8086 CPU内部结构

合集下载

1 80868088微处理器的内部结构

1 80868088微处理器的内部结构

微机原理第2章8086/8088系统结构8086/8088微处理器的内部结构微机原理8086是Intel系列的16bit微处理器,属第三代。

它有16bit数据总线和20bit地址线,可寻址1M空间。

8088有8bit数据总线和20bit地址线,可寻址1M空间。

其内部有16bit数据总线。

AH AL BH BL SI ALU 运算数暂存器标志寄存器EU控制电路16位CSDSSS ES IP 内部暂存器8位1 2 3 4 5 6执行部件(EU )总线控制电路 指令队列缓冲器总线接口部件(BIU )通用寄存器加法器80888086累加器基址寄存器计数寄存器数据寄存器堆栈指针基址指针目的变址源变址AX BX CX DX微机原理CPUEUBIU •16位通用寄存器组(AX、BX、CX 、DX、SP、BP、SI、DI)•算术逻辑单元—ALU•暂存器•EU控制器•标志寄存器—FLAG•段寄存器组(CS,DS,SS,ES),指令指针—IP •地址加法器•指令队列•总线接口控制逻辑微机原理EU 部件不直接与外部总线相连。

它从BIU的指令队列中取指令和数据。

EU 负责指令的执行。

BIU 根据EU 的请求,完成CPU 与存储器或I/O 之间的数据传送。

功能:符号名称高8位符号低8位符号AX累加器AH AL BX基址寄存器BH BL CX计数寄存器CH CL DX数据寄存器DH DL这里的寄存器可以8位或16位参与操作。

符号名称SP堆栈指针寄存器BP基址指针寄存器SI源变址寄存器DI目的变址寄存器这里的寄存器只能以16位参与操作。

符号名称CS代码段寄存器DS数据段寄存器ES附加段寄存器SS堆栈段寄存器IP指令指针寄存器D15D14D13D12D11D10D9D8 x x x x OF DF IF TF D7D6D5D4D3D2D1D0 SF ZF x AF x PF x CF符号名称定义CF进位标志运算中,最高位有进位或借位时CF=1,否则CF=0 PF奇偶标志运算结果低8位“1”个数为偶数时PF=1,否则PF=0 AF辅助进位D3有向D4进(借)位时AF=1,否则AF=0ZF零标志运算结果每位均为“0”时ZF=1, 否则ZF=0SF符号标志运算结果的最高位为1时SF=1,否则SF=0OF溢出标志运算中产生溢出时OF=1, 否则OF=0符号名称功能TF陷阱标志TF=1将使CPU进入单步执行指令IF中断标志IF=1允许CPU响应可屏蔽中断DF方向标志DF=1将从高地址向低地址处理字符串所以:CF=0PF=1AF=1ZF=0SF=1OF=0微机原理下次课见。

第二章 8086体系结构

第二章  8086体系结构

8086微处理器概览
标志位寄存器(FR) • 16位标志位寄存器FR,共有9个
标志位。其中6个是状态标志位, 3个是控制标志位,用于反映 CPU运行过程中的某些状态特征。
标志位寄存器
3、标志寄存器FR
标志寄存器FR中共有9个标志位,可分成两类: ➢状态标志 表示运算结果的特征,它们是 CF、PF、AF、 ZF、SF和OF ➢控制标志 控制CPU的操作,它们是IF、DF和TF。
IP :BIU要取指令的地址。
IP
三、8086CPU的管脚及功能
8086是16位CPU。它采用高性能的N— 沟道,耗尽型负载的硅栅工艺(HMOS)制 造。由于受当时制造工艺的限制,部分管 脚采用了分时复用的方式,构成了40条管 脚的双列直插式封装
1、 8086的两种工作方式
最小模式:系统中只有8086一个处理器,所有的控制信号都 是由8086CPU产生(MN/MX=1)。
最大模式:系统中可包含一个以上的处理器,比如包含协处 理器8087。在系统规模比较大的情况下,系统控 制信号不是由8086直接产生,而是通过与8086配 套的总线控制器等形成(MN/MX=0)。
三总线结构 数据线DB 地址线AB 控制线CB
微机的三总线结构
➢ 最小模式下的引脚说明
( 1 ) AD15 ~ AD0 (Address Data Bus):
堆栈指针用于存放栈顶的逻辑偏移地 址,隐含的逻辑段地址在SS寄存器中。
寄存器的特殊用途和隐含性质
在指令中没有明显的标出,而这些寄存器参 加操作,称之为“隐含寻址”。
具体的:在某类指令中,某些通用寄存器有指 定的特殊用法,编程时需遵循这些规定,将某些 特殊数据放在特定的寄存器中,这样才能正确的 执行这些指令。采用“隐含”的方式,能有效地 缩短指令代码的长度。

8086微处理器的功能与结构

8086微处理器的功能与结构

8086微处理器的功能与结构四、80x86微处理器的结构和功能(一)80x86微处理器1.8086/8088主要特征(1)16位数据总线(8088外部数据总线为8位)。

(2)20位地址总线,其中低16位与数据总线复用。

可直接寻址1MB存储器空间。

(3)24位操作数寻址方式。

(4)16位端口地址线可寻址64K个I/O端口。

(5)7种基本寻址方式。

有99条基本指令。

具有对字节、字和字块进行操作的能力。

(6)可处理内部软件和外部硬件中断。

中断源多达256个。

(7)支持单处理器、多处理器系统工作。

2.8086微处理器内部结构8086微处理器的内部结构由两大部分组成,即执行部件EU(Execution Unit)和总线接口部件BIU(Bus Interface Unit)。

和一般的计算机中央处理器相比较,8086的EU相当于运算器,而BIU则类拟于控制器。

3.8086最小模式与最大模式及其系统配置最小模式在结构上的特点表现为:系统中的全部控制信号直接来自8086CPU。

与最小模式相比,最明显的不同是系统中的全部控制信息号不再由8086直接提供,而是由一个专用的总线控制器8288输出的。

4.8087与8089处理机简述(1)8087协处理机8087协处理机与8086组合在一起工作,以弥补8086在数值运算能力方面的不足,所以它又称为协处理机。

(2)8089I/O处理机8089是一个带智能的I/O接口电路,相当于大型机中的通道,它将CPU的处理能力与DMA控制器结合在一起。

它具有52条基本指令,1MB的寻址能力,包含两个DMA通道。

8089也可以与8086联合在一起工作,执行自己的指令,进行I/O 操作,只在必需时才与8086进行联系。

在8089的控制下,可以进行外设与存储器之间、存储器与存储器之间以及外设与外设之间的数据传输。

同时,8089还可以设定多种终止数据传输的方式。

5.总线时序一个基本的总线周期包括4个时钟周期,即4个时钟状态T 1 、T2 、T3 和T4 。

8086cpu内部

8086cpu内部

8086cpu内部:总线接口单元BIU和执行单元EU BIU是8086cpu存储器和I/O设备之间的部件,负责对全部引脚进行操作,即8086cpu存储器和I/O设备的所有操作均有BIU完成。

它提供了16位双向数据总线,20位地址总线和若干条控制总线。

一个20位地址加法器,4个16位段寄存器,1个16位指令指针IP,指令队列缓冲器和总线控制逻辑电路等组成。

执行单元EU:有1个16位的算术逻辑单元ALU,8个16位通用寄存器,1个16位标志寄存器FLAGS,1个数据暂存寄存器和执行单元控制电路组成。

负责进行所以指令的解释和执行,同时管理有关寄存器。

数据寄存器:累加器AX,基址寄存器BX,计数器CX和数据寄存器DX.段寄存器:代码段寄存器CS,数据段寄存器DS,堆栈段寄存器SS,附加段寄存器ES地址指针和变址寄存器:堆栈指针寄存器SP,基址指针寄存器BP,变址寄存器SI,DI控制寄存器:指令指针寄存器和标志寄存器FLAGSFLAGS.六位状态标志位和三位控制标志位进位标志CF(字节运算d7和字运算d15)进位或借位=1 tf单步标志位表2-1 标志寄存器FLAG中标志位的含义和作用8086cpu为什么要用3片地址锁存器来形成地址总线AB?地址锁存器就是一个暂存器,它根据控制信号的状态,将总线上地址代码暂存起来。

8086CUP对外结构就是3组总线,8086数据和地址总线采用分时复用操作方法,即用同一总线既传输数据又传输地址。

当微处理器与存储器交换信号时,首先由CPU发出存储器地址,同时发出允许锁存信号ALE给锁存器,当锁存器接到该信号后将地址/数据总线上的地址锁存在总线上,随后才能传输数据。

8086的最大工作模式和最小各种模式的主要区别是什么?如何进行控制?【解答】两种模式的主要区别是:8086工作在最小模式时,系统只有一个微处理器,且系统所有的控制信号全部由8086 CPU 提供;在最大模式时,系统由多个微处理器/协处理器构成的多机系统,控制信号通过总线控制器产生,且系统资源由各处理器共享。

微机原理第三章:8086微处理器结构

微机原理第三章:8086微处理器结构

4.8086 和8088 二者的指令系统完全兼容
(1)有24 种寻址方式,具有乘、除法指令等。 (2)取指令和执行指令的操作并行运行,运行速度大大提高。
(3)具有最小模式和最大模式,应用领域宽广,适应性强。
(4)可方便地和数据处理器8087、I/O 处理器8089 或其它处理器 组成多处理机系统,提高数据处理能力和输人输出能力。
代码段寄存器 CS 标 志 寄 存 器
数据段寄存器 DS
堆栈段寄存器 SS
附加段寄存器 ES
由于8086/8088 CPU 可直接寻址的存储器空间是1M字节,直接寻址需要 20位地址码,而所有的内部寄存器都是16位的,用这些寄存器只能寻址 64K字节,为此需要采取分段技术来解决这个问题。
表3.1
通用寄存器的隐含使用
程序调试过程中。
3.1.2 8086/8088 的寄存器结构
四、指令指针寄存器 IP ★ 16 位的指令指针寄存器 IP 用来存放将要执行的下一条 指令在代码段中的偏移地址。 ★ 在程序运行过程中,BIU 可修改 IP 中的内容,使它始终 指向将要执行的下一条指令。 ★ 程序不能直接访问 IP,但可通过某些指令修改 IP 内容。 ★ 如遇到转移类指令,则将转移目标地址送人IP中,以实 现程序的转移。
★ 规则字的读/写操作可以一次完成。由于两个存储体上的地址
线 A19~A1 是连在一起的,只要使 A0=0,BHE=0,就可 以实现一次在两个存储体中对一个字的读/写操作。 ★ 读写的是从奇地址开始的字(高字节在偶体中,低字节在奇体 中),这种字的存放规则称为“非规则字”或“非对准字”。 ★ 非规则字的读/写,需要两次访问存储器才能完成。 第一次访问存储器读/写奇地址中的字节;
三、标志寄存器 FR

8086CPU的结构与功能

8086CPU的结构与功能

8086CPU 的结构与功能CPU 结构与功能不管什么型号的CPU ,其内部均有这四⼤部件1. ALU :算术逻辑单元2. ⼯作寄存器:分为数据寄存器和地址寄存器⼯作寄存器的⽬的是为了提⾼运算速度,希望参与运算的数据不从外部存储器去取数据,⽽是在CPU 内部取,所以要有能暂存少量数据的寄存器。

数据寄存器是专门存放数据的,地址寄存器是专门存放地址,进⾏间接寻址⽅式,但当地址寄存器不提供地址时,也可以⽤来暂存数据。

3. 控制器:中央指挥机关4. I/O 控制逻辑电路⼀般CPU 执⾏存储器(按字节组织)⾥⾯指令过程如下:1. CPU 通过控制器部件⾥⾯的程序计数器(PC )给外部存储器的地址引脚输出地址(通过地址总线AB ),同时CPU 给存储器发送读操作命令;2. 在读操作下,就把这个地址单元的指令代码通过数据总线(DB ),取回来放在指令寄存器⾥⾯(IR ),注意此时因为指令没有执⾏完,所以PC 还不能去往下⼀条指令,IR 没有地⽅放数据。

3. 指令译码器(ID )不断检测指令寄存器有没有数据,有的话就把指令取⾛放在ID ⾥⾯,取来的指令就被ID 译码分析,就知道这个指令希望CPU 做什么,怎么做;4. ID 通知控制逻辑部件,在相应的控制引脚发出相应的有效命令(读,写等);5. 此条指令执⾏完,IR 为空,PC ⾃动增加到下⼀条指令的地址,执⾏下⼀条指令流程。

如果指令为n 字节,PC ⾃动增n 。

因为在取指令时候,不能执⾏指令,在执⾏指令时候,不能取指令,因此这种架构CPU 是取指令->执⾏指令->取指令...这样循环下去。

CPU 执⾏效率不⾼。

堆栈由先进后出原则组织的存储器区域,称为堆栈。

单⽚机应⽤中,堆栈是个特殊存储区,堆栈属于RAM 空间的⼀部分,堆栈⽤于函数调⽤、中断切换时保存和恢复现场数据(临时数据)。

对于8006 CPU ⽽⾔,堆栈操作是按字操作。

堆栈单元的地址指针由堆栈指针寄存器SP 的内容提供。

8086-8088CPU系统结构

8086-8088CPU系统结构
♣ CS:代码段寄存器 ♣ DS:数据段寄存器 ♣ ES:附加数据段寄存器 ♣ SS:堆栈段寄存器
1.2 8086/8088寄存器结构及用途
1.1.3 指针寄存器和变址寄存器
▲指针寄存器:
♣ SP:堆栈指针寄存器 ♣ BP:基址指针寄存器
▲变址寄存器:
♣ SI:源变址寄存器 ♣ DI:目的变址寄存器
汇编语言程序设计
8086/8088CPU系统结构
• 1.1 Intel8086/8088微处理器的结构 • 1.2 8086/8088寄存器结构及其用途 • 1.3 8086的存储器组织
• 1.4 堆栈
1.1 Intel8086/8088微处理器的结构
• 1.1.1 8086微处理器的结构
8086微处理器由两大部分组成: ♣ 执行部件EU ♣ 总线接口部件BIU 其内部结构如图(P20 图1.1)
1.3 8086的存储器组织
• 1.3.2 存储器的分段结构
◆8086CPU的寻址能力为:220=1MB; ◆8086CPU的内部寄存器为16位,直接 寻址:216=64KB; ◆在8086系统中引入逻辑段的概念:把 的地址空间划分为任意个逻辑段,长度 为64KB。
1.3 8086的存储器组织
• 1.3.3 物理地址和逻辑地址
▲是CPU与外部存储器、I/O设备的接口;
▲BIU由以下几部分组成: ♣16位指令指针寄存器IP; ♣指令队列; ♣4个16位段寄存器CS、DS、ES、
SS; ♣20位地址加法器; ♣总线控制部件。
1.1.1 8086微处理器的结构
• 3. BIU和EU的管理
▲二者处于并行的工作状态和重叠的工 作方式; ▲相互配合,协调工作; ▲充分利用总线实现最大限度的信息传 输,提高了程序的执行速度。

8086微处理器

8086微处理器

8086CPU的结构1. 8086 CPU的内部结构1)指令执行部件指令执行部件EU主要由算术逻辑运算单元ALU、标志寄存器FR、通用寄存器组和EU控制器等四个部件组成。

其主要功能是执行命令。

一般情况下指令顺序执行,EU可不断地从BIU 指令队列缓冲器中取得执行的指令,连续执行指令,而省去了访问存储器取指令所需的时间。

如果指令执行过程中需要访问存储器存取数据时,只需将要访问的地址送给BIU,等待操作数到来后再继续执行。

遇到转移类指令时则将指令队列中的后续指令作废,等待BIU重新从存储器中取出新的指令代码进入指令队列缓冲器后,EU才能继续执行指令。

这种情况下,EU和BIU的并行操作回受到一定的影响,但只要转移类指令出现的频率不是很高,两者的并行操作仍然能取得较好的效果。

EU中的算术逻辑运算部件A LU可完成16位或8位二进制数的运算,运算结果一方面通过内部总线送到通用寄存器组或BIU的内部寄存器中以等待写到存储器;另一方面影响状态标志寄存器FR的状态标志位。

16位暂存器用于暂时存放参加运算的操作数。

EU控制器则负责从BIU的指令队列缓冲器中取指令、分析指令(即对指令译码),然后根据译码结果向EU内部各部件发出控制命令以完成指令的功能。

2)总线接口部件BIU总线接口部件BIU主要有地址加法器、专用寄存器组、指令队列缓冲器以及总线控制电路等四个部件组成。

其主要功能是负责完成CPU与存储器或I/O设备之间的数据传送。

BIU中地址加法器将来自于段寄存器的16位地址段首地址左移4位后与来自于IP寄存器或EU提供的16位偏移地址相加(通常将“段首地址:偏移地址”称为逻辑地址),形成一个20位的实际地址(又称为物理地址),以对1MB的存储空间进行寻址。

具体讲:当CPU执行指令时,BIU根据指令的寻址方式通过地址加法器形成指令在存储器中的物理地址,然后访问该物理地址所对应的存储单元,从中取出指令代码送到指令队列缓冲器中等待执行。

8086的内部结构

8086的内部结构

AX BX CX DX
SI
DI BP SP
其中前4个数据寄存器都还可以分成高8位和低8位两 个独立的寄存器。对其中某8位的操作,并不影响 另外对应8位的数据。
8086的8位通用寄存器是:
AHBH CH DH
AL BL CL DL
EU--数据寄存器
• 数据寄存器用来存放计算的结果和操作数 • 每个寄存器又有它们各自的专用目的:
FLAG--中断允许标志IF(Interrupt-
enable Flag)
• 用于控制外部可屏蔽中断是否可以被处 理器响应:
设置IF=1,则允许中断; 设置IF=0,则禁止中断。
• CLI指令复位中断标志:IF=0
• STI指令置位中断标志:IF=1
FLAG--单步执行标志TF(Trap Flag)
EU--指针寄存器
• 指针寄存器用于寻址内存堆栈内的数据 • SP为堆栈指针寄存器,指示栈顶的偏移地址 • SP不能再用于其他目的,具有专用目的 • BP为基址指针寄存器,表示数据在堆栈段中的
基地址 • SP和BP寄存器与SS段寄存器联合使用以确定
堆栈段中的存储单元地址
详见堆栈操作指令
EU--标志寄存器(FLAG)
8086的寄存器组
8086的寄存器(如图)都为16位,分为:
EU:8个通用寄存器 CU:1个指令指针寄存器 EU:1个标志寄存器 BIU:4个段寄存器
掌握通用寄存器的作用 熟悉各个标志的含义 切实理解存储器组织和存储空间分段的概念
8086的寄存器组
EU--通用寄存器
8086的16位通用寄存器是:
注意:gn Flag)
• 运算结果最高位为1,则SF = 1;否则SF = 0。 例如:

8086cpu

8086cpu

8086cpu1、 8086CPU和8088CPU内部结构基本相同,不同之处在于8088有8条外部数据总线,因此为准16位。

8086有16条外部数据总线。

两个CPU的软件完全兼容,程序的编制也完全相同。

2、 8086CPU从功能上分为两⼤部分:⼀是执⾏部件(EU),⼆是总线接⼝部件(BIU)。

执⾏部件是由以下虽部分组成:(1)四个通⽤寄存器:AX BX CX DX(2)四个专⽤寄存器:基数指针寄存器BP,堆栈指针寄存器SP,源变址寄存器SI,⽬的变址寄存器DI(3)标志寄存器FR=flag(4)算术逻辑部件ALU功能是负责执⾏所有的指令,向总线接⼝部件提供指令执⾏的结果数据和地址,并对通⽤寄存器和标志寄存器进⾏管理。

总线接⼝部件由以下部件组成:(1)四个段寄存器:代码段寄存器,数据段寄存器,附加段寄存器,堆栈段寄存器。

(2)指令指针寄存器(3)地址加法器(4)指令队列功能:执⾏外部总线周期,负责存储器与外部端⼝I|O传送数据。

也就是负责CPU与存储器和外设之间的信息交换。

3、共有14个寄存器,分成3个部分:(!)通⽤寄存器8个:AX, BX , CX, DX , SP , BP ,SI ,DI.AX , BX ,CX , DX为数据寄存器,⽤来保存运算中的中间结果和有效地址。

4个寄存器既可以做16位寄存器,也可以做8位寄存器 AL, AH, BL, BH, CL, CH, DL, DH.。

在程序设计中,⼀般把AX⽤作累加器。

BX ⽤作基址寄存器,CX⽤作计数器,DX⽤作数据寄存器。

SP:堆栈指针寄存器;装栈顶指针偏移量。

BP:基址指针寄存器:装栈段中⼀个数据区的基址偏移量。

SI:源变址寄存器;装源操作数地址的偏移量。

DI:⽬的变址寄存器;装⽬的操作数地址偏移量。

(2)段寄存器4个CS;代码段寄存器;装代码段的起始地址;DS;数据段寄存器;装数据段的起始地址;SS; 堆栈段寄存器;装堆栈段的起始地址;ES: 附加段寄存器;装附加段的起始地址。

8086-CPU内部结构

8086-CPU内部结构

课题:8086微处理结构一、8086 CPU的内部结构:图解分析:1、8086 CPU从功能上可分为:总线接口部件BIU(Bus Interface Unit)执行部件EU(Execution Unit)2、BIU:负责与存储器、外部设备之间进行信息交换。

功能:①负责从内存指定单元取出指令,并送到6字节的指令队列中排列;②同时负责从内存指定单元取出指令所需的操作数并送EU;③EU运算结果也由BIU负责写入内存指定单元。

组成:20位的地址加法器段寄存器(CS、DS、ES、SS)指令指针(IP)指令队列缓存器总线控制电路各组件功能:①地址加法器:计算并形成CPU要访问的内存单元的20位物理地址;②段寄存器:用于存放对应段的段基址;③指令指针寄存器:用于存放下一条要执行的指令的偏移地址;④指令队列:是6字节的“先进先出”的RAM存储器,用于顺序存放CPU要执行的指令,并送EU去执行;⑤总线控制电路:产生总线控制信号,如存储器读/写、I/O读写控制信号。

3、EU:负责指令的执行。

功能:①负责从BIU的指令队列中取得指令、分析指令、执行指令,并将结果存入通用寄存器或由BIU写入内存单元;②同时负责计算操作数所在内存单元的偏移地址。

组成:算术逻辑单元(ALU)标志寄存器通用寄存器:数据寄存器:AX、BX、CX、DX指针和变址寄存器:SP、BP、SI、DIEU控制电路各组件的功能:①算术逻辑单元(ALU):对操作数进行算术和逻辑运算,也可按指令的寻址方式计算出CPU要访问的内存单元的16位偏移地址;②标志寄存器:用于反映算术和逻辑运算结果的状态;③数据寄存器:用于保存操作数或运算结果等信息;④指针和变址寄存器:用于存放操作数所处存储单元的偏移地址;⑤EU控制电路:接收从BIU指令队列中取得的指令,分析、译码,以便形成各种实时控制信号,对各个部件实现特定的控制操作。

微机原理 第2章_8086系统结构

微机原理 第2章_8086系统结构

8086 CPU的引脚及其功能

8086 CPU的两种工作模式


最小模式:用于单机系统,系统所需要的控 制信号由8086直接提供,MN/MX=1,CPU 工作于最小模式 最大模式:用于多处理机系统,系统所需的 控制信号由总线控制器8288提供, MN/MX=0,CPU工作于最大模式

8086 CPU在最小模式下的引脚定义 8088与8086的区别
通 用 寄 存 器
AX BX CX DX SP BP SI DI
8086 CPU结构框图
20位地址总线
Σ
数据 总线 16位
ALU数据总线 (16位) 暂存器
队列 总线 (8位)
CS DS SS ES IP 内部寄存器 指令队列
总线 控制 电路 8086 总线
ALU
标志寄存器
EU 控制器
1 3 4 5 6
PSW
存放状态标志、控制标志和系统标 志
PSW格式:
15 11 10
OF DF
9 IF
8
7
6
4 AF
2 PF
0 CF
TF SF ZF
状态标志




状态标志用来记录程序中运行结果的状态信息,它们根据有关指 令的运行结果由CPU自动设置,这些状态信息往往作为后续条件 转移指令的转移控制条件,包括6位: OF:溢出标志,在运算过程中,如操作数超出了机器数的表示范 围,称为溢出,OF=1,否则OF=0 SF:符号标志,记录结果的符号,结果为负SF=1,否则SF=0 ZF:零标志,运算结果为0,ZF=1,否则ZF=0 CF:进位标志,进行加法运算时从最高位产生进位,或减法运算 从最高位产生借位CF=1,否则CF=0 AF:辅助进位标志:本次运算结果,低4位向高4位产生进位或借 位,AF=1,否则AF=0 PF:奇偶标志,用来为机器中传送信息时可能产生的代码出错情 况提供检验条件,当结果操作数中低8位中1的个数为偶数时PF=1, 否则PF=0

3现代微机结构-8086及80286

3现代微机结构-8086及80286

理 器
器 存储器 存储器 I/O
AD15~AD0 双向
DT/R DEN
数据 锁存 器
第二节 Intel 80286
与8086的显著区别:
1. 地址线和数据线不再分时复用, 简化了硬件设计;
2. 增加了地址线的宽度, 物理地址空间增加到16M 3. 增加了新的指令, 以增强其控制能力。 4. 引入存储管理中的虚存管理机制。通过“虚地址”
结论:
采用地址流水线后, 由于地址信号的提前建立, 与非地址的流水线相比, 可以尽量减少插入Tw 等待周期。因而加快了访存速度。 (但并没有提高存储器的速度)。
四、80286的工作模式
(一) 实地址模式
系统开机复位时,自动进入实地址模式, A23~A20自 动置为0, 以 A19~A0寻址1M的存储空间。
实地址模式下的寻址过程:
段基地址
段基地址 0000
+ 20位物理地址 内存单元
偏移量
为实施“虚地址保护”所希望的寻址过
程:
应用设计 者给出的 虚地址
• 实施保护 • 实现虚地址到
物理地址
内存单元
实地址的转换
“虚地址保护” 实施的中间平台
“ 中 间 平 台 ” 的 核 心 部描述子 (Descriptor) 分描:述子的作用:
(物理地址)
左移4位
偏移量 基地址

15
0 15
0ห้องสมุดไป่ตู้
段寄存器
偏移量
19
0
一 个
16位基地址 0000

+
20位的物理地址
外部地址总线
三、8086的中断系统
(一) 中断源
1、外部中断

微机原理2-1:8088CPU内部结构、寄存器组、存储器组织

微机原理2-1:8088CPU内部结构、寄存器组、存储器组织

栈段和附加段。
段寄存器即是存放各个逻辑段段首地址的寄 存器。
23
存储器的分段管理


8088有20条地址线, 20=1MB, 最大可寻址空间为 2 可寻址的地址范围为 00000H~FFFFFH 该地址称物理地址 硬件用 20位的物理地址来对存储单元进行寻 址
24
存储器的分段管理


由于 8088 中的地址寄存器都是 16 位的,用 户不能直接使用20位的物理地址,编程时需 要使用逻辑地址来寻址存储单元。 物理地址 14700H 逻辑地址由两个16位数构成,其形式为: 逻辑地址 1460H:100H 段的起始地址 : 段内的偏移地址 (16位段地址) :( 16位偏移量)
分隔符
7
②指针和变址寄存器 共BP、SP、SI、DI四个 BP:基址指针寄存器Base Pointer ,默认表示
堆栈段基地址;
SP:堆栈指针寄存器Stack Pointer,指示栈顶 SI:源变址寄存器Source Index DI:目的变址寄存器Destination Index
8
2、标志寄存器 标志寄存器( FR )是 一个 十六位的 寄存器,但只利用了其中的9位:六个条 件标志和三个控制标志。

CLI 指令复位中断标志:IF=0
STI 指令置位中断标志:IF=1
20
陷阱标志TF(Trap Flag)


用于控制处理器是否进入单步执行方式: 设置TF=0,处理器正常工作; 设置 TF=1,处理器每执行一条指令就中断一次, 中断编号为 1 (称单步中断), TF 也被称为单 步标志。 单步执行和单步调试
注意: PF 标志仅反映最低 8 位中“ 1 ”的个数

8086cpu知识点总结

8086cpu知识点总结

8086cpu知识点总结8086 CPU 是 Intel 公司于 1978 年推出的第一款 16 位微处理器,它奠定了后来计算机发展的基础,为后续的计算机体系结构设计奠定了基础,其后续版本的处理器也是以其为基础进行设计。

这篇文章将对 8086 CPU 的架构、指令系统、寻址方式、操作模式、管脚、寄存器组、数据通路和控制信号等知识点进行详细的总结,以便更好地理解和掌握该处理器的相关知识。

一、8086 CPU 架构8086 CPU 是一种 16 位微处理器,其架构主要包括三部分:执行单元 (EU)、总线接口单元(BIU) 和通用寄存器组成。

EU 负责执行指令、算术运算和逻辑运算,同时与 BIU 进行数据交换;BIU 负责处理数据传输、地址生成和取指令等操作;通用寄存器组包括 4 个 16 位通用寄存器 AX、BX、CX 和DX,其中 AX 寄存器作为中央处理器 (CPU) 的数据寄存器,用于存放运算结果。

8086 CPU 内部结构由许多部件组成,包括寄存器、运算器、时钟、分频器、全速脉冲发生器、指令译码器、片选逻辑、地址生成器、数据总线缓冲器、地址总线驱动器、总线控制器、中断控制器、中断识别器、数据缓冲器等。

这些部件共同组成了 8086 CPU 的内部结构,为其正常工作提供了支持。

二、8086 CPU 指令系统8086 CPU 的指令系统包括数据传输指令、算术运算指令、逻辑运算指令、串处理指令、控制转移指令、程序调用和返回指令、中断指令等。

这些指令可以根据其功能和操作数的不同进行分类。

数据传输指令包括将数据从一个位置传送到另一个位置的指令,其中包括 MOV、XCHG、LEA 等指令;算术运算指令包括实现加法、减法、乘法、除法等运算的指令,其中包括ADD、SUB、MUL、DIV 等指令;逻辑运算指令包括实现与、或、非、异或等逻辑运算的指令,其中包括 AND、OR、NOT、XOR 等指令;串处理指令包括在存储器中进行字符串操作的指令,其中包括 MOVSB、MOVSW、CMPSB、SCASB 等指令;控制转移指令包括跳转、调用、返回等指令,其中包括 JMP、CALL、RET 等指令;程序调用和返回指令包括实现过程调用和返回的指令,其中包括 INT、IRET 等指令;中断指令包括控制中断处理的相关指令,其中包括 INT、IRET 等指令。

8086微处理器的内部结构

8086微处理器的内部结构

各个逻辑段允许重叠
例如,如果代码段中的程序占有8KB(2000H)存储区, 数据段占有2KB(800H)存储区,堆栈段占有256个字 节的存储区。此时分段情况如图所示。
代码段的区域本可为 02000H ~ 11FFFH (64KB),由于程序 区只需要8KB,所以 程序区结束后的地址 就可作为数据段的起 始地址(04000H) 注意:这里所谓的重叠只是指每个区段的大小允许根据 实际情况分配,而不一定非要占有64KB的最大段空间。
程序设计过程中必须遵守的系统内部约定:
如果访问存储器要求读/写操作数,则通常由DS给 出段地址(必要时可修改为CS、ES或SS),而其偏移 地址要由CPU的指令执行部件根据指令中所给定的寻 址方式来进行计算,通常将这样计算得到的偏移地址称 为有效地址(EA)。
如果所采用的寻址方式是通过基址指针BP寻址,则 段地址要由SS提供(必要时可以修改为CS、DS或ES)。
数据总线
通用寄存器
8086 暂存寄存器
ALU数据总线 (16位)
CS DS SS ES IP 内部通信 寄存器
(16位)
总线 控制 逻辑
8086 总线
ALU
EU 控制 系统
Q总线 16位
指令队列
1 2 3 4 5 6
总线接口部件 (BIU)
标志
指令执行部 件(EU)
1. 指令执行部件EU 由算术逻辑单元(ALU)、标志寄存器、通用寄存 器组和EU控制器等部件组成。 主要功能是执行指令: ○一般顺序执行,EU不断地从指令队列中取指令连 续执行,而省去访问存储器取指令的时间。 ○需要访问存储器取操作数时,EU将访问地址送给 BIU后,将要等待操作数到来后才能继续操作; ○遇到转移类指令时,要将指令队列中的后续指令 作废,等待BIU重新从存储器取出目标地址中的指令代 码进入指令队列后,EU才能继续执行指令。

8086CPU结构

8086CPU结构
21
零标志ZF (Zero Flag) ---反映运算结果是否为零, 若是,则该位置“1”,否则置“0”。 符号标志SF (Sign Flag) ---反映运算结果最高位的 状态,并与运算结果最高位状态相同。表明了本次运 算的结果是正还是负。 溢出标志OF (Overflow Flag) --- 反映带符号数进行 算术运算后是否有溢出,有则为“1”,无则为“0”。
3
指令和程序
机器指令 操作码 + 操作数
若干条指令构成程序
MOV B8H AX, 1234H 34H 12H
4
指令解释方式
CPU解释一条指令的步骤为如下两个阶段: 取指:从内存中取出指令,明确指令规定的功能; 执行:分析指令要求实现的功能,读取所需要的操作 数,执行指令规定的操作,并保存执行结果。
执行部件EU
功能:执行指令并暂时存储运算结果 结构: (1)16位算术逻辑单元ALU; (2)16位标志寄存器F; (3)数据暂存寄存器(与编程无关,不对用户开放) (4)通用寄存器组: AX、BX、CX、DX---数据寄存器 SP、BP---指针寄存器 SI、DI---变址寄存器 (5)EU控制电路:内部电路,不对用户开放
时 间
顺序解释
取指1
执行1
取指2
执行2
取指3
执行3
取指4
执行4
取指5
执行5
执行1
执行2
执行3
执行4
执行5
重叠解释
取指1 取指2 取指3 取指4 取指5
指令和程序的解释过程
5
8086微处理器的内部结构
地址总线 AH BH 通用 寄存 器 CH DH SP BP SI DI ALU数据总线 (16位) 暂存寄存器 总线控制 8086 逻辑 总线 ALU EU 控制系统 标志寄存器 执行部件(EU) 图2-2 8086 CPU内部结构 总线接口部件(BIU) 6 队列 总线 (8位) 指令队列缓冲器 1 2 3 4 5 6 段寄 存器 AL BL CL DL AX BX CX DX CS DS ES SS IP 内部通信 寄存器 指令指 针 地址 形成器 (20位) 数据 总线 (16位)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:8086微处理结构一、8086 CPU的内部结构:
图解分析:
1、8086 CPU从功能上可分为:总线接口部件BIU(Bus Interface Unit)
执行部件EU(Execution Unit)
2、BIU:负责与存储器、外部设备之间进行信息交换。

功能:
①负责从内存指定单元取出指令,并送到6字节的指令队列中排列;
②同时负责从内存指定单元取出指令所需的操作数并送EU;
③EU运算结果也由BIU负责写入内存指定单元。

组成:20位的地址加法器
段寄存器(CS、DS、ES、SS)
指令指针(IP)
指令队列缓存器
总线控制电路
各组件功能:
①地址加法器:计算并形成CPU要访问的内存单元的20位物理地址;
②段寄存器:用于存放对应段的段基址;
③指令指针寄存器:用于存放下一条要执行的指令的偏移地址;
④指令队列:是6字节的“先进先出”的RAM存储器,用于顺序存放CPU
要执行的指令,并送EU去执行;
⑤总线控制电路:产生总线控制信号,如存储器读/写、I/O读写控制信号。

3、EU:负责指令的执行。

功能:
①负责从BIU的指令队列中取得指令、分析指令、执行指令,并将结果存
入通用寄存器或由BIU写入内存单元;
②同时负责计算操作数所在内存单元的偏移地址。

组成:算术逻辑单元(ALU)
标志寄存器
通用寄存器:数据寄存器:AX、BX、CX、DX
指针和变址寄存器:SP、BP、SI、DI
EU控制电路
各组件的功能:
①算术逻辑单元(ALU):对操作数进行算术和逻辑运算,也可按指令的寻
址方式计算出CPU要访问的内存单元的16位偏移地址;
②标志寄存器:用于反映算术和逻辑运算结果的状态;
③数据寄存器:用于保存操作数或运算结果等信息;
④指针和变址寄存器:用于存放操作数所处存储单元的偏移地址;
⑤EU控制电路:接收从BIU指令队列中取得的指令,分析、译码,以便形
成各种实时控制信号,对各个部件实现特定的控制操作。

相关文档
最新文档