高中数学必修1-5综合测试题及答案详解(优秀经典测试卷)
高中数学必修1综合检测(含答案)
![高中数学必修1综合检测(含答案)](https://img.taocdn.com/s3/m/402d9242fe4733687e21aa45.png)
必修1综合检测第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2013山东)已知集合{0,1,2}A =,则集合{|,}B x y x A y A =-∈∈中元素的个数是A .1B .3C .5D .92.已知集合}2|{≤=x x A ,}|{a x x B <=,若B A ⊆,则a 的取值范围是A .}2|{≤a aB .}2|{≥a aC .}2|{>a aD .}2|{<a a3.函数1-=x y 的定义域为M ,函数)1,0(log ≠>=a a x y a 的定义域为N ,则有A .M N M =B .N N M =C .N N M =D .∅=N M4.已知)0()(2≠++=a c bx ax x f 是偶函数,那么函数cx bx ax x g ++=23)(是A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数5.下列哪组中的两个函数是同一函数A .2)(x y =与x y =B .33x y =与x x y 2= C .2x y =与2)(x y = D .33)(x y =与x y =6.下列函数中,在区间)2,0(上是增函数的是A .542+-=x x yB .x y =C .x y -=2D .x y 5.0log = 7.函数)1,0(1≠>=-a a a y x 的图象恒过点A .)1,1(B .)0,1(C .)1,0(D .)1,2(8.设a =2lg ,b =3lg ,则12log 5等于A .a b a ++12B .a b a ++12C .a b a -+12D .ab a -+12 9.已知函数5)1(22+--=x a x y 在区间),4(+∞上是增函数,则实数a 的取值范围是A .5a ≥B .5a ≤C .6-≤aD .6-≥a10.已知函数3)1(2-=-x x f ,则)2(f 的值为A .2-B .6C .1D .011.已知9.04=a ,48.08.0=b ,5.1)21(-=c ,则c b a ,,的大小关系是A .c b a >>B .a c b >>C .a b c >>D .b c a >>12.函数)0(21)(>++=x xx x f 的值域是 A .),21(+∞ B .),1(+∞ C .)1,21( D .)21,0( 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题每小题5分,共20分.把答案填在题中横线上)13.已知幂函数的图象过点)2,2(,这个函数的表达式为 .14.函数)34(log 5.0-=x y 的定义域是 . 15.=++--221312])21[()278(25.0 . 16.若函数)(x f 唯一的一个零点同时在区间)0,2(),0,4(),0,8(),0,16(----内,下列命题:①)(x f 在区间)0,1(-内有零点;②)(x f 在区间)1,2(--或)0,1(-内有零点;③)(x f 在区间]2,16(--内无零点;④)(x f 在区间)1,16(--内无零点.其中正确命题的序号是 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分) 求22)2(lg 20lg 5lg 8lg 325lg +++的值.设全集为R ,}73|{<≤=x x A ,}102|{<<=x x B ,求)(B A C R 及B A C R )(.19.(本小题满分12分)已知集合}0|{2=++=b ax x x A ,}03|{2=-=x x x B ,若A B ∅≠⊆,求实数b a ,的值.20.(本小题满分12分)已知函数)(2)(2R a a ax x x f ∈+-=,求)(x f 在区间]1,1[-上的最小值.设函数)0()(2>++=a c bx ax x f ,且2)1(a f -=. (1)求证:函数)(x f 有两个零点;(2)设21,x x 是函数)(x f 的两个零点,求当c b a ::值为多少时||21x x -有最小值.22.(本小题满分12分) 已知函数xa x x f +=)(,其中a 是大于零的常数. (1)证明:)(x f 在),0()0,(+∞-∞ 上是奇函数;(2)证明:函数)(x f 在],0(a 上是减函数,在),[+∞a 上是增函数;(3)设常数)4,1(∈a ,求函数)(x f 在21≤≤x 时的最大值和最小值.。
(完整版)高中数学必修五综合测试题 含答案
![(完整版)高中数学必修五综合测试题 含答案](https://img.taocdn.com/s3/m/bf385e8bb90d6c85ec3ac6e6.png)
.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。
2021-2022学年度高中数学必修1-5综合卷
![2021-2022学年度高中数学必修1-5综合卷](https://img.taocdn.com/s3/m/3e0c161e6d85ec3a87c24028915f804d2b168700.png)
2021-2022学年度高中数学1-5试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx一、单选题1.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π62.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( )A .79B .2332C .932D .293.把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =( )A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭4.魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距5.已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A B C D 6.若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .657.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( ) A.20+B.C .563D8.已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =9.《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位: cm),且长与宽之比都相等,已知1288a =,596=a ,1192b =,则3b =A .64B .96C .128D .16010.函数()cos cos2f x x x =-是 A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为9811.某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3 CD.12.若实数x ,y 满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩,则12z x y =-的最小值是( )A .2-B .32-C .12-D .11013.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A B C D 14.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+15.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π216.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( )A B .23C .13D 17.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块18.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 19.若2233x y x y ---<-,则( ) A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<20.已知向量 a ,b 满足||5a =, ||6b =,6a b ⋅=-,则cos ,=a a b <+>( ) A .3135-B .1935-C .1735D .193521.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A .4 B .5C .6D .722.函数241xy x =+的图象大致为( )A .B .C .D .23.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<24.已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π; ②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的序号是( ) A .① B .①③C .②③D .①②③第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题25.已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.26.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,60B =︒,223a c ac +=,则b =________.27y 轴交于点A ,与圆()2211x y +-=相切于点B ,则AB =____________.28.已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a ___________. 29.设,a b 为单位向量,且||1a b +=,则||a b -=______________.30.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝三、解答题31.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.32.记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值. 33.设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.34.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值. 35.设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .36.在ABC 中,角,,A B C 所对的边分别为,,a b c .已知 5,a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.参考答案1.D 【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可. 【详解】如图,连接11,,BC PC PB ,因为1AD ∥1BC , 所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥, 设正方体棱长为2,则111112BC PC D B === 1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D 2.B 【分析】设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,分别求出,A Ω对应的区域面积,根据几何概型的的概率公式即可解出. 【详解】如图所示:设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中的阴影部分,其面积为133********A S =-⨯⨯=,所以()2332A S P A S Ω==. 故选:B. 【点睛】本题主要考查利用线性规划解决几何概型中的面积问题,解题关键是准确求出事件,A Ω对应的区域面积,即可顺利解出. 3.B 【分析】解法一:从函数()y f x =的图象出发,按照已知的变换顺序,逐次变换,得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦,即得2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再利用换元思想求得()y f x =的解析表达式;解法二:从函数sin 4y x π⎛⎫=- ⎪⎝⎭出发,逆向实施各步变换,利用平移伸缩变换法则得到()y f x =的解析表达式.【详解】解法一:函数()y f x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x =的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦的图象,根据已知得到了函数sin 4y x π⎛⎫=- ⎪⎝⎭的图象,所以2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令23t x π⎛⎫=- ⎪⎝⎭,则,234212t t x x πππ=+-=+,所以()sin 212t f t π⎛⎫=+ ⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭;解法二:由已知的函数sin 4y x π⎛⎫=- ⎪⎝⎭逆向变换,第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+ ⎪⎝⎭的图象,即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭.故选:B. 4.A 【分析】利用平面相似的有关知识以及合分比性质即可解出. 【详解】 如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而 DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而 CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差. 故选:A. 【点睛】本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.5.A 【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积. 【详解】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=,则ABC 1, 设O 到平面ABC 的距离为d ,则d =所以11111332O ABC ABCV Sd -=⋅=⨯⨯⨯=. 故选:A. 【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解. 6.C 【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cos θθ=+),进行齐次化处理,化为正切的表达式,代入tan 2θ=-即可得到结果. 【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++ ()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C . 【点睛】易错点睛:本题如果利用tan 2θ=-,求出sin ,cos θθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论. 7.D 【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解. 【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高h下底面面积116S =,上底面面积24S =,所以该棱台的体积((121116433V h S S =+=+=故选:D. 8.B 【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论. 【详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==,故()()110f f -=-=,其它三个选项未知. 故选:B. 9.C 【分析】设等差数列{}n a 公差为d ,求得48d =-,得到3192a =,结合党旗长与宽之比都相等和1192b =,列出方程,即可求解. 【详解】由题意,五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,设公差为d , 因为1288a =,596=a ,可得519628848513a a d --===--, 可得3288(31)(48)192a =+-⨯-=, 又由长与宽之比都相等,且1192b =,可得3113a ab b =,所以3131192192=128288a b b a ⋅⨯==. 故选:C. 10.D 【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值. 【详解】由题意,()()()()cos cos 2cos cos2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos 22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭,所以当1cos 4x =时,()f x 取最大值98. 故选:D. 11.A 【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积. 【详解】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,12=,故111113122ABCD A B C DV-=⨯=,故选:A.12.B【分析】画出满足条件的可行域,目标函数化为22y x z=-,求出过可行域点,且斜率为2的直线在y轴上截距的最大值即可.【详解】画出满足约束条件102310xx yx y+≥⎧⎪-≤⎨⎪+-≤⎩的可行域,如下图所示:目标函数12z x y =-化为22y x z =-, 由12310x x y =-⎧⎨+-=⎩,解得11x y =-⎧⎨=⎩,设(1,1)A -,当直线22y x z =-过A 点时, 12z x y =-取得最小值为32-. 故选:B. 13.C 【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.【详解】如图,设,CD a PE b ==,则PO由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =. 故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 14.D 【分析】根据散点图的分布可选择合适的函数模型. 【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近, 因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+. 故选:D. 【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题. 15.C 【分析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭ 又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω=== 故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 16.A 【分析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论. 【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴=故选:A. 【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题. 17.C 【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列, 设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S . 【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=, 设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+ 即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C 【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题. 18.B 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a , 圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d =;所以,圆心到直线230x y --=. 故选:B. 【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题. 19.A 【分析】将不等式变为2323x x y y ---<-,根据()23t tf t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果. 【详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23t tf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD 无法确定.故选:A. 【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想. 20.D 【分析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos ,a a b <+>的值. 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D. 【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 21.A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案. 【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号, 故选:A. 【点睛】本题考查了圆的标准方程,属于基础题. 22.A 【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象. 【详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 23.D 【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系. 【详解】 因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<. 故选:D. 【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围. 比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减; (2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.24.B【分析】对所给选项结合正弦型函数的性质逐一判断即可.【详解】 因为()sin()3f x x π=+,所以周期22T ππω==,故①正确; 51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象, 故③正确.故选:B.【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题. 25.35【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.【详解】因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=. 故答案为:35. 【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.26.【分析】由三角形面积公式可得4ac =,再结合余弦定理即可得解.【详解】由题意,1sin 2ABC S ac B === 所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得b =.故答案为:27【分析】设直线AB 的方程为y b =+,则点()0,A b ,利用直线AB 与圆()2211x y +-=相切求出b 的值,求出AC ,利用勾股定理可求得AB .【详解】设直线AB 的方程为y b =+,则点()0,A b ,由于直线AB 与圆()2211x y +-=相切,且圆心为()0,1C ,半径为1, 则112b -=,解得1b =-或3b =,所以2AC =,因为1BC =,故AB ==28.2【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【详解】()()642233f f f f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.29【分析】 整理已知可得:()2a b a b +=+,再利用,a b 为单位向量即可求得21a b ⋅=-,对a b -变形可得:222a b a a b b -=-⋅+,问题得解.【详解】因为,a b 为单位向量,所以1a b ==所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅= 解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.30.①③④【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.31.(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【分析】(1)由已知212n n S b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n nb b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【详解】(1)由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠, 取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---, 所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---, 所以111221n n n nb b b b +++=-, 由于10n b +≠ 所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈ 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列; (2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列, ()3111222n n b n ∴=+-⨯=+, 22211n n n b n S b n+==-+, 当n =1时,1132a S ==, 当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立, ∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩. 【点睛】本题考查等差数列的证明,考查数列的前n 项和与项的关系,数列的前n 项积与项的关系,其中由1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,得到1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,进而得到111221n n n nb b b b +++=-是关键一步;要熟练掌握前n 项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.32.(1)26n a n =-;(2)7.【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值.【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-++-=-,从而:22d d -=-,由于公差不为零,故:2d =,数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->,解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.33.(1)π;(2)1+【分析】(1)由题意结合三角恒等变换可得1sin 2y x =-,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得sin 242y x π⎛⎫=-+ ⎪⎝⎭,再由三角函数的图象与性质即可得解. 【详解】(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,则2223332sin 1cos 21sin 22442y f x x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫ ⎪⎭⎦⎝, 所以该函数的最小正周期22T ππ==;(2)由题意,()2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22sin cos cos 22x x x x x x ⎛⎫=⋅+= ⎪ ⎪⎝⎭1cos 2222sin 224x x x x x π-⎛⎫=- ⎪⎝⎭, 由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当242x ππ-=即38x π=时,函数取最大值12+.34.(1)23π;(2)3+【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅, ()0,A π∈,23A π∴=. (2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=, 即()29AC AB AC AB +-⋅=. 22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.35.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可; (2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+, 证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n N ∈,都有21n a n =+成立;(2)由(1)可知,2(21)2n n n a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.36.(Ⅰ)4Cπ;(Ⅱ)sin A =(Ⅲ)sin 24A π⎛⎫+= ⎪⎝⎭【分析】(Ⅰ)直接利用余弦定理运算即可;(Ⅱ)由(Ⅰ)及正弦定理即可得到答案;(Ⅲ)先计算出sin ,cos ,A A 进一步求出sin 2,cos 2A A ,再利用两角和的正弦公式计算即可.【详解】(Ⅰ)在ABC 中,由5,a b c ===222cos2a b c C ab +-===, 又因为(0,)C π∈,所以4Cπ;(Ⅱ)在ABC 中,由4C π, a c ==sin sina C A c ===(Ⅲ)由a c <知角A 为锐角,由sin A =cos A == 进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2cos cos2sin 4441313A A A πππ+=+=+=. 【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.。
高中数学必修1-必修5综合测试题(附答案)
![高中数学必修1-必修5综合测试题(附答案)](https://img.taocdn.com/s3/m/b85fe1aa02020740bf1e9b2c.png)
高二数学必修1-必修5考试题一、选择题(每小题5分,共40分,在每小题的四个选项中有且只有一个是正确的,请把正确选项填涂在答题卡上。
)1. 对于下列命题:①,1sin 1x R x ,②22,sin cos 1x R xx,下列判断正确的是A. ①假②真B. ①真②假C. ①②都假D. ①②都真2. 条件语句的一般格式是3. 某校为了了解学生的课外阅读情况,随即调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示。
根据条形图可得这50名学生这一天平均每人的课外阅读时间为A. 0.6 小时B. 0.9 小时C. 1.0 小时D. 1.5 小时4. 有一圆柱形容器,底面半径为10cm ,里面装有足够的水,水面高为12cm ,有一块金属五棱锥掉进水里全被淹没,结果水面高为15cm ,若五棱锥的高为3cm ,则五棱锥的底面积是A. 100cm2B. 100 cm2C. 30cm2D. 300 cm2IF 条件THEN 语句 1 ELSE 语句 2 END IF人数(人) 0 0.5 1.0 1.5 2.0时间(小时)20 15 105A.是满足条件语句 1语句 2否B.是否满足条件语句 2语句 1D.是否满足条件满足条件语句 2语句 1语句 1语句 2 否满足条件是C.5.已知数列1{}nn a pa 为等比数列,且23nnna ,则p 的值为A.2B.3C.2或3D.2或3的倍数6.若α、β表示平面,a 、b 表示直线,则a ∥α的一个充分条件是A. α⊥β且a ⊥βB. αI β=b 且a ∥b C. a ∥b 且b ∥αD. α∥β且aβ7.已知奇函数f(x)和偶函数g(x)满足f(x)+g(x)=2xxaa,若g(a)=a, 则f(a)的值为A.1B.2C.154D.1748. 已知()f x 是以2为周期的偶函数,当[0,1]x时,()f x x ,那么在区间[1,3]内,关于x 的方程()1f x kxk (其中k 走为不等于l 的实数)有四个不同的实根,则k 的取值范围是A .(1,0)B .1(,0)2C .1(,0)3D .1(,0)4题号 12345678答案二、填空题(每小题5分,共30分。
高一数学必修1,2,3,4,5试题及答案
![高一数学必修1,2,3,4,5试题及答案](https://img.taocdn.com/s3/m/be57269fdd3383c4bb4cd262.png)
高二数学必修部分测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.0sin 390=()A .21B .21-C .23 D .23- 2.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值为() A 1223133A 4.,b 满足:|3a =,|2b =,||a b +=||a b -=()A 3D .105.下面结论正确的是()C.6A C 789、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。
A 、),23(+∞- B 、]0,(-∞ C 、23,(--∞ D 、]0,2(- 10.当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]11.已知a,b,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则y c x a +的值为() (A )21(B )-2(C )2(D )不确定 12.已知数列{a n }的通项公式为a n =n n ++11且S n =1101-,则n 的值为()(A )98(B )99(C )100(D )101二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上)13141516。
17得到y 1819(本小题满分12分)已知向量a ,b 的夹角为60,且||2a =,||1b =,(1)求a b ;(2)求||a b +.20.已知数列{a n },前n 项和S n =2n-n 2,a n =log 5bn ,其中bn>0,求数列{bn}的前n 项和。
21(本小题满分14分)已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+,且()f x a b =(1)求函数()f x 的解析式;(2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最小值是-4,求此时函数()f x 的最大值,并求出相应的x 的值. 22如图如图,在底面是直角梯形的四棱锥S-ABCD ,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=1/2.ACAD 13.3π171)2-+x ,∴18.19.解:(1)1||||cos602112a b a b ==⨯⨯= (2)22||()a b a b +=+所以||3a b +=20.当n=1时,a 1=S 1=1当n ≥2时,a 1=S n -S n-1=3-2n ∴a n =3-2nb n =53-2n∵25155123)1(23==+-+-n n bn bn b 1=5∴{b n }是以5为首项,251为公比的等比数列。
高一数学考卷(必修一、五)含答案
![高一数学考卷(必修一、五)含答案](https://img.taocdn.com/s3/m/d5e85f9dad51f01dc281f1d6.png)
上恒成立
1 a a 9
1 3 2 3
1
0
或
1 3 a 9a 6
1
0
或
1
3 1
a
1 a 2 a
3 1
0
解得: a 1,
( ) 所以外层函数 f x = loga t 在定义域内是单调增函数,
若函数 f x loga
3.已知数列an 满足 an an1 2(n 2) ,且 a1, a3 , a4 成等比数列,则数列an 的通项
公式为( )
A. an 2n
B. an 2n 10
C. an 2n 10
D. an 2n 4
【答案】C 【解析】
∵数列an满足 an an1 2n 2 ∴数列an是公差为 2 的等差数列.
【点睛】
研究集【分析】
分别求出 a 、 b 、 c 与 1、0 的大小关系,即可比较出大小关系
【详解】
0 a 0.20.2 1, b 1.20.2 1, c log1.2 0.2 0 ,则 c a b . 故选 B .
【点睛】
本题考查了指数、对数的大小比较,只需找出中间转换量即可,较为简单
【详解】
由 f x ex ex ln x2 1 x 2 ,令 g(x) ex ex ln( x 2 1 x) ,
则 f (x) g(x) 2 ,由 x2 1 x2 x x , x2 1 x 0 恒成立,
g x 定义域为 R,
2
4
故选:C
【点睛】
高一数学测试卷及答案详解(附答案)
![高一数学测试卷及答案详解(附答案)](https://img.taocdn.com/s3/m/31d777978662caaedd3383c4bb4cf7ec4afeb620.png)
(1)求函数 的定义域;
(2)讨论函数 的单调性.
17.正方体 中,求证:(1) ;
(2) .
18.一个圆锥的底面半径为2cm,高为6cm,在其中有一个高为 cm的内接圆柱.
(1)试用 表示圆柱的侧面积;
(2)当 为何值时,圆柱的侧面积最大?
19.求二次函数 在 上的最小值 的解析式.
B DB
A C C A C E
A. D、E、F B. E、D、F C. E、F、D D. F、D、E
第二部分非选择题(共100分)
二、填空题:本大题共4小题,每小题5分,满分20分.
11.幂函数 的图象过点 ,则 的解析式为_______________
12.直线过点 ,它在 轴上的截距是在 轴上的截距的2倍,则此直线方程为__________________________.
……14分
18.本小题主要考查空间想象能力,运算能力与函数知识的综合运用.满分12分.
解:(1)如图: 中, ,即 ……2分
, ……4分
圆柱的侧面积
( )……8分
(2)
时,圆柱的侧面积最大,最大侧面积为 ……12分
19.本小题以二次函数在闭区间上的最值为载体,主要考查分类讨论的思想和数形结合的思想.满分14分.
B
D
A
D
A
B
二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.
11. 12. 或 13. 14.2;3
三、解答题:
15.本小题主要考查分段函数的图象,考查函数奇偶性的判断.满分12分.
解: ……2分
函数 的图象如右图……6分
函数 的定义域为 ……8分
高中数学理科综合测试卷(必修1~5,选修2-1,2-2,2-3)
![高中数学理科综合测试卷(必修1~5,选修2-1,2-2,2-3)](https://img.taocdn.com/s3/m/af2975c44028915f804dc21f.png)
1.已知全集U=R和N关系的韦恩(2.已知复数z满足(1A3.“a≠0”是“函数f(A.C. 充分必要条件4.有5A、36种5.设m、nA.若m//α,B.若m⊂α,nC.若α⊥β, mD.若α⊥β, m6.已知x,y7.已知双曲线2222x ya b-A.5x2-45y2=18.若把函数y=y轴对称,则m程三、解答题:本大题共5演算步骤.18.(本小题满分14分)已知()sin(2)6f x x π=-+(Ⅰ)求函数f (x )(Ⅱ)在△ABC 中,a 、b 、△ABC 的面积.19. (本小题满分14分)已知数列{a n }和{b n }满足:数,n 为正整数.(Ⅰ)是否存在实数λ在,请说明理由;(Ⅱ)求数列{a n }的通项公式20.(本小题满分14分)如图,平面ABCD ⊥平面PAD 梯形,其中BC//AD ,∠BAD =90的中点,E ,F 分别是PC ,OD (Ⅰ)求证:EF//平面PBO (Ⅱ)求二面角A - PF - E12).Q 两点,且以PQ 为对角线的菱l 的方程. P ,Q ,使得△POQ 是以O一、选择题BCACD ADCBB二、填空题三、解答题1.(本小题满分12分)解:(Ⅰ)因为f(x)=sin(2x22=sin(2x+所以函数f(x)(Ⅱ)因为f(x)=12,所以又026A Aππ,所以从而52,663A Aπππ+==故在△ABC中,∵a=1,b+c=2,A∴1=b2+c2-2bc cos A,即1=4-3故bc=1从而S△ABC=1sin24bc A=19.解:(Ⅰ)即224339λλλ⎛⎫⎛-=-⎪⎝⎭⎝所以对于任意λ,{a n}(Ⅱ) 因为b n+1=(-1)n+1[=-2(1)(33nna n-⋅-+当λ≠-18,b1=-(λ+18).14分)∴2214xy+=……………(6分).0,+∞).POQ是以O为直角顶点的直角三16分)。
高中数学必修1、4、5、2、综合测试题附答案
![高中数学必修1、4、5、2、综合测试题附答案](https://img.taocdn.com/s3/m/f12860f4844769eae109edf1.png)
高中数学必修1、4、5、2、综合测试题附答案数学必修1一、选择题1.设集合U 0,1,2,3,4,5 ,M 0,3,5 ,N 1,4,5 ,则M (CUN) ()A.5 B.0,3 C.0,2,3,5 D.0,1,3,4,5 2、设集合M {xA.{0}x 6x 5 0},N {x228、设f(x) lgx 1x 1g(x) ex1ex,则( )A f(x)与g(x)都是奇函数B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数9、使得函数f(x) lnx12x 2有零点的一个区间是( )x 5x 0},则M N等于()A (0,1) B (1,2) C (2,3) D (3,4)10、若a 20.5B.{0,5}C.{0,1,5}D.{0,-1,-5},b logπ3,c log20.5,则()B b a cC c a bD b c a3、计算:log29 log38=()A 12B 10C 8D 6 4、函数y ax 2(a 0且a 1)图象一定过点( )A (0,1)B (0,3)C (1,0)D(3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则与故事情节相吻合是()A a b c二、填空题11、函数f(x) 2 log5(x 3)在区间[-2,2]上的值域是______ 112、计算:9322+643=13、函数y log1(x2 4x 5)的递减区间为______214、函数f(x)x 22 1x的定义域是26、函数y的定义域是()15.若一次函数f(x) ax b有一个零点2,那么函数g(x) bx ax 的零点是三、解答题16. 计算2log32 log3329log38 5log53A {x|x>0}B {x|x≥1}C {x|x≤1}D {x|0<x≤1} 7、把函数y1x的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为()A y2x 3x 1B y2x 1x 1C y2x 1x 1D y2x 3x 1x 2(x 1)18、已知函数f(x) x2( 1 x 2)。
高中数学必修1、2、3、4、5综合试卷及答案详解(优秀经典测试卷)
![高中数学必修1、2、3、4、5综合试卷及答案详解(优秀经典测试卷)](https://img.taocdn.com/s3/m/ba6a3f9bb0717fd5360cdcca.png)
XXX 中学数学必修1-5测试卷一、选择题(共12个,每个5分,共60分)1.若集合A={1,3,x},B={1,2x },A ∪B={1,3,x}则满足条件的实数x 的个数有( ) (A ) 1个 (B ) 2个 (C )3个 (D ) 4个2.若函数y=f (x )的定义域是[2,4],则y=f (12log x )的定义域是( )(A ) [12,1] (B ) [4,16] (C )[116,14] (D )[2,4 ] 3.设偶函数f (x )的定义域为R ,当[0,)x ∈+∞时f (x )是增函数,则(2),(),(3)f f f π--的大小关系是( )(A )()f π>(3)f ->(2)f - (B )()f π>(2)f ->(3)f - (C )()f π<(3)f -<(2)f - (D )()f π<(2)f -<(3)f - 4.0.7log 0.8a =, 1.1log 0.9b =,0.91.1c =,那么( )(A )a <b <c (B )a <c <b (C )b <a <c (D )c <a <b 5、已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x6、 两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A .4 B .21313 C .51326 D .710207.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( )(A)22(B)4 (C)24(D)28、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有( )A 、0个B 、1个C 、2个D 、3个 9.如图是计算12+14+16+…+120的值的一个程序框图,其中在判断框中应填入的条件是( )A .i <10B .i>10C .i <20D .i >20 10.若P (A ∪B )=1,则事件A 与B 的关系是( )A .A 、B 是互斥事件 B .A 、B 是对立事件C .A 、B 不是互斥事件D .以上都不对11.、在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则1020a a 等于( ) A .32B .23 C .23或32 D .﹣32或﹣2312、△ABC 中,已知()()a b c b c a bc +++-=,则A 的度数等于( )A .120B .60C .150D .30 二.填空题(共4个,每个5分,共20分)13.数列{}n a 的前n 项和*23()n n s a n N =-∈,则5a =14、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为15.已知函数()sin()cos()f x x x =+θ++θ是偶函数,且[0,]2πθ∈,则θ的值为 .16.下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =,2k k Z π∈}. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数3sin(2)3y x π=+的图像向右平移6π得到3sin 2y x =的图像.⑤函数sin()2y x π=-在[0]π,上是单调递减的.其中真命题的序号是 . 三、解答题(共6题,总分70分 17.已知函数213()cos sin cos 1,22f x x x x x R =++∈.(1)求函数()f x 的最小正周期;(2)求函数()f x 在[,]124ππ上的最大值和最小值,并求函数取得最大值和最小值时的自变量x 的值.18.数列{}n a 的前n 项和为n S ,23n n S a n =-(*n N ∈).(Ⅰ)证明数列{3}n a +是等比数列,求出数列{}n a 的通项公式; (Ⅱ)设3n n nb a =,求数列{}n b 的前n 项和n T ;19、△ABC 中,c b a ,,是A ,B ,C 所对的边,S 是该三角形的面积,且cos cos 2B bC a c=-+ (1)求∠B 的大小; (2)若a =4,35=S ,求b 的值。
高中数学必修综合测试卷三套+含答案
![高中数学必修综合测试卷三套+含答案](https://img.taocdn.com/s3/m/a1b716b9da38376bae1fae48.png)
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C .5D .64. 下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x ; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f 6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A .2 B .3 C .9 D .187.函数1(0,1)x y a a a a=->≠的图象可能是( )8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg )(是奇函数.其中正确的有( )个A .1个B .2个C .3个D .4个9. 函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是( )A .(]3,-∞-B .[]0,3-C . [)0,3-D .[]0,2-10.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f(x)图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11. 若函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是( )A . []0,4- B. []4,0 C. )4,0( D. )0,4(-12. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或C .{}|3003x x x -<<<<或D .{}|33x x x <->或二、填空题(本大题共4小题,每小题5分)13.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为 ;15. 函数()()R b a x bax x f ∈+-=,25,若()55=f ,则()=-5f ;16.设函数()f x =x |x |+b x +c ,给出下列四个命题:①若()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根 ③()f x 的图象关于(0,c )对称④若b ≠0,方程()f x =0必有三个实根 其中正确的命题是 (填序号)三、解答题(解答应写文字说明,证明过程或演算步骤)17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x m x x C(1)求B A ⋂(2)若C C A =⋃,求实数m 的取值范围;18.(本小题满分12分)已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由; (2)若(3)2f =,求使()0h x <成立的x 的集合。
上数学必修5全册综合素质能力检测(有详解答案)
![上数学必修5全册综合素质能力检测(有详解答案)](https://img.taocdn.com/s3/m/2165b0d405087632311212e9.png)
必修5全册综合能力检测一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的.)1.等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 5+a 8+a 11的值为( )A .30B .27C .9D .152.在△ABC 中,B =45°,C =60°,c =1,则最短边的边长等于( ) A.63 B.62 C.12D.323.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )4.已知数列{a n },满足a n +1=11-a n ,若a 1=12,则a 2012=( )A.12 B .2 C .-1 D .15.已知△ABC 中,b =30,c =15,∠C =29°,则此三角形解的情况是( )A .一解B .两解C .无解D .无法确定 6.用钢管制作一个面积为1m 2,形状为直角三角形的铁支架框,有下列四种长度的钢管供选择,较经济(够用,又耗材最少)的是( )A .4.6mB .4.8mC .5mD .5.2m7.公差不为零的等差数列的第1项、第6项、第21项恰好构成等比数列,则它的公比为( )A.13 B .-13 C .3D .-38.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω内随机投一点P ,则点P 落在区域A 内的概率为( )A.13B.23C.19D.299.设a ,b ∈R ,a 2+2b 2=6,则a +b 的最小值是( )A .-2 2B .-533C .-3D .-7210.钝角△ABC 的三边长为连续自然数,则这三边长为( ) A .1,2,3 B .2,3,4 C .3,4,5D .4,5,611.(2012·福建文,11)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2012等于( )A .1006B .2012C .503D .012.在R 上定义运算⊕:x ⊕y =x (1-y ),若不等式(x -a )⊕(x +a )<1对任意实数x 成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上)13.等比数列{a n }和等差数列{b n }中,a 5=b 5,2a 5-a 2a 8=0,则b 3+b 7=________.14.(2011·四川资阳模拟)在△ABC 中,∠A =π3,BC =3,AB =6,则∠C =________.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0x +3y -3≥0y -1≤0,若目标函数z=ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围为_____.16.已知点(1,t )在直线2x -y +1=0的上方,且不等式x 2+(2t -4)x +4>0恒成立,则t 的取值集合为________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)和为114的三个数是一个公比不为1的等比数列的连续三项,也是一个等差数列的第1项,第4项,第25项,求这三个数.18.(本小题满分12分)(2011·黑龙江哈六中期末)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.19.(本小题满分12分)为了防止洪水泛滥,保障人民生命财产安全,去年冬天,某水利工程队在河边选择一块矩形农田,挖土以加固河堤,为了不影响农民收入,挖土后的农田改造成面积为10 000m 2的矩形鱼塘,其四周都留有宽2m 的路面,问所选的农田的长和宽各为多少时,才能使占有农田的面积最小.20.(本小题满分12分)(1)如图,从相距165m 的A 、B 两观察站测C 、D 两个目标的视角都是30°,同时知道A 在C 的正南、B 在D 的正东,求C 、D 两个目标间的距离.(2)台湾是祖国不可分割的一部分,祖国的统一是两岸人民共同的愿望,在台湾海峡各自的海域内,当大陆船只与台湾船只相距最近时,两船均相互鸣笛问好,一天,海面上离台湾船只A的正北方向100海里处有一大陆船只B正以每小时20海里的速度沿北偏西60度角的方向行驶,而台湾船只A以每小时15海里的速度向正北方向行驶,若两船同时出发,问几小时后,两船鸣笛问好?21.(本小题满分12分)已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x,(1)求g(x)的解析式;(2)解不等式g(x)≥f(x)-|x-1|.22.(本小题满分14分)医院用甲、乙两种原料为手术后的病人配营养餐,甲种原料每10 g含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g含7单位蛋白质和4单位铁质,售价2元,若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙原料,才能既满足营养需求,又使费用最省?详解答案 1[答案] D[解析] 在等差数列{a n }中,设b n =a n +a n +3+a n +6,(n =1,2,3……),则{b n }仍为等差数列.b 1=a 1+a 4+a 7=39,b 2=a 2+a 5+a 8=33,∴公差d =b 2-b 1=-6, ∴a 5+a 8+a 11=b 5=b 1+4d =39+4×(-6)=15. 2[答案] A[解析] A =180°-(60°+45°)=75°,∴B 最小,故边b 最小,由正弦定理b =c sin C ·sin B =63.选A.3[答案] C[解析] 由f (x )>0的解集为{x |-2<x <1}知,f (x )开口向下,对称轴在y 轴左侧,又y =f (-x )与y =f (x )图象关于y 轴对称.∴f (-x )图象开口向下,对称轴在y 轴右侧,故选C.4[答案] B[解析] 易知a 2=2,a 3=-1,a 4=12,a 5=2,∴数列{a n }的周期 为3,而2012=670×3+2,∴a 2012=a 2=2.[点评] 数列是特殊的函数,如果数列{a n }对任意n ∈N ,满足a n+T=a n (T ∈N *),则T 为{a n }的周期. 5[答案] B[解析] b sin C =30 sin 29°<30 sin 30°=15=c <b =30.即:b sin C <c <b ,如图,故有两解.6[答案] C[解析] 设直角三角形两直角边长分别为a m ,b m ,由题设条件有12ab =1,即ab =2,其周长L =a +b +a 2+b 2,据题意“经济”的含义是:在ab =2的条件下,L 最小. ∵L ≥2ab +2ab =(2+2)·2且4.8<(2+2)2<5,等号在a =b 时成立,故选C. 7[答案] C[解析] 设等差数列首项为a 1,公差为d ,由题设a 1,a 6,a 21成等比数列,∴a 26=a 1·a 21即: (a 1+5d )2=a 1(a 1+20d ),∴d =25a 1, ∴公比q =a 6a 1=a 1+5da 1=a 1+5×(25a 1)a1=3. 8[答案] D[解析] 区域Ω为图中△OCD .区域A 为图中△OBE ,易知B (4,0)、E (4,2)、C (6,0)、D (0,6),由几何概型知,所求概率P =S △OBE S △OCD=12×4×212×6×6=418=29.9[答案] C[解析] 设a +b =t ,则a =t -b , 代入a 2+2b 2=6中得,(t -b )2+2b 2=6, 整理得3b 2-2tb +t 2-6=0, ∵b ∈R ,∴△=4t 2-12(t 2-6)≥0, ∴-3≤t ≤3,即(a +b )min =-3. 10[答案] B[解析] 令三边长为n ,n +1,n +2(n ∈N +),且边长为n +2的边所对的角为θ,则cos θ=n 2+(n +1)2-(n +2)22n (n +1)<0,∴-1<n <3,∵n ∈N +,∴n =1或2.∵三角形任意两边之和大于第三边,∴n =2, ∴三边为2,3,4. 11[答案] A[解析] 本题考查了数列求和中的分组求和思想方法. ∵y =cos n π2的周期T =2ππ2=4,∴可分四组求和. a 1+a 5+…+a 2009=0,a 2+a 6+…+a 2010=-2-6-…-2010=503·(-2-2010)2=-503×1006,a 3+a 7+…+a 2011=0,a 4+a 8+…+a 2012=4+8+…+2012=503·(4+2012)2=503×1008,∴S 2012=0-503×1006+0×1008=503·(-1006+1008)=1006. [点评] 对于不能直接套用已有公式的情形,要注意适当化归或分组数列求和一般有直套公式型,分组求和型,裂项相消型和错位相减型等.12[答案] C[解析] ∵运算⊕满足x ⊕y =x (1-y ),∴不等式(x -a )⊕(x +a )<1化为(x -a )(1-x -a )<1,整理得x 2-x -a 2+a +1>0,此不等式对任意实数x 都成立,∴△=1-4(-a 2+a +1)<0,∴-12<a <32.13[答案] 4[解析] ∵2a 5-a 2a 8=2a 5-a 25=0,a n ≠0,∴a 5=2,∴b 3+b 7=2b 5=2a 5=4. 14[答案] π4[解析] 由正弦定理得3sin π3=6sin C ,∴sin C =22,∵AB <BC ,∴C <A ,∴C =π4.15[答案] ⎝ ⎛⎭⎪⎫12,+∞[解析] 作出可行域如图(包括边界)当直线z =ax +y 经过A 点,位于直线l 1与x +2y -3=0之间时,z 仅在点A (3,0)处取得最大值,∴-a <-12,∴a >12.16[答案] {t |3<t <4}[解析] ∵(1,t )在直线2x -y +1=0的上方, ∴t >3,∵不等式x 2+(2t -4)x +4>0恒成立, ∴Δ=(2t -4)2-16<0,∴0<t <4,∴3<t <4.17[解析] 由题意,设这三个数分别是a q ,a ,aq ,且q ≠1,则aq +a +aq =114①令这个等差数列的公差为d ,则a =aq +(4-1)·d . 则d =13(a -a q ),又有aq =a q +24×13×⎝ ⎛⎭⎪⎫a -a q ②由②得(q -1)(q -7)=0,∵q ≠1,∴q =7 代入①得a =14,则所求三数为2,14,98.18[解析] (1)由余弦定理及已知条件得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4.联立方程组⎩⎨⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由题意得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A ,当cos A =0时,A =π2,B =π6,a =433,b =233,当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎩⎨⎧a 2+b 2-ab =4,b =2a ,解得a =233,b =433.所以△ABC 的面积S =12ab sin C =233.19[解析] 设鱼塘的长为 x m ,宽为y m ,则农田长为(x +4)m ,宽为(y +4)m ,设农田面积为S .则xy =10 000,S =(x +4)(y +4)=xy +4(x +y )+16=10 000+16+4(x +y )≥10016+8xy =10 016+800=10 816.当且仅当x =y =100时取等号. 所以当x =y =100时,S min =10 816m 2. 此时农田长为104m ,宽为104m.20[解析] (1)由∠DAC =∠DBC =30°,得A 、B 、C 、D 共圆, ∴∠ACD =∠ABD .又CD sin ∠DAC =AD sin ∠ACD ,AD sin ∠ABD =AB sin ∠ADB . 由已知可求得∠ADB =60°, ∴CD =165·sin30°sin60°=553(m ).(2)设x 小时后,B 船至D 处,A 船至C 处,BD =20x ,BC =100-15x ,∵x >0,100-15x >0,∴0<x <203,由余弦定理:DC 2=(20x )2+(100-15x )2-2·20x ·(100-15x )·cos120 ° =325x 2-1 000x +10 000=325⎝⎛⎭⎪⎫x -20132+10 000-10 00013.⎝⎛⎭⎪⎫0<x <203∴x =2013小时后,两船最近,可鸣笛问好.21[解析] (1)设函数y =f (x )的图象上任一点Q (x 0,y 0)关于原点的对称点为P (x ,y ),则⎩⎪⎨⎪⎧x 0+x 2=0y 0+y 2=0,即⎩⎨⎧x 0=-xy 0=-y,∵点Q (x 0,y 0)在函数y =f (x )的图象上,∴-y =x 2-2x ,即y =-x 2+2x ,故g (x )=-x 2+2x . (2)由g (x )≥f (x )-|x -1|可得2x 2-|x -1|≤0, 当x ≥1时,2x 2-x +1≤0, 此时不等式无解, 当x <1时,2x 2+x -1≤0, ∴-1≤x ≤12,因此,原不等式的解集为[-1,12].22[解析] 设甲、乙两种原料分别用10 x g 和10y g ,需要的费用为z =3x +2y 元.病人每餐至少需要35单位蛋白质,可表示为5x +7y ≥35,同理,对铁质的要求可以表示为10x +4y ≥40,即5x +2y ≥20,问题成为:在约束条件⎩⎪⎨⎪⎧5x +7y ≥35,5x +2y ≥20,x ≥0,y ≥0,下,求目标函数z =3x +2y 的最小值,作出可行域,如图所示:令z =0,作直线l 0:3x +2y =0.由图形可知,把直线l 0平移至经过点A 时,z 取得最小值.由⎩⎨⎧5x +7y =355x +2y =20得A ⎝ ⎛⎭⎪⎫145,3. 所以用甲种原料145×10=28(g ),乙种原料3×10=30(g ),费用最省.讲评备选练习1.等差数列{a n }的前n 项和为S n ,已知a 1>0,S 15=0,若数列{S n }中的最大项为S k ,则k =( )A .15B .8或9C .7或8D .8[答案] C[解析] ∵S 15=15a 8=0,∴a 8=0,又a 1>0,∴d <0,∴a 7>0,a 9<0,故在数列{S n }中,S 1<S 2<…<S 7=S 8>S 9>S 10>……,故k =7或8.2.在公差为4的正项等差数列中,a 3与2的算术平均数等于S 3与2的几何平均数,其中S 3表示此数列的前三项和,则a 10为( )A .38B .40C .42D .44[答案] A[解析] 由条件知a 3=a 1+8,S 3=3a 1+12, ∴a 1+8+22=2(3a 1+12),解得a 1=2.∴a 10=2+9×4=38.3.若函数f (x )=x 2-ax +1的函数值有负值,则常数a 的取值范围是( )A .a <-2或a >2B .-2<a <2C .a ≠2且a ≠-2D .1<a <3[答案] A[解析] ∵f (x )是二次项系数为正值的二次函数, ∴f (x )有负值⇔△>0,即a 2-4>0,∴a >2或a <-2.4.设f (n )=1n +1+1n +2+1n +3+…+12n (n ∈N *),那么f (n +1)-f (n )等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +2 [答案] D[解析] f (n +1)-f (n )=(1n +2+1n +3+…+12n +12n +1+12n +2) -(1n +1+1n +2+…+12n ) =12n +1+12n +2-1n +1=12n +1-12n +2. [点评] 准确弄清f (n )的表达式是解题的关键,f (n )的表达式是一列数的和,每一个数分子都是1,分母从n +1开始,每项递增1至2n 结束,从而f (n +1)应是分母从(n +1)+1=n +2开始,每项递增1至2(n +1)=2n +2结束.5.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a >0,b >0)对称,则4a +1b 的最小值是( )A .4B .6C .8D .9[答案] D[解析] 由条件知圆心(-1,2)在直线上,∴a +b =1,∴4a +1b =4(a +b )a +a +b b =5+4b a +a b ≥5+2·4b a ·a b =9,等号在4b a =ab ,即a =2b 时成立.∵a +b =1,∴a =23,b =13,故在a =23,b =13时,4a +1b 取到最小值9.6.(2011·江南十校素质测试)已知a 、b 、c 是同一平面内的三个单位向量,它们两两之间的夹角均为120°,且|k a +b +c |>1,则实数k 的取值范围是( )A .(-∞,0)B .(2,+∞)C .(-∞,0)∪(2,+∞)D .(0,2)[答案] C[解析] 根据|k a +b +c |>1可得|k a +b +c |2>1, ∴k 2a 2+b 2+c 2+2k a ·b +2k a ·c +2c ·b >1, ∴k 2-2k >0,k <0或k >2.7.(2011·豫南四校调研考试)若AB =2,AC =2BC ,则S △ABC 的最大值为( )A .2 2 B.32 C.23 D .3 2 [答案] A[解析] 设BC =x ,则AC =2x ,根据面积公式得S △ABC =12×AB ×BC sin B =x1-cos 2B ①,根据余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x =4-x 24x ②,将②代入①得,S △ABC =x1-(4-x 24x )2=128-(x 2-12)216,由三角形的三边关系得⎩⎨⎧2x +x >2x +2>2x,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值22,故选A.一、选择题1.等差数列{a n }各项都是负数,且a 23+a 28+2a 3a 8=9,则它的前10项和S 10=( )A .-11B .-9C .-15D .-13[答案] C[解析] ∵a 33+a 28+2a 3a 8=9,∴a 3+a 8=±3; ∵{a n }各项均为负数.∴a 3+a 8=-3, ∴S 10=10(a 1+a 10)2=5(a 3+a 8)=-15. 2.已知集合A ={t |t 2-4≤0},对于满足集合A 的所有实数t ,则使不等式x 2+tx -t >2x -1恒成立的x 的取值范围是( )A .(3,+∞)∪(-∞,-1)B .(3,+∞)∪(-∞,1)C .(-∞,-1)D .(3,+∞)[答案] A[解析] A ={t |-2≤t ≤2},设f (t )=(x -1)t +x 2-2x +1,由条件知f (t )在[-2,2]上恒为正值.∴⎩⎪⎨⎪⎧f (-2)>0f (2)>0,∴⎩⎨⎧x 2-4x +3>0x 2-1>0,∴x >3或x <-1.3.设{a n }是公差不为0的各项都为正数的等差数列,则( )A .a 1·a 8>a 4·a 5B .a 1·a 8<a 4·a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5[答案] B[解析] 设公差为d ,∵d ≠0,∴a 1a 8-a 4a 5=a 1(a 1+7d )-(a 1+3d )(a 1+4d ) =-12d 2<0,∴a 1a 8<a 4a 5,又a 1+a 8=a 4+a 5. ∴选B.4.(2012·福建理,5)下列不等式一定成立的是( ) A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) [答案] C[解析] 本题考查了基本不等式与重要不等式.A 中x =12时不等式不成立,B 中sin x 不总大于0,D 中,x =0时,不等式不成立.[点评] 在不等式中尤其是基本不等式中式子成立的条件很重要,不能忽视.5.已知a ≥0,b ≥0,且a +b =2,则下列各式中正确的是( ) A .ab ≤12 B .ab ≥12 C .a 2+b 2≥2D .a 2+b 2≤3[答案] C[解析] 因为a ≥0,b ≥0,由基本不等式得2=a +b ≥2ab ⇒ab≤1⇒ab ≤1,故A ,B 均错误;又a 2+b 2=2(a 2+b 2)2≥a 2+b 2+2ab 2=(a +b )22=2,故选项C 正确,选项D 错误.6.设O 为坐标原点,点A (1,1),若点B (x ,y )满足⎩⎪⎨⎪⎧x 2+y 2-2x -2y +1≥01≤x ≤21≤y ≤2,则OA →·OB →取得最小值时,点B 的个数是( )A .1B .2C .3D .无数个[答案] B[解析] 根据题意作出满足不等式组的可行域,如图阴影部分所示.∵OA →·OB →=(1,1)·(x ,y )=x +y ,令z =x +y ,则y =-x +z ,z 的几何意义是斜率为-1的直线l 在y 轴上的截距,由可行域可知,当直线l 过点(1,2)或点(2,1)时,z 最小,从而所求的点B 有两个.7.不等式组⎩⎪⎨⎪⎧x ≥0y ≥0y ≤-kx +4k(k >1)所表示的平面区域为D ,若D的面积为S ,则kSk -1的最小值为( )A .30B .32C .34D .36[答案] B[解析] 作出可行域如图中△OAB ,其面积S =12×4×4k =8k .∴kS k -1=8k 2k -1=8k 2-8+8k -1=8(k +1)+8k -1,=8(k -1)+8k -1+16≥32,等号在8(k -1)=8k -1,即k =2时成立.∴k =2时,取最小值32.8.设a 、b 、c 是一个长方体的长、宽、高,且a +b -c =1,已知此长方体对角线长为1,且b >a ,则高c 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,+∞ B.⎝ ⎛⎭⎪⎫13,1 C .(0,1) D.⎝⎛⎭⎪⎫0,13[答案] D[解析] 由a +b =1+c 得,a 2+b 2+2ab =c 2+2c +1 ∵a 2+b 2>2ab ,a 2+b 2+c 2=1, ∴2(1-c 2)>c 2+2c +1 ∴-1<c <13,∵c >0,∴0<c <13.9.已知A (3,0),O 是坐标原点,点P (x ,y )的坐标满足 ⎩⎪⎨⎪⎧x -y ≤0x -3y +2≥0y >0,则OA →·OP →|OP →|的取值范围为( )A .(-3,322] B .[1,322] C .[-2,322] D .[-3,2][答案] A[解析]作出可行域如图(其中不包括线段OC ).将原式化简可得:OA →·OP →|OP →|=|OA →| |OP →|cos ∠AOP|O P →|=3cos ∠AOP . 由图知π4≤∠AOP <π,所以-1<cos ∠AOP ≤22, 故-3<OA →·OP →|OP →|≤322.10.(2012·天津理,8)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+3]B .(-∞,1-3]∪[1+3,+∞)C .[2-22,2+22]D .(-∞,2-22]∪[2+22,+∞) [答案] D[解析] 本小题考查直线与圆相切的判断、基本不等式等知识. ∵直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切, ∴|(m +1)+(n +1)-2|(m +1)2+(n +1)2=1,∴|m +n |=(m +1)2+(n +1)2,∴(m +n )2=(m +1)2+(n +1)2 ∴m +n +1=mn ≤14(m +n )2,∴(m +n )2-4(m +n )-4≥0,得m +n ≤2-22,或m +n ≥2+2 2. [点评] 基本不等式及其变形是高考常考的知识,要有针对性的复习.11.(2011·深圳二调)已知△ABC 中,∠A =30°,AB ,BC 分别是3+2,3-2的等差中项与等比中项,则△ABC 的面积等于( )A.32B.34 C.32或 3 D.32或34[答案] D[解析] 依题意得AB =3,BC =1,易判断△ABC 有两解,由正弦定理得AB sin C =BC sin A ,3sin C =1sin30°,即sin C =32.又0°<C <180°,因此有C =60°或C =120°.当C =60°时,B =90°,△ABC 的面积为12AB ·BC =32;当C =120°时,B =30°,△ABC 的面积为12AB ·BC ·sin B =12×3×1×sin30°=34.综上所述,选D.12.(2011·泉州质检)△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,且a cos C ,b cos B ,c cos A 成等差数列,则角B 等于( )A .30°B .60°C .90°D .120°[答案] B[解析] 依题意得a cos C +c cos A =2b cos B ,根据正弦定理得,sin A cos C +sin C cos A =2sin B cos B ,则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B ,又0°<B <180°,所以cos B =12,所以B =60°,选B.二、填空题13.数列1,34,23,58,35,712,47,…的一个通项公式为_____________. [答案] a n =n +12n (不惟一).[解析] 将数列中的项作适当调整为:22,34,46,58,610,712,814,…显然分子分母都是等差数列,分子b n =n +1,分母c n =2n ,∴通项a n =n +12n .14.已知a 、b 、c 分别为△ABC 的三个内角A 、B 、C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =________.[答案] π6[解析] 由m ⊥n 得,3cos A -sin A =0,∴tan A =3,∴A =π3, 由正弦定理a cos B +b cos A =c sin C 可变形为 sin A cos B +sin B cos A =sin 2C .∵A +B +C =π,∴sin(A +B )=sin C ,∴sin C =sin 2C , ∴sin C =1,∴C =π2, ∴B =π-π3-π2=π6.15.(2010·辽宁理,14)已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.(答案用区间表示)[答案] (3,8)[解析] 如图,作直线l 0:2x -3y =0,平移l 0可知,当平移到经过点A 、B 时, z 分别取最小、最大值,∵A 点是(3,1),B 点是(1,-2), ∴3<z <8.16.(2010·江苏,11)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥01,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.[分析] 解含函数符号“f ”的不等式,一般是用单调性求解.观察函数f (x )的表达式不难发现x ≥0时,x 2+1≥1,且f (x )=x 2+1在[0,+∞)上单调增,又x <0时,f (x )=1,∴f (x )在R 上单调递增.[答案] (-1,2-1)[解析] ∵f (x )=⎩⎪⎨⎪⎧x 2+1 (x ≥0)1 (x <0)∴对任意x 1,x 2∈R ,当x 1<x 2时,有f (x 1)≤f (x 2).∴当f (x 1)>f (x 2)时,应有x 1>x 2.(否则,若x 1=x 2,则f (x 1)=f (x 2),若x 1<x 2,则f (x 1)≤f (x 2),均与f (x 1)>f (x 2)矛盾)∵f (1-x 2)>f (2x ),∴1-x 2>2x , ∴x 2+2x -1<0,∴-1-2<x <2-1, 又当x <-1时,1-x 2<0,2x <0,∴f (1-x 2)=1,f (2x )=1,不满足f (1-x 2)>f (2x ). 当x =-1时同理可验证不满足不等式, ∴-1<x <2-1.[点评] 可以令1-x 2=0,找出分界点x =±1,然后按x =0,1,-1分段进行讨论.三、解答题17.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,cos B =35,且AB →·BC →=-21.(1)求△ABC 的面积; (2)若a =7,求角C .[解析] (1)AB →·BC →=|A B →|·|B C →|·cos 〈AB →·BC →〉=|A B →|·|B C →|·cos(π-B )=-35|A B →|·|B C →|=-21,∴|A B →|·|B C →|=35,又∵sin B =45,∴S △ABC =12|A B →|·|B C →|·sin B =12×35×45=14.(2)由(1)知ac =35,又a =7,∴c =5又b 2=a 2+c 2-2ac cos B =49+25-2×7×5×35=32,∴b =4 2.由正弦定理得b sin B =c sin C ,即4245=5sin C ,∴sin C =22,又∵a >c ,∴C ∈(0,π2),∴C=π4. 18.把正整数按下表排列:(1)求200在表中的位置(在第几行第几列);(2)求表中主对角线上的数列:1、3、7、13、21、…的通项公式. [解析] 把表中的各数按下列方式分组: (1),(2,3,4),(5,6,7,8,9),…,(1)由于第n 组含有2n -1个数,所以第n 组的最后一个数是1+3+5+…+(2n -1)=n 2.因为不等式n 2≥200的最小整数解为n =15,这就是说,200在第15组中,由于142=196,所以第15组中的第一个数是197,这样200就是第15组中的第4个数.所以200在表中从上至下的第4行,从左至右的第15列上.(2)设表中主对角线上的数列为{a n },即1,3,7,13,21,…,则易知a n +1=(a n +2n )即a n +1-a n =2n .∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=[2(n -1)+2(n -2)+…+2×1]+1=2×n (n -1)2+1=n 2-n +1.19.已知函数f (x )=x 2+3x -a(x ≠a ,a 为非零常数). (1)解不等式f (x )<x ;(2)设x >a 时,f (x )有最小值为6,求a 的值.[解析] (1)f (x )<x ,即x 2+3x -a<x , 化为(ax +3)(x -a )<0.当a >0时,⎝⎛⎭⎪⎫x +3a (x -a )<0,-3a <x <a ; 当a <0时,⎝ ⎛⎭⎪⎫x +3a (x -a )>0,x >-3a 或x <a . (2)设t =x -a ,则x =t +a (t >0),∴f (x )=(t +a )2+3t=t +a 2+3t +2a≥2t ·a 2+3t +2a =2a 2+3+2a , 当且仅当t =a 2+3t ,即t =a 2+3时,f (x )有最小值2a 2+3+2a ,依题意2a 2+3+2a =6,解得a =1.20.数列{a n }中,a 1=8,a 4=2,且满足:a n +2-2a n +1+a n =0(n ∈N *),(1)求数列{a n }的通项公式;(2)设b n =1n (12-a n )(n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数m ,使得对任意的n 均有S n >m 32总成立?若存在,求出m 的值;若不存在,请说明理由.[解析] (1)∵a n +2-2a n +1+a n =0,∴a n +2-a n +1=a n +1-a n (n ∈N *)∴{a n }是等差数列,设公差为d ,∵a 1=8,a 4=a 1+3d =8+3d =2,∴d =-2,∴a n =8+(n -1)(-2)=10-2n .(2)b n =1n (12-a n )=1n (12-10+2n )=12n (n +1) =12(1n -1n +1), ∴S n =b 1+b 2+…+b n =12[(1-12)+(12-13)+…+(1n -1n +1)]=12(1-1n +1), 假设存在整数m 满足S n >m 32总成立,又S n +1-S n =12(1-1n +2)-12(1-1n +1) =12(1n +1-1n +2)=12(n +1)(n +2)>0 ∴数列{S n }是单调递增的,∴S 1=14为S n 的最小值,故14>m 32,即m <8,又m ∈N *,∴满足条件的m 的最大值为7.21.(2011·山东文,17)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知cos A -2cos C cos B=2c -a b . (1)求sin C sin A 的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.[解析] (1)由正弦定理a sin A =b sin B =c sin C =2R 知cos A -2cos C cos B =2·2R sin C -2R sin A 2R sin B, 即cos A sin B -2cos C sin B =2cos B sin C -cos B sin A ,即sin(A +B )=2sin(B +C ),又由A +B +C =π知,sin C =2sin A ,所以sin C sin A =2.(2)由(1)知sin C sin A =2,∴c =2a ,则由余弦定理得b 2=a 2+(2a )2-2·a ·2a cos B =4a 2∴b =2a ,∴a +2a +2a =5,∴a =1,∴b =2.22.预算用不超过2000元购买单价为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行?[解析] 设桌、椅分别买x 、y 张,由题意得⎩⎪⎪⎨⎪⎪⎧ x ≥0,y ≥0,x ≤y ,y ≤1.5x ,50x +20y ≤2000.(x ,y ∈N *),即⎩⎪⎨⎪⎧ x ≥0y ≥0x ≤y y ≤1.5x 5x +2y ≤200.目标函数为z =x +y .满足以上不等式组所表示的可行区域是右图中以A 、B 、O 为顶点的三角形区域E (包括边界和内部).由⎩⎨⎧x =y 5x +2y =200得, x =y =2007,即A (2007,2007).由⎩⎨⎧ y =1.5x 5x +2y =200得,⎩⎪⎨⎪⎧ x =25,y =752,即B (25,752).将z =x +y 变形为y =-x +z ,这表示斜率为-1、y 轴上的截距为z 的平行直线系.当直线x +y =z 经过可行域内点B (25,752)时,z 取最大值,但x∈Z ,y ∈Z ,故y =37.∴买桌子25张,椅子37张是最优选择.。
高中数学必修1-5综合测验
![高中数学必修1-5综合测验](https://img.taocdn.com/s3/m/2b7ebf422f60ddccda38a094.png)
8、从3台甲型彩电和2台乙型彩电中任数2台,其中两种品牌的彩电齐全的概率为( )
(A) (B) (C) (D)
9、已知关于 的不等式 的解集为 ,则 的值是( )
(A)10(B)-10 (C)14 (D)-14
10、已知函数 是定义在R上周期函数为 的偶函数,当 时, ,则 , , 的大小关系是( )
=
=
20.解:(1)
又 是奇函数
(2) 、 且
由
即 在R上单调递增
又
(3) 恒成立
恒成立
恒成立 其中
设 ,有
设 对称轴
且 或 且 或 且
得 或 或
综合以上 知:
.
一 选择题
1
2
3
4
5
6
7
8
9
10
D
B
A
C
D
C
C
C
D
A
二 填空题
11 . ; 12. ; 13. : 14. (2).(4)
三 解答题15.
(1)
的单调递增区间是 (
(2)
16 (1)直三菱柱 — 中,
面 面
又 BC=2, ,D是中点,
又
从而 面
(2) 取 的中点 ,在 中,
又 四边形 是平行四边形 面
③设数列 满足 ,求 的前 项和为
20、设函数 对任意的 ,都有 ,当 >0时, >0,且
①判断函数 的奇偶性,且证明;
②判断函数 的单调性,且 在 上的最值;
③问是否存在这样的实数 ,使得 >0对所有的 均成立?若存在,则求出实数 的范围;若不存在,试说明理由。
广州市第八十九中学 必修(1.2.4.5)参考答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修1-5测试卷 总分共150分,考试时间为2个小时一、选择题:本大题共10小题,每小题5分,共50分.1. 已知集合11{2,1,0,1,2}{|28R}2x M N x x +=--=<<∈,,,则M N =A .{0,1}B .{10}-,C .{1,0,1}-D .{2,1,0,1,2}-- 2. 圆2240x y x +-=的圆心坐标和半径分别为A.(2 , 0) , 4B. (2 , 0) , 2C.( 2 , 0) , 4-D. ( 2 , 0) , 2-3. 已知实数列1,a ,b ,c ,2成等比数列,则abc 等于( )A .4 B .±4 C .22 D .±224. 函数()442-+-=x x x f 在区间[]3,1上( )A.没有零点B.只有一个零点C.有两个零点D.以上选项都错误5.右图所示的程序框图,若输入的, , a b c 分别为21, 32,75,则输出的, , a b c 分别是A .75,21, 32B .21, 32, 75C .32,21,75D .75, 32, 216.已知a ,b 满足:||3a =,||2b =,||4a b +=,则||a b -=( )A .3B .5C .3D .107. 如右图为长方体木块堆成的几何体的三视图,则组成此几何体的长方体木块块数共有A .3块B .4块C .5块D .6块8. 圆2220x y y +-=与圆222360x y x +--=的位置关系是A. 相交B. 内切C. 外切D. 相离9. 从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射试验,若采取每部分选取的号码间隔一样的系统抽样方法,则所选取的5枚导弹的编号可能是A. 1, 2, 3, 4, 5B. 2, 4, 6, 16, 32C. 3, 13, 23, 33, 43D. 5, 10, 15, 20, 2510. 某校1 000名学生的高中数学学业水平考试成绩的频率分布直方图如图所示. 规定不低于90分为优秀等级,则该校学生优秀等级的人数是A. 300B. 150C. 30D. 15二、填空题:本大题共4小题,每小题5分,共20分.11. 若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是 12. 假设要考察某企业生产的袋装牛奶质量是否达标,现以500袋牛奶中抽取60袋进行检验,利用随机数表抽样本时,先将500袋牛奶按000,01,…,499进行编号,如果从随机数表第八行第四列的数开始按三位数连续向右读取,请你依次写出最先检测的5袋牛奶的编号: .(下面摘取了随机数表第七行至第九行)84421 75331 57245 50688 77047 44767 21763 35025 83921 2067663016 37859 16955 56719 98105 07175 12867 35807 44395 2387933211 23429 78645 60782 52420 74438 15510 01342 99660 2795413. 经过圆2220x x y ++=的圆心C ,且与直线0x y += 垂直的直线方程是 .14.关于函数()4sin(2),()3f x x x R π=+∈有下列命题: ①()y f x =是以2π为最小正周期的周期函数;②()y f x =可改写为4cos(2)6y x π=-; ③()y f x =的图象关于(,0)6π-对称;④()y f x =的图象关于直线6x π=-对称;其中正确的序号为 。
三、解答题(共80分) 15、(本题12分)已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,若A B =∅,求实数a 的取值范围。
16.(本题12分)已知函数1sin 226y x π⎛⎫=+ ⎪⎝⎭,∈x R . (1)求它的振幅、周期、初相;(2)该函数的图象可由x y sin =(∈x R )的图象经过怎样的平移和伸缩变换得到?17.(本题14分)某射击运动员在一次射击比赛中,每次射击成绩均计整数环且不超过10环,其中射击一次命中7~10环的概率如下表所示求该射击运动员射击一次,(1)命中9环或10环的概率;(2)命中不足7环的概率.18.(本题14分)已知数列}{n a 满足:111,2n n a a a n -=-=且.(1)求432,a a a , (2)求数列}{n a 的通项n a19、(本题14分)在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (1)若ABC △,求a b ,;(2)若sin 2sin B A =,求ABC △的面积.20.(本小题满分14分)如图,三棱柱111ABC A B C -,1A A ⊥底面ABC ,且ABC ∆为正三角形,16A A AB ==,D 为AC 中点.(1)求三棱锥1C BCD -的体积;(2)求证:平面1BC D ⊥平面11ACC A ;(3)求证:直线1//AB 平面1BC D .AB C A 1 B 1 C 1 D参考答案一、选择题1.C2. B3. C 由1,a ,b ,c ,2成等比数列知212⨯==b ac ,∴2±=b . 显然2-=b 不符合题意,故2=b ,所以22=abc .4. B .5.A6. D7.B 8. B 9.C 10.B二、填空题 (答案+提示)11. 22(2)(1)1x y -+-= 本小题主要考查圆与直线相切问题。
设圆心为(,1),a 由已知得|43|15a d -==, 2a ∴=舍12a =- 12. 163、199、175、128、395 直接从第八行第四列开始读取.总结点评 本题关键是分清第八行第四列的数为1,且考查了统计学中的随机数表的运用.13. 10x y -+=。
【试题解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=。
【高考考点】圆的标准方程、两直线间的关系。
14. ②③三、解答题 (详细解答)15.解:A B=∅(1)当A=∅时,有2a+1a-1a -2≤⇒≤(2)当A ≠∅时,有2a+1a-1a>-2>⇒又A B =∅,则有2a+10a-11≤≥或1a -a 22⇒≤≥或 12a -a 22∴-<≤≥或 由以上可知1a -a 22≤≥或 .16.振幅为1/2,周期为π,初相为π/6解法2:1、函数x y sin =的图象各点的横坐标缩短到原来的21(纵坐标不变)得到函数x y 2sin =的图象; 2、把x y 2sin =的图象向左平移12π个单位得到函数)62sin(π+=x y 的图象; 3、把函数)62sin(π+=x y 的图象各点的纵坐标缩短到原来的21(横坐标不变)得到函数)62sin(21π+=x y 的图象。
17.解:记“射击一次命中k 环”的事件为(k A k ∈N ,10)k ≤,则事件k A 彼此互斥.………………………………………………………………………1分(1)记“射击一次命中9环或10环”为事件A ,则当9A 或10A 之一发生时,事件A 发生. ………………………………………………………………3分 由互斥事件的概率加法公式,得910()()()0.280.320.60P A P A P A =+=+=.因此,命中9环或10环的概率为0.60. ……………………………………7分(2)由于事件“射击一次命中不足7环”是“射击一次至少命中7环”的对立事件, ………………………………………………………………………9分 故所求的概率为1(0.120.180.280.32)0.10P =-+++=.因此,命中不足7环的概率为0.10. ……………………………………………12分 18.解:(1)2123422,415;1119a a a a a -=⨯∴=+===同理,,()()()21324312(2)22232421223121221n n n a a a a a a a a na n n n n n --=⨯-=⨯-=⨯-=⨯=+⨯+++-+=+⨯=+-以上等式相加得:19.(1)由余弦定理得,224a b ab +-=,又因为ABC △所以1sin 2ab C =得4ab =.联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. 7分(2)由正弦定理,已知条件化为2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得a =,b = 所以ABC △的面积1sin 23S ab C ==. 14分20. 解:(1)∵ABC ∆为正三角形,D 为AC 中点,∴BD AC ⊥,由6AB =可知,3,CD BD ==∴122BCD S CD BD ∆=⋅⋅=. 又∵1A A ⊥底面ABC ,且16A A AB ==, ∴1C C ⊥底面ABC ,且16C C =,∴1113C BCD BCD V S C C -∆=⋅⋅= (2) ∵1A A ⊥底面ABC ,∴1A A BD ⊥.又BD AC ⊥,∴BD ⊥平面11ACC A .又BD ⊂平面1BC D ,∴平面1BC D ⊥平面11ACC A .(3)连结1B C 交1BC 于O ,连结OD , 在1B AC ∆中,D 为AC 中点,O 为1B C 中点, 所以1//OD AB ,又OD ⊂平面1BC D ,∴直线1//AB 平面1BC D .。