自考概率论与数理统计基础知识.

合集下载

高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x p p ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论与数理统计复习资料

概率论与数理统计复习资料

自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。

结论:随机现象是不确定现象之一。

2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。

E2:掷一枚骰子,观察出现的点数。

E3:记录110报警台一天接到的报警次数。

E4:在一批灯泡中任意抽取一个,测试它的寿命。

E5:记录某物理量(长度、直径等)的测量误差。

E6:在区间[0,1]上任取一点,记录它的坐标。

随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。

样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。

所有样本点的集合称为样本空间,记作。

举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。

3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。

只包含一个样本点的单点子集{}称为基本事件。

必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。

(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。

性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。

注:与集合包含的区别。

相等:若且,则称事件A与事件B相等,记作A=B。

(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。

2022年自考04183概率论与数理统计(经管类)核心考点资料

2022年自考04183概率论与数理统计(经管类)核心考点资料

(2) =φ,φ=Ω.
(3)A-B=
=A-AB.
在进行事件运算时,经常要用到下述运算律,设 A,B,C 为事件,则有: 交换律:A∪B=B∪A,A∩B=B∩A. 结合律:A∪(B∪C)=(A∪B) ∪C,
A∩(B∩C)=(A∩B)∩C. 分配律:A∪(B∩C)=(A∪B)∩(A∪C),
A∩(B∪C)=(A∩B)∪(A∩C). 对偶律:
, 其中 0<p<1,p+q=1,则称 X 服从参数为 n,p 的二项分布,简记为 X~B(n,p). 泊松分布: 设随机变量 X 的可能取值为 0,1,2,…,n,…,而 X 的分布律为
其中λ>0,则称 X 服从参数为λ的泊松分布,简记为 X~P(λ). 泊松( Poisson)定理设λ>0 是常数,n 是任意正整数,且 npn=λ,则对于任意取定的非负整 数 k,有
当 g(x1),g(x2),…,g(xk),…有相等的情况时,应把使 g(xk)相等的那些 xi 所对应的概率相 加,作为 Y 取 g(xk)时的概率,这样才能得到 Y 的分布律. 设 X 为连续型随机变量,其概率密度为 fx(x).设 g(x)是一严格单调的可导函数,其值域为[α, β]且 g’(x)≠0.记 x=h(y)为 y=g(x)的反函数,则 Y=g(X)的概率密度
.
即当 n 很大很小时,有近似公式
,其中λ=np.
二、随机变量的分布函数 设 X 为随机变量,称函数
F(x)=P{X≤x},x∈(-∞,+∞) 为 X 的分布函数. 当 X 为离散型随机变量时,设 X 的分布律为
pk=P{X=k},k=0,1,2,…
由于
,由概率性质知,



其中求和是对所有满足 xk≤x 时,xk 相应的概率 pk 求和. 分布函数有以下基本性质:

高等教育自学考试概率论与数理统计(经管类04183)复习资料

高等教育自学考试概率论与数理统计(经管类04183)复习资料

概率论与数理统计(经管类04183)第一章 随机事件与概率复习要点:一、事件的关系和运算 1.常用表示公式A ,B ,C .至少发生一个;都发生;都不发生;恰好发生一个;至多发生一个. 2.互不相容与对立 3.差的不同表示法 4.特殊关系事件间的运算(1),B A ⊂则.,,,不相容与B A ,A B B A B B A A AB ⊂=-=+=Φ (2)A ,B 互不相容,则.,,,,B A B A B A B A B A AB ⊂=+=-=-=ΩΦ 5.对偶律 画图.二、概率的性质 1.基本性质 2.推论(1)有限可加性 (2))(1)(A P A P -=;(3))()()(,A P B P A B P B A -=-⊂;(4))()()()(AB P B P A P B A P -+=+, )()()(AB P A P B A P -=-,)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=++ 三、古典概型注意:1.上下一致;2.不重复,不遗漏;3. 事件复杂时考虑对立事件. 四、条件概率 1.条件概率)()()|(A P AB P A B P =2.乘法公式)()()()(),|()()(AB |C P A |B P A P ABC P A B P A P AB P == 3.全概率公式和贝叶斯公式n A A ,,1 —原因,在先,B —结果,在后.时间上的先后,逻辑上的先后.五、事件的独立性 1.定义 2.等价条件 3.n 个事件 4.性质(1)B ,A B A,B A B A ;;;,,独立性等价;(2)n A A ,,1 相互独立.其中一部分必相互独立;若干个换成对立事件仍相互独立;分成几组,各组的运算结果间相互独立.5.利用独立性计算概率),(()()()()(1)(B A)P P B P A P B P A P B A P -+=-=+)()()(B P A P B A P =- )()1)(11n n A P A P(A A P -=++最终化为事件乘积的概率. 6.n 重贝努利试验概率的计算:1.推算题 独立性→条件概率→互不相容→包含→一般2.文字题 独立性→全、逆概公式→条件概率→古典概型第二章 随机变量及其概率分布复习要点: 一、分布函数 1.定义 2.性质3.计算概率二、离散型随机变量 1.概率分布 2.性质求概率分布:(1)先找X 的取值;(2)求X 取每个值的概率(可少求一个). 3.求概率利用概率的可加性. 4.分布函数三、连续型随机变量 1.密度 2.性质求密度中的参数. 3.求概率 4.分布函数 (1)求参数(2)与密度的关系 四、重要分布 1.0—1分布 2.二项分布 3.泊松分布 4.均匀分布6.正态分布对称性,概率的计算.五、随机变量函数的分布1.离散型Y=g(X).先找Y的取值,再利用X的分布律和可加性计算Y的分布概率.2.连续型了解分布函数法第三章多维随机变量及其概率分布复习要点:一、多维随机变量及其分布函数二、离散型随机变量1.概率分布2.性质求概率分布:(1)先找X、Y的取值,得(X,Y)的取值(交叉);(2)求(X,Y)取每个值的概率(可少求一个).3.求概率利用概率的可加性.三、连续型随机变量1.密度2.性质求密度中的参数.3.求概率四、边际分布与独立性1.离散型表上作业.2.连续型注意逆问题:由独立性及边际分布找联合分布.五、重要分布1.二维均匀分布知道何时两分量独立.2.二维正态分布知道边际分布.五、两个随机变量的函数的分布1.离散型Z=X+Y,Z=XY.先找Z的取值,再利用(X,Y)的分布律和可加性计算Z的分布概率.2.两个独立连续型随机变量之和的分布了解卷积公式独立的正态分布的线性组合仍为正态分布.第四章随机变量的数字特征复习要点:1.单个随机变量(1)离散型 (2)连续型n nn p x X E ∑=)( ⎰+∞∞-=xf(x)dx X E )(n nn p x g X g E )()]([∑= ⎰+∞∞-=dx x f x g X g E )()()]([n nnp x X E ∑=22)( ⎰+∞∞-=dx x f x X E )()(222.两个随机变量 (1)离散型ij ij i j p y x g Y X,g E ),()]([∑∑= ij ijij p yx XY E ∑∑=)(∙∑∑∑==i ii ijii jpx p x X E )(j j jij ij jp yp y E(Y ∙∑∑∑==)(2)连续型dy dx y x f y x g Y X,g E ⎰⎰+∞∞-+∞∞-=),(),()]([ dy dx y x f y x XY E ⎰⎰+∞∞-+∞∞-=),()(==⎰⎰+∞∞-+∞∞-dxdy y x xf X E ),()(⎰+∞∞-dx x xf X )( ==⎰⎰+∞∞-+∞∞-dxdy y x f y Y E ),()(⎰+∞∞-dy y f y Y )(建议:用边际分布求各分量的期望及其函数的期望. 3.性质 二、方差 1.定义2.等价公式3.性质随机变量的标准化.三、重要分布的期望、方差 四、协方差 1.定义Cov (X ,Y )=E [X -E (X )]E [Y -E (Y )]),(2)()()(Y X Cov Y D X D Y X D ++=+),(2)()()(Y X abCov Y D b X D a bY aX D 22++=+2.等价公式Cov (X ,Y )=E (XY )-E (X )E (Y )3.性质 五、相关系数 1.定义2.性质3.不相关独立⇒E (XY )=E (X )E (Y )⇔⇔+=±)()()(Y D X D Y X D Cov (X ,Y )=0⇔不相关二维正态分布的特殊性.第五章 大数定律与中心极限定理复习要点:一、切贝雪夫不等式二、大数定律 知道结论.三、中心极限定理1.独立同分布序列的中心极限定理).,(~2n1i i n n N X σμ∑=)()(21σμΦn n a a X P ni i -≈≤∑=2.棣—拉中心极限定理X ~B (n ,p ).X ~N (np ,np (1-p )).).)1(()(p np np a a X P --≈≤Φ第六章 统计量及其抽样分布复习要点:一、概念 1.总体与样本 2.统计量定义;样本均值、样本方差、样本标准差、样本矩(了解). 二、几种统计量的分布 1.2χ分布(1)构造;(2)可加性;(3)分位数. 2.t 分布(1)构造;(2)对称性;(3)分位数. 3.F 分布(1)构造;(2)倒数;(3)分位数. 三、正态总体的抽样分布 单正态总体第七章 参数估计本章重点: 一、点估计 1.矩估计一个参数θ.(1))(θμg EX ==;(2) )ˆ(ˆθμg =;(3)解出θˆ. 2.极大似然估计一个参数θ.(1));(θ∏==n1i i x p L ;(2) lnL ;(3)0d dlnL=θ;(4)解出θˆ. 3.评判标准(1)无偏性.2σμ与的无偏估计;(2)有效性;(3)相合性. 二、区间估计1.概念2.单个正态总体的置信区间第八章 假设检验复习要点: 一、概念 1.基本概念2.步骤3.两类错误二、单个正态总体的假设检验 1.已知方差,检验均值 (u ) (1)双边;(2)单边.2.未知方差,检验均值 (t ) (1)双边;(2)单边.3.未知均值,检验方差 (χ2) (1)双边;(2)单边.三、两个正态总体的假设检验 1.已知方差,检验均值 (u ) (1)双边;(2)单边.2.未知方差但相等,检验均值 (t ) (1)双边;(2)单边.3.未知均值,检验方差 (F ) (1)双边;(2)单边.四、大样本下任意总体的参数检验第九章 回归分析复习要点:回归系数和回归常数的估计公式,了解F 检验.。

2023年10月自考04183概率论与数理统计(经管类)

2023年10月自考04183概率论与数理统计(经管类)

2023年10月自考04183概率论与数理统计(经管类)引言概率论与数理统计作为经管类考试中的一门重要课程,为学生提供了解决现实生活中统计数据和不确定性问题的基本工具。

本文将介绍2023年10月自考04183概率论与数理统计(经管类)考试的相关内容和考试要点。

一、考试大纲概述2023年10月自考04183概率论与数理统计(经管类)的考试大纲主要包括三个部分:概率论、数理统计基础和应用统计分析。

下面将对这三个部分进行简要介绍:1.1 概率论概率论是研究随机现象的数量规律和数字特征的数学分支。

在概率论部分,考生需要熟练掌握概率的基本概念、概率计算方法、常见的离散型和连续型概率分布、随机变量及其分布特征等内容。

还需要了解概率的运算规则、条件概率、独立性、随机事件的概率、大数定律等重要概念。

1.2 数理统计基础数理统计是概率论在统计学研究中的应用,用于从样本数据中推断总体参数,并对统计结论进行可靠性评估。

考试大纲中的数理统计基础部分涵盖了统计数据的描述和汇总、样本数据的分布特征、点估计和区间估计、假设检验、回归与相关等知识点。

考生需要掌握样本统计量的性质、抽样分布的基本概念、参数估计的方法和判断标准、假设检验的步骤和原理等内容。

1.3 应用统计分析应用统计分析是将概率论和数理统计的理论与实际问题相结合,用统计方法对实际问题进行分析和解决的过程。

考试大纲中的应用统计分析部分包括相关系数与回归分析、方差分析、非参数检验、贝叶斯统计等内容。

考生需要了解各种统计方法的应用场景、分析步骤和结果解释。

二、备考要点为了顺利通过2023年10月自考04183概率论与数理统计(经管类)考试,考生需要注意以下备考要点:2.1 理论学习与实践应用的结合概率论与数理统计是一门理论实践型的学科,理论学习和实践应用并重。

考生在备考过程中应该注重理论知识的学习,理解关键概念和方法的含义和应用场景。

同时,要将理论知识与实际问题相结合,学会灵活运用所学知识解决实际问题。

(完整版)自考概率论与数理统计复习资料要点总结

(完整版)自考概率论与数理统计复习资料要点总结

i《概率论与数理统计》复习提要(1) 0 P(A) 1 ( 2)P( ) 1(1) 定义:若 P(B) 0,则 P(A| B)P(AB)P(B)(2)乘法公式:P(AB) P(B)P(A| B)若B 1, B 2, B n 为完备事件组,P(B i )0,则有n(3)全概率公式: P(A) P(B i )P(A| B i )i 1(4)Bayes 公式: P(B k | A)P(Bk)P(A|B k)P(B i )P(A|BJi 17.事件的独立性:A, B 独立 P( AB) P(A)P(B)(注意独立性的应用)第二章随机变量与概率分布1 •离散随机变量:取有限或可列个值,P(X x i ) p i 满足(1) p i 0 , (2) p i =11.事件的关系 AB A B AB A B AAB2.运算规则(1)A B BA ABBA(2) (AB) CA (BC)(AB)C A(BC)(3) (AB)C (AC) (BC) (AB) C (A C)(B(4) AB ABABAB第一章随机事件与概率3•概率P(A)满足的三条公理及性质: C)(4) P() 0 (5) P(A) 1 P(A)(6) P(A B) P(A) P(AB) ,若 A B , 则P(BA) P(B) P(A) ,P(A) P(B)(7) P(A B) P(A) P(B) P(AB)(8) P(ABC) P(A) P(B) P(C)P(AB)P(AC) P(BC)P(ABC)n(3)对互不相容的事件 A l , A 2, , A n ,有P( A k )k 1k 1(n 可以取)4. 古典概型:基本事件有限且等可能5. 几何概率6. 条件概率P(A k )(3)对任意D R, P(X D) p:X i D2.连续随机变量:具有概率密度函数f (x),满足(1) f (x) 0, f(x)dx 1 ;b(2) P(a X b) f (x)dx ; ( 3)对任意a R,P(X a) 0a4.分布函数F(x) P(X x),具有以下性质(1)F( ) 0, F( ) 1 ; (2)单调非降;(3)右连续;(4)P(a X b) F(b) F(a),特别P(X a) 1 F(a);(5)对离散随机变量,F(x) P i ;i:为x(6)对连续随机变量,F(x) x'f(t)dt为连续函数,且在f (x)连续点上,F (x) f (x)5.正态分布的概率计算以(x)记标准正态分布N (0,1)的分布函数,则有(1)(0) 0.5 ; (2)(2 x x) 1 (x) ; (3)若X ~ N(,),则F(x) ((4)以u记标准正态分布N(0,1)的上侧分位数,则P(X u ) 1 (u )6.随机变量的函数Y g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,则f Y(y) f x(g 1(y)) |(g 1(y))' |单调,先求分布函数,再求导。

自考概率论与数理统计基础知识

自考概率论与数理统计基础知识

一、《概率论与数理统计〔经管类〕》考试题型分析:题型大致包括以下五种题型,各题型与所占分值如下:由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是根本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。

计算题和综合题主要是对前四章根本理论与根本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。

应用题主要是对第七、八章容的考查,要求考生记住解题程序和公式。

结合历年真题来练习,就会很容易的掌握解题思路。

总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。

二、《概率论与数理统计〔经管类〕》考试重点说明:我们将知识点按考查几率与重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。

第一章随机事件与概率1.随机事件的关系与计算 P3-5 〔一级重点〕填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 〔二级重点〕选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 〔一级重点〕选择、填空 ,〔考得多〕等,要能灵活运用。

4. 条件概率的定义 P14 〔一级重点〕选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 〔二级重点〕计算记住全概率公式和贝叶斯公式,并能够运用它们。

一般说来,如果假设干因素〔也就是事件〕对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。

6. 事件的独立性〔概念与性质〕P18-20〔一级重点〕选择、填空定义:假设,那么称A与B相互独立。

结论:假设A与B相互独立,那么A与,与B 与都相互独立。

自考概率论与数理统计(经管类)自学资料

自考概率论与数理统计(经管类)自学资料

自考概率论与数理统计(经管类)自学资料第一章随机事件与随机事件的概率1.1 随机事件例一,掷两次硬币,其可能结果有:{上上;上下;下上;下下}则出现两次面向相同的事件A与两次面向不同的事件B都是可能出现,也可能不出现的。

引例二,掷一次骰子,其可能结果的点数有:{1,2,3,4,5,6}则出现偶数点的事件A,点数≤4的事件B都是可能出现,也可能不出现的事件。

从引例一与引例二可见,有些事件在一次试验中,有可能出现,也可能不出现,即它没有确定性结果,这样的事件,我们叫随机事件。

(一)随机事件:在一次试验中,有可能出现,也可能不出现的事件,叫随机事件,习惯用A、B、C表示随机事件。

由于本课程只讨论随机事件,因此今后我们将随机事件简称事件。

虽然我们不研究在一次试验中,一定会出现的事件或者一定不出现的事件,但是有时在演示过程中要利用它,所以我们也介绍这两种事件。

必然事件:在一次试验中,一定出现的事件,叫必然事件,习惯用Ω表示必然事件。

例如,掷一次骰子,点数≤6的事件一定出现,它是必然事件。

不可能事件:在一次试验中,一定不出现的事件叫不可能事件,而习惯用φ表示不可能事件。

例如,掷一次骰子,点数>6的事件一定不出现,它是不可能事件。

(二)基本(随机)事件随机试验的每一个可能出现的结果,叫基本随机事件,简称基本事件,也叫样本点,习惯用ω表示基本事件。

例如,掷一次骰子,点数1,2,3,4,5,6分别是基本事件,或叫样本点。

全部基本事件叫基本事件组或叫样本空间,记作Ω,当然Ω是必然事件。

(三)随机事件的关系(1)事件的包含:若事件A发生则必然导致事件B发生,就说事件B包含事件A ,记作。

例如,掷一次骰子,A表示掷出的点数≤2,B表示掷出的点数≤3。

∴A={1,2},B={1,2,3}。

所以A发生则必然导致B 发生。

显然有(2)事件的相等:若,且就记A=B,即A与B相等,事件A等于事件B,表示A与B实际上是同一事件。

概率论与数理统计自考历年真题考点归纳

概率论与数理统计自考历年真题考点归纳

概率论与数理统计自考历年真题考点归纳
概率论
(一)随机事件和概率
1.样本空间、事件的关系和运算
2.概率的基本概念一概率的基本性质一古典概型、几何概型
3•条件概率-乘法公式-全概率公式-贝叶斯公式事件的独立性-独立重复试验、贝努利
概型
(二)随机变量及其概率分布
1.离散型随机变量分布及其性质
2•离散型常见分布
(1)0-1分布;(2)二项分布B(n^) ;(3)泊松分布PQ).
3.连续型随机变量分布密度及其性质
4.连续型常见分布
(1)均匀分布17|>#上(2)正态分布NJG卄(3》指
I
数分布E(A),
5.简单随机变量函数的分布
(三)二维随机变量及其概率分布
1.二维离散型随机变量分布及其性质
2.二维连续型随机变量分布函数及其性质
3.概率密度和边缘概率密度一随机变量的独立性两个独立随机变量简单函数的分布(四)随机变量的数字特征
1.数学期望-- 常见分布的期望
2.方差- 常见分布的方差
3.协方差、相关系数
(五)大数定律与中心极限定理
1.大数定律-- 切比雪夫不等式
2.大数定律、贝努利大数定律
3.中心极限定理
(1) 独立同分布的中心极限定理:(2) 棣莫佛一拉普拉斯定理。

(完整版)自考概率论与数理统计复习资料要点总结

(完整版)自考概率论与数理统计复习资料要点总结

《概率论与数理统计》复习提要第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用) 第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P3. 几个常用随机变量4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=x dt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

全国自学考试04183概率论与数理统计(经管类)-考试复习速记宝典

全国自学考试04183概率论与数理统计(经管类)-考试复习速记宝典

概率论与数理统计(经管类)(04183适用全国)速记宝典命题来源:围绕学科的基本概念、原理、特点、内容。

答题攻略:(1)不能像名词解释那样简单,也不能像论述题那样长篇大论,但需要加以简要扩展。

(2)答案内容要简明、概括、准确,即得分的关键内容一定要写清楚。

(3)答案表述要有层次性,列出要点,分点分条作答,不要写成一段;(4)如果对于考题内容完全不知道,利用选择题找灵感,找到相近的内容,联系起来进行作答。

如果没有,随意发挥,不放弃。

考点1:随机事件。

在随机试验中,产生的各种结果叫做随机事件(random Events),简称事件(Events).随机事件通常用大写英文字母A、B、C等表示.如观察马路交叉口可能遇上的各种颜色交通灯,这是随机试验,而“遇上红灯”则是一个随机事件。

例:投掷一个骰子,观察其朝上的点数。

A={朝上的点数为2}B={朝上的点数为偶数点}都是随机事件。

必然事件Certainty Events必然事件——样本空间Ω本身也是事件,它包含了所有可能的试验结果,因此不论在哪一次试验它都发生,称为必然事件。

也将它记为Ω。

如:“抛掷一颗骰子,出现的点数不大于6”不可能事件Impossible Event不可能事件——不包含任何样本点的事件,记为φ,每次试验必定不发生的事件.如:“抛掷一颗骰子,出现的点数大于6”考点2:古典概型。

设某随机试验具有如下特征:(1)试验的可能结果只有有限个;(2)各个可能结果出现是等可能的。

则称此试验为古典(等可能)概型。

古典概型中概率的计算:n=进行试验的样本点总数ΩK=所考察的事件A含的样本点数P(A)=k/n=A的样本点数/样本点总数P(A)具有如下性质:(1)0≤P(A)≤1;(2)P(Ω)=1;P(φ)=0(3)AB=φ,则P(A∪B)=P(A)+P(B)考点3:乘法公式。

若抽取是不放回地,求以上三问?设A、B∈Ω,P(A)>0,则P(AB)=P(A)P(B|A).(1)式(1)就称为事件A、B的概率乘法公式。

概率论与数理统计知识点

概率论与数理统计知识点

概率论与数理统计知识点1.概率的定义与性质:概率是描述随机事件发生可能性的度量,它的取值范围在0到1之间。

事件发生的概率可以通过频率、几何概率和主观概率等方法进行估计。

2.随机变量与概率分布:随机变量是对随机现象进行量化的数学模型,可以是离散型的或连续型的。

它们的概率分布可以通过概率质量函数或概率密度函数来描述。

3.期望与方差:期望是随机变量的平均值,它衡量了随机变量的平均水平。

方差是随机变量离其期望值的平均偏离程度,它表征了随机变量的变异性。

4.大数定律与中心极限定理:大数定律指出,当样本容量足够大时,样本均值的频率分布趋近于总体均值。

中心极限定理则说明,样本均值的分布随着样本容量的增大趋向于正态分布。

5.参数估计与假设检验:参数估计是利用样本数据来估计总体参数的值,主要有点估计和区间估计两种方法。

假设检验则是利用样本数据来检验关于总体参数的其中一种假设。

6.回归分析与方差分析:回归分析研究一组自变量与因变量之间的函数关系,在线性回归中,回归方程是一个线性函数。

方差分析用于比较两个或多个总体均值之间的差异。

7.相关与回归分析:相关分析用于度量两个变量之间的关联程度,它可以通过皮尔逊相关系数或斯皮尔曼等级相关系数来衡量。

回归分析则用于预测或解释一个变量对另一个变量的影响。

8.参数检验与非参数检验:参数检验假设总体参数的一些值,然后利用样本数据判断是否接受该假设。

常见的参数检验有t检验、F检验、卡方检验等。

非参数检验不对总体分布进行假设,常用于样本容量较小、总体分布未知的情况。

以上只是概率论与数理统计的一些基本知识点,实际上,概率论与数理统计还包括二项分布、泊松分布、正态分布、贝叶斯统计、时间序列分析等更细分的内容。

掌握这些知识点,能够帮助我们对数据进行合理的分析和推断,以便作出正确的决策。

自考-概率论与数理统计课件(经管类)

自考-概率论与数理统计课件(经管类)

贝叶斯定理
贝叶斯定理的表述
对于任何事件A和B,有P(B|A)=P(A∩B)/P(A)。
贝叶斯定理的应用
贝叶斯定理在统计推断、决策分析和机器学习等领域 有广泛的应用。
贝叶斯定理的推导
贝叶斯定理可以通过条件概率的定义和全概率公式进 行推导。
02 随机变量及其分布
离散随机变量
定义
离散随机变量是在一定区间内取有限个值的随机变量,通 常用整数或离散值表示。
04 数理统计基础
样本与抽样分布
总体与样本
总体是研究对象的全体,样 本是从总体中抽取的一部分 。
随机抽样
随机抽样是从总体中按照随 机原则抽取一部分个体的方 法。
抽样分布
抽样分布是描述样本统计量 的分布情况。
参数估计
点估计
点估计是利用样本数据对总体参数进行估计的 方法。
区间估计
区间估计是基于点估计,给出总体参数可能存 在的区间范围。
性质
随机变量的函数的概率分布可以 通过对原随机变量的概率分布进 行相应的运算得到。
03 数字特征与特征函数
期望与方差
期望
期望是概率论中用来度量随机变量取值的平均水平的数学工具,常用符号E表示。期望的计算公式为 E(X)=∑XP(X),其中X是随机变量,P(X)是随机变量取各个可能值的概率。
方差
方差是用来度量随机变量取值分散程度的数学工具,常用符号D表示。方差的计算公式为 D(X)=E[(X−E(X))^2],其中E(X)是随机变量的期望值。
市场调查数据分析
调查问卷设计
基于概率论与数理统计原理,设计有 效的调查问卷,确保数据收集的准确
性和代表性。
数据处理与分析
利用统计分析方法对市场调查数据进 行处理和分析,提取有价值的信息,

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。

- 样本空间:所有可能事件发生的集合。

- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。

- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。

- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。

- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。

- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。

2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。

- 离散随机变量:取值为有限或可数无限的随机变量。

- 连续随机变量:可以在某个区间内取任意值的随机变量。

- 概率分布函数:描述随机变量取值的概率。

- 概率密度函数:连续随机变量的概率分布函数的导数。

- 累积分布函数:随机变量取小于或等于某个值的概率。

- 期望值:随机变量的长期平均值。

- 方差:衡量随机变量取值的离散程度。

3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。

- 边缘分布:通过联合分布求得的单个随机变量的分布。

- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。

- 协方差:衡量两个随机变量之间的线性关系。

- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。

4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。

- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。

5. 数理统计基础- 样本:从总体中抽取的一部分个体。

- 总体:研究对象的全体。

- 参数估计:用样本统计量来估计总体参数。

- 点估计:给出总体参数的一个具体估计值。

- 区间估计:给出一个包含总体参数可能值的区间。

- 假设检验:对总体分布的某些假设进行检验。

- 显著性水平:拒绝正确假设的最大概率。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版) 题目:概率论与数理统计知识点总结摘要本文总结了概率论和数理统计方面的基础知识,涉及概率分布、参数估计、假设检验、卡方检验、多元分析等。

对这些知识点的理解和了解可以帮助人们更好地分析和利用数据,促进数据分析的发展。

关键词:概率论,数理统计,概率分布,参数估计,假设检验,卡方检验,多元分析正文1.概率论概率论是数理统计中一门重要科学,它是一门数学研究现实世界事件发生的规律性、可预测性及不确定性的学科。

在概率论中,我们引入了诸如概率、期望和方差等概念,用来描述和推断某种随机现象的发生。

2.概率分布概率分布是在给定的实际情况下随机变量取值的概率分布。

典型的概率分布包括正态分布、泊松分布和二项分布。

此外,也有一些联合分布,例如协方差、共轭先验、贝叶斯估计等。

3.参数估计参数估计是根据样本数据估计总体参数的统计方法。

它涉及到将总体参数估计为样本参数的过程,通常使用最大似然估计、贝叶斯估计和假定测试等方法。

4.假设检验假设检验是基于统计学原理,用来评估某一假设是否真实存在的方法。

其中包括t检验、F检验、Z检验等,它们之间的区别在于所使用的抽样分布不同。

5.卡方检验卡方检验是一种统计检验,用于直接检验某个抽样值是否遵循某种理论分布。

卡方检验可以根据观察到的抽样数据和理论分布之间的差异来衡量分布概率值的有效性。

6.多元分析多元分析是一种分析不同变量之间交互影响的统计方法。

它包括多元回归分析、多元判别分析、因子分析等,能够帮助我们了解多个变量之间的关系。

结论本文总结了概率论和数理统计方面的基础知识,包括概率分布、参数估计、假设检验、卡方检验和多元分析等。

了解这些知识点可以帮助人们更好地分析和利用数据,促进数据分析的发展。

概率论和数理统计方面的知识点在实际应用中有着重要作用。

概率论可以帮助研究人员对随机现象进行建模、分析和推断,其中包括使用概率分布建立统计模型和估计参数,并使用假设检验和卡方检验来检验假设,以及用多元分析来推断不同变量之间的关系。

【自考】《概率论与数理统计》复习重点

【自考】《概率论与数理统计》复习重点

第一章随机变量及其变量分布§2.1离散型随机变量(一)随机变量引例一:掷骰子。

可能结果为Ω={1,2,3,4,5,6}.我们可以引入变量X,使X=1,表示点数为1;x=2表示点数为2;…,X=6,表示点数为6。

引例二,掷硬币,可能结果为Ω={正,反}.我们可以引入变量X,使X=0,表示正面,X=1表示反面。

引例三,在灯泡使用寿命的试验中,我们引入变量X,使a<X<b,表示灯泡使用寿命在a(小时)与b(小时)之间。

例如,1000≤X≤2000表示灯泡寿命在1000小时与2000小时之间。

0<X<4000表示灯泡寿命在4000小时以内的事件。

定义1:若变量X取某些值表示随机事件。

就说变量X是随机变量。

习惯用英文大写字母X,Y,Z表示随机变量。

例如,引例一、二、三中的X都是随机变量。

(二)离散型随机变量及其分布律定义2 若随机变量X只取有限多个值或可列的无限多个(分散的)值,就说X是离散型随机变量。

例如,本节中的引例一、引例二的X是离散型随机变量。

定义3 若随机变量X可能取值为且有(k=1,2,…,n,…)或有其中,第一行表示X的取值,第二行表示X取相应值的概率。

就说公式(k=1,2,…,n,…)或表格是离散型随机变量x的(概率)分布律,记作分布律有下列性质(1);(2)由于事件互不相容。

而且是X全部可能取值。

所以反之,若一数列具有以上两条性质,则它必可以作为某随机变量的分布律。

例1 设离散型随机变量X的分布律为求常数c。

解由分布律的性质知1=0.2+c+0.5,解得c=0.3.例2 掷一枚质地均匀的骰子,记X为出现的点数,求X的分布律。

解X的全部可能取值为1,2,3,4,5,6,且则X的分布律为在求离散型随机变量的分布律时,首先要找出其所有可能的取值,然后再求出每个值相应的概率。

例3 袋子中有5个同样大小的球,编号为1,2.,3,4,5。

从中同时取出3个球,记X为取出的球的最大编号,求X的分布率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、《概率论与数理统计(经管类)》考试题型分析:题型大致包括以下五种题型,各题型及所占分值如下:由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。

计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。

应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。

结合历年真题来练习,就会很容易的掌握解题思路。

总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。

二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。

第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。

4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。

一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。

6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。

结论:若A与B相互独立,则A与,与B 与都相互独立。

7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。

第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。

记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。

求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。

9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。

本考点基本上每次考试都考。

10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。

要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。

11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。

③;④ 设为的连续点,则存在,且。

12. 均匀分布、指数分布 P42(二级重点)选择、填空、计算题记住它们的概率密度,能够根据所给的密度函数识别它们。

13. 正态分布和一般正态分布的标准化 P44-P46(一级重点)选择、填空记住性质和公式:标准正态分布函数的性质:① ;② 概率的计算(重点):。

③ 14. 随机变量函数的概率分布 P50-P54(三级重点)选择、填空在连续型随机变量函数的概率分布中,要记住用直接变换法求“非单调性”随机变量函数的概率密度的方法。

第三章多维随机变量及其概率分布 15. 二维离散型随机变量联合分布律和边缘分布律 P62-P64(一级重点)选择、填空、计算题对于联合分布律,记住所有概率和为1.求概率时,找到满足条件的随机点,再把对应的概率相加即可。

要记住边缘分布律的求法。

通过分布律会判断X,Y是否相互独立。

16. 二维连续型随机变量的概率密度和边缘概率密度 P66-P69(一级重点)选择、填空、计算、综合;已知概率密度会求在平面区域内取值的概率,记住公式:练掌握连续型随机变量的边缘概率密度函数的求法,并能判断X,Y是否相互独立(考查的重点)。

17.二维随机变量的独立性 P73(一级重点)选择、填空、计算题考生要记住二维离散型的随机变量和二维连续型的随机变量独立性的判断。

其一:与有=;其二:设为二维连续型随机变量,其概率密度为,关于与的边缘概率密度分别为和,则与相互独立的充要条件为:=。

其三:一个结论若二维随机变量服从二维正态分布,与相互独立的充要条件是。

18. 二维均匀分布、二维正态分布 P68-P71(三级重点)计算题、综合题记住这两种分布的概率密度函数,还有以下结论若二维随机变量服从二维正态分布,则随机变量与分别服从正态分布。

19. 两个随机变量函数的分布 P80-P91(三级重点)填空题记住结论并能灵活运用设相互独立,且,得。

推广:个独立正态随机变量的线性组合仍服从正态分布,即。

第四章随机变量的数字特征20. 随机变量数学期望的概念、性质与计算 P86-P94(一级重点)选择、填空、计算题首先要十分熟练的掌握数学期望的概念与性质,数学期望的性质在选择填空题中经常考到,然后要熟悉离散型和连续型随机变量及随机变量函数的数学期望的计算公式。

考生一定要结合历年考试真题认真练习,做到心中有数。

21. 随机变量的方差的概念、性质及计算 P96-P103(一级重点)选择、填空、计算熟悉方差的性质和计算公式,一般用“内方减外方”来计算方差,即。

在方差的性质中,要注意:常数的方差为零,所以D(X+C)=D(X);当X,Y相互独立时,才,此时特别的。

22. 常见分布的数字特征 P104(一级重点)选择、填空、计算题提醒各位考生,书上104页的那张表所包含的内容经常考到,是考试需要重点记忆的表格之一。

不仅要记清各种分布的数学期望与方差,还要记清各自的概率分布与密度函数。

表格熟记在心,能够灵活运用期望与方差的性质,基本上就能轻松拿下10-20分。

23. 协方差和相关系数 P105-P107(一级重点)选择、填空、计算题要熟悉协方差的性质与计算公式性质:;,其中为任意常数;若,则;;。

计算:,。

另外,要掌握相关系数的计算公式,还要知道相关系数的含义:两个随机变量的相关系数是两个随机变量间线性联系密切程度的度量,越接近1,与之间的线性关系越密切。

当时,与存在完全的线性关系,即;时,之间无线性关系,此时称X,Y不相关。

随机变量与不相关的充分必要条件是。

注意:①若随即变量与相互独立,则,因此与不相关,反之,随机变量与不相关,但与不一定相互独立。

②若二维随机变量服从二维正态分布,与,从而与不相关的充要条件是与相互独立,因此与不相关和与相互独立都等价于。

以上两点在选择题中经常出现。

第五章大数定律及中心极限定理 24. 切比雪夫不等式 P116(二级重点)选择、填空记住切比雪夫不等式的两种形式。

它是用来估算概率的。

25. 大数定律 P116-P119(二级重点)选择、填空考生要记住相应的公式和含义。

26. 独立同分布序列的中心极限定理 P120(二级重点)选择、填空牢记:是独立同分布随机变量序列,渐进服从正态分布。

当。

分大时,独立同分布的随机变量的平均值的分布近似于正态分布 27. 棣莫弗-拉普拉斯中心极限定理 P122(三级重点)填空题主要结论:在贝努利试验中,若事件发生的概率为,又设为次独立重复试验中事件发生的频数,则当充分大时,近似服从正态分布。

第六章统计量与抽样分布 28. 样本均值、样本方差P133-P134(一级重点)选择、填空要清楚样本均值、样本方差、样本标准差的计算公式。

另外,要牢记结论设总体的样本,为样本均值:①若总体分布为,则的精确分布为;②若总体分布未知(或不是正态分布),且,则当样本容量较大时,的渐近分布为,这里的渐近分布是指较大时的近似分布。

29. 三大抽样分布 P137-P141(一级重点)选择、填空记住三大分布的定义,熟悉它们的结构,无需记忆概率密度函数。

牢记重要结论:;等。

偏重考查卡方分布的定义式。

第七章参数估计 30. 单个正态总体均值和方差的置信区间 P156-P162(一级重点)填空、应用题书上162页的表的前3行内容常考,记住各种情况下的置信区间。

做题时,只要将已知条件往相应的置信区间中代入求值即可。

31. 参数的矩法估计 P145(二级重点)填空题、计算题①用样本均值去估计总体的均值,则从解出的即为,称为的矩法估计量。

②用样本二阶中心矩估计总体方差,即。

(用的少)。

32.参数的极大似然估计 P147(二级重点)填空、计算考生要记住极大似然估计的方法与步骤:①写出似然函数并化简②两边取对数;③令,求出的值即为的极大似然估计 33. 估计量的无偏性 P153(一级重点)选择题设是的一个估计,若,则称为的无偏估计,否则称为有偏估计。

是的无偏估计,但不是的无偏估计。

本知识点经常和数学期望的性质联合来考查。

34. 估计量的有效性和相合性 P152-P153(一级重点)选择、填空(或)相合性:若是得一个估计量,若,,则称是的相合估计。

有效性:设,若,是的两个无偏估计,则称比有效。

其中有效性经常考。

第八章假设检验 35. 假设检验的两类错误 P169(一级重点)填空熟记概念:①一类错误是:在成立的情况下,样本值落入了拒绝域中,因而被拒绝,称这种错误为第一类错误,又称为拒真错误。

一般记犯第一次错误的概率为,也叫置信水平。

②另一类错误是:在不成立的情况下,样本值未落入,因而被接受,称这种错误为第二类错误,又称为取伪错误。

记犯第二类错误的概率为。

③由此可知:,。

两类错误的概率是关联的,当样本容量固定时,一类错误的概率的减少将导致另一类错误的概率的增加;要同时降低两类错误的概率,需要增大样本容量。

36. 单个正态总体的均值和方差的假设检验 P170-P181(一级重点)选择、填空、应用题要牢记教材181页表中u检验和t检验的前三行,以及分布对应的内容。

这是教材中的第三个重要表格。

做题时要熟记解题步骤,记住相应的统计量和拒绝域,那么剩下的就是计算了。

双边检验考查的较多。

第九章回归分析 37. 用最小二乘法估计回归模型中的未知参数 P187(一级重点)填空、计算题整个第九章线性回归,仅考这一个考点,记住以下几点其一:回归直线是描述与之间关系的经验公式,称为回归常数,称为回归系数。

其二:求,的估计,时,自然直观的想法是对一切观测值与回归直线的偏离达到最小,故使得其三:回归直线的确定引进记号达到最小的,,即为,。

相关文档
最新文档