吉林大学组合数学习题答案

合集下载

组合数学题目及标准答案

组合数学题目及标准答案

组合数学题目及标准答案组合数学例1: 将8个“车”放在8×8的国际象棋棋盘上,如果它们两两均不能互吃,那么称8个“车”处于一个安全状态。

问共有多少种不同的安全状态?解:8个“车”处于安全状态当且仅当它们处于不同的8行和8列上。

用一个排列a1,a2,…,a8 ,对应于一个安全状态,使ai 表示第i 行的ai 列上放置一个“车”。

这种对应显然是一对一的。

因此,安全状态的总数等于这8个数的全排列总数8!=40320。

例4:n 位客人在晚会上每人与他人握手d 次,d 是奇数。

证明n 偶数。

证:由于每一次握手均使握手的两人各增加一次与他人握手的次数,因此n 位客人与他人握手次数的总和 nd 是偶数—握手次数的2倍。

根据奇偶性质,已知d 是奇数,那么n 必定是偶数。

例4从1到2n 的正整数中任取n +1个,则这n +1个数中,至少有一对数,其中一个是另一个的倍数。

证设n +1个数是a 1, a 2, ···, an +1。

每个数去掉一切2的因子,直至剩下一个奇数为止。

组成序列r 1, r 2,, ···, rn +1。

这n +1个数仍在[1 , 2n ]中,且都是奇数。

而[1, 2n ]中只有n 个奇数,故必有ri =rj = r , 则ai = 2αi r , aj = 2αj r 。

若ai >aj ,则ai 是aj 的倍数。

例5 设a 1, a 2, ···, am 是正整数,则至少存在一对k 和l , 0≤k<="" ,使得和ak+1+="">证设Sh = , Sh ≡rh mod m, 0≤rh ≤m -1,h = 1 , 2 , ···, m . 若存在l , Sl ≡0 mod m 则命题成立.否则,1≤rh ≤m -1.但h = 1 , 2 , ···,m .由鸽巢原理,故存在rk= rl , 即Sk ≡Sl mod m ,不妨设l >k .则Sl -Sk= ak+1+ ak+2+…+ al ≡0 mod m例6 设a 1, a 2, a3是任意三个整数,b1 b2 b3为a1, a2, a3的任一排列,则a1-b1, a2-b2 ,a3-b3中至少有一个是偶数.证由鸽巢原理:a1, a2, a3至少有两个奇偶性相同.则这3个数被2除的余数至少有两个是相同的,不妨设为x; 同样b1, b2, b3中被2除的余数也至少有2个x .这样a1-b1, a2-b2 , a3-b3被2除的余数至少有一个为0.例7 设a 1, a 2,…, a100是由数字1和2组成的序列, 已知从其任一数开始的顺序10个数的和不超过16.即ai+ ai+1+…+ ai+9≤16,1≤i ≤91。

《组合数学》练习题一参考答案

《组合数学》练习题一参考答案

《组合数学》练习题一参考答案《组合数学》练习题一参考答案一、填空:1.!()!m n P n m m n m =- 2.2)1(-n n 3. 0. 4. 2675.),2,1,0(3)2(2321 =+-+=n c c c a n n n n .6.4207.78.()()!!11...!31!21!111n n n ??-++-+-9.22 10.267二、选择:1. 1—10 A B D D A D A B B C三、计算: 1. 解因为]250[=25, ]450[=12, ]850[=6, ]1650[=3, ]3250[=1, ]6450[=0, 所以, 所求的最高次幂是2(50!)=25+12+6+3+1=47.2. 解由我们最初观察的式子,有614,1124,634,144=??===, 再利用定理1,我们得到24!415,102)15(545,155==??=-?==, 3511642434435=+?=???+=, 5061141424425=+?=??+=. 所以,x x x x x x f 24503510)(23455+-+-=.3. 解:设所求为N ,令}2000,,2,1{ =S ,以A ,B ,C 分别表示S 中能被32?,52?,53?整除的整数所成之集,则53466663133200333 532200053220003532000522000322000 =+?-++=+-???????+???????+???????=+---++==C B A C B C A B A C B A CB A N 4. 解:记7个来宾为1A ,2A ,…,7A ,则7个来宾的取帽子方法可看成是由1A ,2A ,…,7A 作成的这样的全排列:如果i A (1≤i ≤7)拿了j A 的帽子,则把i A 排在第j 位,于是(1)没有一位来宾取回的是他自己的帽子的取法种数等于7元重排数7D ,即等于1854。

《组合数学》测试题含答案

《组合数学》测试题含答案

测 试 题——组合数学一、选择题1. 把101本书分给10名学生,则下列说法正确的是()A.有一名学生分得11本书B.至少有一名学生分得11本书C.至多有一名学生分得11本书D.有一名学生分得至少11本书2. 8人排队上车,其中A ,B 两人之间恰好有4人,则不同的排列方法是()A.!63⨯B.!64⨯C. !66⨯D. !68⨯3. 10名嘉宾和4名领导站成一排参加剪彩,其中领导不能相邻,则站位方法总数为()A.()4,11!10P ⨯B. ()4,9!10P ⨯C. ()4,10!10P ⨯D. !3!14-4. 把10个人分成两组,每组5人,共有多少种方法()A.⎪⎪⎭⎫ ⎝⎛510B.⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛510510 C.⎪⎪⎭⎫ ⎝⎛49 D.⎪⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛4949 5. 设x,y 均为正整数且20≤+y x ,则这样的有序数对()y x ,共有()个A.190B.200C.210D.2206. 仅由数字1,2,3组成的七位数中,相邻数字均不相同的七位数的个数是()A.128B.252C.343D.1927. 百位数字不是1且各位数字互异的三位数的个数为()A.576B.504C.720D.3368. 设n 为正整数,则∑=⎪⎪⎭⎫ ⎝⎛nk k n 02等于()A.n 2B. 12-nC. n n 2⋅D. 12-⋅n n9. 设n 为正整数,则()k k n k k n 310⎪⎪⎭⎫ ⎝⎛-∑=的值是()A.n 2B. n 2-C. ()n2- D.0 10. 设n 为正整数,则当2≥n 时,∑=⎪⎪⎭⎫ ⎝⎛-nk k k 22=()A.⎪⎪⎭⎫⎝⎛3n B. ⎪⎪⎭⎫ ⎝⎛+21n C. ⎪⎪⎭⎫ ⎝⎛+31n D. 22+⎪⎪⎭⎫ ⎝⎛n 11. ()632132x x x +-中23231x x x 的系数是()A.1440B.-1440C.0D.112. 在1和610之间只由数字1,2或3构成的整数个数为() A.2136- B. 2336- C. 2137- D. 2337- 13. 在1和300之间的整数中能被3或5整除的整数共有()个A.100B.120C.140D.16014. 已知(){}o n n f ≥是Fibonacci 数列且()()348,217==f f ,则()=10f ()A.89B.110C.144D.28815. 递推关系3143---=n n n a a a 的特征方程是()A.0432=+-x xB. 0432=-+x xC. 04323=+-x xD. 04323=-+x x16. 已知()⋯⋯=⨯+=,2,1,0232n a n n ,则当2≥n 时,=n a ()A.2123--+n n a aB. 2123---n n a aC.2123--+-n n a aD. 2123----n n a a17. 递推关系()⎩⎨⎧=≥+=-312201a n a a n n n 的解为() A.32+⨯=n n n a B. ()221+⨯+=n n n aC. ()122+⨯+=n n n aD. ()n n n a 23⨯+=18. 设()⋯⋯=⨯=,2,1,025n a n n ,则数列{}0≥n n a 的常生成函数是()A.x 215-B. ()2215x - C.()x 215- D. ()2215x -19. 把15个相同的足球分给4个人,使得每人至少分得3个足球,不同的分法共有()种A.45B.36C.28D.2020. 多重集{}b a S ⋅⋅=4,2的5-排列数为()A.5B.10C.15D.2021. 部分数为3且没有等于1的部分的15-分拆的个数为()A.10B.11C.12D.1322. 设n,k 都是正整数,以()n P k 表示部分数为k 的n-分拆的个数,则()116P 的值是()A.6B.7C.8D.923. 设A ,B ,C 是实数且对任意正整数n 都有⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅+⎪⎪⎭⎫ ⎝⎛⋅=1233n C n B n A n ,则B 的值是()A.9B.8C.7D.624. 不定方程1722321=++x x x 的正整数解的个数是()A.26B.28C.30D.3225. 已知数列{}0≥n n a 的指数生成函数是()()t t e e t E 521⋅-=,则该数列的通项公式是()A.n n n n a 567++=B. n n n n a 567+-=C. n n n n a 5627+⨯+=D. n n n n a 5627+⨯-= 二、填空题1. 在1和2000之间能被6整除但不能被15整除的正整数共有_________个2. 用红、黄、蓝、黑4种颜色去图n ⨯1棋盘,每个方格涂一种颜色,则使得被涂成红色的方格数是奇数的涂色方法共有_______种3. 已知递归推关系()31243321≥-+=---n a a a a n n n n 的一个特征根为2,则其通解为___________4. 把()3≥n n 个人分到3个不同的房间,每个房间至少1人的分法数为__________5. 棋盘⨯⨯⨯⨯⨯⨯⨯的车多项式为___________ 6. 由5个字母a,b,c,d,e 作成的6次齐次式最多可以有_________个不同类的项。

组合数学 课后答案 PDF 版

组合数学 课后答案 PDF 版
4.1 证明所有的循环群是 ABEL 群 证明:
循环群也是群,所以群的定义不用再证,只需证明对于任意a, b G, G是循环群,有a * b b * a成立,因为循环群中的元素可写成a=xm 形式 所以等式左边xm × x n x m n , 等式右边x n xm=x m n, a b b a,即所有 的循环群都是ABEL群。
因为 H 是 G 的子群, 所以在 H 中的一个 (b m ) r 一定在 G 中对应一个 a m 使得
(b m ) r a m ,
所以有 b rm a m ,则 rm 一定是 m 的倍数,所以则 H 的阶必除尽 G 的阶。 4.9 G 是有限群,x 是 G 的元素,则 x 的阶必除尽 G 的阶。
N-1 N-2
N
1
2 3
……
……
图N! C N!
如图: N 个人围成一个圆桌的所有排列如上图所示。一共 N!个。
……

6
…………………………
… …
……
… …


旋转 360/i,i={n,n-1,n-2,……1}; 得到 n 种置换 当且仅当 i=1 的置换(即顺时针旋转 360/1 度:P1=(c1)(c2)……(cn!);) 时有 1 阶循环存在 (因为只要圆桌转动,所有圆排列中元素的绝对位置都发生了 变化,所以不可能有 1 阶循环存在) 。 不同的等价类个数就是不同的圆排列个数,根据 Burnside 引理,
4.18 若以给两个 r 色球,量个 b 色的球,用它装在正六面体的顶点,试问有多 少种不同的方案。 解:单位元素(1) (2) (3) (4) (5) (6) (7) (8) ,格式为(1)8. 绕中轴旋转 90。的置换非别为(1234) (5678) , (4321) (8765) 2 格式为(4) ,同格式的共轭类有 6 个。

组合数学课后习题答案

组合数学课后习题答案

第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 49→50 ) 2.(a) 5!8!(b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)!(c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 2⨯5⨯P(8,2)+3⨯4⨯P(8,2)6. (n+1)!-17. 用数学归纳法易证。

8. 41⨯319. 设 n=p 1n 1p 2n 2…p kn k , 则n 2的除数个数为 ( 2p 1+1) (2p 2+1) …(2p k+1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。

11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。

组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。

12.考虑,)1(,)1(101-=-=+=+=∑∑n nk k k n nnk kknx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk kn n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。

当第二组最大数为a k 时,第二组共有2k-1种不同的可能,第一组有2n-k -1种不同的可能。

故符合要求的不同分组共有12)2()12(21111+-=-----=∑n k n k n k n 种。

组合数学习题解答

组合数学习题解答

第一章:1.2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。

解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P(5,4)=120。

1.4. 10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式?解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。

如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式。

而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。

故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!- 2*9!。

1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式? 解:这是一组圆排列问题,10个人围圆就坐共有10!10 种方式。

两人坐在一起的方式数为9!92⨯,故两人不坐在一起的方式数为:9!-2*8!。

1.14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数?解:(1)在1到9999中考虑,不是4位数的整数前面补足0, 例如235写成0235,则问题就变为求:x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有 F (4,5)=⎪⎪⎭⎫⎝⎛-+=515456 (2)分为求:x 1+x 2+x 3+x 4=4 的非负整数解,其个数为F (4,4)=35 x 1+x 2+x 3+x 4=3 的非负整数解,其个数为F (4,3)=20 x 1+x 2+x 3+x 4=2 的非负整数解,其个数为F (4,2)=10 x 1+x 2+x 3+x 4=1 的非负整数解,其个数为F (4,1)=4 x 1+x 2+x 3+x 4=0 的非负整数解,其个数为F (4,0)=1 将它们相加即得,F (4,4)+F (4,3)+F (4,2)+F (4,1)+F (4,0)=70。

组合数学课后习题答案

组合数学课后习题答案

组合数学课后习题答案问题1求解以下组合数:(a)C(5, 2)(b)C(7, 3)(c)C(10, 5)解答:(a)C(5, 2) 表示从5个不同元素中选取2个的组合数。

根据组合数的定义,我们可以使用公式 C(n, k) = n! / (k! * (n-k)!) 来计算组合数。

计算 C(5, 2): C(5, 2) = 5! / (2! * (5-2)!) = 5! / (2! * 3!) = (5 * 4 * 3!) / (2! * 3!) = (5 * 4) / 2 = 10所以 C(5, 2) = 10。

(b)C(7, 3) 表示从7个不同元素中选取3个的组合数。

计算 C(7, 3): C(7, 3) = 7! / (3! * (7-3)!) = 7! / (3! * 4!) = (7 * 6 * 5 * 4!) / (3! * 4!) = (7 * 6 * 5) / 3 = 35 * 2 = 70所以 C(7, 3) = 70。

(c)C(10, 5) 表示从10个不同元素中选取5个的组合数。

计算 C(10, 5): C(10, 5) = 10! / (5! * (10-5)!) = 10! / (5! * 5!) = (10 * 9 * 8 * 7 * 6 * 5!) / (5! * 5!) = (10 * 9 * 8 * 7 * 6) / (5 * 4 * 3 * 2 * 1) = 252所以 C(10, 5) = 252。

问题2在一个集合 {a, b, c, d, e} 中,求解以下问题:(a)有多少种不同的3个元素的子集?(b)有多少种不同的4个元素的子集?(c)有多少种不同的空集合?(a)在一个集合 {a, b, c, d, e} 中选取3个元素的子集。

子集的元素个数为3,所以我们需要从5个元素中选取3个。

利用组合数的公式 C(n, k) = n! / (k! * (n-k)!),我们可以计算组合数。

组合数学 课后答案 PDF 版

组合数学 课后答案 PDF 版

3.1 某甲参加一种会议,会上有6位朋友,某甲和其中每一个人在会上各相遇12次,每两人各相遇6次,每3人各相遇4次,每4人各相遇3次,每5人各相遇2次,每6人各相遇1次,1人也没遇见的有5次,问某甲共参加几次会议?解:设A 为甲与第i 个朋友相遇的会议集.i=1,2,3,4,5,6.则 │∪A i │=12*C(6,1)-6*C(6,2)+4*C(6,3)-3*(6,4)+2*(6,5)-C(6,6) =28甲参加的会议数为 28+5=333.2:求从1到500的整数中被3和5整除但是不能被7整除的数的个数。

解:设 A 3:被3整除的数的集合A 5:被5整除的数的集合 A 7:被7整除的数的集合 所以 ||=||-||=-=33-4=29 3.3 n 个代表参加会议,试证其中至少有2个人各自的朋友数相等解:每个人的朋友数只能取0,1,…,n -1.但若有人的朋友数为0,即此人和其 他人都不认识,则其他人的最大取数不超过n -2.故这n 个人的朋友数的实际取数只 有n -1种可能.,根据鸽巢原理所以至少有2人的朋友数相等.3.4试给出下列等式的组合意义0j j 0(1)=(1), 1n-m-j+1(2)(1)1 j 1(3)...(1) 1 12m l l n m l n m m n l n k m n k l k l n m l n m l m l m l m l m l m l m m m m m l =-=--⎛⎫⎛⎫⎛⎫-≥≥ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭---⎛⎫⎛⎫⎛⎫=- ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭+-++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑∑ 证明:(1)从n 个不同元素中取k ,使得其中必含有m 个特定元素的方案数为)()(kn mn m k mn --=--。

设这m 个元素为a 1,a 2,…,a m , Ai 为包含a i 的组合(子集),i=1,…,m.1212|...|(...)12 =(...(1))1 2 =(1) m m m l n A A A A A A k n m n m n m n m k k k m k m n l l k ⎛⎫=- ⎪⎝⎭---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛- ⎪⎝⎭ 0ml =⎫ ⎪⎝⎭∑ (2)把l 个无区别的球放到n 个不同的盒子,但有m 个空盒子的方案数为11n l m n m -⎛⎫⎛⎫⎪⎪--⎝⎭⎝⎭令k=n-m ,设A i 为第i 个盒子有球,i=1,2,…k12k 121|...|(...)1k 11211 =(...(1)) 1 2 k k k l A A A A A A k k l k l k k l k k k l k l l k l +-⎛⎫=- ⎪⎝⎭+--+--+--+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ kj j 0k k-j+1 =(1)j l l =-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭∑ (3)设A i 为m+l 个元素中去m+i 个,含特定元素a 的方案集;N i 为m+l 个元素中取m+i 个的方案数。

吉林大学组合数学习题答案

吉林大学组合数学习题答案

*5! 种方法;后排 8 个座位,4 人固定,共 C84 * 4! 种方法;前排和后排还剩 7 个
5 *5! 种方法;则一共有 C85 * C84 * C7 *5!*5!* 4!种安排方法。
5 座位,由剩下的 5 人挑选 5 个座位,共 C7
3.5
将英文字母表中的 26 个字母排序,要求任意两个元音字母不能相邻,则有多少种排序方法?
考虑数列 a1,a2,...,a50,a1+24,a2+24,a50+24,它们都在1与75+24=99之间。 由鸽巢原理知,其中必有两项相等。由(*)知,a1,a2,...,a50互不相等,从而a1+24,...a50+24 也互不相等,所以 一定存在1<=i<j<=50, 使得aj = ai+24,即 24=aj-ai=(b1+b2+b3+…+bi+…+bj)-(b1+b2+…+bi)= i + 1 所以从第i+1天到第j天这连续j-i天中,她正好做了24次实验。 2.11 证明:从 S={1,3,5,…,599}这 300 个奇数中任意选取 101 个数,在所选出的数中一定存在 2 个数,它们之间最多差 4。 证明: 将S划分为{1,3,5},{7,9,11}……,{ 595,597,599}共100组,由鸽巢原理知任意选取101个数中必存在2个数来自同一组,即其 差最多为4. 2.12 证明:从 1~200 中任意选取 70 个数,总有两个数的差是 4,5 或 9。 证明:设这 70 个数为 a1,a2,…,a70, a1+4,a2+4,…,a70+4, a1+9,a2+9,…,a70+9, 取值范围209,共210个数

组合数学第一章答案.

组合数学第一章答案.

1.1 从{}5021,,,⋅⋅⋅中找两个数{}b a ,,使其满足(1) 5||=-b a ;(2)5||≤-b a解:(1)根据5||=-b a 可得 55-=-=-b a b a 或 则有种种4545 共有90种。

(2)根据5||≤-b a 得 )50,,2,1(,55{⋅⋅⋅∈+≤≤-b a b a b则:当5≤b 时,有1=b , 61≤≤a , 则有 6种2=b , 71≤≤a , 则有7种3=b , 81≤≤a , 则有8种4=b , 91≤≤a , 则有 9种5=b , 101≤≤a , 则有10种 当455≤<b 时,有6=b , 111≤≤a , 则有 11种7=b , 122≤≤a , 则有 11种 . . . . . . . . .45=b , 5040≤≤a , 则有11种 当5045≤<b 时,有46=b , 5041≤≤a , 则有 10种47=b , 5042≤≤a , 则有 9种48=b , 5043≤≤a , 则有 8种49=b , 5044≤≤a , 则有 7种 50=b , 5045≤≤a , 则有 6种故:共 种520)678910(21140=+++++⨯1.2 (1)先把女生进行排列,方案为5!,然后把女生看成1个人和7个男生进行排列,总方案数为5!×8!(2)女生不相邻,则先把男生进行排列,方案为7!再把女生插入男生之间的8个空位种的任意5个,总方案数为7!×58P(3)应该是A 女生x 女生y 女生z B,或是B 女生x 女生y 女生z A 的形式,从5个女生中选出3人进行排列,方案为35P ,考虑A,B 可以换位,方案为2×35P ,然后把这个看成一个整体,和剩下的2个女生,5个男生,一共7个人进行排列,总方案数2×35P ×8!1.3 m 个男生,n 个女生,排成一行,其中m,n 都是正整数,若 (a )男生不相邻(m ≤n+1);(b )n 个女生形成一个整体; (c )男生A 和女生B 排在一起; 分别讨论有多少种方案。

最新组合数学习题答案(1-4章全)

最新组合数学习题答案(1-4章全)

第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。

满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。

满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有:7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学 课后答案 PDF 版

组合数学 课后答案 PDF 版

3.1 某甲参加一种会议,会上有6位朋友,某甲和其中每一个人在会上各相遇12次,每两人各相遇6次,每3人各相遇4次,每4人各相遇3次,每5人各相遇2次,每6人各相遇1次,1人也没遇见的有5次,问某甲共参加几次会议?解:设A 为甲与第i 个朋友相遇的会议集.i=1,2,3,4,5,6.则 │∪A i │=12*C(6,1)-6*C(6,2)+4*C(6,3)-3*(6,4)+2*(6,5)-C(6,6) =28甲参加的会议数为 28+5=333.2:求从1到500的整数中被3和5整除但是不能被7整除的数的个数。

解:设 A 3:被3整除的数的集合A 5:被5整除的数的集合 A 7:被7整除的数的集合 所以 ||=||-||=-=33-4=29 3.3 n 个代表参加会议,试证其中至少有2个人各自的朋友数相等解:每个人的朋友数只能取0,1,…,n -1.但若有人的朋友数为0,即此人和其 他人都不认识,则其他人的最大取数不超过n -2.故这n 个人的朋友数的实际取数只 有n -1种可能.,根据鸽巢原理所以至少有2人的朋友数相等.3.4试给出下列等式的组合意义0j j 0(1)=(1), 1n-m-j+1(2)(1)1 j 1(3)...(1) 1 12m l l n m l n m m n l n k m n k l k l n m l n m l m l m l m l m l m l m m m m m l =-=--⎛⎫⎛⎫⎛⎫-≥≥ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭---⎛⎫⎛⎫⎛⎫=- ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭+-++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑∑ 证明:(1)从n 个不同元素中取k ,使得其中必含有m 个特定元素的方案数为)()(kn mn m k mn --=--。

设这m 个元素为a 1,a 2,…,a m , Ai 为包含a i 的组合(子集),i=1,…,m.1212|...|(...)12 =(...(1))1 2 =(1) m m m l n A A A A A A k n m n m n m n m k k k m k m n l l k ⎛⎫=- ⎪⎝⎭---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛- ⎪⎝⎭ 0ml =⎫ ⎪⎝⎭∑ (2)把l 个无区别的球放到n 个不同的盒子,但有m 个空盒子的方案数为11n l m n m -⎛⎫⎛⎫⎪⎪--⎝⎭⎝⎭令k=n-m ,设A i 为第i 个盒子有球,i=1,2,…k12k 121|...|(...)1k 11211 =(...(1)) 1 2 k k k l A A A A A A k k l k l k k l k k k l k l l k l +-⎛⎫=- ⎪⎝⎭+--+--+--+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ kj j 0k k-j+1 =(1)j l l =-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭∑ (3)设A i 为m+l 个元素中去m+i 个,含特定元素a 的方案集;N i 为m+l 个元素中取m+i 个的方案数。

组合数学第一章课后习题答案

组合数学第一章课后习题答案

1.1 题(宗传玉)从{1,2,……50}中找两个数{a ,b},使其满足 (1)|a-b|=5; (2)|a-b|≤5; 解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时 有90对序列。

当|a-b|=1时,两数的序列有(1,2),(3,4),(2,1)(1,2)……(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=520 1.2题(王星) 解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为: 8!×5!,(b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y 在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5!(c )先取两个男生和3个女生做排列,情况如下:6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*21.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*22.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*23.2.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*24.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*25.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2 所以总的排列数为上述6种情况之和。

组合数学讲义及课后答案 1章 排列组合

组合数学讲义及课后答案 1章 排列组合

8 1 6 3 5 7 4 9 2
2 7 6 9 5 1 4 3 8
图1.1.1 3 阶幻方 奇数阶幻方的生成方法: 奇数阶幻方最经典的填法是罗伯法。填写的方法是: 把 1(或最小的数)放在第一行正中; 按以下规律排列剩下的
1/69Leabharlann 《组合数学》第一章
组合数学基础
(n× n-1)个数 (1)每一个数放在前一个数的右上一格; (2)如果这个数所要放的格已经超出了顶行那么就把它放在底 行,仍然要放在右一列; (3)如果这个数所要放的格已经超出了最右列那么就把它放在 最左列,仍然要放在上一行; (4)如果这个数所要放的格已经超出了顶行且超出了最右列, 那么就把它放在前一个数的下一行同一列的格内; (5)如果这个数所要放的格已经有数填入,那么就把它放在前 一个数的下一行同一列的格内。
算法分类: 第一类:数值算法。主要解决数值计算问题,如方程求根、
3/69
《组合数学》
第一章
组合数学基础
解方程组、求积分等,其数学基础是高等数学与线性代数。 第二类:组合算法,解决搜索、排序、组合优化等问题, 其数学基础就是组合数学。 按所研究问题的类型,组合数学所研究的内容可划分为: 组合计数理论 组合设计 组合矩阵论 组合优化 本课程重点:以组合计数理论为主,部分涉及其它内容。 (三) 研究方法
A(0,0) 图1.1.3 最短路径
(2)对应为(元素可重复的)排列问题:一条从 A 到 B 的 路线对应一个由 7 个 x,5 个 y 共 12 个元素构成的排列。 蓝色路径 <——> xyyxxyyxxxxy 反之,给定一个排列,按照 x、y 的含义,必对应一条从 A 到 B 的行走路线。例如,排列
一坐上行正中央,依次斜填切莫忘, 上边出格往下填,右边出格往左填, 右上有数往下填,右上出格往下填。 例:将 2,4,6,8,10,12,14,16,18 填入下列幻方:

【新版】组合数学第四章习题解答范文

【新版】组合数学第四章习题解答范文

优选
4
证明:如果ak的阶为n, 则k与n互素,
证明:akn=e,且不存在m<n,使akm=e,则k与n互 素, 设k与n不互素,存在h>1,k=hb,n=hc, kn=(hb)(hc),则(hb)c=kc=bn 因此akc=abn=e,c<n矛盾
优选
5
4.5 试证循环群的子群也是循环群。 显然。
种方案。
G (1)(2)(3)(4)(5)(6),(123456)
1
6
(135)(246),(14)(25)(36),
(153)(264),(165432)
2
5
(1)(4)(26)(35), (2)(5)(13)(46),
(3)(6)(15)(24),
3
4
(61)(25)(34), (12)(36)(54), (23)(14)(56),
29
1
1
2
7
2
7
3 4
3 6
5
4
6 5
优选
30
例4.16 骰子的6个面分别有1,2,3,4,5,6个点,问有 多少种不同的方案?
解法1,用Burnside引理
问题相当于对正六面体的6个面,用6种颜色对之 染色,要求各面的颜色都不一样,求不同的方案数?
6个面用6种颜色涂染,各面颜色都不一样,共有 6!种方案。
=2|V|π-∑ejπ+2|S|π =2|V|π+2|S|π-2|E|π=4π
优选
25Leabharlann 4.24 足球由正五边形与正六边形相嵌而成
(a)一个足球由多少正五边形与正六边形组成
(b)把一个足球所有的正六边形都着以黑色,正五 边形则着以其它各色,每个正五边形着色各不相 同,有多少种方案?

组合数学习题答案(部分)

组合数学习题答案(部分)
期末总复习
n 阶幻方的构造
分三种情况:n 为奇数、n 为 4 的倍数、n 为其它偶数(4n+2 的形式)
⑴ n 为奇数时,最简单
(1) 将 1 放在第一行中间一列; (2) 从 2 开始直到 n×n 止各数依次按下列规则存放:
按 45°方向行走,(如向右上) 每一个数存放的行比前一个数的行数减 1,列数加 1 (3) 如果行列范围超出矩阵范围,则回绕。 例如 1 在第 1 行,则 2 应放在最下一行,列数同样加 1; (4) 如果按上面规则确定的位置上已有数,或上一个数是第 1 行 第 n 列时, 则把下一个数放在上一个数的下面。
置的元素。 (4)调换 A 区和 D 区,B 区和 C 区中选定的对应元素。
30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
1
)
34
2 42
3!
43
2(1 1 1 1 ) 2(1 0.083 0.0069) 2.1522 12 9 16
第四章 容斥原理
2.
4.
5.
6.
7. 求集合{1,2,…,n}的排列数,使得在排 列中正好有k个整数在它们的自然位置上。
8.
13.
14.
16.
⑵ n 为 4 的倍数时
采用对称元素交换法。 1.把 数 1 到 n×n 按从 上至下,从左到 右顺序填入矩阵 2.将方 阵的所有 4×4 子方阵中的两对角 线上位置的数关 于方阵 中心作对 称交换 ,即 a(i,j)与 a(n+1-i,n+1-j) 交换,所有其它位置上的数不变。

《组合数学》第二版(姜建国著)-课后习题答案全

《组合数学》第二版(姜建国著)-课后习题答案全

习题一(排列与组合)1.在1到9999之间,有多少个每位上数字全不相同而且由奇数构成的整数? 解:该题相当于从“1,3,5,7,9”五个数字中分别选出1,2,3,4作排列的方案数;(1)选1个,即构成1位数,共有15P 个; (2)选2个,即构成两位数,共有25P 个; (3)选3个,即构成3位数,共有35P 个; (4)选4个,即构成4位数,共有45P 个;由加法法则可知,所求的整数共有:12345555205P P P P +++=个。

2.比5400小并具有下列性质的正整数有多少个? (1)每位的数字全不同;(2)每位数字不同且不出现数字2与7; 解:(1)比5400小且每位数字全不同的正整数; 按正整数的位数可分为以下几种情况:① 一位数,可从1~9中任取一个,共有9个;② 两位数。

十位上的数可从1~9中选取,个位数上的数可从其余9个数字中选取,根据乘法法则,共有9981⨯=个;③ 三位数。

百位上的数可从1~9中选取,剩下的两位数可从其余9个数中选2个进行排列,根据乘法法则,共有299648P ⨯=个;④ 四位数。

又可分三种情况:⏹ 千位上的数从1~4中选取,剩下的三位数从剩下的9个数字中选3个进行排列,根据乘法法则,共有3942016P ⨯=个;⏹ 千位上的数取5,百位上的数从1~3中选取,剩下的两位数从剩下的8个数字中选2个进行排列,共有283168P ⨯=个;⏹ 千位上的数取5,百位上的数取0,剩下的两位数从剩下的8个数字中选2个进行排列,共有2856P =个;根据加法法则,满足条件的正整数共有:9816482016168562978+++++=个;(2)比5400小且每位数字不同且不出现数字2与7的正整数;按正整数的位数可分为以下几种情况:设{0,1,3,4,5,6,8,9}A = ① 一位数,可从{0}A -中任取一个,共有7个;② 两位数。

十位上的数可从{0}A -中选取,个位数上的数可从A 中其余7个数字中选取,根据乘法法则,共有7749⨯=个;③ 三位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
y : C54 * (2 x ) 4 * (−3 y )1 ,系数为-240
2) x
2
y 4 :系数为 0。
3.12 确定(1+x)-5 展开式中 x4 的系数。 解: (1 +
∞ ⎛ n + r − 1⎞ r ,n=5,r=4,则系数为 ⎛ 5 + 4 − 1⎞ x ) − n = ∑ (−1) r ⎜ x (−1) 4 ⎜ ⎟ ⎟ = 70 r =0 ⎝ r ⎠ ⎝ 4 ⎠
x2 + x3 + x4 = 20 ,满足 x1 ≥ 2, x2 ≥ 0, x3 ≥ 5, x4 ≥ −1 的整数解的个数。
解:令
y1 = x1 − 2 ≥ 0, y2 = x2 ≥ 0, y3 = x3 − 5 ≥ 0, y 4 = x4 + 1 ≥ 0
则有
14 + 4 − 1⎞ ⎛ 17 ⎞ ⎛ 17 ⎞ y1 + y2 + y3 + y4 = 14 ,由定理 3.3.3,解个数为: ⎛ ⎜ 14 ⎟ = ⎜ 14 ⎟ = ⎜ 3 ⎟ = 680 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
某个单位内部的电话号码是 4 位数字, 如果要求数字不能重复, 那么最多可有多少个号码?如果第一位数字不能是 0, 那么最多能有多少个电话号码?
6 解: 由于数字不能重复, 0-9 共 10 个数字, 所以最多有 10*9*8*7=5040 种号码; 若第一位不能是 0, 则最多有 9*9*8*7=453 9*9*8*7=4536 种号码。 18 名排球运动员被分成 A,B,C 三个组, 使得每组有 6 名运动员, 那么有多少种分法?如果是分成三个组 (不可区别) , 使得每组仍有 6 名运动员,那么有多少种分法?
(m 2+ 1)
种,这样一列中两个同色单元格的位置组合共有
+1 m (m 2 )
种情况
(3)现在有 m
+1 +1 (m 2 )
列,根据鸽巢原理,必有两列相同。证明结论成立。
2.10 一名实验员在 50 天里每天至少做一次实验,而实验总次数不超过 75。证明一定存在连续的若干天,她正好做了 24 次实验。 证明:令b1,b2,...,b50 分别为这50天中他每天的实验数,并做部分和 a1 = b1,a2 = b1+b2 ,。。 a50 = b1+b2+...+b50 . 由题,bi>=1(1<=i<=50)且a50<=75 所以 1<=a1<a2<a3<…<a50<=75 (*)
考虑数列 a1,a2,...,a50,a1+24,a2+24,a50+24,它们都在1与75+24=99之间。 由鸽巢原理知,其中必有两项相等。由(*)知,a1,a2,...,a50互不相等,从而a1+24,...a50+24 也互不相等,所以 一定存在1<=i<j<=50, 使得aj = ai+24,即 24=aj-ai=(b1+b2+b3+…+bi+…+bj)-(b1+b2+…+bi)= i + 1 所以从第i+1天到第j天这连续j-i天中,她正好做了24次实验。 2.11 证明:从 S={1,3,5,…,599}这 300 个奇数中任意选取 101 个数,在所选出的数中一定存在 2 个数,它们之间最多差 4。 证明: 将S划分为{1,3,5},{7,9,11}……,{ 595,597,599}共100组,由鸽巢原理知任意选取101个数中必存在2个数来自同一组,即其 差最多为4. 2.12 证明:从 1~200 中任意选取 70 个数,总有两个数的差是 4,5 或 9。 证明:设这 70 个数为 a1,a2,…,a70, a1+4,a2+4,…,a70+4, a1+9,a2+9,…,a70+9, 取值范围209,共210个数
+1 +1 (m 2 )
列的网格每个格子涂 1 种颜色,有 m 种颜色可以选择,证明:无论怎么涂色,
其中必有一个由格子构成的矩形的 4 个角上的格子被涂上同一种颜色。 证明: (1)对每一列而言,有(m+1)行,m种颜色,有鸽巢原理,则必有两个单元格颜色相同。 (2)每列中两个单元格的不同位置组合有
3.10 书架上有 20 卷百科全书,从中选出 4 卷使得任意两本的卷号都不相邻的选法有多少种? 解:n=20,r=4, ⎛
⎜ ⎝
n − r + 1 ⎞ ⎛ 20 − 4 + 1 ⎞ ⎛17 ⎞ =⎜ ⎟ = ⎜ 4 ⎟ = 2380 r ⎟ 4 ⎠ ⎝ ⎠ ⎝ ⎠
证明见 38 页。 3.11 确定(2x-3y)5 展开式中 x4y 和 x2y4 的系数。 解:1) x
3.13 确定(x +2y+3z)8 展开式中 x4y2x2 的系数。 解:
6 6 解:1) C18 * C12 6 种 * C6
3.3
2) 3.4
6 6 6 /3! C18 * C12 * C6
教室有两排,每排 8 个座位。现有学生 14 人,其中的 5 个人总坐在前排,4 个人总坐在后排,求有多少种方法将学 生安排在座位上?
5 解:前排 8 个座位,5 人固定,共 C8
5 5
男 6 的圆排列为 5!,对每个男的排列,女要在他们之间的 6 个位置,进行线性排列 6!(而不是 5!)。 (圆排列可以通过线性排列来解决) 3.7 15 个人围坐一个圆桌开会,如果先生 A 拒绝和先生 B 和 C 相邻,那么有多少种排坐方式? 解:15 人圆排列 14!; A 与 B 相邻有 2*14!/14=2*13!; A 与 C 相邻有 2*14!/14=2*13!; A 与 BC 同时相邻有 2*13!/13=2*12!; 于是 A 不与 B、C 相邻的坐法共 14!- 2*13!- 2*13!+ 2*12!(用到了容斥原理) 3.8 确定多重集 M
习题三
3.1
有 10 名大学生被通知参加用人单位的面试,如果 5 个人被安排在上午面试,5 个人被安排在下午面试,则有多少种 不同的安排面试的顺序?
解:上午的 5 个人全排列为 5! 下午的 5 个人全排列为 5!
5 所以有 C10
*5!*5! = 10! ,共 14400 种不同的安排方法。
3.2
证明:首先对一列而言,因为有5行,只有4只颜色选择,根据鸽巢原理,则必有两个单元格的颜色相同。另外,每列中两 个单元格的不同位置组合有
(5 2)
=10种,这样一列中两个同色单元格的位置组合共有10*4=40种情况。
而现在共有41列,根据鸽巢原理,无论怎样涂色,则必有两列相同,也就是必有一个由格子构成的矩形的4个角上的格 子是同一颜色。 2.9 将一个矩形分成(m 人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明: 假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n 个人认识的人数有 n-1 种,那么至少 有 2 个人认识的人数相同。 假设有 1 人谁都不认识:那么其他 n-1 人认识的人数都为[1,n-2],由鸽巢原理知,n-1 个人认识的人数有 n-2 种,那么至 少有 2 个人认识的人数相同。 假设至少有两人谁都不认识,则认识的人数为 0 的至少有两人。 2.2 任取 11 个整数,求证其中至少有两个数的差是 10 的整数倍。 证明:对于任意的一个整数,它除以 10 的余数只能有 10 种情况:0,1,…,9。现在有 11 个整数,由鸽巢原理知,至少 有 2 个整数的余数相同,则这两个整数的差必是 10 的整数倍。 2.3 证明:平面上任取 5 个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。 2.3 证明: 有 5 个坐标,每个坐标只有 4 种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由 鸽巢原理知,至少有 2 个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+ 奇数 = 偶数 ; 偶数+偶数=偶数。因此只需找以上 2 个情况相同的点。而已证明:存在至少 2 个坐标的情况相同。证明 成立。 2.4 一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必 有 100 个人得到相同的结果? 证明: 根据推论 2.2.1,若将 3*(100-1)+1=298 个人得到 3 种结果,必有 100 人得到相同结果。 2.5 一个袋子里装了 100 个苹果、100 个香蕉、100 个橘子和 100 个梨。那么至少取出多少水果后能够保证已经拿出 20 个 相同种类的水果? 证明: 根据推论 2.2.1,若将 4*(20-1)+ 1 = 77 个水果取出,必有 20 个相同种类的水果。 2.6 证明:在任意选取的 n+2 个正整数中存在两个正整数,其差或和能被 2n 整除。(书上例题 2.1.3) 证明:对于任意一个整数,它除以 2n 的余数显然只有 2n 种情况,即:0,1,2,…,2n-2,2n-1。而现在有任意给定的 n+2 个整数,我们需要构造 n+1 个盒子,即对上面 2n 个余数进行分组,共 n+1 组: {0},{1,2n-1},{2,2n-2},{3,2n-3},…,{n-1,n+1},{n}。 根据鸽巢原理,n+2 个整数,必有两个整数除以 2n 落入上面 n+1 个盒子里中的一个,若是{0}或{n}则说明它们的和及 差都能被 2n 整除;若是剩下 n-1 组,因为一组有两个余数,余数相同则它们的差能被 2n 整除,不同则它们的和能被 2n 整 除。证明成立。 2.7 一个网站在 9 天中被访问了 1800 次,证明:存在连续的 3 天,这个网站的访问量超多 600 次。 证明: 设网站在9天中访问数分别为a1,a2,...,a9 其中a1+a2+...+a9 = 1800, 令a1+a2+a3 = b1,a4+a5+a6 = b2,a7+a8+a9 = b3 因为(b1+b2+b3)/3 >= 600 由推论2.2.2知,b1,b2,b3中至少有一个数大于等于600。 所以存在有连续的三天,访问量大于等于600次。 2.8 将一个矩形分成 5 行 41 列的网格,每个格子涂 1 种颜色,有 4 种颜色可以选择,证明:无论怎样涂色,其中必有一 个由格子构成的矩形的 4 个角上的格子被涂上同一种颜色。
相关文档
最新文档