指数函数对数函数幂函数练习题大全(答案)
幂函数指数函数对数函数专练习题(含答案)
1. 函数f (x )=x21-的定义域是A.(-∞,0]B.[0,+∞)C.(-∞,0)D.(-∞,+∞) 2. 函数x y 2log =的定义域是A.(0,1]B. (0,+∞)C. (1,+∞)D.[1,+∞) 3. 函数2log 2y x =-的定义域是A.(3,+∞)B.[3, +∞)C.(4, +∞)D.[4, +∞)4. 若集合{|2},{|1}xM y y N y y x ====-,则M N ⋂=A.}1|{≥y yB.}1|{>y yC.}0|{>y yD.}0|{≥y y5. 函数y = -11-x 的图象是6. 函数y =1-11-x , 则下列说法正确的是 A.y 在(-1,+∞)内单调递增 B.y 在(-1,+∞)内单调递减 C.y 在(1,+∞)内单调递增D.y 在(1,+∞)内单调递减7. 函数0.5log (3)y x =-的定义域是A. (2,3)B. [2,3)C.[2,)+∞D. (,3)-∞ 8. 函数xx x f 1)(+=在]3,0(上是 A.增函数 B.减函数C.在]10,(上是减函数,]31[,上是增函数D.在]10,(上是增函数,]31[,上是减函数 9. 的定义域是函数 )2(x lg y -=A.(-∞,+∞)B.(-∞,2)C.(-∞,0] D(-∞,1]10. 的取值范围是则若设函数o xx x x x f ,1)f(x 0)(x )0(,12)(o >⎪⎩⎪⎨⎧>≤-=-)(1,,-1)D.(- )(0,,-2)C.(- )B.(-1, )1,1.(A +∞∞+∞∞+∞-11. 21||x y =函数A.是偶函数,在区间(﹣∞,0)上单调递增B.是偶函数,在区间(﹣∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减12. 的定义域是函数xx x y -+=||)1(00}|D.{ -1}0|C.{ 0}|B.{ }0|.{≠≠<<>x x x x x x x x x A 且13. 函数12log (32)y x =-的定义域是A.[1,)+∞B.23(,)+∞C.23[,1]D.23(,1]14. 下列四个图象中,函数xx x f 1)(-=的图象是15. 设A 、B 是非空集合,定义A ×B={x |x ∈A ∪B 且x ∉A ∩B}.已知A={x |y =22x x -},B={y |y =2x ,x >0},则A ×B 等于 A.[0,1)∪(2,+∞) B.[0,1]∪[2,+∞) C.[0,1] D.[0,2]16. 设a =20.3,b =0.32,c =log3.02,则A a >c >b B.a >b >c C. b >c >a D. c >b >a 17. 已知点33(在幂函数()y f x =的图象上,则()f x 的表达式是 A.()3f x x = B.3()f x x = C.2()f x x -= D.1()()2x f x =18. 已知幂函数αx x f =)(的部分对应值如下表:x 121 )(x f122则不等式1)(<x f 的解集是 A.{}20≤<x x B.{}40≤≤x x C.{}22≤≤-x x D.{}44≤≤-x x19. 已知函数的值为),则,的值域为)1(0[93)(2f a ax x f x∞+--+=A.3B.4C.5D.6指数函数习题一、选择题1.定义运算a ⊗b =⎩⎪⎨⎪⎧aa ≤b b a >b,则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y =2的定义域、值域和单调区间.11.(2011·银川模拟)若函数y =a 2x +2a x-1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.对数与对数函数同步练习一、选择题1、已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7B 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m na a m n a+=== 。
指数函数、对数函数、幂函数练习题大全
一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn = B .3339= C .43433)(y x y x +=+ D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D . ]21,1[-二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为 .12.不用计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是 .16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是 . 三、解答题:(10+10+12=32分)18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a ay x x在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值;1 0 t/月2 3(2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7B 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m na a m n a+=== 。
指数函数、对数函数、幂函数练习题大全(标准答案)
一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn =B .3339=C .43433)(y x y x +=+D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数10.函数22)21(++-=x x y 得单调递增区间是 ( )A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[- 二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为.12.不用计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是.16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是.三、解答题:(10+10+12=32分)18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a ay x x在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值;t/月2 3(2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a ax m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7B 、lg35C 、35 D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+B 、2log y =C 、21log y x =D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m na a m n a+===。
高一数学幂函数、指数函数和对数函数练习题(含答案)
高一数学幂函数、指数函数和对数函数练习题1、若函数x a a a y ⋅+-=)33(2是指数函数,则有 ( )A 、21==a a 或B 、1=aC 、2=aD 、10≠>a a 且2、下列所给出的函数中,是幂函数的是 ( )A .3x y -=B .3-=x yC .32x y =D .13-=x y3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( )A .log c a =bB .log c b =aC .log a b =cD .log b a =c4、若210,5100==ba ,则b a +2= ( )A 、0B 、1C 、2D 、3 5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( )A 、0,0>>y xB 、0,0<>y xC 、0,0><y xD 、0,0<<y x6、函数y =)12(log 21-x 的定义域为 ( )A .(21,+∞)B .[1,+∞)C .( 21,1] D .(-∞,1) 7、若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( ) A .⎪⎭⎫ ⎝⎛43,0B .⎪⎭⎫⎢⎣⎡43,0C .⎥⎦⎤⎢⎣⎡43,0D .⎪⎭⎫ ⎝⎛+∞-∞,43]0,( 8、函数34x y =的图象是 ( )第9题 A . B . C . D .9、图中曲线是对数函数y =log a x 的图象,已知a 取4313,,,3510四个值,则相应于C 1,C 2,C 3,C 4的a 值依次为 ( )A .101,53,34,3 B .53,101,34,3 C .101,53,3,34 D .53,101,3,34 10、 函数y =lg (x +12-1)的图象关于 ( ) A .x 轴对称 B .y 轴对称 C .原点对称D .直线y =x 对称 11、若关于x 的方程335-+=a a x 有负根,则实数a 的取值范围是_ ____________. 12、当0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.13、函数1241++=+x x y 的值域是 .14、设1052==b a ,则=+ba 11 。
指数函数、对数函数、幂函数基本性质练习(含答案)
精心整理分数指数幂(第9份)1、用根式的形式表示下列各式)0(>a(1)51a =(2)32a - =2、用分数指数幂的形式表示下列各式:(13(14(11(1234A 、2<a B 、2>a C 、21<<a D 、10<<a5、下列关系中,正确的是()A 、5131)21()21(>B 、2.01.022>C 、2.01.022-->D 、115311((22- - > 6、比较下列各组数大小:(1)0.53.1 2.33.1(2)0.323-⎛⎫ ⎪⎝⎭0.2423-⎛⎫ ⎪⎝⎭(3) 2.52.3-0.10.2-7、函数x x f 10)(=在区间[1-,2]上的最大值为,最小值为。
函数x x f 1.0)(=在区间[1-,2]上的最大值为,最小值为。
8、求满足下列条件的实数x 的范围:(1)82>x (2)2.05<x9(110111213141(1答案为:(1)(2)2、将下列对数式改写成指数式(1)3125log 5=(2)10log 2a =-答案为:(1)(2)3、求下列各式的值(1)64log 2=(2)27log 9=(3)0001.0lg =(4)1lg =(5)9log 3=(6)9log 31=(7)8log 32=4、(此题有着广泛的应用,望大家引起高度的重视!)已知.,0,1,0R b N a a ∈>≠>(1)2log a a =_________5log a a =_________3log -a a =_________51log a a =________ 一般地,b a a log =__________(2)证明:N a N a =log5、已知0>a ,且1≠a ,m a =2log ,n a =3log ,求n m a +2的值。
6、((789101(1(52(1(2))0,0(log log )(log >>-=-N M N M N M a a a(3))0,0(log log log >>=N M N M N M a a a(4))0,0(log log log >>=-N M N MN M aa 3、求下列各式的值(1))42(log 532⨯=__________(2)125log 5=__________(3)1)01.0lg(10lg 2lg 25lg 21-+++=__________(4)5log 38log 932log 2log 25333-+-=__________ (5)25lg 50lg 2lg 20lg 5lg -⋅-⋅=__________(6)1lg 872lg 49lg 2167lg 214lg +-+-=__________(7)50lg 2lg )5(lg 2⋅+=__________(8)5lg 2lg 3)5(lg )2(lg 33⋅++=__________4(15、((2671(1(4(3)(4)(5)(6)2、比较下列各组数中两个值的大小:(1)33log 5.4log 5.5⎽⎽⎽⎽⎽ (2)1133log log e π⎽⎽⎽⎽⎽(3)lg 0.02lg3.12⎽⎽⎽⎽⎽ (4)ln 0.55ln 0.56⎽⎽⎽⎽⎽(5)2log 7⎽⎽⎽⎽⎽4log 50(6)76log 5log 7⎽⎽⎽⎽⎽(7)5.0log 7.0⎽⎽⎽⎽⎽1.17.0(8)0.5log 0.3,0.3log 3,3log 2(9)7.0log 27.0log 37.0log 2.0答案为(8)(9)3、已知函数x y a )1(log -=在),0(+∞上为增函数,则a 的取值范围是。
高一数学幂函数、指数函数和对数函数练习题(含答案)
高一数学幂函数、指数函数和对数函数练习题1、下列函数一定是指数函数的是 ( ) A、12+=x y B 、3x y = C 、x y -=3 D 、x y 23⋅=2、已知ab >0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lg a +lg b ②lg b a =lg a -lg b ③b a b a lg )lg(212= ④lg (ab )=10log 1ab A .0 B .1 C .2 D .33、已知x =2+1,则lo g 4(x 3-x -6)等于 ( )A .23 B .45 C .0 D .21 4、已知m >0时10x =lg (10m )+lg m 1,则x 的值为 ( ) A .2 B .1 C .0 D .-15、下列图像正确的是 ( )A B C D6、若log a b ·log 3a =5,则b 等于 ( )A .a 3B .a 5C .35D .537、5、已知031log 31log >>b a ,则a 、b 的关系是 ( ) A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1 8、若函数)1,0(1≠>-+=a a m a y x 的图象在第一、三、四象限内,则 ( )A 、1>aB 、1>a 且0<mC 、010><<m a 且D 、10<<a9、函数x y -=1)21(的单调递增区间是 ( ) A 、),(+∞-∞ B 、),0(+∞ C 、),1(+∞ D 、)1,0(10、 如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<< 11、下列函数中既是偶函数又是( ) A . B . C . D .12、 函数R x x x y ∈=|,|,满足 ( )A .奇函数是减函数B .偶函数又是增函数C .奇函数又是增函数D .偶函数又是减函数13、若01<<-x ,则下列不等式中成立的是 ( )A 、 x x x 5.055<<-B 、 x x x -<<55.05C 、x x x 5.055<<-D 、 x x x 555.0<<-14、下列命题中正确的是( ) A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限15、若2<x ,则|3|442x x x --+-的值是_____ _____.16、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ _______。
指数函数、对数函数与幂函数练习题答案
指数函数、对数函数与幂函数练习题一选择题:(共12个小题,每小题4分,共48分)1.函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象如图所示,则,,,a b c d 的大小顺序是( )A.1<d <c <a <b B.c <d <1<a <b C.c <d <1<b <a D.d <c <1<a <b2.函数y =a |x |(a >1)的图象是( )3.设0<a <1,那么下列不等式正确的是( ) A.(1-a )3>(1+ a )2B.(1-a )1+a >1 C.(1+ a )1-a<1 D.(1-a )31>(1-a )214.将函数y =3x-2的图象向左平移两个单位,再将所得图象关于直线y =x 对称后所得图象的函数解析式为( )A.34log y x =+B. 3log (4)y x =-C. 3log y x =D. 32log y x =+5.如果x >1,a =21log x ,那么( )A.a 2>2a >aB.2a >a >a 2C.a 2>a >2aD.a >2a >a 26.已知A ={x |2≤x ≤π},定义在A 上的函数y =log a x (a >0且a ≠1)的最大值比最小值大1,则底数a 的值为( ) A.π2B.2πC.π-2D.2π或π2 7.函数f (x )=log a |x +1|在(-1,0)上有f (x )>0,则f (x )()A.在(-∞,0)上单调递增B.在(-∞,0)上单调递减C.在(-∞,-1)上单调递增D.在(-∞,-1)上单调递减 8.方程log 2(x +4)=3x 的实根的个数为( )A.0B.1C.2D.39.若函数y =3+a x -1的反函数的图像恒经过P 点,则P 点坐标是( )A.(2,5)B.(1,3)C.(4,1)D.(3,1)10.已知三个数M =0.32-0.32,P =0.32-3.2,Q =3.2-0.32,则它们的大小顺序是( )A.M <P <QB.Q <M <PC.P <Q <MD.P <M <Q 11.已知0log 2log 2a b a b <<,则、的关系是( ) A.0<a <b <1 B.0<b <a <1 C.b >a >1 D.a >b >112.设 ()f x 是定义在 (,)-∞+∞上的偶函数,且它在[)0,+∞上单调递增,记a f =,b f =,(2)c f =-,则 a,b,c 的大小关系是( )A.a b c >>B.b c a >>C.c a b >>D.c b a >> 二、填空题:(共12个小题,每小题4分,共48分) 13. 将三个数10.20.7321.5,1.3,()3-按从小到大的顺序排列的顺序是____________.14.已知集合221{|2(),}4x xx M x x R +-=≤∈,则函数2x y =的值域是__________. 15.设函数21()log (21)a f x x -=+在区间1(,0)2-上恒有()0f x >,则a 的取值范围是_________.16.函数()1f x =-的定义域为____ __ ____.17.函数2()ln(43)f x x x =+-单调递增区间是____ __. 183lg 40x +=的解集是_______ ______.19. 已知函数()log a f x x =在[2,)x ∈+∞上恒有|()|1f x >,则实数a 的取值范围是_________. 20.函数21122()log log 1f x x x =-+为增函数的区间是 __________.21.若不等式2log 0m x x -<在1(0,)2内恒成立,则实数m 的取值范围为 _________ .. 22.设02x ≤≤,则函数1224212x xa y a -=-⋅++的最大值为 _____,最小值为 _____.23.关于x 的方程lg 3,103xx x x +=+=的根分别是βα、,则βα+= __________ .24.已知()lg f x x =,若当0a b c <<<时,()()()f a f b f c >>,则ac 的取值范围为 ______ . 三、解答题:(做背面)25.已知函数()3x f x =,其反函数为1()fx -,且1(18)2,()34ax x f a g x -=+=-的定义域为[0,1].(1)求()g x 的解析式; (2)判断()g x 的单调性; (3)求()g x 的值域. 26.已知:()lg()xxf x a b =-(10a b >>>).(1)求)(x f 的定义域;(2)判断)(x f 在其定义域内的单调性;(3)若)(x f 在(1,)+∞内恒为正,试比较a b -与1的大小.参考答案一. BBDCC ,DCCCB ,DC二.13.7.02.0313.15.1)32(<<-; 14。
(完整版)指数函数对数函数幂函数单元测试题(有答案)精品资料
指数函数、对数函数、幂函数测试题一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)l.设指数函数C1:y=a x,C2:y=b x,C3:y=c x的图象如图,则()A.0<c<1<b<a B.0<a<1<b<c C.c<b<a D.0<c<1<a<b2.函数y=a x-1(a>0,a≠1)过定点,则这个定点是()A.(0,1)B.(1,2)C.(-1,0.5)D.(1,1)3.若函数y=f(x)的图象与y=2-x的图象关于y轴对称,则f(3)=()A.8 B.4 C.81D.414.若指数函数y=a x经过点(-1,3),则a等于()A.3 B.31C.2 D.215.函数y=f(x)的图象与y=21-x的图象关于直线x=1对称,则f(x)为()A.y=2x-1 B.y=2x+1 C.y=2x-2 D.y=22-x6.对于∀x1,x2∈R(注:∀表示“任意”),恒有f(x1)·f(x2)=f(x1+x2)成立,且f(1)=2,则f(6)=()A.22B.4 C.2D.87.若函数f(x)=log a x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a=()A.41B.21C.22D.428.在同一坐标系中,函数y=2-x与y=log2x的图象是()9.设函数⎪⎩⎪⎨⎧>≤-=-).(),(12)(21xxxxfx若f(x0)>1,则x0的取值范围是()A.(-1,1) B.(-∞,-2)∪(0,+∞)C.(-1,+∞) D.(-∞,-1)∪(1,+∞)10.已知0<m<n<1,则a=log m(m+1)与b=log n(n+1)的大小关系是()A.a>b B.a=bf C.a<b D.不能确定11.设函数F(x)=f(x)-)(1x f ,其中x-log 2f(x)=0,则函数F(x)是( ) A.奇函数且在(-∞,+∞)上是增函数 B.奇函数且在(-∞,+∞)上是减函数 C.偶函数且在(-∞,+∞)上是增函数 D.偶函数且在(-∞,+∞)上是减函数12.已知函数f(x)=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数f(x)x在区间(1,+∞)上A .有两个零点B .有一个零点C .无零点D .无法确定二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知对数函数C 1:y =log a x ,C 2:y =log b x ,如图所示,则a 、b 的大小是__________.14.函数)34(log 5.0-=x y 的定义域是__________. 15.(1)计算:log 2.56.25+lg 1001+ln e +3log 122+= . (2).0.02731--(-71)-2+25643-3-1+(2-1)0=________.16.已知f (e x )=x ,则f (5)等于_________________3log 9log 28的值是__________________________ 三、解答题(本大题共5小题,每小题8分,共40分,解答应写出文字说明、证明过程或演算步骤)17.已知二次函数()f x 满足(0)1f =,及(1)()2f x f x x +-=. (1)求()f x 的解析式;(2)若()(log )(01)a g x f x a a =>≠且,1,x a a ⎡⎤∈⎢⎥⎣⎦,试求()g x 的值域.18.当某种药品注射到人体内,它在血液中的残留量成指数型函数衰减.(1)药品A 在血液中的残留量可以用以下指数型函数描述:y =5e -0.2t ,其中,t 是注射一剂药A 后的时间(单位:h ),y 是药品A 在人体内的残留量(单位:mg ).描出这个函数图象,求出y 的初始值,当t =20时,y 值是多少?(2)另一种药品B 在人体中的残留量可以表示成y =5e -0.5t .与药品A 相比,它在人体内衰减得慢还是快?19.已知函数f (x )=log a11--x mx(a >0,a ≠1)是奇函数. (1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性.21.设函数)(x f 对于x 、y ∈R 都有)()()(y f x f y x f +=+,且x <0时,)(x f <0,2)1(-=-f . (1)求证:函数)(x f 是奇函数;(2)试问)(x f 在]4,4[-∈x 上是否有最值?若有,求出最值;若无,说明理由.(3)解关于x 的不等式)()(21)()(2122b f x b f x f bx f ->-(0≤b ).21.设函数2()21xf x a =-+.(1)证明:不论a 为何实数函数)(x f 总为增函数; (2)当)(x f 为奇函数时,求函数)(x f 的值域。
幂函数、指数函数和对数函数单元测试及参考答案
《幂函数、指数函数和对数函数》单元测试一、填空题1.函数1lg(3)y x=-的定义域是________________.2.已知3log 10a =,27log 25b =,用a 、b 表示lg 5=____________. 3.函数2(log )x y a =是减函数,则a 的取值范围是____________. 4.已知252222xx +-=,则2lg(1)x +=____________.5.若2log 13a<,则a 的取值范围是____________. 6.函数213log (54)y x x =--的单调递减区间为____________.7.已知函数2log ,0()3,x x x f x x >⎧=⎨⎩≤,则1()4f f ⎡⎤=⎢⎥⎣⎦____________.8.函数2y x =(1x -≤)的反函数为___________________. 9.设函数12()x f x a-=,且(lg )f a =a 的值为__________.10.2log (2)x +=的实数解的个数为________个.11.已知()log a f x x b =+为偶函数,且在(0,)+∞上递减,则(2)f b +_____(1)f a +(选填“>”或“<”) .12.关于函数21()lg x f x x+=(x ∈R ,0x ≠)的下列命题:①函数()y f x =的图像关于y 轴对称;②函数()y f x =的最小值为lg 2;③当0x >时,()f x 是增函数;当0x <时,()f x 是减函数; ④()f x 在[)1,0-、[)1,+∞上是增函数; ⑤()f x 无最大值,也吴最小值. 其中正确命题的序号是______________.二、选择题13.下列函数中既不是奇函数也不是偶函数的是( )A .23x y = B .x x y e e -=+C .lg(y x =D .1lg2y x =- 14.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过x 年后的剩留量为y ,则x 、y 之间的函数关系是( )A .1000.9576xy =B .1000.9576x y =C .0.9576()100xy =D .1001(0.0424)x y =-15.函数()2x f x a m =⋅+的图像经过点(1,3),又其反函数图像经过点(2,0),则()f x 的表达式为( )A .()21xf x =+ B .3()262xf x =-⋅+ C .3()22x f x =⋅D .3()262xf x =⋅+ 16.如果1m n >>,(0,1)x ∈,则下列不等式正确的是( )A .xxm n <B .m nx x < C .log log x x m n >D .log log m n x x <三、解答题17.解方程:122log (44)log (23)x x x ++=+-.18.已知222()21x xa a f x ⋅+-=+. (1)当1a =时,求()f x 的反函数;(2)若()f x 在定义域上单调递增,求实数a 的取值范围.19.已知2()f x x x k =-+,若2log ()2f a =,2(log )f a k =(1a ≠).(1)求a 、k 的值;(2)当x 为何值时,2(log )f x 有最小值?并求出最小值.20.记函数1()()f x f x =,2(())()f f x f x =,它们的定义域的交集为A .若对于任意的x A ∈,都有2()f x x =,则称()f x 是集合M 中的元素.(1)判断()2f x x =-+,()31g x x =-,21()2x h x x +=-是否是M 中的元素? (2)若()l o g (1)xaf x a=-(1a >),求它的反函数1()f x -,并判断1()f x -是否属于M .参考答案1.1(,0)(,)3-∞∞ 2.32b a 3.(1,2) 4.15.2(0,)(1,)3∞6.(5,2)--7.198.y =1x ≥) 9.10 10.111.<12.①②④13.D14.A15.A16.B17.2x = 18.(1)121()log 1xfx x-+=-(11x -<<) (2)12a -<< 19.(1)2a =,2k =(2)当x =2min 7(log )4f x =20.(1)()f x M ∈,()h x M ∈,()g x M ∉ (2)1()f x M -∈。
指数函数、对数函数、幂函数 提高练习
指数函数、对数函数、幂函数 提高练习一、选择题1.函数y =a x -1-2(a >0且a ≠1)图象一定过点 ( )A .(0,1)B .(0,3)C .(1,-1)D .(3,0)解析:因为函数y =a x (a >0且a ≠1)图象一定过点(0,1),所以函数y =a x -1-2(a >0且a ≠1)图象一定过点(1,-1) ,故选C.答案:C2.幂函数y =f (x )的图象经过点(8,22),则f (x )的图象是 ( )解析:设函数f (x )=x α,8α=22,解得α=12,所以f (x )=x 12=x ,故选D. 答案:D3.若a >b >0,0<c <1,则 ( )A .log a c <log b cB .c a >c bC .a c <a bD .log c a <log c b解析:∵a >b >0,0<c <1,根据对数函数的单调性可得log c a <log c b ,D 正确;log a c 与log b c 的大小关系不确定,A 错误;根据指数函数的单调性可得c a <c b ,B 错误,a c 与a b 的大小关系不确定,C 错误,故选D. 答案:D4.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080,则下列各数中与M N最接近的是( ).(参考数据: lg3≈0.48) ( ) A .1033 B .1053 C .1073 D .1093解析:由题意,M ≈3361,N ≈1080,设M N =x =33611080, 两边取对数有lg x =lg 33611080=lg3361-lg1080≈93.28, ∴x ≈1093.28,即M N最接近1093.故选D. 答案:D5.已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为 ( )A.12B.14C .2D .4 解析:因为函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上是单调函数,所以最大值与最小值之和为f (1)+f (2)=a +a 2+log a 2=log a 2+6,得a =2或a =-3(舍去),故选C.答案:C6.已知a =3-12,b =log 312,c =log 23,则a ,b ,c 的大小关系是 ( ) A .a >c >b B .c >a >b C .a >b >c D .c >b >a解析:0<a =3-12<30=1,b =log 312<0, c =log 23>log 22=1,故c >a >b ,故选B. 答案:B7.已知f (x )=ax -log 2(4x +1)是偶函数,则a = ( )A .1B .-1C .2D .-2解析:∵f (x )=ax -log 2(4x +1)是偶函数,∴f (-1)=f (1),即a -log 2(41+1)=-a -log 2(4-1+1),解得a =1,故选A.答案:A8.已知x x -->12)21(,则x 的取值范围是( )A . RB . ),(21-∞ C . ),(∞+21 D .φ 【答案】C9.当0<a <1时,在同一坐标系中,函数y =a x 与y =log a x 的图象是 ( )解析:∵函数y =a x与y =log a x 互为反函数,∴它们的图象关于直线y =x 对称,且当0<a <1时,函数y =a x 与y =log a x 都是减函数,观察图象知,D 正确.故选D.答案:D10. 已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (3log 21),c =f (0.2-0.6),则a ,b ,c 的大小关系是 ( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c解析 log 123=-log 23=-log 49,b =f (log 123)=f (-log 49)=f (log 49),log 47<log 49,0.2-0.6=⎝⎛⎭⎫15-35=5125>532=2>log 49,又f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,故f (x )在[0,+∞)上是单调递减的,∴f (0.2-0.6)<f (log 123)<f (log 47),即c <b <a . 11.已知幂函数f (x )=x a 的图象过点(3,13),则函数g (x )=(2x -1)f (x )在区间[12,2]上的最小值是 ( )A .-1B .0C .-2 D.32解析:由题设3a =13⇒a =-1,故g (x )=(2x -1)x -1=2-1x 在[12,2]上单调递增,则当x =12时取最小值g (12)=2-2=0,故选B. 答案:B12. 光线通过一块玻璃,强度要损失10%.设光线原来的强度为k ,通过x 块这样的玻璃以后强度为y ,则经过x 块这样的玻璃后光线强度为: 0.9xy k =⋅,那么至少通过( )块这样的玻璃,光线强度能减弱到原来的14以下(lg30.477≈, lg20.3≈) A . 12 B . 13 C . 14 D . 15【答案】C 【解析】由题意0.94x k k <,即10.94x <, 两边同取对数,可得1lg0.9lg 4x <, ∵lg0.9lg10<=,∴1lg 2lg20.6020413.1lg0.92lg310.95421x -->=-=≈--, 又*x N ∈, 所以至少通过14块玻璃,光线强度能减弱到原来的14以下。
幂函数指数函数对数函数专练习题含答案
高中数学对数函数、指数函数、幂函数练习题 1. 函数f (x )=x 21-的定义域是A.(-∞,0]B.[0,+∞)C.(-∞,0)D.(-∞,+∞) 2. 函数x y 2log =的定义域是A.(0,1]B. (0,+∞)C. (1,+∞)D.[1,+∞)3. 函数y =A.(3,+∞)B.[3, +∞)C.(4, +∞)D.[4, +∞)4. 若集合{|2},{|x M y y N y y ====,则M N ⋂= A.{5. 6. A.y C.y 7. A. 8. A.C. 9. A.(-10. 11. A.C.是奇函数,在区间(0,+∞)上单调递增 D.是奇函数,在区间(0,+∞)上单调递减 12. 函数xx x y -+=||)1(013. 函数y =的定义域是A.[1,)+∞B.23(,)+∞C.23[,1]D.23(,1]14. 下列四个图象中,函数xx x f 1)(-=的图象是15. 设A 、B 是非空集合,定义A ×B={x |x ∈A ∪B 且x ∉A ∩B}.已知A={x |y =22x x -},B={y |y =2x ,x >0},则A ×B 等于 A.[0,1)∪(2,+∞) B.[0,1]∪[2,+∞)C.[0,1]D.[0,2]16. 设a =20.3,b =0.32,c =log 3.02,则 A a >c >b B.a >b >c C. b >c >a D. c >b >a 17. 已知点33()39在幂函数()y f x =的图象上,则()f x 的表达式是 A.()3f x x = B.3()f x x = C.2()f x x -=D.1()(2x f x =18. 已知幂函数αx x f =)(的部分对应值如下表:1 1则不等式1)(<x f 的解集是A.{}20≤<x xB.{}40≤≤x xC.{}22≤≤-x x D.{}44≤≤-x x 19. 已知函数的值为),则,的值域为)1(0[93)(2f a ax x f x ∞+--+=A.3B.4C.5D.6指数函数习题一、选择题1.定义运算a ?b =⎩⎪⎨⎪⎧a ?a ≤b ?b ?a >b ?,则函数f (x )=1?2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x)与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln[(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ?B ,则正数a 的取值范围( )A .a >3B .a ≥3C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧?3-a ?x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],1011a 的值.12(1)(2)1A 2A 3)A 4) A 、lg5lg7B 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( )A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数21log (617)y x x =-+的值域是( )A 、9A 、10A 、2,⎫⎛⎫+∞⎪ ⎪⎝⎭11、下列函数中,在A 、1log (1)x + B C 、12)A C 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。
(完整版)幂函数、指数函数、对数函数专练习题(含答案)
精心整理1.函数f(x)= . 1 2x的定义域是A. ( —x, 0]B.[0,+x)C. ( —X, 0)D. (―^,+呵2•函数y . log2 x的定义域是A. (0,1]B.(0,+x)C.(1,+x)D.[1,+x)3. 函数y Jog2 ^2的定义域是A.(3,+x )B.[3,+x )C.(4,+x )D.[4,+x)4. 若集合M {y | y 2x}, N {y | y . x 1},贝"M NA.{y|y 1}B.{y|y 1} C{y|y 0}D.{y|y 0}5. 函数y二-1的图象是x 16. 函数y=1 ——,则下列说法正确的是x 1A.y在(—1,+x)内单调递增B.y在(—1,+x)内单调递减Cy在(1,+x)内单调递增 D.y在(1,+x)内单调递减7. 函数y Jog°.5(3 x)的定义域是A.(2,3)B.[2,3) C[2, )D.( ,3)8. 函数f(x) x 在(0,3]上是xA.增函数B.减函数C在(0,1]上是减函数,[1,3]上是增函数。
.在(0,1]上是增函数,[1,3]上是减函数9. 函数y \ lg (2 x)的定义域是A.(-x, +X)B.(-x, 2)C.(-x, 0]D(-x, 1]— 2 x1,(x 0)10. 设函数f(x) 若f(X o) 1,则X o的取值范围是V x (x 0)11. 函数y |x|2A.是偶函数,在区间(-x ,0)上单调递增B.是偶函数,在区间(-x ,0)上单调递减C是奇函数,在区间(0,+x)上单调递增D.是奇函数,在区间(0,+x)上单调递减精心整理12. 函数y "―1)—的定义域是13. 函数y log i (3x 2)的定义域是A.[1, )B.(3, )C.[|,1]D.(3,1]14. 下列四个图象中,函数f(x) x 1的图象是x15. 设A、B是非空集合,定义A X B={x| x € A U B且x A A B}.已知A={x| y= 2x x2},B={y| y=2x,x>0},则A X B 等于A. :0,1)U (2,u)B. :0,1]U[ 2,+乂)C. :0,1]D. :0,2]16. 设a=20.|,b=0.32,c=log2.|,则Aa> c> bB.a> b> cC.b> c> aD.c> b> a17. 已知点「八3)在幕函数y f(x)的图象上,贝S f(x)的表达式是3 9「J-i 广一”:八, /■/1A. f(x) 3xB. f(x) x3C.f (x) x 2D. f (x)(一厂218. 已知幕函数f(x) x的部分对应值如下表:则不等式f (|x) 1的解集是A. x0 x 42B. x|o x 4C. 弋2 x V2D. x 4 x 419.已知函数f(x) x ax 3a 9的值域为[0,),则f (1)的值为A.3B.4C.5D.6I I \ 、指数函数习题一、选择题1. 定义运算a?b= ?a< b?,b?a>b?)),则函数f(x) =1?2x的图象大致为()2 .函数f (x) = x2- bx+ c 满足f (1 + x) = f (1 —x)且f (0) = 3,则f ( b x)与f (c x)的大小关系是()A. f(b x) <f (c x) 精心整理精心整理B. f(b x) >f(c x)C. f(b x)>f(c x)D. 大小关系随x的不同而不同3. 函数y = |2x- 1|在区间(k —1, k +1)内不单调,则k的取值范围是()A. ( —1,+切B.(―汽1)C. ( —1,1)D. (0,2)4. 设函数f(x) =ln[( x —1)(2 —x)]的定义域是A,函数g(x) = lg( —1)的定义域是B. 若A?B,则正数a的取值范围()A. a>3B. a>3C. a>D. a>5. 已知函数f (x)=若数列{a n}满足a n = f(n)( n€ N*),且{a n}是递增数列,则实数a 的取值范围是()A. [ , 3)B. (, 3)C. (2,3)D. (1,3)6. 已知a>0且a z 1, f (x) = x2—a x,当x € ( —1,1)时,均有f (x)v,则实数a的取值范围是()A. (0 , ] U [2 ,+乂)B. [ , 1) U (1,4]C. [ , 1) U (1,2]D. (0 , ) U [4 ,+ = )二、填空题7. ___________________________________________________________________ 函数y=a x( a>0,且a z 1)在[1,2]上的最大值比最小值大,则a的值是__________________ .8. _____________________________________________________________ 若曲线|y| = 2x+ 1与直线y= b没有公共点,则b的取值范围是 ____________________ .9. (2011 •滨州模拟)定义:区间[X1, X2](X1«2)的长度为X2—心已知函数y = 2|x|的定义域为[a, b],值域为[1,2],则区间[a, b]的长度的最大值与最小值的差为6、1、已知3a 2,那么log 3 8 2log 3 6用a 表示是()A 、 a 2B 、 2、 2叽(皿 5a 2C 3a (1 a)2D 3a a 2Iog a N ,则M的值为() 2N) log a MA 、 3、 丄B 4C 1D 4 或 14已知 x 2 y 21,x 0, yA ,0,且 log a (1 x)m,log a ----------- n,则 log a y 等于()1 xA 、m n B m n C 、1 m 24、 A 、如果方程 lg 2x (Ig5 Ig 7)lg x丄35Ig5gg7 B 、lg35 C 35D 5、 A 、 1一 m n2lg5 clg 7 0的两根是,,贝卩g 的值是()1已知 Iog 7【log 3(log 2 x )] 0,那么 x 2 等于()1B > LC LD 1一3 2 ; 3 2.2 3*3 函数y Ig 2 1的图像关于()x 轴对称B 、y 轴对称C 、原点对称D 直线y x 对称 精心A 、11. (2011 •银川模拟)若函数y = a 2^2a x — 1(a >0且1)在x € [ —1,1]上的最大值 为14,求a 的值.12.已知函数 f (x ) = 3x , f (a + 2) = 18, g (x ) = X ・3ax — 4x 的定义域为[0,1]. (1)求a 的值;⑵ 若函数g (x )在区间[0,1]上是单调递减函数,求实数 入的取值范围.对数与对数函数同步练习、选择题 三、解答题 10.求函数y = 2x 3x4的定义域、值域和单调区间.7、函数y log(2x 1) .3r~2的定义域是()2 1A -,1 U 1, B、,1 U 1,3 2C、2, D !,3 2&函数y log1 (x26x 17)的值域是()2A、R B 8, C , 3 D 3,9、若log m9 log n9 0,那么m,n满足的条件是()A、m n 1B、n m 1C、0 n m 1D 0 m n 110、log a2 1,则a的取值范围是()3A、0, — U 1,B、2,C、—,1 D> 0,—U -2,3 3 3 3 311、下列函数中,在0,2上为增函数的是()A、y log1 (x 1)B、y log2、x2121 2C、y log2—D y log 1 (x 4x 5)x忑12、已知g(x) log a|x+1| (a 0且a 1)在1,0 上有g(x) 0,则f(x)是()A、在,0上是增加的B、在,0上是减少的C、在,1上是增加的D在,0上是减少的二、填空题13、若log a 2 m,log a 3 n,a2m n。
高一数学_指数函数、对数函数、幂函数练习(含答案)
分数指数幂1、用根式的形式表示下列各式)0(>a (1)51a = (2)32a- =2、用分数指数幂的形式表示下列各式: (1)34y x = (2))0(2>=m mm3、求下列各式的值(1)2325= (2)32254-⎛⎫⎪⎝⎭=4、解下列方程 (1)1318x - = (2)151243=-x分数指数幂(第9份)答案12、33222,x y m3、(1)125 (2)81254、(1)512 (2)16指数函数(第10份)1、下列函数是指数函数的是 ( 填序号) (1)xy 4= (2)4x y = (3)xy )4(-= (4)24x y =。
2、函数)1,0(12≠>=-a a ay x 的图象必过定点 。
3、若指数函数xa y )12(+=在R 上是增函数,求实数a 的取值范围 。
4、如果指数函数xa x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( ) A 、2<a B 、2>a C 、21<<a D 、10<<a5、下列关系中,正确的是 ( )A 、5131)21()21(> B 、2.01.022> C 、2.01.022--> D 、115311()()22- - >6、比较下列各组数大小:(1)0.53.1 2.33.1 (2)0.323-⎛⎫ ⎪⎝⎭0.2423-⎛⎫⎪⎝⎭(3) 2.52.3- 0.10.2-7、函数xx f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。
函数xx f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。
8、求满足下列条件的实数x 的范围:(1)82>x (2)2.05<x 9、已知下列不等式,试比较n m ,的大小:(1)n m 22< (2)n m 2.02.0< (3))10(<<<a a an m10、若指数函数)1,0(≠>=a a a y x的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。
幂函数指数函数与对数函数练习题及解析
幂函数、指数函数与对数函数练习题及解析一、选择题1.(2007北京文、理,5分)函数()3(02)x f x x =<≤的反函数的定义域为( )A .(0)+∞,B .(19],C .(01),D .[9)+∞, 答案:B ;[解析] 函数()3(02)x f x x =<≤的反函数的定义域为原函数的值域,原函数的值域为(19],。
2.(2007山东文、理,5分)给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-. 下列函数中不满足其中任何一个等式的是( )A .()3x f x =B .()sin f x x =C .2()log f x x =D .()tan f x x = 答案:B ;[解析] 依据指、对数函数的性质可以发现A 满足()()()f x y f x f y +=,C 满足()()()f xy f x f y =+,而D 满足()()()1()()f x f y f x y f x f y ++=-,B 不满足其中任何一个等式。
3.(2007全国2理,5分)以下四个数中的最大者是( )A .(ln2)2B .ln (ln2)C .ln 2D .ln2 答案:D ;[解析] ∵0ln 21<<,∴ln (ln2)<0,(ln2)2<ln2,而ln 2=21ln2<ln2,∴最大的数是ln2。
4.(2007安徽理,5分)若A=}822|{2<≤∈-x Z x ,B=2 1{x R ||log x |}∈>,则)(C R B A 的元素个数为( ) A .0个 B .1个 C .2个 D .3个 答案:C ;[解析] 由于A=}822|{2<≤∈-x Z x =}321|{<-≤∈x Z x =1{|x Z ∈-<1}x ≤={0,1},而B=}1|log ||{2>∈x R x =}2210|{><<∈x x R x 或,那么)(C R B A ={0,1},则)(C R B A 的元素个数为2个。
高一数学,指数函数、对数函数、幂函数练习含答案
分数指数幂 1、用根式的形式表示下列各式)0(>a (1)51a = (2)32a- =2、用分数指数幂的形式表示下列各式: (1)34y x = (2))0(2>=m mm3、求下列各式的值 (1)2325= (2)32254-⎛⎫⎪⎝⎭=4、解下列方程 (1)1318x - = (2)151243=-x分数指数幂(第9份)答案12、33222,x y m3、(1)125 (2)81254、(1)512 (2)16指数函数(第10份)1、下列函数是指数函数的是(填序号)(1)x y 4=(2)4x y =(3)xy )4(-=(4)24x y =。
2、函数)1,0(12≠>=-a a a y x 的图象必过定点。
3、若指数函数xa y )12(+=在R 上是增函数,XX 数a 的取值X 围。
4、如果指数函数xa x f )1()(-=是R 上的单调减函数,那么a 取值X 围是() A 、2<a B 、2>a C 、21<<a D 、10<<a5、下列关系中,正确的是()A 、5131)21()21(> B 、2.01.022> C 、2.01.022--> D 、115311()()22- - >6、比较下列各组数大小:(1)0.53.1 2.33.1(2)0.323-⎛⎫ ⎪⎝⎭0.2423-⎛⎫ ⎪⎝⎭(3) 2.52.3-0.10.2-7、函数xx f 10)(=在区间[1-,2]上的最大值为,最小值为。
函数xx f 1.0)(=在区间[1-,2]上的最大值为,最小值为。
8、求满足下列条件的实数x 的X 围: (1)82>x (2)2.05<x9、已知下列不等式,试比较n m ,的大小:(1)nm22<(2)n m 2.02.0<(3))10(<<<a a an m10、若指数函数)1,0(≠>=a a a y x的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。
指数函数对数函数幂函数单元测试题(有答案)精品资料
指数函数、对数函数、幂函数测试题一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)l.设指数函数C 1:y =a x ,C 2:y =b x ,C 3:y =c x的图象如图,则()A .0<c <1<b <a B .0<a <1<b <c C .c <b <a D .0<c <1<a <b2.函数y =a x-1(a >0,a ≠1)过定点,则这个定点是()A .(0,1)B .(1,2)C .(-1,0.5)D .(1,1)3.若函数y =f (x )的图象与y =2-x的图象关于y 轴对称,则f (3)=()A .8B .4C .81D .414.若指数函数y =a x经过点(-1,3),则a 等于()A .3B .31C .2D .215.函数y =f (x )的图象与y =21-x的图象关于直线x =1对称,则f (x )为()A .y=2x-1B .y=2x+1C .y=2x-2D .y=22-x6.对于x 1,x 2∈R (注:表示“任意”),恒有f (x 1)〃f (x 2)=f (x 1+x 2)成立,且f (1)=2,则f (6)=()A .22B .4C .2D .87.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a =()A .41B .21C .22D .428.在同一坐标系中,函数y=2-x与y=log 2x 的图象是()9.设函数).0(),0(12)(21xx x x f x 若f (x 0)>1,则x 0的取值范围是()A .(-1,1)B .(-≦,-2)∪(0,+≦)C .(-1,+≦)D .(-≦,-1)∪(1,+≦)10.已知0<m <n <1,则a =log m (m +1)与b =log n (n +1)的大小关系是()A .a >bB .a =bfC .a <bD .不能确定11.设函数F(x)=f(x)-)(1x f ,其中x-log 2f(x)=0,则函数F(x)是()A.奇函数且在(-≦,+≦)上是增函数B.奇函数且在(-≦,+≦)上是减函数C.偶函数且在(-≦,+≦)上是增函数D.偶函数且在(-≦,+≦)上是减函数12.已知函数f(x)=x 2-2ax +a 在区间(-≦,1)上有最小值,则函数f(x)x在区间(1,+≦)上A .有两个零点B .有一个零点C .无零点D .无法确定二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知对数函数C 1:y =log a x ,C 2:y =log b x ,如图所示,则a 、b 的大小是__________.14.函数)34(log 5.0xy的定义域是__________.15.(1)计算:log 2.56.25+lg1001+lne +3log 122= .(2).0.02731-(-71)-2+25643-3-1+(2-1)0=________.16.已知f (e x)=x ,则f (5)等于_________________3log 9log 28的值是__________________________三、解答题(本大题共5小题,每小题8分,共40分,解答应写出文字说明、证明过程或演算步骤)17.已知二次函数()f x 满足(0)1f ,及(1)()2f x f x x .(1)求()f x 的解析式;(2)若()(log )(01)a g x f x aa 且,1,xa a,试求()g x 的值域.18.当某种药品注射到人体内,它在血液中的残留量成指数型函数衰减.(1)药品A 在血液中的残留量可以用以下指数型函数描述:y =5e -0.2t,其中,t 是注射一剂药A 后的时间(单位:h ),y 是药品A 在人体内的残留量(单位:mg ).描出这个函数图象,求出y 的初始值,当t =20时,y 值是多少?(2)另一种药品B 在人体中的残留量可以表示成y =5e -0.5t.与药品A 相比,它在人体内衰减得慢还是快?19.已知函数f (x )=log a11xmx (a >0,a ≠1)是奇函数.(1)求m 的值;(2)判断f (x )在区间(1,+≦)上的单调性.21.设函数)(x f 对于x 、y ∈R 都有)()()(y f x f y xf ,且x <0时,)(x f <0,2)1(f .(1)求证:函数)(x f 是奇函数;(2)试问)(x f 在]4,4[x 上是否有最值?若有,求出最值;若无,说明理由.(3)解关于x 的不等式)()(21)()(2122b f x b f x f bx f (0b).21.设函数2()21xf x a.(1)证明:不论a 为何实数函数)(x f 总为增函数;(2)当)(x f 为奇函数时,求函数)(x f 的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn = B .3339= C .43433)(y x y x +=+ D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D . ]21,1[-二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为 .12.不用计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是 .16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是 . 三、解答题:(10+10+12=32分)18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a ay x x在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值;1 0 t/月2 3(2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7B 、lg35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m na a m n a+=== 。
14、函数(-1)log (3-)x y x =的定义域是 。
15、2lg 25lg 2lg 50(lg 2)++= 。
16、函数)()lgf x x =是 (奇、偶)函数。
三、解答题:(本题共3小题,共36分,解答应写出文字说明,证明过程或演算步骤.)17、已知函数1010()1010x xx x f x ---=+,判断()f x 的奇偶性和单调性。
18、已知函数222(3)lg 6x f x x -=-,(1)求()f x 的定义域; (2)判断()f x 的奇偶性。
19、已知函数2328()log 1mx x nf x x ++=+的定义域为R ,值域为[]0,2,求,m n 的值。
一、选择题1.下列所给出的函数中,是幂函数的是( )A .3x y -= B .3-=x y C .32x y = D .13-=x y2.函数3yx =( )A .是奇函数,且在R 上是单调增函数B .是奇函数,且在R 上是单调减函数C .是偶函数,且在R 上是单调增函数D .是偶函数,且在R 上是单调减函数 3.函数43y x =的图象是( )4.下列函数中既是偶函数又在(,0)-∞上是增函数的是( )A .43y x = B .32y x = C .2y x -= D .14y x -=5.幂函数()3521----=m xm m y ,当x∈(0,+∞)时为减函数,则实数m 的值为( )A. m =2B. m =-1C. m =-1或m =2D. 251±≠m 6.当0<x <1时,f(x)=x 2,21)(x x g =,h(x)=x -2的大小关系是 ( )A. h(x)<g(x)<f(x)B. h(x)<f(x)<g(x)C. g(x)<h(x)<f(x)D. f(x)<g(x)<h(x) 7. 函数2-=xy 在区间]2,21[上的最大值是( )A .41B .1-C .4D .4- 8. 函数3x y =和31x y =图象满 ( )A . 关于原点对称B . 关于x 轴对称C . 关于y 轴对称D . 关于直线x y =对称9. 函数R x x x y ∈=|,|,满足 ( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数10.在下列函数中定义域和值域不同的是( )A.31x y = B.21-=xy C.35x y = D.32x y =11.如图所示,是幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小为( ) A .102431<<<<<αααα B .104321<<<<<αααα C .134210αααα<<<<<D .142310αααα<<<<< 12.设(),125212+⨯-=-x xx f 它的最小值是( )(A )21-(B )3- (C )169- (D )0二、填空题13.函数2223()(1)mm f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =____14.函数y x=-32的定义域是15.下列命题中,正确命题的序号是 __________ (写出你认为正确的所有序号)① 当0=α时函数y x α=的图象是一条直线; ② 幂函数的图象都经过(0,0)和(1,1)点;③ 若幂函数y x α=是奇函数,则y x α=是定义域上的增函数; ④ 幂函数的图象不可能出现在第四象限. 16.若22xx ≥,+∈Rx ,则x 的取值范围是____________。