九年级(上)第一次双周测试数学试卷

合集下载

九年级上册数学周末试卷【含答案】

九年级上册数学周末试卷【含答案】

九年级上册数学周末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 4x 13. 在直角坐标系中,点(3, -4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长为()A. 26cmB. 32cmC. 42cmD. 52cm5. 若一个圆的半径为r,则其直径为()A. r/2B. 2rC. r√2D. 2r²二、判断题(每题1分,共5分)1. 平行四边形的对角线互相平分。

()2. 两个等边三角形的面积一定相等。

()3. 任何有理数都可以表示为分数的形式。

()4. 一元二次方程的解一定是实数。

()5. 对角线相等的平行四边形一定是矩形。

()三、填空题(每题1分,共5分)1. 若一个数的平方是16,则这个数是______。

2. 等差数列1, 3, 5, 7, 的第10项是______。

3. 一个圆的周长是31.4cm,则这个圆的半径是______cm。

4. 若sinθ = 1/2,且θ是锐角,则θ的度数是______度。

5. 两个互质的数的最小公倍数是它们的______。

四、简答题(每题2分,共10分)1. 解释什么是算术平方根,并给出一个例子。

2. 描述等腰三角形的性质。

3. 简述一元二次方程的求根公式。

4. 解释比例线段的定义。

5. 什么是黄金分割,它有什么特点?五、应用题(每题2分,共10分)1. 一个长方形的长是宽的两倍,若长方形的周长是30cm,求长方形的长和宽。

2. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。

3. 解一元二次方程x² 5x + 6 = 0。

九年级数学第一章周周清2

九年级数学第一章周周清2

九年级数学(上)周周清班级:姓名:家长签字:一、选择题(每题5分,共25分)1.下列说法错误的是()A.有一个内角是直角的平行四边形是矩形B.矩形的四个角都是直角,并且对角线相等C.对角线相等的平行四边形是矩形D.有两个角是直角的四边形是矩形2.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.AB=BC D.AC=BD3.在四边形ABCD中,AC和BD的交点为O,则不能判断四边形ABCD是矩形的是()A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,∠AOB=∠BOC D.AB∥CD,AB=CD,∠A=90°4.菱形,矩形,正方形都具有的性质是( )A.对角线相等且互相平分B.对角线相等且互相垂直平分C.对角线互相平分 D.四条边相等,四个角相等5.正方形面积为36,则对角线的长为()A.6B.C.9D.二、填空题(每题5分,共15分)6.如图,在四边形ABCD中,已知AB∥DC,AB=DC.在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上一个条件是.(填上你认为正确的一个答案即可)7.如图,直角AOB内的任意一点P到这个角的两边的距离之和为6,则图中四边形的周长为.8.在直角三角形中,两条直角边的长分别为12和5,则斜边上中线长为 .三、解答题:(每题30分)1.如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF。

(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积。

2.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.。

九年级数学第一次周考试卷

九年级数学第一次周考试卷

九年级数学第一次周考试卷命题人:李玉波 (考试时间:120分钟 满分:150分) 请同学们认真答题!一、选择题(本大题共10小题,每小题4分,共40分) 1下列命题中正确的是( )A .两条对角线互相平分的四边形是平行四边形B .两条对角线相等的四边形是矩形C .两条对角线互相垂直的四边形是菱形D .两条对角线互相垂直且平分的四边形是正方形2.□ABCD 的周长是28㎝,△ABC 的周长是22㎝,则AC 的长为( ) A .14㎝ B .12㎝ C .10㎝ D .8㎝ 3.已知菱形的两条对角线长分别为6和8,则菱形的周长为( ) A .20 B .30 C .40 D .10 4.如图,在菱形ABCD 中,不一定成立的( )A .四边形ABCD 是平行四边形B .AC ⊥BDC .△ABD 是等边三角形D .∠CAB =∠CAD5.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是 ( ) A.四边形AEDF 是平行四边形B.如果90BAC ∠=,那么四边形AEDF 是矩形C.如果AD 平分BAC ∠,那么四边形AEDF 是菱形D.如果AD BC ⊥且AB AC =,那么四边形AEDF 是正方形6.如图,梯形ABCD 中,AD //BC ,BD 为对角线,中位线EF 交 BD 于O 点,若FO -EO =4,则BC -AD 等于( )A .4B .6C .8D .107.顺次连结任意四边形各边中点所得到的四边形一定是………………( ) A 、平行四边形 B 、矩形 C 、菱形 D 、正方形8、如左图所示,将长为20cm ,宽为2cm 的长方形白纸条,折成右图所示的图形并在其一面着色,则着色部分的面积为(学校:班级: 姓名: 学号:BC 第6 题A FCDBEDBAA .234cmB .236cmC .238cmD .240cm9.如图,正方形ABCD 的边长为2,点E 在AB 边上,四边形EFGB 也为正方形, 设△AFC 的面积为S ,则( )A .S=2B .S=4C .S=2.4D .S 与BE 长度有关10.如图直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,则△ADE 的面积是 ( ) A .1 B .2 C .3 D .不能确定 二.填空题(本大题共7小题,每小题4分,共28分)11、如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,23AB BC ==,,则图中阴影部分的面积为 .12、如图,把一张矩形纸片ABCD 沿EF 折叠后,点C D ,分别落在C D '',的位置上,EC '交AD 于点G .已知58EFG ∠=°,那么BEG ∠= ° 13将一张矩形纸片ABCD 沿着两条平行线EF 、GH 按如图所示方式折叠后,量得∠DFE =50°, 则∠DNH 的度数为 -----------.14.如图,在等边ΔABC 中,AC =9,点O 在AC 上,且AO =3,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD .要使点D 恰好落在BC 上,则AP 的长是 ▲ .EADCBA D(第13题)B(第14题)A B E C D F GC 'D '15. 某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm16.如图,O 为矩形ABCD 的中心,将直角三角板的直角顶点与O 点重合,转动三角板使两直角边始终与BC 、AB 相交,交点分别为M 、N .如果AB =8,AD =12,O M =x ,ON=y 则 y 与x 的关系是17.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2008厘米后停下,则这只蚂蚁停在 点. 三.解答题(本大题共8小题,共82分。

九年级数学上册每周一练检测卷11

九年级数学上册每周一练检测卷11

九年级数学上册每周一练检测卷11一、选择题(每小题4分,共40分) 1.已知34x y=,则x y 的值是( )A .43 B .34 C .37 D .742.已知⊙O 的半径为5,若PO =4,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法判断3.已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是( ) A .15B .25 C .35 D .234.如图,将半径为8的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB 长为( )A .215B .415C .8D .105.如图,△ABC 的三个顶点分别在正方形网格的格点上,则tan A ∠的值是( )A .65B .56C .210D .3106.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表: x…﹣4﹣3﹣2﹣11…y … 5 8 9 8 5 0 …由表可知,抛物线与x 轴的一个交点是(1,0),则另一个交点的坐标为( ) A .(0,5)B .(﹣2,9)C .(﹣5,0)D .(2,0)7.如图,直线24y x =-+与x 轴,y 轴分别相交于,A B 两点,C 为OB 上一点,且12∠=∠,则ABC S ∆等于 ( )A .1B .2C .3D .48.若抛物线y =ax 2+2ax +4(a <0)上有A (﹣32,y 1),B (﹣2,y 2),C (2,y 3)三点,则y 1,y 2,y 3的大小关系为( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 3<y 19.将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =,则四边形AB 1ED 的内切圆半径为( )A.31 +B .33-C.31+D.33-10.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q 从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=6cm B.sin∠EBC=45C.当0<t≤10时,y=25t2D.当t=12s时,△PBQ是等腰三角形二、填空题(每小题5分,共30分)11.抛物线y=(x﹣2)2+1与y轴的交点坐标是.12.有9张卡片,每张卡片上分别写有不同的从1到9的一个自然数,从中任意抽出一张卡片,则抽到的卡片上的数是3的倍数的概率是.13.如图,四边形ABCD的四个顶点都落在⊙O上,BC=CD,连结BD,若∠CBD=35°,则∠A的度数是.14.如图,P是双曲线y =(x>0)的一个分支上的一点,以点P为圆心,1个单位长度为半径作⊙P,当⊙P与直线y=3相切时,点P的坐标为.第13题第14题第15题15.正方形ABCD中,有两个分别内接于△ABC,△ACD的小正方形,它们的面积分别为m,n(如图),则nm =(A层)16.如图,四边形OABC中,BC∥AO,O(0,0),A(10,0),B(10,4),BC=2,G(t,0)是底边OA上的动点.(1)tan∠OAC=.(2)边AB关于直线CG的对称线段为MN,若MN与△OAC的其中一边平行时,则t=.4x三、解答题(共80分)17.如图,抛物线y=﹣x2+2x+3与y轴交于点C,顶点为D.(1)求顶点D的坐标;(2)求△OCD的面积.18.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CB D.(1)求证:CD是⊙O的切线.(2)过点B作⊙O的切线交CD的延长线于点E,若OB=5,BC=18,求BE的长.19.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0.现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标.(2)求点M(x,y)在函数y=﹣x2﹣1的图象上的概率.20.已知如图,圆P经过点A(-4,0),点B(6,0),交y轴于点C,∠ACB=45°,连结AP、BP. (1)求圆P的半径;(2)求OC长;(3)在圆P上是否存在点D,使△BCD的面积等于△ABC的面积,若存在求出点D坐标,若不存在说明理由.(A层)21.由若干边长为1的小正方形拼成一系列“L”形图案(如图1).(1)当“L”形由7个正方形组成时,其周长为;(2)如图2,过格点D作直线EF,分别交AB,AC于点E,F.①试说明AE AF=AE+AF;②若“L”形由n个正方形组成时,EF将“L”形分割开,直线上方的面积为整个“L”形面积的一半,试求n的取值范围以及此时线段EF的长.(A层)22.如图.在平面直角坐标系中,点A(3,0),B(0,﹣4),C是x轴上一动点,过C作CD∥AB 交y轴于点D.(1)OCOD值是.(2)若以A,B,C,D为顶点的四边形的面积等于54,求点C的坐标.(3)将△AOB绕点A按顺时针方向旋转90°得到△AO′B′,设D的坐标为(0,n),当点D落在△AO′B′内部(包括边界)时,求n的取值范围.(直接写出答案即可)。

九年级数学上学期第1周周末作业(含解析) 苏科版-苏科版初中九年级全册数学试题

九年级数学上学期第1周周末作业(含解析) 苏科版-苏科版初中九年级全册数学试题

2016-2017学年某某省某某市宜兴外国语学校九年级(上)第1周周末数学作业一.选择题1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B. =2 C.x2+2x=x2﹣1 D.3(x+1)2=2(x+1)2.关于x的一元一次方程(a﹣1)x2+x+a2﹣1=0的一个解是0,则a的值为()A.1 B.﹣l C.1 或﹣1 D.23.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.84.一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式,正确的是()A.B.C.D.以上都不对5.已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣2<x1<﹣1 B.﹣3<x1<﹣2 C.2<x1<3 D.﹣1<x1<06.对于任意实数x,多项式x2﹣5x+8的值是一个()A.非负数B.正数 C.负数 D.无法确定7.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=148二.填空题8.将方程3x2=5x+2化为一元二次方程的一般形式为.9.x2﹣x+=(x﹣)2;(2)2x2﹣3x+=2(x﹣)2;(3)a2+b2+2a﹣4b+5=(a+)2+(b﹣)2.10.方程x2+2x﹣3=0的解是.11.方程x2﹣3x=0的根为.12.将代数式2x2+3x+5配方得.13.已知代数式7x(x+5)+10与代数式9x﹣9的值互为相反数,则x=.14.若一个等腰三角形的三边长均满足方程y2﹣6y+8=0,则此三角形的周长为.15.当m时,关于x的方程(m﹣3)﹣x=5是一元二次方程;当m=时,此方程是一元一次方程.16.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=.17.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为.三.解答题18.选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2)(3)2x2﹣2x﹣5=0(4)(y+2)2=(3y﹣1)2(5)3(x﹣2)2=x(x﹣2)(6)2x2﹣2x﹣5=0(7)(x+1)2=4x(8)(x+1)(x+2)=2x+4(9)2x2﹣10x=3(10)(x﹣2)(x﹣5)=﹣2.19.已知关于x的方程(m2﹣1)x2﹣(m+1)x+m=0.(1)m为何值时,此方程是一元一次方程?(2)m为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.20.若代数式3﹣x与﹣x2+3x的值互为相反数,则x的值是.21.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.22.用配方法证明x2﹣4x+5的值不小于1.23.黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?24.如图,在等边△ABC中,点D是BC边的中点,以AD为边作等边△ADE.(1)求∠CAE的度数;(2)取AB边的中点F,连接CF、CE,试证明四边形AFCE是矩形.25.如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)直接写出点C的坐标;(2)求反比例函数的解析式;(3)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在曲线上,求m的值.2016-2017学年某某省某某市宜兴外国语学校九年级(上)第1周周末数学作业参考答案与试题解析一.选择题1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B. =2 C.x2+2x=x2﹣1 D.3(x+1)2=2(x+1)【考点】一元二次方程的定义.【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、ax2+bx+c=0当a=0时,不是一元二次方程,故A错误;B、+=2不是整式方程,故B错误;C、x2+2x=x2﹣1是一元一次方程,故C错误;D、3(x+1)2=2(x+1)是一元二次方程,故D正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.关于x的一元一次方程(a﹣1)x2+x+a2﹣1=0的一个解是0,则a的值为()A.1 B.﹣l C.1 或﹣1 D.2【考点】一元一次方程的解.【分析】把x=0代入方程(a﹣1)x2+x+a2﹣1=0,即可解答.【解答】解:把x=0代入方程(a﹣1)x2+x+a2﹣1=0,可得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是关于x的一元一次方程,∴a﹣1=0,∴a=1,故选:A.【点评】本题考查了一元一次方程的解和解一元一次方程的应用,解此题的关键是得出关于a的一元一次方程,难度适中.3.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.8【考点】一元二次方程的应用;三角形三边关系;等腰三角形的性质;勾股定理的逆定理.【专题】几何图形问题;分类讨论.【分析】本题应先解出x的值,然后讨论是何种三角形,接着对图形进行分析,最后运用三角形的面积公式S=×底×高求出面积.【解答】解:x2﹣16x+60=0⇒(x﹣6)(x﹣10)=0,∴x=6或x=10.当x=6时,该三角形为以6为腰,8为底的等腰三角形.∴高h==2,∴S△=×8×2=8;当x=10时,该三角形为以6和8为直角边,10为斜边的直角三角形.∴S△=×6×8=24.∴S=24或8.故选:B.【点评】本题考查了三角形的三边关系.看到此类题目时,学生常常会产生害怕心理,不知如何下手答题,因此我们会在解题时一步一步地计算,让学生能更好地解出此类题目.4.一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式,正确的是()A.B.C.D.以上都不对【考点】解一元二次方程-配方法.【专题】配方法.【分析】先把常数项1移到等号的右边,再把二次项系数化为1,最后在等式的两边同时加上一次项系数一半的平方,然后配方即可.【解答】解:∵2x2﹣3x+1=0,∴2x2﹣3x=﹣1,x2﹣x=﹣,x2﹣x+=﹣+,(x﹣)2=;∴一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式是:(x﹣)2=;故选C.【点评】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣2<x1<﹣1 B.﹣3<x1<﹣2 C.2<x1<3 D.﹣1<x1<0【考点】解一元二次方程-公式法;估算无理数的大小.【分析】求出方程的解,求出方程的最小值,即可求出答案.【解答】解:x2﹣x﹣3=0,b2﹣4ac=(﹣1)2﹣4×1×(﹣3)=13,x=,方程的最小值是,∵3<<4,∴﹣3>﹣>﹣4,∴﹣>﹣>﹣2,∴﹣>﹣>﹣2,∴﹣1>>﹣故选:A.【点评】本题考查了求一元二次方程的解和估算无理数的大小的应用,关键是求出方程的解和能估算无理数的大小.6.对于任意实数x,多项式x2﹣5x+8的值是一个()A.非负数B.正数 C.负数 D.无法确定【考点】配方法的应用;非负数的性质:偶次方.【分析】根据完全平方公式,将x2﹣5x+8转化为完全平方的形式,再进一步判断.【解答】解:x2﹣5x+8=x2﹣5x++=(x﹣)2+,任意实数的平方都是非负数,其最小值是0,所以(x﹣)2+的最小值是,故多项式x2﹣5x+8的值是一个正数,故选:B.【点评】本题考查了配方法的应用和非负数的性质.任意实数的平方和绝对值都具有非负性,灵活运用这一性质是解决此类问题的关键.7.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A.200(1+a%)2=148 B.200(1﹣a%)2=148 C.200(1﹣2a%)=148 D.200(1﹣a2%)=148 【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】主要考查增长率问题,本题可用降价后的价格=降价前的价格×(1﹣降价率),首先用x 表示两次降价后的售价,然后由题意可列出方程.【解答】解:依题意得两次降价后的售价为200(1﹣a%)2,∴200(1﹣a%)2=148.故选:B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.二.填空题8.将方程3x2=5x+2化为一元二次方程的一般形式为3x2﹣5x﹣2=0 .【考点】一元二次方程的一般形式.【专题】推理填空题.【分析】元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).【解答】解:由3x2=5x+2,得3x2﹣5x﹣2=0,即方程3x2=5x+2化为一元二次方程的一般形式为3x2﹣5x﹣2=0;故答案是:3x2﹣5x﹣2=0.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.9.x2﹣x+=(x﹣)2;(2)2x2﹣3x+=2(x﹣)2;(3)a2+b2+2a﹣4b+5=(a+ 1 )2+(b﹣ 2 )2.【考点】配方法的应用.【分析】利用配方法解答即可.【解答】解:(1)x2﹣x+=x2﹣2××x+()2=(x﹣)2;(2)2x2﹣3x+=2(x﹣)2;(3)a2+b2+2a﹣4b+5=a2+2a+1+b2﹣4b+4=(a+1)2+(b﹣2)2.故答案为:(1);;(2);;(3)1;2.【点评】本题考查的是配方法的应用,配方法的理论依据是公式a2±2ab+b2=(a±b)2.10.方程x2+2x﹣3=0的解是﹣3或1 .【考点】解一元二次方程-因式分解法.【分析】把方程x2+2x﹣3=0进行因式分解,变为(x+3)(x﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解.【解答】解:x2+2x﹣3=0(x+3)(x﹣1)=0x1=﹣3;x2=1故本题的答案是﹣3或1.【点评】把方程x2+2x﹣3=0进行因式分解,再利用积为0的特点解出方程的根.11.方程x2﹣3x=0的根为x1=0,x2=3 .【考点】解一元二次方程-因式分解法.【分析】根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.【解答】解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.故答案为:x1=0,x2=3.【点评】本题考查了解一元二次方程的方法,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.将代数式2x2+3x+5配方得2(x﹣)2+.【考点】配方法的应用.【分析】先将二次项系数提出,然后按照配方的步骤进行配方即可.【解答】解:2x2+3x+5=2(x2+x)+5=2(x2+x+)+5=2(x+)2+.【点评】对多项式进行配方的一般步骤:(1)把二次项的系数化为1;(2)加减一次项系数一半的平方;(3)配方.13.已知代数式7x(x+5)+10与代数式9x﹣9的值互为相反数,则x=.【考点】解一元二次方程-公式法.【专题】计算题.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:7x(x+5)+10+9x﹣9=0,整理得:7x2+44x+1=0,这里a=7,b=44,c=1,∵△=442﹣28=1908,∴x==.故答案为:.【点评】此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解本题的关键.14.若一个等腰三角形的三边长均满足方程y2﹣6y+8=0,则此三角形的周长为10或6或12 .【考点】等腰三角形的性质;一元二次方程的应用;三角形三边关系.【分析】根据方程y2﹣6y+8=0得出两边边长,再根据等腰三角形的性质和三边关系讨论求解.【解答】解:∵y2﹣6y+8=0∴y=2,y=4∴分情况讨论:当三边的边长为2,2,4,不能构成三角形;当三边的边长为2,4,4能构成三角形,三角形的周长为10;当三边都是2时,三角形的周长是6;当三角形的三边都是4时,三角形的周长是12.故此三角形的周长为10或6或12.【点评】求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,不符合题意的应坚决弃之.注意等边三角形也是等腰三角形.15.当m ﹣3 时,关于x的方程(m﹣3)﹣x=5是一元二次方程;当m= 3或或±时,此方程是一元一次方程.【考点】一元二次方程的定义;一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元二次方程的特点得m2﹣7=2,即m=±3,m=3舍去,即m=﹣3时,原方程是一元二次方程;由一元一次方程的特点得m2﹣7=1,即m=±2或m﹣3=0,即m=3时,原方程是一元一次方程.由一元一次方程的特点得m2﹣7=0,即m=±时,原方程是一元一次方程.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= 3或﹣3 .【考点】解一元二次方程-因式分解法.【专题】压轴题;新定义.【分析】首先解方程x2﹣5x+6=0,再根据a﹡b=,求出x1﹡x2的值即可.【解答】解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0,解得:x=3或2,①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.故答案为:3或﹣3.【点评】此题主要考查了因式分解法解一元二次方程以及利用材料分析解决新问题,根据已知进行分类讨论是解题关键.17.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为25或36 .【考点】一元二次方程的应用.【专题】数字问题.【分析】可设这个数的个位数为x,那么十位数字应该是x﹣3,由一个两位数等于它的个位数的平方,列出一元二次方程求解.【解答】解:设这个两位数的个位数字为x,那么十位数字应该是x﹣3,由题意得:10(x﹣3)+x=x2,解得x1=5,x2=6.那么这个两位数就应该是25或36.故答案为:25或36.【点评】本题考查了一元二次方程的应用,要注意两位数的表示方法,然后根据题意列出方程.三.解答题18.选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2)(3)2x2﹣2x﹣5=0(4)(y+2)2=(3y﹣1)2(5)3(x﹣2)2=x(x﹣2)(6)2x2﹣2x﹣5=0(7)(x+1)2=4x(8)(x+1)(x+2)=2x+4(9)2x2﹣10x=3(10)(x﹣2)(x﹣5)=﹣2.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)先变形得到x2﹣5x=﹣1,然后利用配方法解方程;(2)利用因式分解法解方程;(3)利用公式法解方程;(4)利用因式分解法解方程;(5)利用因式分解法解方程;(6)利用公式法解方程;(7)利用因式分解法解方程;(8)利用因式分解法解方程;(9)利用公式法解方程;(10)利用因式分解法解方程.【解答】解:(1)x2﹣5x+1=0,x2﹣5x=﹣1,x2﹣5x+=﹣1+,(x﹣)2=,所以x1=,x2=;(2)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或2x﹣6=0,所以x1=2,x2=3;(3)2x2﹣2x﹣5=0,∵a=2,b=﹣2,c=﹣5,∵b2﹣4ac=8+40=48>0,∴x==,∴x1=,x2=;(4)(y+2)2=(3y﹣1)2,(y+2)2﹣(3y﹣1)2=0,(y+2+3y﹣1)(y+2﹣3y+1)=0,4y+1=0或﹣2y+3=0,所以y1=﹣,y2=;(5)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或2x﹣6=0,所以x1=2,x2=3;(6)2x2﹣2x﹣5=0,∵a=2,b=﹣2,c=﹣5,∵b2﹣4ac=8+40=48>0,∴x==,∴x1=,x2=;(7)(x+1)2=4x,x2+2x+1=4x,x2﹣2x+1=0,(x﹣1)2=0,所以x1=x2=1;(8)(x+1)(x+2)=2x+4,原方程整理,得x2+x﹣2=0,(x﹣1)(x+2)=0,x﹣1=0或x+2=0,所以x1=1,x2=﹣2;(9)2x2﹣10x=3,原方程整理,得2x2﹣10x﹣3=0,∵a=2,b=﹣10,c=﹣3,∵b2﹣4ac=100+24=124>0,∴x==,∴x1=,x2=;(10)(x﹣2)(x﹣5)=﹣2,原方程整理,得x2﹣7x+12=0,(x﹣3)(x﹣4)=0,x﹣3=0或x﹣4=0,所以x1=3,x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法、公式法解一元二次方程.19.(2014秋•冠县校级期末)已知关于x的方程(m2﹣1)x2﹣(m+1)x+m=0.(1)m为何值时,此方程是一元一次方程?(2)m为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.【考点】一元二次方程的定义;一元一次方程的定义;一元二次方程的一般形式.【分析】(1)根据一元一次方程的定义可得m2﹣1=0,m+1≠0,解即可;(2)根据一元二次方程的定义可知:m2﹣1≠0,再解不等式即可.【解答】解:(1)根据一元一次方程的定义可知:m2﹣1=0,m+1≠0,解得:m=1,答:m=1时,此方程是一元一次方程;②根据一元二次方程的定义可知:m2﹣1≠0,解得:m≠±1.一元二次方程的二次项系数m2﹣1、一次项系数﹣(m+1),常数项m.【点评】此题主要考查了一元二次方程的概念和一元一次方程的概念,关键是掌握两种方程的定义.20.若代数式3﹣x与﹣x2+3x的值互为相反数,则x的值是x=3或x=﹣1 .【考点】解一元二次方程-因式分解法.【分析】根据题意,可列出关于x的一元二次方程,观察此方程,可用提取公因式法求解.【解答】解:由题意,得:3﹣x﹣x2+3x=0,﹣(x﹣3)﹣x(x﹣3)=0,(x﹣3)(x+1)=0,解得:x=3或x=﹣1.【点评】本题考查的是用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.21.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.【考点】等腰三角形的性质;一元二次方程的解;三角形三边关系.【分析】首先求出方程的根,再根据三角形三边关系得到x=4时,4,4,8的三条线段不能组成三角形,确定等腰三角形腰长为5.【解答】解:x2﹣9x+20=0,解得x1=4,x2=5,∵等腰三角形底边长为8,∴x=4时,4,4,8的三条线段不能组成三角形,∴等腰三角形腰长为5.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的边长,不能盲目地作出判断,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.22.用配方法证明x2﹣4x+5的值不小于1.【考点】配方法的应用.【专题】证明题.【分析】先对代数式x2﹣4x+5进行配方,然后根据配方后的形式,再根据a2≥0这一性质即可证得.【解答】证明:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,∵无论x取何值,(x﹣2)2≥0,∴(x﹣2)2+1≥1,即x2﹣4x+5的值不小于1.【点评】配方不仅应用于解一元二次方程,还可以应用于判断代数式的值或判断代数式的符号,应重点掌握.23.(2008•某某)黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】设每件童装应降价x元,原来平均每天可售出20件,每件盈利40元,后来每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,由此即可列出方程(40﹣x)(20+2x)=1200,解方程就可以求出应降价多少元.【解答】解:如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.设每件童装应降价x元,依题意得(40﹣x)(20+2x)=1200,整理得x2﹣30x+200=0,解之得x1=10,x2=20,因要减少库存,故x=20.答:每件童装应降价20元.【点评】首先找到关键描述语,找到等量关系,然后准确的列出方程是解决问题的关键.最后要判断所求的解是否符合题意,舍去不合题意的解.24.如图,在等边△ABC中,点D是BC边的中点,以AD为边作等边△ADE.(1)求∠CAE的度数;(2)取AB边的中点F,连接CF、CE,试证明四边形AFCE是矩形.【考点】矩形的判定;等边三角形的性质;平行四边形的判定与性质.【专题】计算题;证明题.【分析】(1)根据等边三角形三线合一的特点,易求得∠DA C=30°,则∠CAE=∠DAE﹣∠DAC.(2)先证明四边形AECF是平行四边形,然后根据∠CFA=∠FAE=90°,由矩形的定义判定四边形AFCE 是矩形.【解答】(1)解:∵△ABC是等边三角形,且D是BC中点,∴DA平分∠BAC,即∠DAB=∠DAC=30°;∵△DAE是等边三角形,∴∠DAE=60°;∴∠CAE=∠DAE﹣∠CAD=30°;(2)证明:∵△BAC是等边三角形,F是AB中点,∴CF⊥AB;∴∠BFC=90°由(1)知:∠CAE=30°,∠BAC=60°;∴∠FA E=90°;∴AE∥CF;∵△BAC是等边三角形,且AD、CF分别是BC、AB边的中线,∴AD=CF;又AD=AE,∴CF=AE;∴四边形AFCE是平行四边形;∵∠AFC=∠FAE=90°,∴四边形AFCE是矩形.【点评】本题主要考查了等边三角形的性质以及矩形的判定方法.25.(2014秋•洪湖市期末)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B (6,0)、D(0,3),反比例函数的图象经过点C.(1)直接写出点C的坐标;(2)求反比例函数的解析式;(3)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在曲线上,求m的值.【考点】反比例函数综合题.【分析】(1)过点C作CE⊥AB于点E,根据HL证Rt△AOD≌Rt△BEC,求出OA=BE=2,即可求出C 的坐标;(2)设反比例函数的解析式为:y=,将点C的坐标代入反比例函数的解析式求出k即可;(3)当点B恰好落在曲线上时,得出此时B的坐标是(6,m),代入反比例函数的解析式,即可求出答案.【解答】解:(1)过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE,∵∠DOA=∠CEO=90°,在Rt△AOD和Rt△BEC中,,∴Rt△AOD≌Rt△BEC(HL),∴AO=BE=2,∵BO=6,word∴DC=OE=4,∴C(4,3);(2)设反比例函数的解析式为:y=,根据题意得:3=,解得:k=12,∴反比例函数的解析式为:y=,即反比例函数的解析式是y=;(3)将等腰梯形ABCD向上平移m个单位后点B恰好落在曲线上,∴点B(6,m),∵点B(6,m)恰好落在双曲线y=上,∴当x=6时,m==2,即m=2.【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,全等三角形的性质和判定,等腰梯形的性质的应用,通过做此题培养学生运用性质进行计算的能力,题型较好,难度也适中.21 / 21。

初三数学上册周考试卷

初三数学上册周考试卷

考试时间:120分钟满分:100分一、选择题(每题4分,共20分)1. 下列各数中,无理数是()A. 3.14B. √2C. -0.5D. 2/32. 若a > 0,则下列不等式中正确的是()A. a + 2 > a - 2B. a - 3 > a + 3C. a^2 > aD. a/2 > a3. 已知方程 x^2 - 5x + 6 = 0,则该方程的解是()A. x = 2 或 x = 3B. x = 1 或 x = 4C. x = 3 或 x = 2D. x = 4 或 x = 14. 在平面直角坐标系中,点A(2,3)关于原点对称的点的坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,3)5. 若一个等腰三角形的底边长为10cm,腰长为8cm,则该三角形的面积是()A. 40cm^2B. 48cm^2C. 32cm^2D. 36cm^2二、填空题(每题4分,共16分)6. 若 |x| = 5,则 x 的值为_________。

7. 在直角坐标系中,点B的坐标为(-3,4),则点B关于x轴的对称点的坐标为_________。

8. 若 a = -3,b = 2,则 |a - b| 的值为_________。

9. 等腰三角形ABC中,AB = AC,若底边BC的长度为6cm,则该三角形的周长为_________。

10. 已知方程 2x - 5 = 3x + 1,则 x 的值为_________。

三、解答题(共64分)11. (12分)解下列方程:(1) 2x + 3 = 5x - 1(2) 3(x - 2) - 2(2x + 1) = 012. (12分)已知数列 {an} 中,a1 = 3,且对于任意n ≥ 2,有 an = 2an-1 + 1。

求:(1) 数列 {an} 的前5项;(2) 数列 {an} 的通项公式。

13. (16分)在平面直角坐标系中,点A(2,3)和点B(-3,4)的连线的斜率为2。

九年级数学上学期双周检测试题 试题

九年级数学上学期双周检测试题  试题

滨海县陆集中学2021届九年级上学期双周检测数学试题〔无答案〕苏科版一、选择题〔本大题一一共有10小题,每一小题3分,一共30分.在每一小题所给出的四个选项里面,只有一项是哪一项正确的,请把正确选项前的字母代号填在题后的括号内.〕1.与2是同类二次根式的是〔〕A. 4 B. 6 C.12 D.82.以下方程有实数根的是〔〕 A.x2-x-1=0 B.x2+x+1=0 C.x2-6x+10=0 D.x2-2x+1=0 3.假设两圆的半径分别是3和4,圆心距为8,那么两圆的位置关系为〔〕A.相交 B.内含 C.外切 D.外离4.等腰梯形ABCD中,E、F、G、H分别是各边的中点,那么四边形EFGH的形状是A.平行四边形 B.矩形 C.菱形 D.正方形5.二次函数y=x2-6x+5的图像的顶点坐标是〔〕A.(-3,4) B.(3,-4) C.(-1,2) D.(1,-4)6.如图,AB是⊙O的弦, OC⊥AB于点D,交⊙O于点C,假设⊙O的半径为10,CD=4,那么AB的长为〔〕A.8 B.12 C.16 D.207.如图,△ABC的顶点A、B、C均在⊙O上,∠OAC=20º,那么∠B的度数是〔〕A.40º B.60º C.70º D.80º8.圆锥的底面的半径为3cm,高为4cm,那么它的侧面积为〔〕 A.15πcm2 B.16πcm2 C.19πcm2 D.24πcm29.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N 两点,假设点M的坐标是(-4,-2),那么点N的坐标为〔〕A.(-1,-2) B.(1,-2) C.(-1.5,-2) D.(-0.5,-2) 10.二次函数y=ax2+bxc+c(a≠0)的图象如下图,有以下5个结论:① abc>0;②b<a+c;③ 4a+2b+c>0;④2c-3b<0;⑤ a+b>n(an+b),〔n≠1〕其中正确的结论有〔〕A. 2个B. 3个C. 4个D. 5个二、填空题〔本大题一一共9小题,每一小题4分,一共36分.请把结果直接填在题中的横线上.〕11.假设式子x-2在实数范围内有意义,那么x的取值范围是.12.方程x2-4x=0的解为.13.在四边形ABCD中,AD∥BC,∠D=90°,假设再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是.〔写出一种情况即可〕14.某公司4月份的利润为160万元,要使6月份的利润到达250万元,那么平均每月增长的百分率是.15.二次函数y=-x2+2x+k的局部图象如下图,假设关于x的一元二次方程-x2+2x+k =0的一个解为x1=3,那么另一个解x2= .16.如图,⊙O的直径AB和弦CD相交于点M,AM=5,BM=1,∠CMB=60°,那么CD的长为.17.如图,菱形ABCD中,对角线AC,BD相交于点O,假设AC=AB=2,S菱形ABCD= .18.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),B(5,0)以下判断:①ac<0;②b2>4ac;③4a-2b+c<0;④b+4a>0.其中判断一定正确的序号是____________________.19.如图,在矩形ABCD中,AB=3 cm,BC=4cm.将矩形ABCD绕着点D在桌面上顺时针旋转至A1B1C1D,使其停靠在矩形EFGH的点E处,假设∠EDF=30°,那么点B的运动途径长为 cm.〔结果保存π〕三、解答题〔本大题一一共有8小题,一共84分.〕20.〔此题满分是5分〕计算:2×32+(2-1)2. 21〔此题满分是5分〕解方程: (x -3)2+4x(x-3)=022.〔此题满分是10分〕如图,AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.〔1〕求证:AD⊥DC;〔2〕假设AD=2,AC=5,求AB的长.23.〔此题满分是10分〕如图,在△ABC中,AB=AC,E、F分别为AB,AC上的点(E、F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A'EF,再展平.(1) 请证明四边形AEA'F为菱形;(2) 当等腰ΔABC满足什么条件时,按上述方法操作,四边形AEA'F将变成正方形?(不必证明)24.〔此题满分是10分〕甲、乙两支仪仗队队员的身高〔单位:厘米〕如下:甲队:178,177,179,178,177,178,177,179,178,179;乙队:178,179,176,178,180,178,176,178,177,180;〔1〕将下表填完好:身高〔厘米〕176 177 178 179 180甲队〔人数〕0 3 4 0乙队〔人数〕 2 1 1〔2〕甲队队员身高的平均数为厘米,乙队队员身高的平均数为厘米;〔3〕你认为哪支仪仗队身高更为整齐?请用统计知识说明理由.25.〔此题满分是10分〕如图抛物线y=ax2-5x+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标.(2)假设将该抛物线先向左平移3个单位,再向上平移4个单位,求出平移后抛物线的解析式.26.〔此题满分是10分〕假设x=0是关于x的一元二次方程(m-2)x2+3x+m2+2m-8=0的解,务实数m的值,并解此方程.27.〔此题满分是12分〕某化工材料经销公司购进了一种化工原料一共7 000 kg,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于30元.场调查发现:单价定为70元时,日均销售60 kg;单价每降低1元,日均多售出2 kg,在销售过程中,每天还要除去其他费用400元(天数缺乏一天时,按整天计算) .设销售单价为x 元,日均获利为y 元. 〔日均获利=销售所得利润-各种开支〕 (1) 求y 关于x 的函数关系式,并写出x 的取值范围; (2) 求每千克单价定为多少元时日均获利最多,是多少?(3) 假设用日均获利最多的方式销售或者按销售单价最高销售,试比拟哪一种销售获总利更多,多多少?28.〔此题满分是12分〕如图,第一象限内半径为4的⊙C 与y 轴相切于点A ,作直径AD ,过点D 作⊙C 的切线l 交x 轴于点B , P 为直线l 上一动点,直线PA 的解析式为:y =kx +6. (1) 设点P 的纵坐标为p ,写出p 随k 变化的函数关系式;(2)设⊙C 与PA 交于点M ,与AB 交于点N ,那么不管动点P 处于直线l 上〔除点B 以外〕的什么位置时,都有△AMN ∽△ABP .请你对于点P 处于图中位置时的两三角形相似给予证明;(3)是否存在△AMN 的面积等于12825?假设存在,恳求出符合的k 值;假设不存在,请说明理由.创作人:历恰面日期:2020年1月1日。

九年级数学上学期第1周周末作业(含解析) 北师大版-北师大版初中九年级全册数学试题

九年级数学上学期第1周周末作业(含解析) 北师大版-北师大版初中九年级全册数学试题

某某省某某市某某区江义中学2016届九年级数学上学期第1周周末作业一、选择题(共10小题,每小题3分,满分30分)1.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD∥BC2.在▱ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1 C.1:1:2:2 D.2:1:2:13.在▱ABCD中,∠A,∠B的度数之比为5:4,则∠C等于()A.60° B.80° C.100°D.120°4.下列说法错误的是()A.菱形的四条边相等 B.菱形的对角线互相平分C.菱形的对角线互相垂直 D.菱形的对角线相等5.菱形的两条对角线把菱形分成全等的直角三角形的个数是()A.1个B.2个C.3个D.4个6.下列正确结论的个数是()①菱形对角相等;②菱形形对角线相等;③菱形对角线互相平分;④菱形对边相等⑤菱形对边平行;⑥菱形对角线互相垂直;⑦菱形四边相等.A.7个B.6个C.5个D.4个7.已知菱形的边长为5cm,一条对角线长为8cm,另一条对角线长为()A.3cm B.4cm C.6cm D.8cm8.如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC9.下列正确结论的个数是()①菱形的对边平行;②菱形的对角相等;③菱形的对角线垂直且平分;④菱形是四条边相等.A.1个B.2个C.3个D.4个10.如图,在菱形ABCD中,∠ABC=60°,AC=6,则AB=()A.10 B.6 C.3 D.不能确定二、填空题(2010•贵港)在四边形ABCD中,已知AD∥BC,若再添加一个条件,能使四边形ABCD成为平行四边形,则这个条件可以是.(写出一个条件即可,不再添加辅助线)12.若四边形ABCD是平行四边形,请补充条件(写一个即可),使四边形ABCD是菱形.13.若点O为▱ABCD的对角线AC与BD交点,且AO+BO=11cm,则AC+BD=cm.14.如图,菱形ABCD的对角线AC与BD交于点O,AC=16,BD=12,则边长AB为,周长为.15.已知菱形ABCD的周长是200cm,一条对角线长为60cm,则另一条对角线的长度为.三、解答下列各题(第16题各6分,第17-23题各7分,共55分.)16.已知:如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.17.已知:如图,平行四边形ABCD,E、F是直线AC上两点,且AE=CF求证:四边形EBFD为平行四边形.18.如图,在菱形ABCD中,BD=6,AC=8,求菱形的周长.19.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.20.一个菱形的周长是200cm.一条对角线长60cm,求:(1)另一条对角线的长度;(2)菱形的面积.21.已知:如图,在▱ABCD中,AB=2AD,M为AB的中点,连接DM,MC.求证:DM⊥MC.四、附加题22.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.2015-2016学年某某省某某市某某区江义中学九年级(上)第1周周末数学作业参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB∥CD,AB=CD C.AB=CD,AD∥BC D.AB∥CD,AD∥BC【考点】平行四边形的判定.【分析】平行四边形有5种判定方法,结合图形和判定定理分别对各个答案进行判断即可.【解答】解:A、两组对边分别相等的四边形是平行四边形,故本选项不符合题意;B、一组对边平行且相等的四边形是平行四边形,故本选项不符合题意;C、四边形中,一组对边平行,另一组对边相等,不能判定是平行四边形.故本选项符合题意;D、两组对边分别平行的四边形是平行四边形,故本选项不符合题意;故选:C.【点评】本题考查了平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)两组对角分别相等的四边形是平行四边形.(4)一组对边平行且相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.2.在▱ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1 C.1:1:2:2 D.2:1:2:1【考点】平行四边形的性质;平行线的性质.【分析】根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AB∥CD,∴∠B+∠C=180°,∠A+∠D=180°,即∠A和∠C的数相等,∠B和∠D的数相等,且∠B+∠C=∠A+∠D,故选D.【点评】本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.3.在▱ABCD中,∠A,∠B的度数之比为5:4,则∠C等于()A.60° B.80° C.100°D.120°【考点】平行四边形的性质.【分析】根据平行四边形的性质可知∠A,∠B互补,根据已知可以求出∠A,∠B的度数,而∠C是∠A的对角,所以相等.【解答】解:在▱ABCD中,∵AD∥BC,∴∠A+∠B=180°,∠A,∠B的度数之比为5:4,∴∠A=100°,∠B=80°,∴∠C=∠A=100°故选C.【点评】此题主要考查平行四边形的性质:(1)邻角互补;(2)平行四边形的两组对角分别相等.4.下列说法错误的是()A.菱形的四条边相等 B.菱形的对角线互相平分C.菱形的对角线互相垂直 D.菱形的对角线相等【考点】菱形的性质.【分析】根据菱形的性质对各选项进行判断.【解答】解:A、菱形的四条边相等,所以A选项的说法正确;B、菱形的对角线互相平分,所以B选项的说法正确;C、菱形的对角线互相垂直,所以C选项的说法正确;D、菱形的对角线不一定相等,所以D选项的说法错误.故选D.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是()A.1个B.2个C.3个D.4个【考点】菱形的性质.【分析】利用菱形的性质得出对角线垂直且互相平分,且4条边相等,故全等的直角三角形的个数是4个.【解答】解:如图所示:∵AC,BD是菱形的对角线,∴AC⊥BD,且DE=BE,AE=CE,∵AD=CD=BC=AB,∴在Rt△ADE和Rt△ABE中,,∴Rt△ADE≌Rt△ABE(HL),同理可得出Rt△ADE≌Rt△CDE,Rt△CDE≌Rt△CBE,Rt△ABE≌Rt△CBE.∴Rt△ADE≌Rt△CDE≌Rt△ABE≌Rt△CBE,∴菱形的两条对角线把菱形分成全等的直角三角形的个数是4.故选:D.【点评】此题主要考查了菱形的性质以及全等三角形的判定等知识,根据已知得出全等三角形是解题关键.6.下列正确结论的个数是()①菱形对角相等;②菱形形对角线相等;③菱形对角线互相平分;④菱形对边相等⑤菱形对边平行;⑥菱形对角线互相垂直;⑦菱形四边相等.A.7个B.6个C.5个D.4个【考点】菱形的性质.【分析】根据菱形的性质对各命题的真假进行判断.【解答】解:菱形对角相等,所以①正确;菱形形对角线互相垂直平分,所以②错误;菱形对角线互相平分,所以③正确;菱形对边相等,所以④正确;菱形对边平行,所以⑤正确;菱形对角线互相垂直,所以⑥正确;菱形四边相等,所以⑦正确.故选B.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.7.已知菱形的边长为5cm,一条对角线长为8cm,另一条对角线长为()A.3cm B.4cm C.6cm D.8cm【考点】菱形的性质.【分析】根据菱形的对角线互相垂直平分,得已知对角线的一半是4cm.根据勾股定理,得要求的对角线的一半是3cm,则另一条对角线的长是6cm.【解答】解:如图:在菱形ABCD中,AB=5cm,BD=8cm,∵对角线互相垂直平分,∴∠AOB=90°,BO=4cm,在RT△AOB中,AO==3cm,∴AC=2AO=6cm.故选C【点评】本题考查了菱形的性质,注意掌握:菱形的对角线互相垂直平分,同时要熟练运用勾股定理.8.如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC【考点】菱形的性质.【专题】压轴题.【分析】根据菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、菱形的对边平行且相等,所以AB∥DC,故A选项正确;B、菱形的对角线不一定相等,故B选项错误;C、菱形的对角线一定垂直,AC⊥BD,故C选项正确;D、菱形的对角线互相平分,OA=OC,故D选项正确.故选:B.【点评】本题主要考查了菱形的性质,熟记菱形的对边平行且相等,对角线互相垂直平分是解本题的关键.9.下列正确结论的个数是()①菱形的对边平行;②菱形的对角相等;③菱形的对角线垂直且平分;④菱形是四条边相等.A.1个B.2个C.3个D.4个【考点】菱形的性质.【专题】计算题.【分析】根据菱形的性质对各命题的真假进行判断即可.【解答】解:菱形的对边平行.所以①正确;菱形的对角相等,所以②正确;菱形的对角线垂直且平分,所以③正确;菱形是四条边相等,所以④正确.故选D.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.10.如图,在菱形ABCD中,∠ABC=60°,AC=6,则AB=()A.10 B.6 C.3 D.不能确定【考点】菱形的性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=6,故选B【点评】本题考查了菱形的性质和等边三角形的判定,难度一般,解答本题的关键是掌握菱形四边相等的性质.二、填空题(2010•贵港)在四边形ABCD中,已知AD∥BC,若再添加一个条件,能使四边形ABCD成为平行四边形,则这个条件可以是AD=BC .(写出一个条件即可,不再添加辅助线)【考点】平行四边形的判定.【专题】开放型.【分析】本题是开放题,可以针对平行四边形的判定方法,给出条件,再证明结论.答案可以有多种,主要条件明确,说法有理即可.【解答】解:添加条件AD=BC,可得出该四边形是平行四边形;∵AD∥BC,AD=BC,∴四边形ABCD成为平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为:AD=BC(答案不唯一).【点评】解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.12.若四边形ABCD是平行四边形,请补充条件AB=BCAC⊥BD(写一个即可),使四边形ABCD是菱形.【考点】菱形的判定;平行四边形的性质.【专题】开放型.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此判断即可.【解答】解:因为一组邻边相等的平行四边形是菱形;对角线互相垂直平分的四边形是菱形.可补充条件:AB=BC或AC⊥BD.【点评】主要考查了菱形的特性.菱形的特性:菱形的四条边都相等;菱形的对角线互相垂直平分,且每一条对角线平分一组对角.13.若点O为▱ABCD的对角线AC与BD交点,且AO+BO=11cm,则AC+BD= 22 cm.【考点】平行四边形的性质.【分析】根据平行四边形的对角线互相平分即可求解.【解答】解:∵四边形ABCD是平行四边形∴OA=OC,OB=OD∴AC=2AO,BD=2BO∴AC+BD=2(AO+BO)=22cm.故答案为22.【点评】本题考查的是平行四边形的对角线互相平分这一性质,题型简单.14.如图,菱形ABCD的对角线AC与BD交于点O,AC=16,BD=12,则边长AB为10 ,周长为40 .【考点】菱形的性质.【分析】根据菱形的对角线互相垂直平分,可知AO和BO的长,再根据勾股定理即可求得AB的值,又菱形的四条边相等,继而求出菱形的周长.【解答】解:∵AC=16,BD=12,菱形对角线互相垂直平分,∴AO=8,BO=6,∴AB==10,∴BC=CD=AD=AB=10,∴菱形的周长为4×10=40,故答案为:10;40【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB的值是解题的关键.15.已知菱形ABCD的周长是200cm,一条对角线长为60cm,则另一条对角线的长度为80cm .【考点】菱形的性质.【分析】根据菱形的性质求出OA=OC,OB=OD,AC⊥BD,AB=BC=CD=AD,求出AB长,在△AOB中由勾股定理求出OB,即可求出BD.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=×200cm=50cm,AC⊥BD,OA=OC=AC=30cm,在△AOB中,由勾股定理得:OB==40(cm),∴BD=2OB=80cm,故答案为:80cm【点评】本题考查了对菱形的性质和勾股定理的应用,关键是求出OA和AB的长,主要培养了学生运用定理进行计算的能力.三、解答下列各题(第16题各6分,第17-23题各7分,共55分.)16.已知:如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.【考点】平行四边形的判定.【专题】证明题.【分析】首先利用平行线的性质与判定方法得出∠DAE=∠BCF,进而利用AAS得出△ADE≌△CBF,即可得出AD BC,即可得出答案.【解答】证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠DAE=∠BCF,在△ADE和△CBF中∵,∴△ADE≌△CBF(AAS),∴AD=BC,∴四边形ABCD是平行四边形.【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的判定,正确得出△ADE≌△CBF(AAS)是解题关键.17.已知:如图,平行四边形ABCD,E、F是直线AC上两点,且AE=CF求证:四边形EBFD为平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】可连接BD,通过证四边形BEDF的对角线互相平分,来得出四边形EDFB是平行四边形的结论.【解答】证明:连接BD交AC于O点;∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OE=OF,又∵OB=OD,∴四边形EBFD为平行四边形.【点评】本题主要考查的是平行四边形的性质和判定:平行四边形的对角线互相平分;对角线互相平分的四边形是平行四边形.18.如图,在菱形ABCD中,BD=6,AC=8,求菱形的周长.【考点】菱形的性质.【分析】由在菱形ABCD中,BD=6,AC=8,可得OA=AC=4,OB=BD=3,AC⊥BD,然后由勾股定理求得AB的长,继而求得答案.【解答】解:在菱形ABCD中,BD=6,AC=8,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴菱形的周长为:4×5=20.【点评】此题考查了菱形的性质以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.19.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.【考点】菱形的判定.【专题】证明题.【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,根据等角对等边可得AF=DF,再根据邻边相等的四边形是菱形可得结论.【解答】证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠FAD=∠FDA,∴AF=DF,∴四边形AEDF是菱形.【点评】此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.20.一个菱形的周长是200cm.一条对角线长60cm,求:(1)另一条对角线的长度;(2)菱形的面积.【考点】菱形的性质.【分析】(1)根据菱形四条边都相等求出边长,再根据菱形的对角线互相垂直平分,利用勾股定理列式求出另一对角线的一半,从而得到另一对角线的长度;(2)再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:∵菱形的周长是200cm,∴菱形的边长为200÷4=50cm,∵一条对角线长60cm,∴该对角线的一半=60÷2=30cm,∴另一对角线的一半==40cm,∴另一对角线长是40×2=80cm;(2)由(1)可知这个菱形的面积=×60×80=2400cm2.【点评】本题主要考查了菱形四条边都相等的性质,对角线互相垂直的性质,勾股定理的应用,熟记性质是解题的关键.21.已知:如图,在▱ABCD中,AB=2AD,M为AB的中点,连接DM,MC.求证:DM⊥MC.【考点】平行四边形的性质.【专题】证明题.【分析】由在▱ABCD中,AB=2AD,M为AB的中点,易证得DM,CM分别平分∠ADC与∠BCD,即可求得∠CDM+∠DCM=90°,即可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AB∥CD,∴∠CDM=∠AMD,∠DCM=∠BMC,∵AB=2AD,M为AB的中点,∴AD=AM=BM=BC,∴∠ADM=∠AMD,∠BCM=∠BMC,∴∠ADM=∠CDM=∠ADC,∠DCM=∠BC M=∠BCD,∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠CDM+∠DCM=90°,∴∠DMC=90°,即DM⊥MC.【点评】此题考查了平行四边形的性质以及等腰三角形的性质.注意证得DM,CM分别平分∠ADC与∠BCD 是关键.四、附加题22.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.【考点】菱形的性质;全等三角形的判定与性质.【专题】综合题.【分析】(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(2)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF 于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.【解答】(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF的延长线于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.【点评】本题考查了菱形的性质,全等三角形的判定与性质,等角对等边的性质,作出辅助线构造出全等三角形是解题的关键.。

九年级上册数学周末试卷【含答案】

九年级上册数学周末试卷【含答案】

九年级上册数学周末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 4x 13. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,则第10项是()A. 21B. 19C. 17D. 155. 若一个等边三角形的周长为18cm,则其边长为()A. 6cmB. 9cmC. 12cmD. 18cm二、判断题(每题1分,共5分)6. 任何两个等边三角形都是相似的。

()7. 两条平行线的斜率一定相等。

()8. 一元二次方程的解一定是实数。

()9. 对角线互相垂直的四边形一定是菱形。

()10. 在同一平面内,垂直于同一直线的两条直线一定平行。

()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则其直径是______。

12. 若一个数的平方是64,则这个数是______。

13. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式是______。

14. 若等差数列{an}的前n项和为Sn,则第n项an = ______。

15. 在直角坐标系中,点(3, -2)到x轴的距离是______。

四、简答题(每题2分,共10分)16. 简述等边三角形的性质。

17. 什么是直角坐标系?如何表示平面上的点?18. 解释一元二次方程的解的意义。

19. 什么是等差数列?给出一个等差数列的例子。

20. 什么是圆的标准方程?如何表示?五、应用题(每题2分,共10分)21. 已知一个正方形的对角线长为10cm,求其面积。

22. 若一元二次方程x² 5x + 6 = 0,求其解。

九年级上学期数学周考测试题(含答案)

九年级上学期数学周考测试题(含答案)

清潭中学九年级上学期数学周考测试题(20181021)一、选择题(每小题3分,共30分)1.下列图形既是轴对称图形又是中心对称图形的是()2.在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是()A.(-3,1) B.(3,-1) C.(-1,3) D.(1,-3)3.已知点A(a, 1)与B(−2, b)关于坐标原点对称,那么点P(a, b)绕原点顺时针旋转90∘后的对应点P′的坐标是()A.(-1, 2)B.(1, -2) C.(-1, -2) D.(1, 2)4.如图,将△ABC绕点A按逆时针方向旋转100∘,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70∘B.80∘C.84∘D.86∘5.如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为()A.4√3B.2√3C.3 D.26.如图,直角三角板ABC的斜边AB=12 cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A.6 cm B.4 cm C.(6-2√3)cm D.(4√3-6)cm7.如图,△ABC与△A′B′C′成中心对称,下列说法不正确的是( )A.S△ABC=S△A′B′C′B.AB=A′B′,AC=A′C′,BC=B′C′C.AB∥A′B′,AC∥A′C′,BC∥B′C′D.S△ACO=S△A′B′O8.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E 点的坐标是()A.(3,﹣1)B.(0,0)C.(2,﹣1)D.(﹣1,3)9.如图,△ABC中,∠ACB=72°,将△ABC绕点B按逆时针方向旋转得到△BDE(点D 与点A是对应点,点E与点C是对应点),且边DE恰好经过点C,则∠ABD的度数为()A.36°B.40°C.45°D.50°10.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°二、填空题(每小题3分,共24分)11.平面直角坐标系中,点P(3 , 1−a)与点Q(b+2 , 3)关于原点对称,则a+b=_____.12.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是_____.13.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转到ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为_________.2 / 214.如图,将△ABC 绕点A 按逆时针方向旋转至△AB′C′(B 与B′,C 与C′分别是对应顶点),使AB′⊥BC ,B′C′分别交AC ,BC 于点D ,E ,已知AB=AC=5,BC=6,则DE 的长为_____.15.如图,Rt △ABC 中, 90C ∠=︒, 30ABC ∠=︒, 2AC =, △ABC 绕点C 顺时针旋转得∆A 1B 1C 1,当1A 落在AB 边上时,连接1B B ,取1BB 的中点D ,连接1A D ,则1A D 的长度是__________.16.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____. 17.如图,在等边△ABC 中,D 是边AC 上一个动点,连接BD .将线段BD 绕点B 逆时针旋转60°得到BE ,连接ED .若BC=2,则△AED 的周长最小值是 .18.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6),C (0,6),将四边形OABC 绕点O 按顺时针方向旋转α度(0<α ≤180°)得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC 相交于P 、Q .在四边形OABC 旋转过程中,若BP =12BQ ,则点P 的坐标为__________. 三、解答题(共66分)18.(8分)如图,在△ABC 中,∠ACB =90∘,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90∘得到线段CE ,连结DE 交BC 于点F ,连接BE . (1)求证:△ACD ≌△BCE ;(2)当AD =BF 时,求∠BEF 的度数.19.(8分)如图1,已知△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接AE ,BG .(1)试猜想线段BG 和AE 的数量关系是________(直接写出你的结论,不必证明); (2)将正方形DEFG 绕点D 逆时针方向旋转α(0°<α≤90°),判断(1)中的结论是否仍然成立?请利用图2证明你的结论。

九年级数学上学期周练试卷(1)(含解析) 新人教版-新人教版初中九年级全册数学试题

九年级数学上学期周练试卷(1)(含解析) 新人教版-新人教版初中九年级全册数学试题

2015-2016学年市北达资源中学九年级(上)周练数学试卷(1)一、选择题(4’×8=32’)1.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2 D.52.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值X围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣13.抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下 B.对称轴是y轴C.都有最高点D.y随x的增大而增大4.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣25.抛物线y=(x﹣1)2﹣3的对称轴是()A.y轴B.直线x=﹣1 C.直线x=1 D.直线x=﹣36.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.7.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解 B.x=1 C.x=﹣4 D.x=﹣1或x=48.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A.②④ B.①③ C.②③ D.①④二、填空题(4’×6=24’)9.若y=(m+1)是二次函数,则m的值为.10.二次函数y=x2+2x﹣4的图象的开口方向是.对称轴是.顶点坐标是.11.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为.12.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值X围是.13.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行m才能停下来.14.隧道的截面是抛物线形,且抛物线的解析式为y=﹣x2+3.25,一辆卡车高3m,宽2m,该车通过该隧道.(填“能”或“不能”)三、解答题:(9’×4+8’=44’)15.已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.16.已知二次函数y=﹣x2﹣2x+3(1)求它的顶点坐标和对称轴;(2)求它与x轴的交点;(3)画出这个二次函数图象的草图.17.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么X围内时,一次函数的值大于二次函数的值.18.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值X围;(2)求△PBQ的面积的最大值.19.二次函数y=ax2+bx+c(a≠0)的图象与一次函数y1=x+k的图象交于A(0,1)、B两点,C(1,0)为二次函数图象的顶点.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)把(1)中的二次函数y=ax2+bx+c(a≠0)的图象平移后得到新的二次函数的图象,定义新函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,如果y1≠y2,函数f的函数值等于y1、y2中的较小值;如果y1=y2,函数f的函数值等于y1(或y2).”当新函数f的图象与x轴有三个交点时,直接写出m的取值X围.2015-2016学年市北达资源中学九年级(上)周练数学试卷(1)参考答案与试题解析一、选择题(4’×8=32’)1.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2 D.5【考点】二次函数图象上点的坐标特征.【分析】把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.【解答】解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选:B.2.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值X围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣1【考点】二次函数的性质.【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选A.3.抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下 B.对称轴是y轴C.都有最高点D.y随x的增大而增大【考点】二次函数的性质.【分析】根据二次函数的性质解题.【解答】解:(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2开口向上,对称轴为y轴,有最低点,顶点为原点.故选:B.4.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2【考点】二次函数图象与几何变换.【分析】根据函数图象右移减、左移加,上移加、下移减,可得答案.【解答】解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,故选:A.5.抛物线y=(x﹣1)2﹣3的对称轴是()A.y轴B.直线x=﹣1 C.直线x=1 D.直线x=﹣3【考点】二次函数的性质.【分析】根据二次函数的顶点式y=(x﹣h)2+k,对称轴为直线x=h,得出即可.【解答】解:抛物线y=(x﹣1)2﹣3的对称轴是直线x=1.故选:C.6.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.【考点】二次函数的图象;正比例函数的图象.【分析】本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致.(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较.)【解答】解:A、函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a<0,y=ax2中,a>0,故B错误;C、函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a>0,y=ax2中,a<0,故D错误.故选:C.7.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解 B.x=1 C.x=﹣4 D.x=﹣1或x=4【考点】抛物线与x轴的交点.【分析】关于x的方程x2+ax+b=0的解是抛物线y=x2+ax+b与x轴交点的横坐标.【解答】解:如图,∵函数y=x2+ax+b的图象与x轴交点坐标分别是(﹣1,0),(4,0),∴关于x的方程x2+ax+b=0的解是x=﹣1或x=4.故选:D.8.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A.②④ B.①③ C.②③ D.①④【考点】二次函数图象与系数的关系.【分析】将函数图象补全,再进行分析.主要是从抛物线与x轴(y轴)的交点,开口方向,对称轴及x=±1等方面进行判断.【解答】解:①图象与x轴有两个交点,则方程有两个不相等的实数根,b2﹣4ac>0,b2>4ac,正确;②因为开口向下,故a<0,有﹣>0,则b>0,又c>0,故bc>0,错误;③由对称轴x=﹣=1,得2a+b=0,正确;④当x=1时,a+b+c>0,错误;故①③正确.故选:B.二、填空题(4’×6=24’)9.若y=(m+1)是二次函数,则m的值为7 .【考点】二次函数的定义.【分析】根据二次函数的定义列出关于m的方程,求出m的值即可.【解答】解:∵y=(m+1)是二次函数,∴m2﹣6m﹣5=2,∴m=7或m=﹣1(舍去).故答案为:7.10.二次函数y=x2+2x﹣4的图象的开口方向是向上.对称轴是x=﹣1 .顶点坐标是(﹣1,﹣5).【考点】二次函数的性质.【分析】根据a的符号判断抛物线的开口方向;根据顶点坐标公式可求顶点坐标及对称轴.【解答】解:因为a=1>0,图象开口向上;顶点横坐标为x==﹣1,纵坐标为y==﹣5,故对称轴是x=﹣1,顶点坐标是(﹣1,﹣5).11.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为8 .【考点】抛物线与x轴的交点.【分析】由抛物线y=2x2+8x+m与x轴只有一个公共点可知,对应的一元二次方程2x2+8x+m=0,根的判别式△=b2﹣4ac=0,由此即可得到关于m的方程,解方程即可求得m的值.【解答】解:∵抛物线与x轴只有一个公共点,∴△=0,∴b2﹣4ac=82﹣4×2×m=0;∴m=8.故答案为:8.12.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值X围是﹣3<x<1 .【考点】二次函数的图象.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的X围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值X围是﹣3<x<1.故答案为:﹣3<x<1.13.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行20 m才能停下来.【考点】二次函数的应用.【分析】由题意得,此题实际是求从开始刹车到停止所走的路程,即S的最大值.把抛物线解析式化成顶点式后,即可解答.【解答】解:依题意:该函数关系式化简为S=﹣5(t﹣2)2+20,当t=2时,汽车停下来,滑行了20m.故惯性汽车要滑行20米.14.隧道的截面是抛物线形,且抛物线的解析式为y=﹣x2+3.25,一辆卡车高3m,宽2m,该车能通过该隧道.(填“能”或“不能”)【考点】二次函数的应用.【分析】根据题意,由车宽为2m,将x=1代入抛物线的解析式为y=﹣x2+3.25,求出相应的y值,然后与3比较大小,从而可以解答本题.【解答】解:将x=1代入y=﹣x2+3.25,得y=﹣×12+3.25=3.125,∵>3,∴该车能通过该隧道,故答案为:能.三、解答题:(9’×4+8’=44’)15.已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.【考点】二次函数图象上点的坐标特征;二次函数图象与几何变换.【分析】(1)将点(1,﹣2)代入y=a(x﹣3)2+2,运用待定系数法即可求出a的值;(2)先求得抛物线的对称轴为x=3,再判断A(m,y1)、B(n,y2)(m<n<3)在对称轴左侧,从而判断出y1与y2的大小关系.【解答】解:(1)∵抛物线y=a(x﹣3)2+2经过点(1,﹣2),∴﹣2=a(1﹣3)2+2,解得a=﹣1;(2)∵函数y=﹣(x﹣3)2+2的对称轴为x=3,∴A(m,y1)、B(n,y2)(m<n<3)在对称轴左侧,又∵抛物线开口向下,∴对称轴左侧y随x的增大而增大,∵m<n<3,∴y1<y2.16.已知二次函数y=﹣x2﹣2x+3(1)求它的顶点坐标和对称轴;(2)求它与x轴的交点;(3)画出这个二次函数图象的草图.【考点】二次函数的性质;二次函数的图象;抛物线与x轴的交点.【分析】(1)已知抛物线的解析式是一般式,用配方法转化为顶点式,写出顶点坐标和对称轴;(2)令y=0,求得方程的解,得出与x轴的交点;(3)顶点坐标、对称轴和与x轴的交点画出图象.【解答】解:(1)y=﹣x2﹣2x+3=﹣(x+1)2+4,顶点坐标为(﹣1,4),对称轴x=﹣1;(2)令y=0,得﹣x2﹣2x+3=0,解得:x1=1,x2=﹣3,故与x轴的交点坐标:(1,0),(﹣3,0)(3)画出函数的图象如图:17.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么X围内时,一次函数的值大于二次函数的值.【考点】待定系数法求二次函数解析式;一次函数的图象;抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;(3)画出图象,再根据图象直接得出答案.【解答】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴,∴a=,b=﹣,c=﹣1,∴二次函数的解析式为y=x2﹣x﹣1;(2)当y=0时,得x2﹣x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值X围是﹣1<x<4.18.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值X围;(2)求△PBQ的面积的最大值.【考点】矩形的性质;二次函数的最值.【分析】(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解;(2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答.【解答】解:(1)∵S△PBQ=PB•BQ,PB=AB﹣AP=18﹣2x,BQ=x,∴y=(18﹣2x)x,即y=﹣x2+9x(0<x≤4);(2)由(1)知:y=﹣x2+9x,∴y=﹣(x﹣)2+,∵当0<x≤时,y随x的增大而增大,而0<x≤4,∴当x=4时,y最大值=20,即△PBQ的最大面积是20cm2.19.二次函数y=ax2+bx+c(a≠0)的图象与一次函数y1=x+k的图象交于A(0,1)、B两点,C(1,0)为二次函数图象的顶点.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)把(1)中的二次函数y=ax2+bx+c(a≠0)的图象平移后得到新的二次函数的图象,定义新函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,如果y1≠y2,函数f的函数值等于y1、y2中的较小值;如果y1=y2,函数f的函数值等于y1(或y2).”当新函数f的图象与x轴有三个交点时,直接写出m的取值X围.【考点】抛物线与x轴的交点;一次函数图象与系数的关系;二次函数图象与几何变换.【分析】(1)根据题意设抛物线解析式为y=a(x﹣1)2,把点A(0,1)代入,利用待定系数法即可求得;(2)二次函数y=ax2+bx+c(a≠0)的图象平移得到新的二次函数y2=ax2+bx+c+m(a≠0,m 为常数)的图象的过程中,与x轴的交点由两点变为三点,由三点变为两点,从而求得m 的取值X围.【解答】解:(1)∵C(1,0)为二次函数图象的顶点,∴设抛物线解析式为y=a(x﹣1)2,由抛物线过点A(0,1),可得a=1,∴抛物线解析式为y=x2﹣2x+1;(2)如图所示:当抛物线的顶点在x轴上时,即m=0时,新函数f的图象与x轴有两个个交点,当抛物线与直线交于(﹣1,0)时,0=(﹣1)2﹣2×(﹣1)+1+m,解得m=﹣4,即m=﹣4时新函数f的图象与x轴有两个交点,故当新函数f的图象与x轴有三个交点时,m的取值X围为﹣4<m<0.。

20191130九年级数学上第一学期周考试卷周练习卷

20191130九年级数学上第一学期周考试卷周练习卷

20191130九年级数学上周考试卷一.选择题(每题2分,共22分)1.抛物线y =(x -1)2+2的顶点坐标是( )A .(1,2)B .(-1,2)C .(1,-2)D .(-1,-2)2.若要得到函数y =(x +1)2+2的图象,只需将函数y =x 2的图象( )A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度3.将一枚硬币抛掷两次,则这枚硬币两次反面都向上的概率为( )A .13B .12C .16D .144.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( )A .6πB .πC .3πD .23π 5.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =130°,则∠C 的度数是( )A .50°B .60°C .25°D .30°6.如图,反比例函数k y x=的图象经过点A(4,1),当y <1时,x 的取值范围是( )A .x <0或x >4B .0<x <4C .x <4D .x >47.如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12 B .13 C .16 D .238.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为() A.B.C.D.9.如图,已知AB为⊙O的直径,CD、CB为的切线,D、B为切点,连接AD、BD,OC 交于点E,AE交BD于G,AE的延长线交BC于点F,给出下列结论:①AD∥OC;②点E为△CDB的内心;③EG=EF;④FC=FE,其中正确的是()A.①B.①②C.①②③D.①②③④10.当m,n是实数且满足m-n=mn时,就称点Q(m,mn)为“奇异点”,已知点A、点B是“奇异点”且都在反比例函数y=2x的图象上,点O是平面直角坐标系原点,则△OAB的面积为()A.1 B.32C.2 D.52二.填空题(每题3分,共21分)12.若正方形的外接圆直径为4,则其内切圆半径为.13.在一个不透明的盒子里装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球是白球的概率是13,则黄球的个数为.14.已知点A(1,m),B(2,n)在反比例函数y=-2x的图象上,则m与n的大小关系为.15.一个圆锥的底面半径为3,母线长为5,这个圆锥的侧面积是.11.如图,圆O的内接四边形ABCD中,BC=DC,∠BOC=130°,则∠BAD=_______.16.已知函数y=x2-2x-3,当-1≤x≤a时,函数的最小值是-4,则实数a的取值范围是.17.直线y=kx(k>0)与双曲线y=6x交于A(x1,y1)和B(x2,y2)两点,则3x1y2-9x2y1的值为.18.已知m、n、t都为实数,点,n)和点4,n)都在抛物线y=x2-2mx-1上,则t+n+m=.三.解答题(共57分)19.(7分)如图,正比例函数y=-2x与反比例函数y=kx的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当-2x>kx时,x的取值范围.20.(7分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD CE=(1)求证:OA=OB;(2)已知AB=,OA=4,求阴影部分的面积.21.(7分)在一个不透明的布袋中装有三个小球,小球上分别标有数字-2、l、2,它们除了数字不同外,其它都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字l的小球的概率为.(2)小红先从布袋中随机摸出一个小球,记下数字作为k的值,再把此球放回袋中搅匀,由小亮从布袋中随机摸出一个小球,记下数字作为b的值,请用树状图或表格列出k、b 的所有可能的值,并求出直线y=kx+b不经过第四象限的概率.22.(7分)如图,已知抛物线y=x2+bx+c经过A(-1,0)、B(3,0)两点.(1)求抛物线的解析式和顶点坐标;(2)当0<x<3时,求y的取值范围;(3)点P为抛物线上一点,若S△PAB=10,求出此时点P的坐标.23.(7分)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度是多少?24.(7分)如图,△ABC 中,∠ACB =90°,D 是边AB 上的一点,且∠A =2∠DCB ,E 是BC 上的一点,以EC 为直径的⊙O 经过点D .(1)求证:AB 是⊙O 的切线;(2)若CD =BE =EO ,求BD 的长.25.(7分)如图,已知Rt △AOB 的直角边OA 在x 轴上,OA =2,AB =1,将Rt △AOB 绕点O 逆时针旋转90°得到Rt △COD ,反比例函数y =k x经过点B . (1)求反比例函数解析式;(2)连接BD ,若点P 是反比例函数图象上的一点,且OP 将△OBD 的周长分成相等的两部分,求点P 的坐标.26.(7分)有这样一个问题:探究函数y =222x x -的图象与性质. 小文根据学习函数的经验,对函数y =222x x -的图象与性质进行了探究. 下面是小文的探究过程,请补充完整: (1)函数y =222x x -的自变量x 的取值范围是 ;则m的值为;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的性质(一条即可):.27.(8分)在平面直角坐标系xOy中,点P与点Q不重合,以点P为圆心作经过Q的圆,则称该圆为点P、Q的“相关圆”(1)已知点P的坐标为(2,0)①若点Q的坐标为(0,1),求点P、Q的“相关圆”的面积;②若点Q的坐标为(3,n),且点P、Q的“相关圆”n的值;(2)已知△ABC为等边三角形,点A和点B的坐标分别为(0)、0),点C 在y轴正半轴上,若点P、Q的“相关圆”恰好是△ABC的内切圆且点Q在直线y=2x上,求点Q的坐标.(3)已知△ABC三个顶点的坐标为:A(-3,0)、B(92,0),C(0,4),点P的坐标为(0,32),点Q的坐标为(m,32),若点P、Q的“相关圆”与△ABC的三边中至少一边存在公共点,直接写出m的取值范围.28.(8分)如图,抛物线y=ax2-5ax-4交x轴于A,B两点(点A位于点B的左侧),交y轴于点C,过点C作CD∥AB,交抛物线于点D,连接AC、AD,AD交y轴于点E,且AC=CD,过点A作射线AF交y轴于点F,AB平分∠EAF.(1)此抛物线的对称轴是;(2)求该抛物线的解析式;(3)若点P是抛物线位于第四象限图象上一动点,求△APF面积S△APF的最大值,以及此时点P的坐标;(4)点M是线段AB上一点(不与点A,B重合),点N是线段AD上一点(不与点A,D重合),则两线段长度之和:MN+MD的最小值是.。

2019-2020年九年级数学上学期第一次双周测试试题 苏科版

2019-2020年九年级数学上学期第一次双周测试试题 苏科版

2019-2020年九年级数学上学期第一次双周测试试题 苏科版考试时间:60分钟 总分100分 一、选择题 (3×6=18)1、下列函数中是二次函数的是( )A . y=a+bx+cB .y =x 3+2x -3C .y =(x +1)2-x 2D .y =3x 2-1 2、二次函数y=ax 2+bx+c 上部分点的坐标满足下表:x … -3 -2 -1 0 1 … y…-3-2-3-6-11…则该函数图象的顶点坐标为( ) A.(-3,-3) B.(-2,-2) C. (-1,-3)D. (0,-6)3、若二次函数y =(m +1)x 2-mx +m 2-2m -3的图象经过原点,则m 的值必为( ) A .-1或3 B .-1 C .3 D .-3或14、抛物线y =x 2-2x -1与坐标轴的交点个数为( ) A .无交点 B .1个 C .2个 D .3个 5、如图为二次函数+bx +c (a ≠0)的图象, 则下列说法:①a >0;②2a +b =0;③a +b +c >0;④当-1<x <3时,y >0.其中正确的个数为( ) A.1 B.2 C.3 D.46、如图,某幢建筑物,从10m 高的窗口A 用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与地面垂直)。

如果抛物线的最高点M 离墙1m ,离地面,则水流落地点离墙的距离OB 是( ) A .2m B .3m C .4m D .5m二、填空题(3×8=24) 1、2)3(232-+-=--x x k y k k是一个开口向下的二次函数,那么k = .2、在平面直角坐标系中,将抛物线y =x 2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为3、已知抛物线的顶点为(m ,3) 则m= ,c=4、二次函数y =2x 2+mx +8的图象如图所示,则m 的值是5、 ,若点A (m ,y 1)、B (n ,y 2)(m<n<3)都在该抛物线上,则y 1 y 2 (填<、>或=)6、如图,二次函数y 1=ax 2+bx +c(a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A(-2,4)、B(8,2),则使y 1>y 2成立的x 的取值范围是 .7、将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个;若这种商品的零售价在一定范围内每降价2元,其日销售量就增加4个,为了获得最大利润,则售价为 元,最大利润为 元。

九年级数学上学期第一次双周测试试题 试题

九年级数学上学期第一次双周测试试题  试题

2021-2021学年第一学期第一次双周测试卷九年级数学试卷考试时间是是:60分钟总分100分一、选择题〔3×6=18〕1、以下函数中是二次函数的是( )A.y=a+bx+c B.y=x3+2x-3C.y=(x+1)2-x2 D.y=3x2-12、二次函数y=ax2+bx+c上局部点的坐标满足下表:x …-3 -2 -1 0 1 …y …-3 -2 -3 -6 -11 …那么该函数图象的顶点坐标为( )A.(-3,-3)B.(-2,-2)C. (-1,-3)D. (0,-6)3、假设二次函数y=(m+1)x2-mx+m2-2m-3的图象经过原点,那么m的值必为( )A.-1或者3 B.-1 C.3 D.-3或者14、抛物线y=x2-2x-1与坐标轴的交点个数为( )A.无交点 B.1个 C.2个 D.3个5、如图为二次函数+bx+c〔a≠0〕的图象,那么以下说法:①a>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0.其中正确的个数为〔〕A.1B.2C.36、如图,某幢建筑物,从10m高的窗口A用水管向外喷水,喷出的水成抛物线状〔抛物线所在平面与地面垂直〕。

假如抛物线的最高点M离墙1m ,离地面403m ,那么水流落地点离墙的间隔 OB 是( ) A .2m B .3m C .4m D .5m二、填空题〔3×8=24〕 1、2)3(232-+-=--x xk y k k 是一个开口向下的二次函数,那么k = .2、在平面直角坐标系中,将抛物线y =x 2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为3、抛物线c x x y +--=221的顶点为〔m ,3〕 那么m= ,c= 4、二次函数y =2x 2+mx +8的图象如下图,那么m 的值是5、 2)3(2+--=x y 已知,假设点A 〔m ,y 1〕、B 〔n ,y 2〕〔m<n<3〕都在该抛物线上,那么y 1 y 2 〔填<、>或者=〕6、如图,二次函数y 1=ax 2+bx +c(a ≠0)与一次函数y 2=kx +m(k ≠0)的图象相交于点A(-2,4)、B(8,2),那么使y 1>y 2成立的x 的取值范围是 .7、将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个;假设这种商品的零售价在一定范围内每降价2元,其日销售量就增加4个,为了获得最大利润,那么售价为 元,最大利润为 元。

山东省青岛超银中学度第一学期北师大版九年级数学上册_第一章_特殊平行四边形_第2周周周清测试题(含答案)

山东省青岛超银中学度第一学期北师大版九年级数学上册_第一章_特殊平行四边形_第2周周周清测试题(含答案)

2019-2019学年度第一学期北师大版九年级数学上册第一章_特殊平行四边形_第2周周周清测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.如图,在菱形AAAA中,AA=6,AAAA=30∘,则菱形AAAA 的面积是()A.18B.18√3C.36D.36√32.下列判断中正确的是()A.四边相等的四边形是正方形B.四角相等的四边形是正方形C.对角线互相垂直的平行四边形是正方形D.对角线互相垂直平分且相等的四边形是正方形3.下列说法正确的有()(1)一组对边相等的四边形是矩形;(2)两条对角线相等的四边形是矩形;(3)四条边都相等且对角线互相垂直的四边形是正方形;(4)四条边都相等的四边形是菱形.A.1B.2C.3D.44.如图,四边形AAAA的四边相等,且面积为120AA2,对角线第1页/共11页AA=24A,则四边形AAAA的周长为()A.52AAB.40AAC.39AAD.26AA5.能说明四边形是菱形条件是()A.两组对边分别平行B.对角线互相平分且相等C.对角线互相平分且一组邻边相等D.对角线互相垂直6.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60∘,则它们重叠部分的面积为()A.1B.2C.√3D.2√337.如图,正方形AAAA的对角线AA是菱形AAAA的一边,则AAAA 等于()A.135∘B.45∘C.22.5∘D.30∘8.凸四边形AAAA的四个顶点满足:每一个顶点到其他三个顶点距离之积都相等.则四边形AAAA一定是()A.正方形B.菱形C.等腰梯形D.矩形9.如图,矩形AAAA中,AA=8,AA=6,A、A是AA上的三等分点,则A△AAA为()A.8B.12C.16D.2410.下列说法中,错误的是()A.一组邻边相等的平行四边形是菱形B.对角线互相垂直的平行四边形是菱形C.四条边相等的四边形是菱形D.对角线相等且互相平分的四边形是菱形二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如果四边形AAAA的对角线AA,AA相等,且互相平分于点A,则四边形AAAA是________形,如果AAA=60∘,则AA:AA=________.12.如图,将平行四边形AAAA的边AA延长到A,使AA=AA,连接AA交AA于A,AAA=AAA,当A=________时,四边形AAAA是矩形.13.如图,在矩形AAAA中,AA⊥AA,AAAA=1AAAA,那么2AAAA的度数为________.14.如图,正方形AAAA的边长为4,正方形AAAA的边长为8,则阴影部分的周长为________,面积为________.(精确到0.1)15.正方形的对角线为4,则它的边长AA=________.16.如图,AA是△AAA的一条角平分线,AA // AA交AA于点A,AA // AA交AA于点A,当AAAA________时,四边形AAAA是正方形.17.探究:如图①,在四边形AAAA中,AAAA=AAAA=90∘,AA=AA,AA⊥AA于点A.若A=10,求四边形AAAA的面积.应用:如图①,在四边形AAA中,AAAA+AAAA=180∘,AA= AA,AA⊥AA于点A.若A=19,AA=10,AA=6,则四边形AAAA的面积为________.18.如图,在△AAA中,A为AA边上的一动点(A点不与A、两点重合).AA // AA交AA于A点,A // AA交AA于A点.第3页/共11页(1)下列条件中:①AA=AA;①AA是△AAA的中线;①A是△AAA的角平分线;①AA是△AAA的高,请选择一个△AA满足的条件,使得四边形AAAA为菱形,并证明;答:我选择________.(填序号)(2)在(1)选择的条件下,△AA再满足条件:________,四边形AAA 即成为正方形.19.如图,在菱形AAAA中,AA=A,点A,A分别在AA,AA边上,且AA=AA,AA与AA交于点A.若AA=2,A=3,则四边形AAAA的面积为________.20.如图,在AAAA的两边上分别截取AA、AA,使AA=AA;分别以点A、A为圆心,AA长为半径作弧,两弧交于点A;连接AA、AA、AA、AA.若AA=2AA,四边形AAAA的面积为4AA2.则A的长为________AA.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,AA⊥AA,A平分AAAA,AA⊥AA,AA⊥AA,连接A,求证:AAAA为菱形.22.如图,四边形AAAA是矩形,A为AA上一点,且AAAA= AAAA,A为对角线AA上一点,AA⊥A于点A,AA⊥AA于点A.(1)求证:AA=AA;(2)试判断AA和AA,AA的数量关系并说明理由.23.如图,A为矩形AAA对角线的交点,AA // AA,A // AA.(1)求证:四边形AAA是菱形;(2)若AA=3,AA=4,求四边形AAAA的面积.24.如图,A为菱形AAA对角线的交点,AA // AA,AA // AA.(1)试判断四边形AAAA的形状,并说明理由;(2)若AA=6,A=8,求线段AA的长.25.如图,正方形AAAA中,点A是AA上任意一点,以AA为边作正方形AAAA.①连接AA,求证:AAAA=90∘;①连接AA,猜想AAAA的度数,并证明你的结论;①设点A在线段AA上运动,AA=A,正方形AAAA的面积为16,正方形AAA的面积为A,试求A与A的函数关系式,并写出A的取值范围.26.已知:在矩形AAAA中,AA=8,AA=12,四边形AAAA的三个顶点A、A、A分别在矩形AAAA边AA、AA、AA上,AA=2.(1)如图1,当四边形AAAA为正方形时,求△AAA的面积;(2)如图2,当四边形AAAA为菱形时,设AA=A,△AAA的面积为A,求A关于A的函数关系式,并写出函数的定义域.答案1.B2.D3.A4.A第5页/共11页5.C6.D7.C8.D9.A10.D11.矩√3:312.213.30∘14.32.12415.2√216.=90∘17.15218.①AAAA =90∘19.25√3420.421.证明:①AA 平分AAAA ,AA ⊥AA ,AA ⊥AA , ①AA =AA ,①AA ⊥AA ,AA ⊥AA ,①A // AA ,①A1=A2,在AA △AAA 和AA △AAA 中{AA =AA AA =AA,①AA△AAA≅AA△AAA(A),①A2=A3,①A1=A3,①AA=AA,①AA=AA,①AA // AA,①四边形AAA为平行四边形,又①AA=AA,①四边形AAA为菱形.22.(1)证明:①四边形AAAA是矩形,①AA // AA,①AAAA=AAAA,①AAAA=AAA,①AAAA=AAAA,①AA=A;(2)解:AA+AA=AA;理由如下:延长AA交AA于A,如图所示:①AA // AA,AA⊥AA,①AA⊥AA,①AAAA=AAAA,AA⊥AA,①AA=AA,①AA=AA=AA+AA=AA+AA.第7页/共11页23.解:(1)①A // AA,AA // AA,①四边形AAAA是平行四边形,①四边形AAAA是矩形,①AA=AA,AA=AA,AA=AA,①AA=AA,①四边形AAAA是菱形;(2)①AA=3,AA=4,①矩形AAAA的面积=3×4=12,①A△AAA=14A矩形AAAA=3,①四边形AAAA的面积=2A△AAA=6.24.解:(1)四边形AAAA是矩形.理由如下:①AA // AA,AA // AA,①四边形AAAA是平行四边形,①四边形AAAA是菱形,①AAAA=90∘,①四边形AAAA是矩形;(2)在菱形AAAA中,①AA=6,A=8,①AA=12AA=12×6=3,AA=12AA=12×8=4,①AA=√AA2+AA2=√32+42=5,在矩形AAAA中,AA=AA=5.25.(1)证明:①正方形AAAA,①A=AA,AAAA=90∘,①正方形AAAA,①AA=AA,AAAA=90∘,第9页/共11页①AAAA =AAAA ,①△AAA ≅△AAA ,①AAAA =A =90∘.(2)猜想AAAA 的度数为45∘证明:如图,过A 点作AA ⊥AA ,垂足为A , ①AAA +AAAA =AAAA +AAAA =90∘, ①AAAA =AAAA ,在△AAA 和△AAA 中{AAAA =AAAA AAAA =AAAA A =AA,①△AAA ≅△AAA (AAA ),①AA =AA ,AA =AA ,①AA =AA ,①AA =AA =AA ,①AA ⊥AA ,①三角形AAA 为等腰直角三角形,①AAAA =45∘,①AAAA =45∘.(3)解:①AA =90∘,①AA =√AA 2+AA 2,①正方形AAAA的面积为16,①AA=4,①AA2=16+A2,①A=16+A2,①点A在线段AA上运动,①0<A≤4.26.解:(1)如图1,过点A作AA⊥AA,垂足为A.由矩形AAAA可知:AA=AA=90∘,由正方形AAAA可知:AAAA=90∘,AA=AA,①A1+A2=90∘,又A1+A3=90∘,①A3=A2,①△AAA≅△AAA.①AA=AA=2,同理可证:△AAA≅△AAA,①△AAA≅△AAA,①AA=AA=2,又AA=AA−AA=12−2=10,①A△AAA=12AA⋅AA=12×10×2=10.(2)如图2,过点A作AA⊥AA,垂足为A,连接AA.由矩形AAAA得:AA // AA,①AAAA=AAA,由菱形AAAA得:AA // AA,AA=AA,①A1=A2,①A3=A4,又AA=AA=90∘,AA=AA,①△AAA≅△AAA,①AA=AA=2,又AA=,①AA=12−A,①A△AAA=12AA⋅AA=12(12−A)⋅2=12−A,即:A=12−A,定义域:0≤A≤4√7.第11页/共11页。

九年级数学第一学期周测卷

九年级数学第一学期周测卷

第1页共4页 第2页共4页九年级数学第一学期第二周测试卷一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为( )A .m≤3B .m <3C .m≥3D .m >32.下列式子中二次根式的个数有( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸2)31(-;⑹)1(1>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个 3.当22-+a a 有意义时,a 的取值范围是( )A .a≥2B .a >2C .a≠2D .a≠-2 4.下列计算正确的是( )①694)9)(4(=-⋅-=--;②694)9)(4(=⋅=--; ③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个 5.化简二次根式3)5(2⨯-得( )A .35-B .35C .35±D .306.把aba 123化去分母中的根号后得( )A .b 4B .b 2C .b 21D . b b 2 7n 的最小值是( )A .4;B .5;C .6;D .78.下列二次根式中,最简二次根式是( )A .23aB .31C .5.2D .22b a -9.计算:abab b a 1⋅÷等于( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 10.把aa 1-中根号外面的因式移到根号内的结果是( ) A .a - B .a -C .a --D .a二、填空题(每小题3分,共30分) 11.当x___________时,x311--是二次根式. 12.已知4322+-+-=x x y ,则,=xy . 13.=⋅ba ab 182____________;=-222425__________. 14.计算:=⋅b a 10253___________.15.若xx xx --=--3232成立,则x 满足_______________.16.比较大小:-32; 32-1723- 17.化简:=<)0(82a b a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年九年级(上)第一次双周测试数学试卷一、选择题1.下列函数中是二次函数的是()A.y=ax2+bx+c B.y=x3+2x﹣3 C.y=(x+1)2﹣x2D.y=3x2﹣12.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3) B.(﹣2,﹣2) C.(﹣1,﹣3) D.(0,﹣6)3.若二次函数y=(m+1)x2﹣mx+m2﹣2m﹣3的图象经过原点,则m的值必为()A.﹣1或3 B.﹣1 C.3 D.﹣3或14.抛物线y=x2﹣2x+1与坐标轴交点个数为()A.无交点B.1个C.2个D.3个5.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.46.如图,从某建筑物10m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是()A.2m B.3m C.4m D.5m二、填空题7.y=(k﹣3)+x﹣2是一个开口向下的二次函数,那么k=.8.在平面直角坐标系中,将抛物线y=x2﹣4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为.9.已知抛物线y=﹣x2﹣x+c的顶点为(m,3),则m=,c=.10.二次函数y=2x2+mx+8的图象如图所示,则m的值是.11.已知y=﹣(x﹣3)2+2,若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,则y1y2(填<、>或=)12.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(﹣2,4),B(8,2),如图所示,则能使y1<y2成立的x的取值范围是.13.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个;若这种商品的零售价在一定范围内每降价2元,其日销售量就增加4个,为了获得最大利润,则售价为元,最大利润为元.14.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.三、简答题15.已知二次函数y=﹣x2﹣2x+3.(1)求它的顶点坐标和对称轴;(2)求它与x轴、y轴的交点坐标;(3)直接写出x为何值时,y≤0?16.如图,已知二次函数y=﹣+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.17.已知开口向上的抛物线y=ax2﹣2x+|a|﹣4经过点(0,﹣3).(1)确定此抛物线的解析式;(2)当x取何值时,y有最小值,并求出这个最小值.18.已知:抛物线的解析式为y=x2﹣(2m﹣1)x+m2﹣m,(1)求证:此抛物线与x轴必有两个不同的交点;(2)若此抛物线与直线y=x﹣3m+4的一个交点在y轴上,求m的值.19.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.20.如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.xx学年江苏省南通市启东市滨海实验学校九年级(上)第一次双周测试数学试卷参考答案与试题解析一、选择题1.下列函数中是二次函数的是()A.y=ax2+bx+c B.y=x3+2x﹣3 C.y=(x+1)2﹣x2D.y=3x2﹣1【考点】二次函数的定义.【分析】根据二次函数的定义,即可作出判断.【解答】解:A、当a=0时不是二次函数,故选项错误;B、最高次数是3,不是二次函数,选项错误;C、化简后是y=2x+1是一次函数,选项错误;D、是二次函数,选项正确.故选D.【点评】本题考查了二次函数的定义.要特别注意二次项系数a≠0这一条件,当a=0时,若二次系数等于0就不是二次函数了,而b,c可以是0.2.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3) B.(﹣2,﹣2) C.(﹣1,﹣3) D.(0,﹣6)【考点】二次函数的性质.【专题】压轴题.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.3.若二次函数y=(m+1)x2﹣mx+m2﹣2m﹣3的图象经过原点,则m的值必为()A.﹣1或3 B.﹣1 C.3 D.﹣3或1【考点】二次函数图象上点的坐标特征.【分析】将原点坐标代入二次函数y=(m+1)x2﹣mx+m2﹣2m﹣3中即可求出m的值,注意二次函数的二次项系数不为零.【解答】解:根据题意得m2﹣2m﹣3=0,所以m=﹣1或m=3,又因为二次函数的二次项系数不为零,即m+1≠0,所以m=3.故选C.【点评】本题考查了二次函数图象上点的坐标特征,解题时注意分析,注意理解题意.4.抛物线y=x2﹣2x+1与坐标轴交点个数为()A.无交点B.1个C.2个D.3个【考点】抛物线与x轴的交点.【分析】当x=0时,求出与y轴的纵坐标;当y=0时,求出关于x的一元二次方程x2﹣2x+1=0的根的判别式的符号,从而确定该方程的根的个数,即抛物线y=x2﹣2x+1与x轴的交点个数.【解答】解:当x=0时,y=1,则与y轴的交点坐标为(0,1),当y=0时,x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以,该方程有两个相等的解,即抛物线y=x2﹣2x+2与x轴有1个点.综上所述,抛物线y=x2﹣2x+1与坐标轴的交点个数是2个.故选C.【点评】此题考查了抛物线与x轴的交点,以及一元二次方程的解法,其中令抛物线解析式中x=0,求出的y值即为抛物线与y轴交点的纵坐标;令y=0,求出对应的x的值,即为抛物线与x轴交点的横坐标.5.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.【解答】解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选C.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.6.如图,从某建筑物10m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点M离墙1m,离地面m,则水流落地点B离墙的距离OB是()A.2m B.3m C.4m D.5m【考点】二次函数的应用.【分析】由题意可以知道M(1,),A(0,10)用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【解答】解:设抛物线的解析式为y=a(x﹣1)2+,由题意,得10=a+,a=﹣.∴抛物线的解析式为:y=﹣(x﹣1)2+.当y=0时,0=﹣(x﹣1)2+,解得:x1=﹣1(舍去),x2=3.OB=3m.故选:B.【点评】此题考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题.解答本题是时设抛物线的顶点式求解析式是关键.二、填空题7.y=(k﹣3)+x﹣2是一个开口向下的二次函数,那么k=﹣1.【考点】二次函数的定义.【分析】根据二次函数的定义函数的最高次数是2,然后根据函数开口向下,则二次项系数小于0,据此即可求解.【解答】解:根据题意得:k2﹣3k﹣2=2且k﹣3<0,解得:k=﹣1.故答案是:﹣1.【点评】本题考查了二次函数的定义.要特别注意二次项系数a≠0这一条件,当a=0时,若二次系数等于0就不是二次函数了,而b,c可以是0.8.在平面直角坐标系中,将抛物线y=x2﹣4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为y=(x﹣2)2﹣2.【考点】二次函数图象与几何变换.【分析】直接根据平移规律作答即可.【解答】解:将抛物线y=x2﹣4先向右平移2个单位,再向上平移2个单位后所得抛物线解析式为y=(x﹣2)2﹣4+2.即y=(x﹣2)2﹣2.故答案为:y=(x﹣2)2﹣2.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.9.已知抛物线y=﹣x2﹣x+c的顶点为(m,3),则m=﹣1,c=.【考点】二次函数的性质.【分析】把二次函数解析式整理成顶点式形式,然后根据顶点坐标分别求解即可.【解答】解:y=﹣x2﹣x+c=﹣(x+1)2++c,∵顶点为(m,3),∴m=1,+c=3,解得c=.故答案为:﹣1,.【点评】本题考查了二次函数的性质,把二次函数解析式整理成顶点式形式求解更简便.10.二次函数y=2x2+mx+8的图象如图所示,则m的值是8.【考点】抛物线与x轴的交点.【分析】利用抛物线与x轴交点个数与b2﹣4ac进而得出m的值,再利用a,b符号与对称轴之间的关系求出即可.【解答】解:∵二次函数图象与x轴一个交点,∴b2﹣4ac=m2﹣4×2×8=0,解得:m1=8,m2=﹣8,∵二次函数图象对称轴在y轴左侧,则a,b同号,∴m=8.故答案为:8.【点评】此题主要考查了抛物线与x轴的交点,熟练记忆有关规律是解题关键.11.已知y=﹣(x﹣3)2+2,若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,则y1<y2(填<、>或=)【考点】二次函数图象上点的坐标特征.【分析】先判断函数的增减性,根据A、B的坐标可得出答案.【解答】解:∵y=﹣(x﹣3)2+2,∴抛物线对称轴为x=3,开口向下,∴当x<3时,y随x增大而增大,∵m<n<3,∴y1<y2.故答案为:<.【点评】本题主要考查二次函数的增减性,根据二次函数解析式判断出增减性是解题的关键.12.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(﹣2,4),B(8,2),如图所示,则能使y1<y2成立的x的取值范围是﹣2<x<8.【考点】二次函数与不等式(组).【专题】数形结合.【分析】根据图象,找出二次函数图象在一次函数图象下方的部分的x的取值范围即可.【解答】解:由图形可得,当﹣2<x<8时,二次函数图象在一次函数图象下方,y1<y2,所以,使y1<y2成立的x的取值范围是﹣2<x<8.故答案为:﹣2<x<8.【点评】本题考查了二次函数与不等式,根据函数图象求不等式的解,关键在于认准在上方与下方的函数图象所对应的函数解析式,数形结合是数学中的重要思想之一.13.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个;若这种商品的零售价在一定范围内每降价2元,其日销售量就增加4个,为了获得最大利润,则售价为90元,最大利润为800元.【考点】二次函数的最值.【分析】设降价x元,利润为y,利用总利润等于单个的利润乘以销售量得到y=(100﹣70﹣x)(20+2x),利用配方法得到y=﹣2(x﹣10)2+800,然后根据二次函数的最值问题求解.【解答】解:设降价x元,利润为y,y=(100﹣70﹣x)(20+2x)=﹣2x2+40x+600=﹣2(x﹣10)2+800,当x=10时,y的最大值为800,即售价为90元时,最大利润为800元.故答案为90,800.【点评】本题考查了二次函数的最值:对于二次函数y=ax2+bx+c(a≠0),其顶点式为y=a (x+)2+当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣时,y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣时,y=.14.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.【考点】二次函数图象与几何变换.【专题】压轴题.【分析】根据点O与点A的坐标求出平移后的抛物线的对称轴,然后求出点P的坐标,过点P作PM⊥y轴于点M,根据抛物线的对称性可知阴影部分的面积等于矩形NPMO的面积,然后求解即可.【解答】解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(﹣6,0),∴平移后的抛物线对称轴为x=﹣3,得出二次函数解析式为:y=(x+3)2+h,将(﹣6,0)代入得出:0=(﹣6+3)2+h,解得:h=﹣,∴点P的坐标是(﹣3,﹣),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=|﹣3|×|﹣|=.故答案为:.【点评】本题考查了二次函数的问题,根据二次函数的性质求出平移后的抛物线的对称轴的解析式,并对阴影部分的面积进行转换是解题的关键.三、简答题15.已知二次函数y=﹣x2﹣2x+3.(1)求它的顶点坐标和对称轴;(2)求它与x轴、y轴的交点坐标;(3)直接写出x为何值时,y≤0?【考点】二次函数的性质.【分析】(1)将抛物线的一般式化为顶点式,就可以确定对称轴,顶点;(2)要求抛物线与x轴的交点,就要把解析式化为交点式,即可得到与坐标轴交点的坐标,令x=0求得与y轴的交点坐标;(3)利用二次函数的性质与x轴的交点坐标直接得出答案即可.【解答】解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点(1,4),对称轴x=1;(2)∵y=﹣x2+2x+3=﹣(x﹣3)(x+1)∴与x轴交点(3,0),(﹣1,0),与y轴交点(0,3);(2)当x≥3,或x≤﹣1时,y≤0.【点评】此题考查二次函数的性质,抛物线的对称轴、顶点坐标与抛物线解析式的关系,抛物线的顶点式:y=a(x﹣h)2+k,顶点坐标为(h,k),对称轴x=h.同时考查了用抛物线与x轴的交点坐标.16.如图,已知二次函数y=﹣+bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.【考点】二次函数综合题.【专题】综合题.【分析】(1)二次函数图象经过A(2,0)、B(0,﹣6)两点,两点代入y=﹣+bx+c,算出b和c,即可得解析式.(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.【解答】解:(1)把A(2,0)、B(0,﹣6)代入y=﹣+bx+c,得:解得,∴这个二次函数的解析式为y=﹣+4x﹣6.(2)∵该抛物线对称轴为直线x=﹣=4,∴点C的坐标为(4,0),∴AC=OC﹣OA=4﹣2=2,∴S△ABC=×AC×OB=×2×6=6.【点评】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.17.已知开口向上的抛物线y=ax2﹣2x+|a|﹣4经过点(0,﹣3).(1)确定此抛物线的解析式;(2)当x取何值时,y有最小值,并求出这个最小值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)因为开口向上,所以a>0;把点(0,﹣3)代入抛物线y=ax2﹣2x+|a|﹣4中,得|a|﹣4=﹣3,再根据a>0求a,从而确定抛物线解析式;(2)根据二次函数的顶点坐标,求解即可.【解答】解:(1)由抛物线过(0,﹣3),得:﹣3=|a|﹣4,|a|=1,即a=±1.∵抛物线开口向上,∴a=1,故抛物线的解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴当x=1时,y有最小值﹣4.【点评】此题考查了二次函数的开口方向,顶点坐标,还考查了点与函数的关系.18.已知:抛物线的解析式为y=x2﹣(2m﹣1)x+m2﹣m,(1)求证:此抛物线与x轴必有两个不同的交点;(2)若此抛物线与直线y=x﹣3m+4的一个交点在y轴上,求m的值.【考点】二次函数综合题.【专题】代数综合题.【分析】(1)根据二次函数的交点与图象的关系,证明其方程有两个不同的根即△>0即可;(2)根据题意,令x=0,整理方程可得关于m的方程,解可得m的值.【解答】证明:(1)令y=0得:x2﹣(2m﹣1)x+m2﹣m=0①∵△=(2m﹣1)2﹣4(m2﹣m)×1>0∴方程①有两个不等的实数根,∴原抛物线与x轴有两个不同的交点;(2)令:x=0,根据题意有:m2﹣m=﹣3m+4解得m=﹣1+或﹣1﹣.(说明:少一个解扣2分)【点评】本题考查学生将二次函数的图象与解析式的关系.19.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.【考点】矩形的性质;二次函数的最值.【专题】动点型.【分析】(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解;(2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答.【解答】解:(1)∵S△PBQ=PB•BQ,PB=AB﹣AP=18﹣2x,BQ=x,∴y=(18﹣2x)x,即y=﹣x2+9x(0<x≤4);(2)由(1)知:y=﹣x2+9x,∴y=﹣(x﹣)2+,∵当0<x≤时,y随x的增大而增大,而0<x≤4,∴当x=4时,y=20,最大值即△PBQ的最大面积是20cm2.【点评】本题考查了矩形的性质,二次函数的最值问题,根据题意表示出PB、BQ的长度是解题的关键.20.如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.【考点】二次函数综合题.【专题】压轴题;分类讨论.【分析】(1)该抛物线的解析式中只有两个待定系数,只需将A、B两点坐标代入即可得解.(2)首先根据平移条件表示出移动后的函数解析式,进而用m表示出该函数的顶点坐标,将其代入直线AB、AC的解析式中,即可确定P在△ABC内时m的取值范围.(3)先在OA上取点N,使得∠ONB=∠ACB,那么只需令∠NBA=∠OMB即可,显然在y轴的正负半轴上都有一个符合条件的M点;以y轴正半轴上的点M为例,先证△ABN、△AMB相似,然后通过相关比例线段求出AM的长.【解答】解:(1)将A(0,﹣4)、B(﹣2,0)代入抛物线y=x2+bx+c中,得:,解得:故抛物线的解析式:y=x2﹣x﹣4.(2)由题意,新抛物线的解析式可表示为:y=(x+m)2﹣(x+m)﹣4+,即:y=x2+(m ﹣1)x+m2﹣m﹣;它的顶点坐标P:(1﹣m,﹣1);由(1)的抛物线解析式可得:C(4,0);设直线AC的解析式为y=kx+b(k≠0),把x=4,y=0代入,∴4k+b=0,b=﹣4,∴y=x﹣4.同理直线AB:y=﹣2x﹣4;当点P在直线AB上时,﹣2(1﹣m)﹣4=﹣1,解得:m=;当点P在直线AC上时,(1﹣m)﹣4=﹣1,解得:m=﹣2;∴当点P在△ABC内时,﹣2<m<;又∵m>0,∴符合条件的m的取值范围:0<m<.(3)由A(0,﹣4)、C(4,0)得:OA=OC=4,且△OAC是等腰直角三角形;如图,在OA上取ON=OB=2,则∠ONB=∠ACB=45°;∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB,即∠OMB=∠NBA;如图,在△ABN、△AM1B中,∠BAN=∠M1AB,∠ABN=∠AM1B,∴△ABN∽△AM1B,得:AB2=AN•AM1;易得:AB2=(﹣2)2+42=20,AN=OA﹣ON=4﹣2=2;∴AM1=20÷2=10;而∠BM1A=∠BM2A=∠ABN,∴OM1=OM2=6,AM2=OM2﹣OA=6﹣4=2.综上,AM的长为10或2.【点评】考查了二次函数综合题,该函数综合题的难度较大,(3)题注意分类讨论,通过构建相似三角形是打开思路的关键所在.29770 744A 瑊31109 7985 禅27814 6CA6 沦37360 91F0 釰29323 728B 犋27091 69D3 槓'27537 6B91 殑31918 7CAE 粮33788 83FC 菼Q*c。

相关文档
最新文档