2014年10月全国自考概率论与数理统计试题及答案
概率论和数理统计试题及答案
概率论和数理统计试题及答案概率论和数理统计试题及答案⼀、填空题:1、设A 与B 相互独⽴,P(A) =31, P(B) =21, 则P (B-A) = . 解:111()()[1()](1)233P B A P B P A -=-=?-=2、设~[1,3]X U (均匀分布),则2()E X = ,(2)D X = .(52)E X -= ,解:()2;()1/3E X D X ==22()()()13/3E X D X E X =+= (2)4()4/3D X D X ==(52)5()21028E X E X -=-=-=3、设随机变量X 服从指数分布,即 ~(2),X E 定义随机变量2,31,31,3X Y X X >??==??-则 Y 的分布列为。
解:3322620()()(1)(3)21Y x xF Y P Y y P Y P X e dx e e σσσ-----+=≤=≤-=<==-=-?33226()()(11)(3)21Y x xF Y P Y y P Y P X e dx e e ---=≤=-<≤=≤==-=-?3322620()()(12)(3)21Y xx F Y P Y y P Y P X edx ee σσσ++----=≤=<≤=>==-=-?其中σ是与y ⽆关的量4、设~(200,0.1)X B ~(3)Y P ,2~(3,2)Z N ,且X ,,Y Z 相互独⽴, 则(235)E X Y Z --+= , (235)D X Y Z --+=解:(235)2()3()()522000.1333533E X Y Z E X E Y E Z --+=--+=??-?-+=(235)4()9()()72274103D X Y Z D X D Y D Z --+=++=++=5、设总体2~(,)X N µσ,123,,x x x 为来⾃X 的样本,123?0.50.1x x ax µ=+-是未知参数µ的⽆偏估计,则a =。
《概率论与数理统计》习题及答案 第二章
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
年10月全国自考概率论与数理统计真题
年10⽉全国⾃考概率论与数理统计真题全国2012年10⽉⾼等教育⾃学考试《概率论与数理统计》(经管类)真题课程代码:04183请考⽣按规定⽤笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1. 答题前,考⽣务必将⾃⼰的考试课程名称、姓名、准考证号⽤⿊⾊字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每⼩题选出答案后,⽤2B 铅笔把答题纸上对应题⽬的答案标号涂⿊。
如需改动,⽤橡⽪擦⼲净后,再选涂其他答案标号。
不能答在试题卷上。
⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其选出并将“答题纸”的相应代码涂⿊。
错涂、多涂或未涂均⽆分。
1.已知事件A ,B ,A ∪B 的概率分别为0.5,0.4,0.6,则P (A )= A.0.1 B.0.2 C.0.3 D.0.52.设F(x)为随机变量X 的分布函数,则有 A.F (-∞)=0,F (+∞)=0 B.F (-∞)=1,F (+∞)=0 C.F (-∞)=0,F (+∞)=1 D.F (-∞)=1,F (+∞)=13.设⼆维随机变量(X ,Y )服从区域D :x 2+y 2≤1上的均匀分布,则(X ,Y )的概率密度为 A.f(x ,y)=1B. 1(,)0,x y D f x y ∈?=?,(,),其他C.f(x ,y)=1πD. 1(,)0,x y D f x y π?∈?=,(,),其他4.设随机变量X 服从参数为2的指数分布,则E (2X -1)=A.0B.1C.3D.4 5.设⼆维随机变量(X ,Y )的分布律则D (3X )= A.29B.2C.46.设X 1,X 2,…,X n …为相互独⽴同分布的随机变量序列,且E (X 1)=0,D (X 1)=1,则1lim 0n i n i P X →∞=??≤=∑A.0B.0.25C.0.5D.17.设x 1,x 2,…,x n 为来⾃总体N (µ,σ2)的样本,µ,σ2是未知参数,则下列样本函数为统计量的是 A.1ni i x µ=-∑B.211nii x σ=∑C. 211()ni i x n µ=-∑D. 211n i i x n =∑8.对总体参数进⾏区间估计,则下列结论正确的是 A.置信度越⼤,置信区间越长 B.置信度越⼤,置信区间越短 C.置信度越⼩,置信区间越长 D.置信度⼤⼩与置信区间长度⽆关 9.在假设检验中,H 0为原假设,H 1为备择假设,则第⼀类错误是 A. H 1成⽴,拒绝H 0 B.H 0成⽴,拒绝H 0 C.H 1成⽴,拒绝H 1 D.H 0成⽴,拒绝H 110.设⼀元线性回归模型:201(1,2,),~(0,)i i i i y x i n N ββεεσ=++=…,且各相互独⽴.依据样本(,)(1,2,,)i i x y i n =…得到⼀元线性回归⽅程01y x ββ=+,由此得对应的回归值为,的平均值11(0)ni i y y y n ==≠∑,则回归平⽅和为A .21(-)ii y y =∑ B .21?(-)niii y y=∑C .21(-)nii yy =∑ D .21nii y=∑⾮选择题部分注意事项:⽤⿊⾊字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
《概率论与数理统计》习题及答案
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
10月自考概率论与数理统计(二)(02197)试题及答案解析
20XX年10月高等教育自学考试全国统一命题考试概率论与数理统计(二) 试卷(课程代码 02197)本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
第一部分选择题(共20分)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设A与B是两个随机事件,则P(A-B)=2.设随机变量石的分布律为A.O.1 B.O.2 C.O.3 D.0.63.设二维随机变量∽,n的分布律为且X与y相互独立,则下列结论正确的是A.d=0.2,b=0,2 B.a=0-3,b=0.3C.a=0.4,b=0.2 D.a=0.2,b=0.44.设二维随机变量(x,D的概率密度为5.设随机变量X~N(0,9),Y~N(0,4),且X与Y相互独立,记Z=X-Y,则Z~6.设随机变量x服从参数为jl的指数分布,贝JJ D(X)=7.设随机变量2服从二项分布召(10,0.6),Y服从均匀分布U(0.2),则E(X-2Y)= A.4 B.5 C.8 D.108.设(X,Y)为二维随机变量,且D(.固>0,D(功>0,为X与y的相关系数,则第二部分非选择题(共80分)二、填空题(本大题共l5小题,每小题2分,共30分)11.设随机事件A,B互不相容,P(A)=0.6,P(B)=0.4,则P(AB)=_______。
12.设随机事件A,B相互独立,且P(A)=0.5,P(B)=0.6,则=________。
13.已知10件产品中有1件次品,从中任取2件,则末取到次品的概率为_____.14.设随机变量x的分布律为,则常数a=_______.15.设随机变量石的概率密度,X的分布函数F(x)=_________.16.设随机变量,则_______.17.设二维随机变量(X,Y)的分布律为18.设二维随机变量(X,Y)的概率密度为分布函数f(x,y),则f(3,2)=________。
2013~2014年全国自考概率论与数理统计试题及答案要点
全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
4、解:选A 。
{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。
6、解:若~()X P λ,则()()E X D X λ==,故 D 。
7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。
自考概率论真题答案及解析
自考概率论真题答案及解析概率论是数学中的一个重要分支,研究的是随机事件的发生规律以及概率的计算方法。
对于自考概率论的学习,掌握真题并进行解析是非常重要的。
本文将为大家提供一些自考概率论真题的答案及解析,希望能够帮助大家加深对概率论知识的理解。
1. 随机变量的定义是什么?请结合实际举一个例子。
答:随机变量是指一个随机试验的结果所对应的数值。
例如,掷一枚硬币,当硬币正面朝上时,随机变量X的取值为1;当硬币反面朝上时,随机变量X的取值为0。
在这个例子中,随机变量X可以表示硬币正面朝上的次数。
解析:通过这个例子,我们可以看到随机变量的定义是将试验结果与数值相对应起来。
通过定义随机变量,我们可以对随机事件的结果进行量化,进而进行概率计算和统计分析。
2. 离散型随机变量和连续型随机变量有什么区别?请结合实例说明。
答:离散型随机变量是指随机变量的取值只能是有限个或可数个的数值,而连续型随机变量是指随机变量的取值可以是一个区间内的任意值。
例如,掷一颗骰子,随机变量X表示得到的点数。
在这个例子中,X的取值为1、2、3、4、5、6,这是一个离散型随机变量。
而如果我们测量一个学生身高,随机变量X表示学生的身高,它可以是任意一个非负实数,这是一个连续型随机变量。
解析:离散型随机变量和连续型随机变量的区别在于其取值的不同。
离散型随机变量的取值只能是有限个或可数个的数值,而连续型随机变量的取值可以是一个连续区间内的任意值。
理解这两者的特点对于概率计算和统计分析是非常重要的。
3. 事件的概率是如何计算的?请结合公式和实例进行说明。
答:事件的概率可以通过事件发生的次数与总次数的比值来计算。
用P(A)表示事件A的概率,n(A)表示事件A发生的次数,n(S)表示随机试验总共进行的次数,则事件A的概率P(A)可以通过以下公式计算:P(A) = n(A)/n(S)例如,如果我们掷一枚硬币,事件A表示硬币正面朝上,n(A)为1,n(S)为2(因为硬币有两面),则事件A发生的概率可以计算为:P(A) = 1/2 = 0.5解析:通过这个公式,我们可以通过对事件发生次数和总次数的比值进行计算,得到事件发生的概率。
概率论与数理统计(二)(02197)
概率论与数理统计(二)(02197)1[计算题]设随机变量X的概率密度为2[计算题]设随机变量X服从[0,0.2]上的均匀分布,随机变量Y的概率密度为且X与Y相互独立,求(X,Y)的概率密度。
综合题]设(X,Y)的分布律为:且X与Y相互独立,求常数和的值。
[综合题]设随机变量X与Y相互独立,且X,Y的分布律分别为求二维随机变量(X,Y)的分布律。
[应用题]五家商店联营,它们每两周售出的某种农产品的数量(以千克计)分别记为随机变量.已知,,,,,且它们相互独立,求这五家商店两周的总销量的均值和方差?解:设随机变量X指五家商店两周的总销量,则由已知可得(1)这五家商店两周的总销量的均值(2)这五家商店两周的总销量的方差[应用题]设电压(以计),将电压施加于一检波器,其输出电压为,求输出电压Y的均值?[计算题][计算题][综合题]设随机变量X的分布律为记综合题]设离散型随机变量X的分布律为[应用题]已知甲进行一次射击的命中率为,求:“甲进行三次独立的射击,至少一次命中”的概率?应用题]随机地取8只活塞环,测得它们的直径为(以mm计)74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002试求总体均值的矩估计值?[计算题][计算题]12把钥匙中有4把能打开门,今任取两把,求能打开门的概率。
综合题]设袋中有依次标着-1,0,1,2,3,4数字的6个球,现从中任取一球,记随机变量X为取得的球标有的数字,求:(1)X的分布律;(2)的概率分布。
[综合题]设二维随机变量(X,Y)的分布律为(1)求(X,Y)分别关于X,Y的边缘分布律;(2)试问X与Y是否相互独立,为什么?[应用题]已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机地挑选一个人,恰好是色盲患者,问此人是男性的概率是多少?解:设A表示“男人”,B表示“女人”,C表示“这人有色盲”,则由贝叶斯公式可得:应用题]某同学的钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是0.7,0.2,0.1,而掉在上述三处地方被找到的概率分别是0.8,0.2,0.2,试求他找到钥匙的概率?解:设:A1 =“钥匙掉在宿舍里”,A2=“钥匙掉在教室里”,A3=“钥匙掉在路上”,B=“钥匙被找到”,已知。
2014年10月全国自考概率论及数理统计试题及答案
-5-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-6-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-7-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-8-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-9-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-1-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-2-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-3-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-4-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 10 -
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 11 -
2014 年 10 月全国自考概率论与数理统计(经管类)试题
ቤተ መጻሕፍቲ ባይዱ
- 12 -
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 13 -
(完整版)自考本概率论与数理统计真题10套
全国2013年10月高等教育自学考试04183LSA .B 是枉》两个f®机班件,则FCAU S )为&设随机变fi X »从参数为4的泊松分布/!1下列姑论中正《的是 A T FCX> = O.S.£>(X) =0. 5 B.蓟X) =0.5.D<X)=0. 2& CE<X)=2<DCX) = 1D.£(X)^1*DCX)=4人设a 机变* X 与 Y 相互趣立>R X-B<36,y 5.则 OCX — Y+12C.9D,10、单项选择题(本大题共 10小题,每小题2分,共20分)d 玖A) +rtB>-F<AB)PCA>+PCBJ-PUa)G, PGA)十- HMB)D. FCA)+ P<B)乱已気随机?^件仏B 満足PtA) -C.3t P(B) =0.5T HA/m. 15*则B. PUMQ M HJOn. P 3|A S> = FWK. P(3|AB>=P(J3>3.做下函®中能成为挟髓机变■分布函数的是(Z T X O I 扎F (云)=■{5 X < 0-0, J < 0.C. F (工)fl - if"",D» FCr) =40,工vm氐设^ELS«tX~NWJhXW#ft 函数为况£ .则PCI X\>2y 的值対B. sets —1C. 2—血(打D. 1 一 2e(2)£ •设二维®机变的分布律与边绦分布律为E 设隧机变盘X 的Ed) = 80001 Pi7&00 < X<fi3OO}的值为 A. 0. 04 a. 0, £0 UA )=1OT,利用切KS 夫不零式tt 计 C. 0. S6 D. 1. 00则扎 ^=0.1SC. <:™ 0.叽 M=a 14久设CX|.Xj,-^.XJ是来自总休X~N33》的一亍样本.X足样木均値•那么C.10. S信度(1 一C表达了暨信邕冏的A.播册性圧箭确度 C.显善性 D.可黨®二、填空题(本大题共15小题,每小题2分,共30分)It «肘手射击的命中舉为a 6■在4次射击扌有且仪有3狀命审的柢率広设人与5是闊个郴互观立随机車件・P<A) =0.2 . PCB)-Q. 7S'J尸(A — B)=口・设A T H是网个剧机爭件’若卩〔人)=0•趴卩(A-B) -a氣则p(a|4)三M.SffiW变ffiX W分布律抑尸CX=k)二畀口4 = 1*2・3) *則a卩严心0,15.谊X的概華密度几为IE参® 0 *vo .^P{X < 11=^0. SPljPtX < 2}=lb设Wft变*X的分布律为IX-2 -1 0 10U 0.2 0.4 0. 1忆设/<Xry>为二维陆机变* CCY)的««函数.则匸匸和jCtyldzdy le.二堆随机变》(x,y》的分布律为则P{-Z<X< 1}=则rfxY =2}=19已知®机證*兀的分布律为X—21CP1 2 1 -4 4 4已a E (;O = l 侧常載C=巴知 E(X)=-l,t)(X)-3,KiJ EQW —2)= 2L —亍二项分布的re 机变ft ”其載学期龟与方蟹之比为W 阳刑该分布的参®22,设总体XJK 从iE 态分布N 〔宀屮〉・X, 刿圧样本・则參数^1^的笔估计值23■设制造某种炉件产品所需工时(璋位訂卜时》服从正蕊分布,为了估计M 造这沖产品所需的单件平均工时.现制造4件,记录每件所帚工时如下* L0.54ML,2若确定置蓿度为0+曹5•则平均工时的淹信国间为C fi,«C5) =2* 3534* (1011(3)工 3. 1624) 24.设总从正毎分布"3, m …“皿 为K 样本.卞輕%已知,丘倉样乘均1S-SW 于服设检腔冋膻H 才尸二丹,Hp 严护H.应薜用的统计®悬 麵已知一元性回归方程为yi +恳上・耳亍=氛y=9・WR L三、计算题(本大题共2小题,每小题8分,共16分)2札对同一目标进行三ft 独立射击,第一欢、第二》:•第三次射击的命中畢分别为0"、 ①5.0.7,衆在这三RBt 击中•恰好有一次击中目标的ft 耶.2匚设髓亂变竄X 在】.2▼氛4四个誥ft 中第可能的取ffi,另一随机变■ Y 在 g X 中 爭可ft 的耽值,试求x-y 的分布律,四、综合题(本大题共2小题,每小题12分,共24分)K<0* 0< j< 1,J m*起、2.试求dD 系数片I(2>X 的《率《度(⑶ p{xXMy .2缶设连aSK 机变* X 的分布函»为尸5)-彳0, AxS A J C羽•设甲・乙两射手.他们的射击技术分别如ffi 貂佔)表.題2900表所示•其中% , Y 分别 «示甲”乙肘手射击耳数的分茹悄况1X8 9 10 Y89 】0 P0.40.20*4P :0. 10.S5 1题295〉表fiS 29(b)表现耍从中选拔一名射手去奮加比奏,试讨邈选派哪位肘手鑫赛比敦合理?五、应用题(10分)30.某《居民日tt 入®从正®幷布,现ffi 机鞠査该K 姑位居民'得知他们的平均收人 i«66. 4元*标准差$ = 15元卜试问I<1: a = 0. 05下*是否可W 认为该镇居毘日平均收人为70 3c? (23ff a = 0,OSTi 是否耶氏认为该镇居民日收入的方签为16’?^fl.MsC24) = Z, 064 ,&耐(24)* 1, 7109*%咄* = 1* 96 * 划,=】* 65 述剛住4〉=39. 4,£M24〉=36. 4述刖二24〉= 12.4,x5.ii<24)=13, 84S金国201:?年・1月高竽教存口学莆试 概率论与数理统计(经管类)试题一、《念选摄题C 本尢H 其山小騒.毎小題2分,冀加分) 在毎小《列出的四个备a 项中只有一个堆符合Hl 目豪求的r 谓将其选出并郸“菩a 壤*的相应代码涤«・»途・茅涤或未滾均无分.L 耶,乙两人向剧一a 标射击* /董示-甲脂中a 極".fl 我示“乙饰中0标”,C* 示-ft 中a 标二wc-A. JB. BC. AB2*设为fifi 机■fb 尺舟・射,2)・0乳则尺4R)-A. 0JB. 02C. OJD ・0.43. ttffi 机$*rfn 分布瞒数为尺Q. W?i(i<rcfr)=A* 恥一0) — 卜'(—0)B, F9-0)-F(G C,尸O)-FGa-O)D.柯)-尸何血设二罐融杭变》CV ■门的分布律为X0 1 2 0 00J *2 10L 403B, 0-1G 0.2W^(v-o>A. 0绝空★考试结東前全国2013年4月高等教育口学考试概率论与数理统计(经管类)试题课程代码:»41«3a 考生按规定用«将所冇试a 的答«涂■写在笞a 維上。
历年自考概率论与数理统计(经管类)真题及参考答案(全套)
历年自考概率论与数理统计(经管类)真题及参考答案(全套)xx年4月份全国自考概率论与数理统计真题参考答案一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D 答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0 P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2. 设A,B为两个随机事件,且P>0,则P= A. P B. PC. PD. 1 答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3. 下列各函数可作为随机变量分布函数的是 A. A B. BC. CD. D 答案:B解析:分布函数须满足如下性质:F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选第 1 页项A、C、D中F(x)都不是随机变量的分布函数,排除法知B正确,事实上B满足随机变量分布函数的所有性质.第 2 页4. 设随机变量X的概率密度为A. AB. BC. CD. D答案:A5. 设二维随机变量的分布律为(如下图)则P{X+Y=0}=第 3 页A. B. C. D.答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=+=6. 设二维随机变量的概率密度为A. AB. BC. CD. D 答案:A7. 设随机变量X服从参数为2的泊松分布,则下列结论中正确的是 A. E=,D= B. E=,D= C. E=2,D=4 D. E=2,D=2 答案:D解析:X~P(2),故E=2,D=2.8. 设随机变量X与Y相互独立,且X~N,Y~N,令Z=X-Y,则D= A. 1 B. 3 C. 5 D. 6第 4 页答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.第 5 页9.A. B. C. D. 4二、填空题请在每小题的空格中填上正确答案。
课程代码为04183的概率论与数理统计-试题及答案(2014年4月、10月)
课程代码为04183的概率论与数理统计试题及答案(2014年4月、10月)全国2014年4月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183本试卷满分100分,考试时间150分钟.考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效。
试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用28铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间。
超出答题区域无效。
第一部分选择题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸"的相应代码涂黑。
错涂、多涂或未涂均无分。
1.掷一颗骰子,观察出现的点数。
A表示“出现3点”,B表示“出现偶数点”,则A.A B⊂ B.A B⊂C.A B⊂ D.A B⊂2.设随机变量x的分布律为,F(x)为X的分布函数,则F(0)=A.0.1B.0.3C.0.4D.0.63.设二维随机变量(X,Y)的概率密度为,11,02,(,)0,≤≤≤≤其它,c x yf x y-⎧=⎨⎩则常数c=A.14B.12C.2D.44.设随机变量X服从参数为2的泊松分布,则D(9—2X)=A.1B.4C.5D.85.设(X,Y)为二维随机变量,则与Cov(X,Y)=0不等价...的是A.X与Y相互独立B.()()()D X Y D X D Y-=+C.E(XY)=E(X)E(Y)D.()()()D X Y D X D Y+=+6.设X为随机变量,E(x)=0.1,D(X)=0.01,则由切比雪夫不等式可得A.{}0.110.01≥≤P X -B.{}0.110.99≥≥P X -C.{}0.110.99≤P X -<D.{}0.110.01≤P X -<7.设x 1,x 2,…,x n 为来自某总体的样本,x 为样本均值,则1()ni i x x =-∑=A.(1)n x -B.0C.xD.nx8.设总体X 的方差为2σ,x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,则参数2σ的无偏估计为A.2111n i i x n =-∑ B.211n i i x n =∑ C.211()1ni i x x n =--∑ D.11()2ni i x x n =-∑ 9.设x 1,x 2,…,x n 为来自正态总体N (μ,1)的样本,x 为样本均值,s 2为样本方差.检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则采用的检验统计量应为xx ()x μ-0()x μ-10.设一元线性回归模型为201,(0,),1,2,,,i i i i y x N i n ββεεσ=++=:L 则E (y i )=A.0βB.1i x βC.01i x ββ+D.01i i x ββε++非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
概率论与数理统计自考题-9_真题(含答案与解析)-交互
概率论与数理统计自考题-9(总分100, 做题时间90分钟)第一部分选择题一、单项选择题1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则______ •**(B|A)=0•**(A|B)>0•**(A|B)=P**(AB)=P(A)P(B)SSS_SIMPLE_SINA B C D分值: 2答案:A[解析] ,P(A)>0,又A与B互不相容,所以P(AB)=0即P(A|B)=0.2.设A,B为两个随机事件,且P(AB)>0,则P(A|AB)=______•**(A)•**(AB)•**(A|B)**SSS_SIMPLE_SINA B C D分值: 2答案:D[解析] P(A|AB)表示的意义是在A、B两个事件同时发生的条件下事件A发生的概率,易知P(A|AB)=1.3.设随机变化量X的概率密度为则______A. B. C. D.SSS_SIMPLE_SINA B C D分值: 2答案:A[解析] .4.设随机变量X服从参数为3的指数分布,其分布函数记为F(x),则______A. B.C.1-e-1 D.SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] ∵X服从参数为3的指数分布,5.设下列函数的定义域均为(-∞,+∞),则其中可以作为概率密度的是______ A.f(x)=-e-x B.f(x)=e-xC. D.f(x)=e-|x|SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] 由概论密度的性质得,f(x)≥0,,A项,f(x)=-e-x<0排除,B项,,C项f(x).同理排除D.6.设随机变量,Y~N(2,10),又E(XY)=14,则X与Y的相关系数=______ρXY• A.-0.8• B.-0.16•****SSS_SIMPLE_SINA B C D分值: 2答案:D[解析] .7.已知随机变量X的概率密度为则(E)X=______A.6 B.3C.1 D.SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 因为,所以就有.8.设随机变量X~N(0,1),Y~N(0,1),且X与Y相互独立,则X2+Y2~______•**(0,2)B.χ2(2)•**(2)**(1,1)SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 由χ2分布定义知,X2+Y2~χ2(2).9.设随机变量Z~B(n,p),n=1,2,…,其中0<p<1,则______nA. B.C. D.SSS_SIMPLE_SINA B C D分值: 2答案:B[解析] 由独立同分布的中心极限定理知.10.设总体X~N(μ,σ2),其中σ2未知.现随机抽样,计算得样本方差为100,若要对其均值进行检验.采用______•**—检验法B.χ2—检验法•**—检验法**—检验法SSS_SIMPLE_SINA B C D分值: 2答案:D[解析] Z—检验法适用对象:单个或多个正态总体,σ2已知时,关于均值μ的假设检验.t—检验法适用对象:单个或多个正态总体,σ2未知,用样本值S2代替时,关于均值μ的假设检验.χ2—检验法:用来检验在未知正态总体的均值时,其方差是否等于某个特定值.F—检验法,用来检验均值未知的两个正态总体,其方差是否相等.第二部分非选择题二、填空题1.设随机事件A与B相互独立,且P(A)=P(B)=,则=______.SSS_FILL分值: 2答案:[解析]2.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为______.SSS_FILL分值: 2答案:0.7[解析] 设甲击中飞机的概率为P(A),乙击中飞机的概率为P(B),则P(AB)为甲、乙同时击中飞机的概率.故飞机至少被击中一炮的概率为:P(A∪B)=P(A)+P(B)-P(AB)=0.4+0.5-0.4×0.5=0.7.3.设A为随机事件,P(A)=0.3,则=______.SSS_FILL分值: 2答案:0.7[解析]4.设事件A与B相互独立,且P(A)=0.3,P(B)=0.4,则P(A∪B)=______.分值: 2答案:0.58[解析] ∵A、B相互独立∴P(AB)=P(A)P(B)=0.4×0.3=0.12P(A∪B)=P(A)+P(B)-P(AB)=0.3+0.4-0.12=0.58.5.设X是连续型随机变量,则P{X=5}=______.SSS_FILL分值: 2答案:0[解析] 因为X是连续型随机变量,其任意一点的概率都为零,所以P{x=5}=0.6.设随机变量X服从正态分布N(1,4),Ф(x)为标准正态分布函数,已知Ф(1)=0.8413,Ф(2)=0.9772,则P{|X|<3}=______.SSS_FILL分值: 2答案:0.8185[解析]7.设随机变量X的分布函数为则当x>0时,X的概率密度f(x)=______.SSS_FILL分值: 2答案:e-x[解析] F(x)与f(x)的对应关系为f(x)=F'(x),当x>0时f(x)=(1-e-x)1=e-x.8.设二维随机变量(X,Y)的概率密度为则当y>0时,(X,Y)关于Y的边缘概率密(y)=______.度fY分值: 2答案:e-y[解析]9.设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=______.SSS_FILL分值: 2答案:[解析] 因为X+Y≤1又0<x<2,2<y<1,所以随机点必落在右图区域中.10.设随机变量X的分布律为,则E(X2)=______.SSS_FILL分值: 2答案:1[解析] .11.设随机变量X~N(0,4),则E(X2)=______.SSS_FILL分值: 2答案:4[解析] X~N(0,4),∴E(x)=0,D(x)=4,E(x2)=D(x)+E2(x)=4+0=4.12.设随机变量F~F(n1,n2),则~______.SSS_FILL答案:F(N2,N1)[解析] 由F分布的构造知,若F~F(m,n),则有1/F~F(n,m),∴.13.设X1,X2,…,Xn…是独立同分布的随机变量序列,E(Xn)=μ,D(Xn)=σ2,n=1,2,…,则=______.SSS_FILL分值: 2答案:0.5[解析] 根据独立同分布中心极限定理:14.设0.05是假设检验中犯第一类错误的概率,H0为原假设,则P{拒绝H|H真}=______.SSS_FILL分值: 2答案:0.05[解析] 由第一类错误的定义即知.15.设x1,x2,…,xn为样本观测值,经计算知,.则=______.SSS_FILL分值: 2答案:36[解析]三、计算题1.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率;(2)该件次品是由甲车间生产的概率.SSS_TEXT_QUSTI答案:以A1,A2,A3依次表示任取1件产品,它是由甲、乙、丙车间所生产的事件,B表示事件“任取1件产品,它是次品”.(1)(2)2.设某行业的一项经济指标服从正态分布N(μ,σ2),其中μ,σ2均未知.今获取了该指标的9个数据作为样本,并算得样本均值=56.93,样本方差s2=(0.93)2,求μ的置信度为95%的置信区间.(附:t0.025=2.306)SSS_TEXT_QUSTI分值: 8答案:正态总体的方差σ2未知,μ的置信度为(1-α)的置信区间为.由,s=0.93,n=9,α=0.05,.计算可知μ的置信度为95%的置信区间为(56.22,57.64).四、综合题设随机变量X的概率密度为SSS_TEXT_QUSTI1.求X的分布函数FX(x);分值: 4答案:SSS_TEXT_QUSTI2.求;分值: 4答案:SSS_TEXT_QUSTI3.令Y=2X,求Y的概率密度fY(y).分值: 4答案:y=g(x)=2x,α=-∞,β=+∞,,则设二维随机变量(X,Y)的分布律为SSS_TEXT_QUSTI4.求(X,Y)分别关于X,Y的边缘分布律;分值: 6答案:X,Y的分布律分别为SSS_TEXT_QUSTI5.试问X与Y是否相互独立,为什么?分值: 6答案:由于P{X=0,Y=0}=0.2,P{X=0}=0.3,P{Y=0}=0.4而P{X=0,Y=0}≠P{X=0}P{Y=0},故X与Y不相互独立.五、应用题1.设某厂生产的食盐的袋装重量服从正态分布N(μ,σ2)(单位:g),已知σ2=9.在生产过程中随机抽取16袋食盐,测得平均袋装重量=496.问在显著性水平α=0.05下,是否可以认为该厂生产的袋装食盐的平均袋重为500g?(μ0.025=1.96)SSS_TEXT_QUSTI分值: 10答案:检验假设H0:μ=500;H1:μ≠500.已知n=16,σ=3,,成立时,,在H,即认为该厂生产的代装食盐的平均重量不是500g.由于,故拒绝H1。
全国2014年10月自学考试《教育统计与测量》试题和答案【纯文字】
【该纯文字文档答案附带教材出处和评分标准】 请考生按规定用笔将所有试题的答案涂、写在答题纸上。 选择题部分 注意事项: 1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填 写在答题纸规定的位置上。 2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡皮 擦干净后,再选涂其他答案标号。不能答在试题卷上。 一、单项选择题(本大题共 15 小题,每小题 2 分,共 30 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的 相应代码涂黑。错涂、多涂或未涂均不得分。自考赢家杨小丹制作 1.学生学业成绩评定中给出代表优、良、中、差水平的“5,4,3,2”分是【 】 A.顺序量尺 B.名义量尺 C.等距量尺 D.比率量尺 正确答案:A(2 分) 教材出处:P6 2.某一测验多次施测时所得分数的稳定、一致程度是【 】 A.难度 B.效度 C.区分度 D.信度 正确答案:D(2 分) 教材出处:P129 3.下列两组数据(15、2、16、10、25、12、1、8、13) , (1、26、11、9、14、13、7、17、 22、2)的中位数分别是【 】 A.12、12 B.13、11 C.13、9 D.14、12 正确答案:A(2 分) 教材出处:P48 4.下列能反映数据分布离散趋势的特征量数是【 】 A.相关关系 B.地位量数 C.集中量数 D.差异量数 正确答案:D(2 分) 教材出处:P53 5.一列是连续变量数据, 另一列是顺序变量数据, 计算相关系数时应该运用的相关是 【 】 A.等级相关 B.点双列相关 C.积差相关 D.列联相关 正确答案:A(2 分) 教材出处:P76 6.在次数分布表中, “60-65”区组的实际上限和下限的正确表然后进行抽样: (2 分) (2)第一步,按比例求出各部分入样元素数: (2 分) (3)第二步,各部分按要求的入样数用简单随机抽样的方法产生入样元素 .最终合成 总样本。 (2 分) 四、计算题(本大题共 2 小题,每小题 6 分,共 12 分)自考赢家杨小丹制作 24.今有某班学生进行数学测验,己知测验平均分数 X =50 分,标准差 S=4 分。请分别计算 60、84、87 分对应的 Z 分数。 正确答案:教材 P104 根据公式 Z 当 X=60, Z
(完整版)概率论与数理统计试题及答案.doc
2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。
1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。
若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。
6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。
概率论与数理统计题库及答案
概率论与数理统计题库及答案一、单选题1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 51,41,31,21 (B) 81,81,41,21 (C) 21,21,21,21- (D) 161,81,41,212. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 41414121(B)161814121(C)1631614121 (D)81834121-3. 设连续型随机变量X 的密度函数⎩⎨⎧<<=,,0,10,2)(其他x x x f 则下列等式成立的是( ).(A) X P (≥1)1=- (B) 21)21(==X P (C) 21)21(=<X P (D) 21)21(=>X P4. 若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=bax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()5. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有X a P <(≤=)b ( ). (A)⎰bax x F d )( (B)⎰bax x f d )((C) )()(a f b f - (D) )()(b F a F -6. 下列函数中能够作为连续型随机变量的密度函数的是( ).7. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P ( ). (A) 0.1 (B) 0.4 (C) 0.3 (D) 0.28. 设)1,0(~N X ,Φ)(x 是X 的分布函数,则下列式子不成立的是( ).(A) Φ5.0)0(= (B) Φ+-)(x Φ1)(=x (C) Φ=-)(a Φ)(a (D) 2)(=<a x P Φ1)(-a9. 下列数组中,不能作为随机变量分布列的是( ).(A )61,61,31,31 (B) 104,103,102,101 (C) 12141818,,, (D) 131619112,,,10. 若随机变量)1,0(~N X ,则~23-=X Y ( ).(A) )3,2(-N (B) )3,4(-N (C) )3,4(2-N (D) )3,2(2-N11. 随机变量X 服从二项分布),(p n B ,则有=)()(X E X D ( ). (A) n (B) p (C) 1- p (D)p-1112. 如果随机变量X B ~(,.)1003,则E X D X (),()分别为( ).(A) E X D X (),().==321(B) 9.0)(,3)(==X D X E(C) E X D X ().,()==033 (D) E X D X ().,().==032113. 设),(~p n B X ,2.1)(,2)(==X D X E ,则p n ,分别是( ).(A) 4.0,5 (B) 2.0,10 (C) 5.0,4 (D) 25.0,814. 设),(~p n B X ,且6.3)(,6)(==X D X E ,则=n ( ).(A) 30 (B) 20(C) 15 (D) 1015. 设)10,50(~2N X ,则随机变量( )~)1,0(N .(A)10050-X (B) 1050-X (C) 50100-X (D) 5010-X16. 对于随机事件A B ,,下列运算公式( )成立.(A) )()()(B P A P B A P +=+ (B) )()()(B P A P AB P =(C) )()()(A B P B P AB P = (D) )()()()(AB P B P A P B A P -+=+17. 下列事件运算关系正确的是( ).(A) A B BA B += (B) A B BA B += (C) A B BA B += (D) B B -=118. 设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B19. 设A B ,为随机事件,A 与B 不同时发生用事件的运算表示为( ).(A) A B + (B) A B + (C) AB AB + (D) A B20. 若随机事件A ,B 满足AB =∅,则结论( )成立. (A) A 与B 是对立事件 (B) A 与B 相互独立(C) A 与B 互不相容 (D) A 与B 互不相容21. 甲、乙二人射击,A B ,分别表示甲、乙射中目标,则AB 表示( )的事件.(A) 二人都没射中 (B) 至少有一人没射中 (C) 两人都射中 (D) 至少有一人射中22. 若事件A B ,的概率为6.0)(=A P ,5.0)(=B P ,则A 与B 一定( ).(A) 相互对立 (B) 相互独立 (C) 互不相容 (D) 相容23. 设A ,B 为两个任意事件,则P (A +B ) =( ).(A) P (A ) + P (B ) (B) P (A ) + P (B ) - P (A )P (B ) (C) P (A ) + P (B ) - P (AB ) (D) P (AB ) – [P (A ) + P (B ) ]24. 对任意两个任意事件A B ,,等式( )成立.(A) P AB P A P B ()()()= (B) P A B P A P B ()()()+=+ (C) P A B P A P B ()()(())=≠0 (D) P AB P A P B A P A ()()()(())=≠025. 设A ,B 是两个任意事件,则下列等式中( )是不正确的.(A) )()()(B P A P AB P =,其中A ,B 相互独立 (B) )()()(B A P B P AB P =,其中0)(≠B P (C) )()()(B P A P AB P =,其中A ,B 互不相容 (D) )()()(A B P A P AB P =,其中0)(≠A P26. 若事件A 与B 互斥,则下列等式中正确的是( ). (A) P AB P A P B ()()()= (B) P B P A ()()=-1(C) P A P A B ()()= (D) P A B P A P B ()()()+=+27. 设A ,B 为两个任意事件,则下列等式成立的是( ).(A) B A B A +=+ (B) B A AB ⋅= (C) B A B B A +=+ (D) B A B B A +=+28. 设A B ,为随机事件,下列等式成立的是( ).(A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+ (C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=-29. 甲、乙两人各自考上大学的概率分别为0.7,0.8,则甲、乙两人同时考上大学的概率为( ).(A) 0.56 (B) 0.50 (C) 0.75 (D) 0.9430. 若A B ,满足( ),则A 与B 是对立事件.(A) 1)(=+B A P (B) A B U AB +==∅, (C) P A B P A P B ()()()+=+ (D) P AB P A P B ()()()=31. 若A 与B 相互独立,则等式( )成立.(A) P A B P A P B ()()()+=+ (B) P AB P A ()()=(C) P A B P A ()()= (D) P AB P A P B ()()()=32. 设n x x x ,,,21 是正态总体),(2σμN (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关. (A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α33. 假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小34. 从正态总体),(2σμN 中随机抽取容量为n 的样本,检验假设0H :,0μμ=1H :0μμ≠.若用t 检验法,选用统计量t ,则在显著性水平α下的拒绝域为( ). (A) )1(-<n t t α (B) t ≥)1(1--n t α (C) )1(->n t t α (D) )1(1--<-n t t α35. 在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ).(A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差36. 对正态总体),(2σμN 的假设检验问题中,U 检验解决的问题是( ).(A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差37. 设n x x x ,,,21 是正态总体),(2σμN 的一个样本,2σ是已知参数,μ是未知参数,记∑==ni i x n x 11,函数)(x Φ表示标准正态分布)1,0(N 的分布函数,975.0)96.1(=Φ,900.0)28.1(=Φ,则μ的置信水平为0.95的置信区间为( ).(A) (x -0.975n σ,x +0.975nσ) (B) (x -1.96n σ,x +1.96n σ)(C) (x -1.28nσ,x +1.28nσ) (D) (x -0.90nσ,x +0.90nσ)38. 设321,,x x x 是来自正态总体N (,)μσ2的样本,则μ的无偏估计是( ).(A)3321x x x -+ (B) 321x x x -+(C) 321x x x ++ (D) 321x x x --39. 设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321x x x ++ (B)321525252x x x ++ (C) 321515151x x x ++ (D) 321535151x x x ++40. 设21,x x 是取自正态总体)1,(μN 的容量为2的样本,其中μ为未知参数,以下关于μ的估计中,只有( )才是μ的无偏估计.(A) 213432x x + (B) 214241x x + (C) 214143x x - (D)215352x x +41. 设总体X 的均值μ与方差2σ都存在,且均为未知参数,而n x x x ,,,21 是该总体的一个样本,记∑==ni i x n x 11,则总体方差2σ的矩估计为( ).(A) x (B) ∑=-ni i x n 12)(1μ(C) ∑=-n i i x x n 12)(1 (D) ∑=n i i x n 12142. 设n x x x ,,,21 是来自正态总体22,)(,(σμσμN 均未知)的样本,则( )是统计量.(A) 1x (B) μ+x (C)221σx (D)1x μ43. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,∑==3131i i X X ,则下列各式中( )不是统计量. (A ) X (B)∑=31i iX(C) ∑=-312)(31i i X μ (D) ∑=-312)(31i i X X44. 设X 是连续型随机变量,其密度函数为⎩⎨⎧∉∈=],,1(,0],,1(,ln )(b x b x x x f 则常数b =( ).(A) e (B) e + 1 (C) e – 1 (D) e 245. 随机变量)21,3(~B X ,则X P (≤=)2( ).(A) 0 (B) 81(C)21 (D) 8746. 设),2(~2σN X ,已知2(P ≤X ≤4.0)4=,则X P (≤=)0( ).(A) 0.4 (B) 0.3 (C) 0.2 (D) 0.147. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么( ).(A) 2,2-==b a (B) 1,2-=-=b a (C) 1,21-==b a (D) 2,21==b a48. 设随机变量X 的密度函数为f x (),则E X ()2=( ).(A) xf x x ()-∞+∞⎰d (B)x x f x d )(2⎰∞+∞-(C)x x xf d )(2⎰∞+∞- (D)(())()x E X f x x --∞+∞⎰2d49. 若随机变量X 的期望和方差分别为)(X E 和)(X D ,则等式( )成立.(A) )]([)(X E X E X D -= (B) 22)]([)()(X E X E X D += (C) )()(2X E X D = (D) 22)]([)()(X E X E X D -=50. 设随机变量X 服从二项分布B (n , p ),已知E (X )=2.4, D (X )=1.44,则( ). (A) n = 8, p =0.3 (B) n = 6, p =0.6 (C) n = 6, p =0.4 (D) n = 24, p =0.1二、证明题1. 试证:已知事件A ,B 的概率分别为P (A ) = 0.3,P (B ) = 0.6,P (B A +) = 0.1,则P (AB ) =0.2. 试证:已知事件A ,B 相互独立,则)()(1)(B P A P B A P -=+.3. 已知事件A ,B ,C 相互独立,试证)(B A +与C 相互独立.4. 设事件A ,B 的概率分别为21)(=A P ,32)(=B P ,试证:A 与B 是相容的.5. 设随机事件A ,B 相互独立,试证:B A ,也相互独立.6. 设A ,B 为随机事件,试证:)()()(AB P A P B A P -=-.7. 设随机事件A ,B 满足AB =∅,试证:P A B P B ()()+=-1.8. 设A ,B 为随机事件,试证:P A P A B P AB ()()()=-+.9. 设B A ,是随机事件,试证:)()()()(AB P B A P B A P B A P ++=+.10. 已知随机事件A ,B 满足A B ⊃,试证:)()()(B P A P B A P -=-.三、计算题1. 设B A ,是两个随机事件,已知5.0)(=A P , 4.0)(=A B P ,求)(B A P .2. 某种产品有80%是正品,用某种仪器检查时,正品被误定为次品的概率是3%,次品被误定为正品的概率是2%,设A 表示一产品经检查被定为正品,B 表示一产品确为正品,求P (A ).3. 某单位同时装有两种报警系统A 与B ,每种系统独立使用时,其有效概率9.0)(=A P ,95.0)(=B P ,在A 有效的条件下B 有效的概率为97.0)(=A B P ,求)(B A P +.4. 设A , B 是两个独立的随机事件,已知P (A ) = 0.4,P (B ) = 0.7,求A 与B 只有一个发生的概率.5. 设事件A ,B 相互独立,已知6.0)(=A P ,8.0)(=B P ,求A 与B 只有一个发生的概率.6. 假设B A ,为两事件,已知4.0)(,6.0)(,5.0)(===A B P B P A P ,求)(B A P +.7. 设随机变量)2,3(~2N X ,求概率X P <-3(≤)5 (已知Φ3841.0)1(=,Φ7998.0)3(=φ).8. 设A , B 是两个随机事件,已知P (A ) = 0.6,P (B ) = 0.8,P (A B )=0.2,求)(B A P .9. 从大批发芽率为8.0的种子中,任取4粒,问(1)4粒中恰有一粒发芽的概率是多少?(2)至少有1粒种子发芽的概率是多少?10. 已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P +.11. 已知4.0)(=A P ,8.0)(=B P ,5.0)(=B A P ,求P B A ().12. 已知7.0)(=A P ,3.0)(=B P ,5.0)(=B A P ,求)(B A P .13. 已知P (B ) = 0.6,)(B A P =0.2,求)(AB P .14. 设随机变量X ~ N (3,4).求 P (1< X < 7)(Φ3841.0)1(=,Φ2977.0)2(=).15. 设)5.0,3(~2N X ,求2(P ≤X ≤)6.3.已知Φ9884.0)2.1(=,2977.0)2(=Φ.16. 设B A ,是两个随机事件,已知4.0)(=A P ,5.0)(=B P ,45.0)(=A B P ,求)(B A P +.17.已知某批零件的加工由两道工序完成,第一道工序的次品率为0.03,第二道工序的次品率为0.01,两道工序的次品率彼此无关,求这批零件的合格率.18.已知袋中有3个白球7个黑球,从中有放回地抽取3次,每次取1个,试求⑴恰有2个白球的概率;⑵有白球的概率.19. 268-16.某篮球运动员一次投篮投中篮框的概率为0.8,该运动员投篮3次,⑴求投中篮框不少于2次的概率;⑵求至少投中篮框1次的概率.20.某篮球运动员一次投篮投中篮框的概率为0.9,该运动员投篮3次,⑴求投中篮框不少于2次的概率;⑵求至少投中篮框1次的概率.21.某气象站天气预报的准确率为70%,在4次预报中,求⑴恰有3次准确的概率;⑵至少1次准确的概率.22.已知某批产品的次品率为0.1,在这批产品中有放回地抽取4次,每次抽取一件,试求⑴有次品的概率;⑵恰有两件次品的概率.23.某射手射击一次命中靶心的概率是08.,该射手连续射击5次,求:⑴命中靶心的概率;⑵至少4次命中靶心的概率.24.设箱中有3个白球2个黑球,从中依次不放回地取出3球,求第3次才取到黑球的概率.25.一袋中有10个球,其中3个黑球7个白球.今从中有放回地抽取,每次取1个,共取5次.求⑴恰有2次取到黑球的概率;⑵至少有1次取到白球的概率.26.有甲、乙两批种子,发芽率分别是0.85和0.75,在这两批种子中各随机取一粒,求至少有一粒发芽的概率.27.机械零件的加工由甲、乙两道工序完成,甲工序的次品率是0.01,乙工序的次品率是0.02,两道工序的生产彼此无关,求生产的产品是合格品的概率.28.一袋中有10个球,其中3个黑球7个白球.今从中依次无放回地抽取两个,求第2次抽取出的是黑球的概率.29. 两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。
自考作业答案概率论与数理统计
答案和题目概率论与数理统计(经管类)综合试题一(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列选项正确的是 ( B ).A. A B A B +=+B.()A B B A B +-=-C. (A-B )+B =AD. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是( D ).(A -B )=P (A )-P (B ) (AB )=P (A )P (B )C. P (A +B )=P (A )+P (B )D. P (A +B )=P (A )+P (B )-P (AB )3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ).A. 18B. 16C. 14D. 124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ).A.1120 B. 160C. 15 D. 12 5.设随机事件A ,B 满足B A ⊂,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足( C ). A. 0()1f x ≤≤ B. f (x )连续C. ()1f x dx +∞-∞=⎰D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2,...2kbP X k k ===,且0b >,则参数b 的值为( D ).A.12B. 13C. 15 D. 18.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ).9.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110ii X X ==∑~( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)XN X X X μσ是来自X 的样本,又12311ˆ42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ).A. 1B.14 C. 12D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-2-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-3-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-4-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-5-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-6-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-7-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-8-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-9-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 10 -
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 11 -
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 12 -
2014 年 10 月全国自考概率论与数