数值选择特定的频率范围。

不同的电容器和电感器数值可以实现不同的滤波器类型。

4. 信号处理:滤波器通过电容器和电感器的组合来处理输入信号。

电容器可以通过储存和释放电荷来控制信号的频率响应。

电感器则可以通过储存和释放磁场来控制信号的频率响应。

5. 输出信号:经过滤波器处理后的信号输出到有源滤波器的输出端口。

输出信号的频率范围和幅度可以根据滤波器的设计进行调整。

有源滤波器的优点是它可以提供较高的增益和较宽的带宽。

由于有源滤波器使用放大器来增强信号,因此可以在滤波器的输入和输出之间提供较大的信号增益。

此外,有源滤波器还可以实现复杂的滤波器功能,如可调谐滤波器和多级滤波器。

然而,有源滤波器也存在一些缺点。

首先,有源滤波器的设计和构建相对复杂,需要选择合适的放大器和电容器、电感器组合。

其次,有源滤波器可能会引入噪声和失真,特别是在高增益和宽带宽的情况下。

因此,在设计有源滤波器时需要权衡增益、带宽和信号质量。

总结起来,有源滤波器是一种利用有源元件来增强滤波器性能的电子滤波器。

它通过放大器的放大作用来提高滤波器的增益和带宽,并且可以实现各种滤波器的功能。

有源和无源滤波器的区别

有源和无源滤波器的区别

有源和无源滤波器的区别:我们最简单的分别办法是看看是否需要电源,在作用上最大的区别在于有源滤波器可以有增益,无源滤波器无增益是衰减的。

有源滤波器之所以称为有源,顾名思义该装置需要提供电源(用以补偿主电路的谐波),其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功。

无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。

1、有源滤波(APF)与无源滤波(FC)在滤波原理上是不同的,无源滤波主要是利用阻容元器件的LC谐振特性,对系统中的某一特定频率形成一个低阻通道,这个低阻通道与系统阻抗形成并联分流关系,让谐波成份从滤波系统中流过。

也就是说无源滤波器是利用电容器和电抗器形成LC谐振回路对电网系统中某一次或几次谐波进行滤波,从而达到对系统滤波的作用。

有源滤波APF则是利用现代电力电子器件主动产生一个与系统谐波大小相等相位相反的谐波,以“抵消”系统产生的谐波。

概括地说FC属于并联分流,APF是主动抵消。

2、无源滤波器由于电阻以及电感的阻抗存在,功耗在同等情况下还是比有源滤波器要高一些,而且电路的延迟要要大一些。

有源滤波器的功耗相对而言会小很多,而且在通带内不会有衰减,而通过设定滤波器的Q值,可以改变放大倍数。

一般的模拟低通滤波器用的很多用ButterWorth类型的有源滤波器,效果还是很好的。

但是问题还是随之而来,带宽一般能提升,而且受到电路所选择的运放限制,一旦超过运放频率特性范围,电路就很容易自激振荡,输出的就全部是噪声了。

3、应用领域不同。

无源滤波器受负载影响很大,滤波特性较差,为提高滤波特性,可使用有源滤波器。

有源滤波器工作原理

有源滤波器工作原理

有源滤波器工作原理有源滤波器是一种电子滤波器,它使用了主动元件(如运算放大器)来增强和调节滤波器的性能。

有源滤波器可以实现各种滤波功能,如低通滤波、高通滤波、带通滤波和带阻滤波。

它在信号处理、音频放大器和通信系统等领域中得到广泛应用。

有源滤波器的工作原理基于运算放大器的放大和反馈原理。

运算放大器是一种高增益、差分输入的电子放大器,它具有高输入阻抗和低输出阻抗的特点。

运算放大器的输入端和输出端之间通过反馈电阻和电容连接,形成了一个反馈回路。

在有源滤波器中,运算放大器的输入端连接了输入信号和反馈电路,输出端连接了负载电阻。

通过调整反馈电路的参数,可以实现不同的滤波功能。

例如,对于一个简单的低通滤波器,输入信号经过一个电阻和一个电容接到运算放大器的非反相输入端,同时输出端通过一个电阻连接到运算放大器的反相输入端。

输出信号通过负载电阻输出。

这样,输入信号的低频成分将通过电容和电阻形成一个低通滤波器,而高频成分则被抑制。

有源滤波器的工作原理可以通过放大器的反馈理论来解释。

运算放大器的反馈回路可以提供稳定的放大倍数,并调整相位和频率响应。

反馈回路中的电阻和电容可以改变滤波器的截止频率和斜率,从而实现不同类型的滤波功能。

有源滤波器的优点在于它可以提供较高的增益和较低的失真。

由于运算放大器的高增益特性,有源滤波器可以在输入信号较弱的情况下提供足够的增益。

此外,有源滤波器还可以通过调整反馈回路的参数来实现不同的滤波特性,具有较大的灵活性。

然而,有源滤波器也存在一些限制。

由于运算放大器的输入和输出电压范围有限,有源滤波器的动态范围也会受到限制。

此外,有源滤波器的功耗较高,需要额外的电源供应。

总结起来,有源滤波器是一种使用运算放大器作为主动元件的电子滤波器。

它通过调整反馈回路的参数来实现不同的滤波功能,具有较高的增益和较低的失真。

然而,它也存在一些限制,如动态范围受限和功耗较高。

在实际应用中,可以根据具体需求选择合适的有源滤波器来满足信号处理的要求。

有源电力滤波装置详细介绍

有源电力滤波装置详细介绍

有源电力滤波器详细介绍一、有源电力滤波装置1.1 型号说明1.2 工作原理ANAPF系列有源电力滤波装置,以并联方式接入电网,通过实时检测负载的谐波和无功分量,采用PWM变流技术,从变流器中产生一个和当前谐波分量和无功分量对应的反向分量并实时注入电力系统,从而实现谐波治理和无功补偿。

原理如下图:1.3 主要技术特点DSP+FPGA全数字控制方式,具有极快的响应时间;λ先进的主电路拓扑和控制算法,精度更高、运行更稳定;λ一机多能,既可补谐波,又可兼补无功;λ模块化设计,便于生产调试;λ便利的并联设计,方便扩容;λ具有完善的桥臂过流、保护功能;λ使用方便,易于操作和维护。

λ1.4 滤波方案选择框图1.5 安装技术要求2.5.1 布置要求ANAPF一般为标准柜式结构,安装时应避免倒置或平放,外形尺寸由所选谐波补偿电流值决定,平面布置形式一般由谐波电流补偿点位置决定。

其平面布置要求如下1)离墙安装:正常情况下建议与低压开关柜并列离墙布置,正面操作,双面维护,背面维护通道不小于800mm。

2)靠墙安装:ANAPF也可靠墙布置,正面操作,正面维护。

3)电气设计人员在考虑系统接线及平面布置时应注意将ANAPF的补偿接入点尽量靠近补偿对象,并处于采样CT的上游,或在末端预留空间供设计安装,CT采样处下游不能包含容性负荷。

平面布置示意如下图:4)ANAPF所有正常情况下不带电的金属外壳均应根据设计要求的接地制式(TN-S、TN-C-S、TT等)严格做好相应的保护接零或保护接地。

2.5.2 互感器的安装1)互感器的P1端指向电网,P2端指向负载。

2)互感器与ANAPF的接线如下图所示:3)注意互感器的进出线要一致且方向正确。

4)安装电缆规格如下表:安装电缆与CT采样线截面积1.6 主要应用范围及场合λ机长:主控室、计算机房、广播系统、EIB灯光调光系统等。

医院:ICU(重症监护室)、MRI(磁共振成像)、手术室、医学成像室、放疗科等。

什么是有源电力滤波器(APF),有源电力滤波器的工作原理

什么是有源电力滤波器(APF),有源电力滤波器的工作原理

什么是有源电力滤波器(APF),有源电力滤波器的工作原理一、什么是有源电力滤波器(APF):滤波器型号参数:1.额定工作电压380V/220V,50Hz2.额定谐波补偿容量50A/100A/150A/200A3.整机功耗小于容量的3%4.抑制谐波效果达到国标要求,稳态THD可降低至5%以下5.额定绝缘电压3000V AC,2500V DC有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,之所以称为有源,顾名思义该装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。

有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高!二、有源电力滤波器(APF)基本原理:有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。

它由指令电流运算电路和补偿电流发生电路两个主要部分组成。

指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号`,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。

三、有源电力滤波器(APF)基本应用:谐波主要危害:•增加电力设施负荷,降低系统功率因数,降低发电、输电及用电设备的有效容量和效率,造成设备浪费、线路浪费和电能损失;•引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或无法投入运行;•产生脉动转矩致使电动机振动,影响产品质量和电机寿命;•由于涡流和集肤效应,使电机、变压器、输电线路等产生附加功率损耗而过热,浪费电能并加速绝缘老化;•谐波电压以正比于其峰值电压的形式增强了绝缘介质的电场强度,降低设备使用寿命;•零序(3的倍数次)谐波电流会导致三相四线系统的中线过载,并在三角形接法的变压器绕组内产生环流,使绕组电流超过额定值,严重时甚至引发事故。

有源电力滤波器装置的原理及特点

有源电力滤波器装置的原理及特点

有源电力滤波器装置的原理及特点安科瑞王志彬2019.03有源滤波装置通过检测补偿对象的电压和电流,得出与负载电流中的谐波电流大小相等、方向相反的补偿电流,从而使电网的电压、电流恢复为正弦波形。

有源电力滤波器具有如下特点:(1)实现动态补偿,可对频率和大小均变化的谐波及变化的无功功率进行补偿,对补偿对象的变化有极快的响应速度;(2)有源滤波装置是一个高阻抗电流源,它的接入对系统阻抗不会产生影响,因此此类装置适合系列化、规模化生产;(3)当电网结构发生变化时装置受电网阻抗的影响不大,不存在与电网阻抗发生谐波的危险,同时还能抑制串并联谐振;(4)补偿无功功率时不需要储能元件,补偿谐波时所需要的储能元件不大;(5)用同一台装置可同时补偿多次谐波电流和非整流倍次的谐波电流;(6)当线路中的谐波电流突然增大时有源滤波器不会发生过载,并且能正常发挥作用,不需要与系统断开;(7)装置可以仅输出所需补偿的高次谐波电流,不输出基波无功功率。

安科瑞ANAPF有源电力滤波器1、概述1.1谐波的产生电力系统中理想的电压、电流波形都是频率为50Hz的正弦波,但是非线性电力设备(大功率可控硅、变频器、UPS、开关电源、中频炉等)的广泛应用产生了大量畸变的谐波电流,谐波电流耦合在线路上产生谐波电压。

对非正弦的畸变电流作傅立叶级数分解,其中频率与工频相同的分量为基波,频率是基波频率整数倍的分量为谐波。

谐波是电能质量的重要指标。

1.2谐波的危害●谐波使公用电网中的元件产生附加的损耗,降低了发电、输电及用电设备的效率。

大量三次谐波流过中线会使线路过热,甚至引起火灾。

●谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等;使变压器局部严重过热;使电容器、电缆等设备过热、绝缘老化、寿命缩短,以致损坏。

●引起电网谐振,使得谐波电流放大几倍甚至数十倍,会对系统,特别是对电容器和与之串联的电抗器形成很大的威胁,经常使电容器和电抗器烧毁。

●谐波会导致继电保护,特别是微机综合保护器与自动装置误动作,造成不必要的供电中断和生产损失。

有源滤波器产品介绍

有源滤波器产品介绍

有源滤波器(CAPF)介绍一、APF简介有源电力滤波技术是近几年针对无源滤波技术的缺陷而提出的一种谐波治理新技术。

由于其滤波效果好,在国外得到了广泛应用,由于其价格昂贵,在国内未得到推广使用。

领步(北京)电能质量设备有限公司与清华大学合作成功开发出拥有自主知识产权的国产化有源电力滤波装置APF,已经通过质量技术监督局的检测,正式投入使用,各项技术性能指标均达到或超过国外同类产品,价格只有进口设备的三分之一。

有源电力滤波装置的基本原理是从电网中检测出谐波电流,经内部芯片快速计算、分析、比较,控制主功率单元产生一个与该谐波电流大小相等而极性相反的补偿电流,从而使电网电流只含基波成分。

这种滤波器能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响。

该有源电力谐波滤波装置,引进美国TMS320F2812芯片,根据最新的瞬时无功功率理论,应用数字信号处理技术(DSP),脉宽调制技术(PWM),智能化功率单元技术(IPM),触摸屏技术(GP)等前沿科技,可实现动态消除谐波,平衡三相负荷,是一种高技术含量,滤波效率最理想谐波治理和无功补偿产品。

APF根据电网和负载性质,分别有三相三线系列和三相四线系列有源电力滤波装置,三相三线系列主要针对整流器、变频器、大型UPS、中频炉、电弧炉等工业型大容量非线性负荷,拥有高效的滤波能力,能同时滤除2~31次谐波,小于20ms的响应时间,具备一拖四扩展功能。

适用于各种工况领域,是工业型大容量非线性负载谐波治理的理想解决方案。

三相四线系列APF适用于商业建筑电气系统,由于商业建筑电气系统大量使用荧光灯、电脑、UPS、电梯、变频空调等设备,不仅污染电网,而且其产生的三次谐波叠加到中性线上,使中性线发热,严重威胁电力系统安全。

该系列APF能彻底消除因三次谐波产生的中性线谐波电流,并消除2~50次全部或选定次谐波。

该系列APF体积小,具备完全的通讯功能,是保障电力系统安全的重要电气设备。

有源滤波装置讲解

有源滤波装置讲解

4、有源滤波装置4.1 采用的标准规范设备的制造、试验和验收除了满足本用户需求书的要求外,还应符合如下标准规范:《地铁设计规范》GB50157-2003 《城市轨道交通技术规范》GB50490-2009 《低压成套开关设备和控制设备》GB7251.1-2005《低压开关设备和控制设备第1部分:总则》GB/T14048.1-2006 《低压系统内设备的绝缘配合第一部分:原理、要求和试验》GB/T16935.1-2008 《低压开关设备和控制设备第3部分:开关、隔离器、隔离开关以及熔断器组合电器》GB14048.3-2008《半导体变流器基本要求的规定》GB/T3859.1-93 《半导体变流器》 GB 17950-2000 《半导体变流器》 IEC60146《标称电压1kV及以下交流电力系统用非自愈式并联电容器第1部分:总则—性能、试验和定额—安全要求安装和运行导则》GB/T 17886.1-1999《电力电容器低压功率因数补偿装置》GB/T 22582-2008 《供配电系统设计规范》GB50052-2009 《低压配电设计规范》GB50054-95 《民用建筑电气设计规范》JGJ16-2008 《低压用户电气装置规程》DGJ08-100-2003《受谐波影响的工业交流电网、过滤器和并联电容器的应用》IEC 61642《电磁兼容(EMC).第2部分:环境—第4分部分:工厂低频传导骚扰兼容水平》IEC 61000-2-4《电磁兼容(EMC)—第4部分:试验和测量技术—第7分部分:供电系统及所连设备谐波和谐间波和测量和测量仪器导则》IEC 61000-4-7《电能质量供电电压偏差》GB/T12325-2008《电能质量电压波动和闪变》GB/T12326-2008 《电能质量公用电网谐波》GB/T14549-93《电能质量三相电压不平衡》GB/T15543-2008 《电能质量电力系统频率偏差》GB/T15945-2008《电磁兼容限值谐波电流发射限值(设备每相输入电流≤16A)》GB/17625.1-2003 《电磁兼容限值对每相额定电流≤16A且无条件接入的设备在公用低压供电系统中产生的电压变化、电压波动和闪烁的限制》GB17625.2-2007《电磁兼容限值对额定电流大于16A的设备在低压供电系统中产生的电压波动和闪烁的限制》GB/Z 17625.3-2000《电磁兼容限值对额定电流大于16A的设备在低压供电系统中产生的谐波电流的限制》GB/Z 17625.6-2003《外壳防护等级(IP代码)》GB4208-2008所采用的标准均应为合同执行时的最新有效版本。

有源滤波器工作原理

有源滤波器工作原理

有源滤波器工作原理有源滤波器是一种电子滤波器,它利用有源元件(如运算放大器)来实现滤波功能。

有源滤波器具有高增益、低失真和灵活性等优点,常用于音频处理、通信系统和仪器仪表等领域。

有源滤波器的工作原理基于运算放大器的放大和反馈原理。

运算放大器是一种电子放大器,具有高增益、高输入阻抗和低输出阻抗的特点。

它由一个差分放大器和一个输出级组成。

差分放大器通过放大输入信号,并将放大后的信号送入输出级。

输出级将放大后的信号输出。

有源滤波器可以分为两种类型:主动滤波器和积分滤波器。

主动滤波器利用运算放大器的放大和反馈原理来实现滤波功能。

积分滤波器则利用电容器和电阻器的组合来实现滤波功能。

主动滤波器的工作原理如下:输入信号经过差分放大器放大后,进入反馈网络。

反馈网络将一部分输出信号反馈给差分放大器的负输入端,形成反馈环路。

通过调整反馈网络的参数,可以实现不同的滤波功能,如低通滤波、高通滤波、带通滤波和带阻滤波等。

差分放大器根据反馈信号和输入信号的差异来产生输出信号,从而实现滤波功能。

积分滤波器的工作原理如下:输入信号经过电容器和电阻器的串联组合,形成积分电路。

积分电路将输入信号进行积分操作,输出信号的幅度与输入信号的频率成反比。

通过调整电容器和电阻器的数值,可以实现不同的滤波功能,如高频滤波和低频滤波等。

有源滤波器的性能参数包括增益、带宽、失真和相位响应等。

增益是指滤波器对输入信号的放大倍数。

带宽是指滤波器能够通过的频率范围。

失真是指滤波器输出信号与输入信号之间的差异。

相位响应是指滤波器对输入信号的相位变化。

有源滤波器的设计需要根据具体的应用需求来确定。

在设计过程中,需要考虑滤波器的频率响应、幅频特性、相频特性、群延迟和稳定性等因素。

通过合理选择元件参数和电路结构,可以实现满足要求的滤波功能。

总结起来,有源滤波器是利用有源元件(如运算放大器)来实现滤波功能的电子滤波器。

它具有高增益、低失真和灵活性等优点。

有源滤波器的工作原理基于运算放大器的放大和反馈原理,可以分为主动滤波器和积分滤波器两种类型。

有源滤波器工作原理

有源滤波器工作原理

有源滤波器工作原理有源滤波器是一种电子滤波器,通过使用有源元件(如运算放大器)来增强滤波器的性能。

它可以滤除不需要的频率成份,只保留感兴趣的频率信号。

有源滤波器在许多电子设备中广泛应用,如音频设备、通信系统和电源管理等。

有源滤波器的工作原理基于运算放大器的放大和反馈原理。

运算放大器是一种高增益、差分输入、单端输出的电子设备,具有很好的线性性能。

它可以将输入信号放大到较高的增益,并通过反馈回路将输出信号与输入信号进行比较,从而实现滤波功能。

有源滤波器可以分为两种类型:主动滤波器和交叉耦合滤波器。

主动滤波器是指使用运算放大器和其他有源元件(如电容和电感)来构建滤波器。

它可以实现各种滤波器类型,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

主动滤波器的工作原理是通过调整运算放大器的增益和反馈网络的参数来选择所需的频率响应。

交叉耦合滤波器是一种特殊类型的有源滤波器,它使用多个运算放大器和被动元件(如电容和电感)构建。

交叉耦合滤波器可以实现更复杂的滤波器设计,如多级滤波器和带通滤波器。

它的工作原理是通过将多个运算放大器和被动元件进行耦合,形成一个复杂的滤波器网络,从而实现所需的频率响应。

有源滤波器的工作原理可以通过以下步骤来解释:1. 输入信号通过运算放大器的差分输入端进入滤波器电路。

2. 运算放大器将输入信号进行放大,并输出到反馈网络。

3. 反馈网络将运算放大器的输出信号与输入信号进行比较,并产生一个反馈信号。

4. 反馈信号通过运算放大器的反馈回路重新输入到运算放大器的输入端。

5. 反馈信号与输入信号的比较结果将决定运算放大器的输出信号。

6. 输出信号经过滤波器电路后,滤除不需要的频率成份,并保留感兴趣的频率信号。

7. 最终输出信号可以通过增益调节和滤波器参数调整来满足特定的应用需求。

有源滤波器具有许多优点,如高增益、灵便性和可调性。

它可以实现复杂的滤波器设计,并具有较低的失真和噪声。

然而,有源滤波器也存在一些限制,如较高的功耗和复杂的电路设计。

有源滤波器的概念原理及设计

有源滤波器的概念原理及设计

有源滤波器的概念原理及设计
有源滤波器是一种使用放大器和其他有源元件(如运算放大器)的电路,用于在电子信号处理中滤除不需要的频率成分。

它们可以根据需求来
选择和处理特定的频率段,得到所需的输出信号。

有源滤波器主要用于音频、通信、控制系统、传感器信号处理等领域。

1.确定滤波器的类型:根据需求确定是需要低通、高通、带通或带阻
滤波器。

2.选择放大器:根据所需的频率响应和信号增益,选择合适的放大器。

通常使用运算放大器,因为它们具有高增益和低噪声。

3.选择有源元件:根据滤波器类型和频率响应,选择适当的有源元件,如电容和电阻。

4.设计频率响应:根据所需的频率响应,确定合适的增益和切除频率
来滤除不需要的频率成分。

5.确定电路参数:计算所需的电路参数,如电容和电阻值,以满足设
计要求。

6.进行仿真和实验:使用电子设计自动化(EDA)软件进行电路仿真,并根据结果进行调整和改进。

然后,制作实际电路进行验证。

7.进行性能测试:测试有源滤波器的性能,包括增益、相移和频率响
应等。

8.进行优化和调整:根据测试结果,对电路进行优化和调整,以满足
设计要求。

总结:
有源滤波器是一种常用的电子信号处理电路,通过使用放大器和其他
有源元件来滤除不需要的频率成分。

它们的设计需要选择合适的放大器和
有源元件,并确定所需的频率响应和增益。

设计过程包括确定滤波器类型、选择元件、设计频率响应、确定电路参数、进行仿真和实验、进行性能测
试以及进一步优化和调整。

有源滤波器的设计还需要考虑电源稳定性、抗
干扰能力和系统的稳定性等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是有源滤波装置基本概念顾名思义有源滤波装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波装置主要是治理电流谐波,串联有源滤波装置主要是治理电压谐波等引起的问题。

有源滤波装置同有源滤波装置比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振。

基本原理:有源滤波装置,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。

它由指令电流运算电路和补偿电流发生电路两个主要部分组成。

指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。

技术优势绿色化效率达97.2%,比效率为95%的有源滤波器年节约电能约6, 500kwh效率更高的拓扑增强型控制算法基于精确模型的热设计和结构优化小型化体积仅为同类主流品牌1/6,占用更少空间,活适应不同的工况安装创新,壁挂式或机架式安装使用更少的原材料,保护环境智能化补偿指定次数谐波可调感性、容性无功补偿补偿系统不平衡负载自动检测、抑制系统谐振全功能监控系统模块化N+1冗余,显著提高系统可靠性流水线生产,更出色质量保证减少系统单故障点灵活并联,适应不同工况功能特性同时滤除2~50次谐波,或选择2~50次内任意次数谐波进行补偿响应时间小于300μs采用3DSP+CPLD全数字控制方式和国际知名品牌高速IGBT,闭环控制,精确滤除谐波应用四相线技术,消除中性线电流自动消除谐振,不受电网阻抗和系统阻抗变化影响具有补偿谐波;同时补偿谐波和无功;同时补偿谐波,无功和负载三相电流不平衡三种工作模式电子式过负荷保护逆变器控制具备了机器快速的FPGA,功率数字信号处理功能模块化设计,易于扩展多机并联集中监控功能远程网络监控功能维护方便,在符合要求的工作环境下工作,非机器故障无需维护产品设计及生产遵循的国内,国际标准国际标准EN 50091-3, EN 61000-6-2, EN55011, EN 50178:1997, IEC 62040-3, IEC 50178:1997, AS 62040-3(VFI SS 111), CISPR11国家标准GB/T14549-93《电能质量:公用电网谐波》GB/T15543-1995 《电能质量:三相电压允许不平衡度》GB/T15945-1995 《电能质量:电力系统频率允许偏差》GB/T12326-2000 《电能质量:电压波动和闪变》GB/T12325-2003 《电能质量:供电电压允许偏差》GB/T18481-2001 《电能质量:暂时过电压和瞬态过电压》GB/T15576-2008 《低压成套无功功率补偿装置》GB7625.11998 《低压电气电子产品发出的谐波电流限值》GB 4208-2008《外壳防护等级(IP代码)》极宽电压输入范围额定工作电压为380V,可承受-40%~+20%的电压波动,频率为50/60Hz, 可承受+/-5%的频率波动,适应各种不同工况的电能质量环境。

同时,如果电压波动超过上下限,机器自动闭锁输出,并发出告警。

自动限流自动限定在额定容量范围内100%输出,如果负载侧谐波电流大于机器额定容量,机器会在额定容量内继续输出电流补偿谐波,不会发生过载导致自身超载或退出运行。

负载短路保护可承受负载瞬间短路的冲击,在短路消除后重新启动。

并联独立控制并联接入电网,不会因机器故障导致电网发生断电事故。

多台YW-APF有源电力滤波器并联系统,如果一台因故障退出运行,剩余的机器仍能正常工作实现滤波功能。

三相电流独立控制各相电流独立控制,单相注入电流,不受系统三相电流不平衡影响,中性线滤波能力为相线的三倍。

IP防护等级及防雷保护IP保护等级为IP20;防雷保护能力为20kA。

监控系统系统具备快速、完全的故障自检功能,包括市电欠压或过压、母线过压或过流、风扇故障、功率器件过温、输入保险丝熔断等各种故障自检,所有故障均通过LCD显示屏及LED运行状态灯发出告警信号,同时机器自动采取相对应的操作保护系统。

监控系统在供电或断电情况下可保存500条故障记录,便于分析原因及排除故障。

三、基本应用:谐波主要危害:· 增加电力设施负荷,降低系统功率因数,降低发电、输电及用电设备的有效容量和效率,造成设备浪费、线路浪费和电能损失;· 引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或无法投入运行;· 产生脉动转矩致使电动机振动,影响产品质量和电机寿命;· 由于涡流和集肤效应,使电机、变压器、输电线路等产生附加功率损耗而过热,浪费电能并加速绝缘老化;· 谐波电压以正比于其峰值电压的形式增强了绝缘介质的电场强度,降低设备使用寿命;· 零序(3的倍数次)谐波电流会导致三相四线系统的中线过载,并在三角形接法的变压器绕组内产生环流,使绕组电流超过额定值,严重时甚至引发事故。

· 谐波会改变保护继电器的动作特性,引起继电保护设施的误动作,造成继电保护等自动装置工作紊乱;· 谐波变改变了电压或电流的变化率和峰值,延缓电弧熄灭,影响断路器的分断容量;· 使计量仪表特别是感应式电能表产生计量误差;· 干扰邻近的电力电子设备、工业控制设备和通讯设备,影响设备的正常运行。

谐波治理经济效益节能5%~8%某IDC机房7台400KVA UPS不间断电源,08年电费支出约1500万元,治理谐波后年节约电费110万元,节能效果7.3%降容减少变压器、断路器、电缆投资某工厂安装国电中自有源滤波器,退还一台变压器给供电局,节省100多万投资保护设备、减少设备投资河南某纸厂变频器产生的谐波每月烧毁两台风机,每月损失3万元提高生产率和保持连续供电大庆腈纶厂治理谐波后日产量从197吨提高到210吨四、有源滤波的优点和缺点:优点:可动态滤除各次谐波,对系统内的谐波能够完全吸收;不会产生谐振。

缺点:造价太高;受硬件限制,在大容量场合无法使用:有源滤波容量单套不超过100KVA,目前最高适用电网电压不超过690V.五、应用场合有源电力滤波器可广泛应用于工业、商业和机关团体的配电网中,如:电力系统、电解电镀企业、水处理设备、石化企业、大型商场及办公大楼、精密电子企业、机场/港口的供电系统、医疗机构等。

根据应用对象不同,HTAPF-I型有源电力滤波器的应用将起到保障供电可靠性、降低干扰、提高产品质量、增长设备寿命减少设备损坏等作用。

■通信行业为了满足大规模数据中心机房的运行需要,通信配电系统中的UPS使用容量在大幅上升。

据调查,通信低压配电系统主要的谐波源设备为UPS、开关电源、变频空调等。

其产生的谐波含量都较高,且这些谐波源设备的位移功率因数极高。

通过使用有源滤波器可以提高通信系统及配电系统的稳定性,延长通信设备及电力设备的使用寿命,并且使配电系统更符合谐波环境的设计规范。

■半导体行业大多数半导体行业的3次谐波非常严重,主要是由于企业中使用了大量的单相整流设备。

3次谐波属于零序谐波,具备在中性线汇集的特点,导致中性线压力过大,甚至出现打火现象,存在着极大的生产安全隐患。

谐波还会造成断路器跳闸,耽误生产时间。

3次谐波在变压器内形成环流,加速了变压器的老化。

严重的谐波污染必然对配电系统中的设备使用效率和寿命造成影响。

■石化行业由于生产的需要,石化行业中存在着大量泵类负载,并且不少泵类负载都配有变频器。

变频器的大量应用使石化行业配电系统中的谐波含量大大增加。

目前绝大部分变频器整流环节都是应用6脉冲将交流转化为直流,因此产生的谐波以5次、7次、11次为主。

其主要危害表现为对电力设备的危害及在计量方面的偏差。

使用有源滤波器可以很好地解决这方面的问题。

■化纤行业为大幅提高熔化率、提高玻璃的熔化质量,以及延长炉龄、节省能源,在化纤行业常用到电助熔加热设备,借助电极把电直接送入燃料加热的玻璃池窑中。

这些设备会产生大量的谐波,且三相谐波的频谱和幅值差别比较大。

■钢铁/中频加热行业钢铁业中常用到的中频炉、轧机、电弧炉等设备都会对电网的电能质量产生重大的影响,使电容补偿柜过载保护动作频繁、变压器和供电线路发热严重、熔断器频繁熔断等,甚至引起电压跌落、闪变。

■汽车制造业焊机是汽车制造业中不可少的设备,由于焊机具有随机性、快速性及冲击性的特点,使大量使用焊机造成严重的电能质量问题,造成焊接质量不稳、自动化程度高的机器人由于电压不稳而不能工作,无功补偿系统无法正常使用等情况。

■直流电机谐波治理大型直流电机场所都需要先通过整流设备将交流电转换为直流电,由于此类工程的负载容量都较大,因此在交流侧存在严重的谐波污染,造成电压畸变,严重时会引起事故。

■自动化生产线和精密设备的使用在自动化生产线和精密设备场合,谐波会影响到其正常使用,使智能控制系统、PLC系统等出现故障。

■医院系统医院对供电的连续性和可靠性有非常严格的要求,0类场所自动恢复供电时间T≤15S,1类场所自动恢复供电时间0.5S≤T≤15S, 2类场所自动恢复供电时间T≤0.5S,电压总谐波畸变率THDu≤3%,X光机、CT机、核磁共振都是谐波含量极高的负载。

■剧场/体育馆可控硅调光系统、大型LED设备等都是谐波源,在运行过程中会产生大量的三次谐波,不但造成配电系统的电力设备效率低下,而且还会造成灯光频闪,对通信、有线电视等微弱电回路产生杂音,甚至产生故障。

六、主要发展状况:由于有源滤波存在的不足和缺陷,目前国内市场上主要以无源滤波为主;国际上以ABB、ABLEREX(爱普瑞斯)、诺基亚、施耐德(梅兰日兰)、西门子为代表,国内以山大华天,哈工大、西安赛博、安徽佑赛、南京亚派为代表,另外清华大学电机系研制的CleanPower系列有源电力滤波器在自适应能力,稳定性以及对各种延时的最优补偿方面有了长足的进展,成为了最先进的产品之一。

随着电力电子技术的进步,有源电力滤波器以其巨大的技术优势、强大功能、逐渐下降的价格,必将最终取代传统的电容型无功补偿装置,占据市场主流。

相关文档
最新文档