电子束焊接技术在工业中的应用和发展
高能束焊接技术的发展和应用
高能束焊接技术的发展和应用高能束焊接技术(EBW)是一种先进的焊接方法,它利用高速电子束来熔化和连接金属材料。
这种焊接技术具有高能量密度、高焊接速度、优质的焊接效果和适用于各种金属材料等优点,因此在航空航天、汽车制造、核工业和电子行业等领域得到了广泛的应用。
本文将从高能束焊接技术的发展历程和原理、应用领域、优势和挑战等方面进行介绍。
一、高能束焊接技术的发展历程和原理高能束焊接技术最早是在20世纪50年代发展起来的,最初是用于核工业和航天航空领域。
1958年,美国杜邦公司开发出了第一台商用的电子束焊接机,这标志着电子束焊接技术开始走向工业化生产。
高能束焊接技术通过电子枪产生高速电子束,电子束击中工件表面时,产生的能量将工件表面瞬间加热到熔化温度,然后通过电子束辐照区域产生高温熔池,从而实现熔化和连接金属材料的目的。
高能束焊接技术的原理是利用高速电子束的能量瞬间加热金属材料,使其熔化并形成熔池,然后利用合适的焊接工艺来实现金属材料的连接。
与传统的焊接方法相比,高能束焊接技术具有能量密度高、焊接速度快、热影响区小、热输入低等优点,因此可以实现高质量的焊接效果。
二、高能束焊接技术的应用领域高能束焊接技术在航空航天、汽车制造、核工业和电子行业等领域得到了广泛的应用。
在航空航天领域,高能束焊接技术被广泛应用于飞机结构件、发动机零部件、航天器壳体等关键部件的焊接,以提高焊接质量和生产效率。
在汽车制造领域,高能束焊接技术通常应用于汽车车身焊接、汽车零部件焊接等工艺环节,以提高焊接强度和减少成本。
在核工业领域,高能束焊接技术被用于核反应堆压力容器、核燃料元件等核设备的焊接,以保证核设备的安全可靠性。
在电子行业领域,高能束焊接技术通常应用于电子器件的微细焊接和包装,以提高器件的性能和可靠性。
高能束焊接技术相对传统焊接方法有很多优势,主要包括以下几点:1. 高能量密度:高能束焊接技术的能量密度很高,可以实现瞬间加热和快速熔化金属材料,从而提高焊接速度和效率。
高能束焊接技术的发展和应用
高能束焊接技术的发展和应用高能束焊接技术是一种现代焊接技术,它采用高能束作为焊接热源,利用高能束的集中能量和高能流密度,将焊接接头迅速加热至熔化温度并实现焊接。
高能束焊接技术包括激光焊接、电子束焊接和等离子焊接等多种形式。
这些焊接技术具有高能量浓度、热输入集中、加热速度快、熔深大、焊接变形小等优点,被广泛应用于航空航天、汽车制造、电子设备等领域。
高能束焊接技术的发展可追溯到20世纪40年代。
当时,电子束焊接技术首次应用于军事工业领域。
随着激光技术和等离子技术的发展,高能束焊接技术的应用范围逐渐扩大。
高能束焊接技术在航空航天领域中的应用十分广泛。
航空航天器的结构件往往需要具备高强度和高精度的特点,而高能束焊接技术能够满足这些要求。
激光焊接技术被应用于喷气发动机涡轮叶片的制造,能够提高制品的性能并保证焊接接头的质量。
电子束焊接技术被广泛应用于轻型航空航天器的生产,能够实现高效率、高质量的焊接,提高产品的可靠性。
在汽车制造领域,高能束焊接技术也发挥了重要作用。
汽车的表面涂层和涂漆往往会影响到其外观和耐腐蚀性能,而高能束焊接技术能够在不破坏基材的情况下,有效地去除涂层。
高能束焊接技术还可以用于汽车零部件的焊接,提高产品的质量和可靠性。
电子设备制造领域也是高能束焊接技术的主要应用领域之一。
电子器件往往需要高精度和高可靠性的连接,而高能束焊接技术能够实现精确的焊接和微小尺寸的焊接接头。
激光焊接技术被广泛应用于集成电路的封装和电子组装的焊接。
高能束焊接技术的发展和应用为现代工业生产带来了许多优势。
它能够实现高效率、高质量的焊接,提高产品的性能和可靠性。
随着科技的不断进步和创新,高能束焊接技术还将继续发展,并在更多领域得到应用。
电子束焊接技术研究与应用
电子束焊接技术研究与应用随着工业的发展,焊接技术已经成为各行各业中不可或缺的一项技术。
而电子束焊接技术作为现代高新技术的代表之一,因其高效、高质、高稳定性等优点,已被广泛应用于飞航航空、船舶、化工、医疗器械、精密仪器等高科技行业。
本文将探讨电子束焊接技术的研究和应用。
一、电子束焊接技术的基本原理电子束焊接技术是一种将电子束在低压和真空的情况下进行的高速能量材料处理。
在电子束的作用下,焊材在极短时间内被快速加热并熔化,形成一道焊缝。
基本原理是通过高能电子束的能量转化为焊接材料内部的热能,使其熔化,并通过流动的铁水消除焊接材料中的气孔,从而实现焊接。
二、电子束焊接技术的优点与其他传统的焊接方式相比,电子束焊接技术具有以下几个优点:1. 焊接区域不受热影响区的影响,能够焊接极薄的材料。
2. 焊缝的孔洞率较低,焊接质量高。
3. 电子束焊接过程中,不需要添加任何助焊剂,无需后续清洗和处理焊渣等。
4. 可以实现对不同材料不同厚度的焊接并达到很高的焊接效率。
5. 由于焊接时使用的是真空环境,所以焊接零件表面的污染和氧化问题得到很好的解决,从而减少了热裂问题的产生。
三、电子束焊接技术的应用电子束焊接技术在精密结构的制造、高精度零件的加工等领域有了广泛的应用。
下面将从飞航航空、船舶、医疗器械等方面来介绍其应用:1. 飞航航空电子束焊接技术在飞航航空领域具有重要的应用价值。
早在上世纪60年代初,美国就已成功实现了航空发动机涡轮叶片的电子束焊接,并将其广泛应用。
目前,国内外的航空航天领域中,电子束焊接技术已经为创新提供了新的技术保障。
2. 船舶电子束焊接技术在造船领域有着广泛的应用。
船体结构件是船用焊接加工中最困难的焊接部位之一,特别是在船体的局部加强部位,常常需要进行多角度的焊接。
电子束焊接通过其高度的控制能力,可以有效保证焊接质量,并且减轻了焊接环境和操作者的安全风险。
3. 医疗器械电子束焊接技术在医疗器械领域中的应用,主要用于制造一些耐高压、耐高温、各种特殊环境下使用的设备。
电子束焊接发展及优势
电子束焊接发展及优势【摘要】电子束焊接经过几十年的发展,已经在实验室研究和工业生产中得到了广泛研究与应用,能够很好的解决不锈钢、钛合金和铜合金等的焊接问题。
相对于其他几种焊接方式,电子束焊接具有焊接变形小;聚焦透镜焦长大利于实现焊接过程;适用于较大厚度范围工件的焊接;异种金属焊接和更大的穿透深度等优点。
特别是在厚度较大工件以及绝缘材料焊接方面具有较大的优势和广阔的应用前景,需对其进行较为系统的研究以指导生产及应用。
【关键词】电子束焊接;焊接变形;厚板焊接;异种焊接;穿透深度一、电子束焊接的发展电子束的发现距今已有100多年的历史,由于电子具有获得容易并自身带有电荷,在电场下能够很容易被加速从而获得很高的能量,所以电子束很早即被研究。
电子束焊接设备与当今一般应用的电子束设备相似,电子束被加速到具有很高的能量并通过电磁透镜聚焦于一点,然后作用于工件表面,电子的动能转变为热能从而进行材料的焊接。
电子枪产生电子束,电子束在电磁透镜的聚焦下作用于工件表面,完成对工件的焊接。
附属设备包括真空室、抽真空设备、水冷系统、光学观察系统以及各种阀门等。
电子束能量密度D由下式决定:D=k·I0.25V3.5式中k为电子枪常数、I为电子束电流、V为加速电压,从式中各参数的指数出发,增大加速电压能够较大的增加电子束的能量密度,所以当前电子束焊接设备已发展到了300kV或更高,再配合电磁透镜的汇聚聚焦作用,以及真空度的提高,使得电子束作用于工件表面的能量密度越来越高,获得较好的焊接和加工效果。
二、电子束焊接的优点电子束焊接在实验室研究以及工业生产方面均得到了广泛的应用,相对于其他焊接方式其具有特点和优势具体如下:1、最小的焊接变形扭曲变形与焊接过程中的热传导过程有关,而且一般是热量越高,焊接扭曲变形越大。
电子束焊接过程热影响区小,焊接过程中收缩应变较小,所以适用于那些运用传统焊接方法焊接易开裂金属的焊接。
I. Magnabosco等[1]系统研究了电子束焊接过程中三种接头(Cu+AISI 304L 不锈钢—接头Ⅰ;Cu+ AISI 304不锈钢—接头Ⅱ和Cu+ AISI 316L不锈钢—接头Ⅲ)热影响区的特性,焊接过程中除电子束电流、电子枪离工件的高度、焊接路径和铜板-钢板的厚度不同外,其他工艺参数均相同。
电子束焊接技术在零部件制造中的应用案例
电子束焊接技术在零部件制造中的应用案例电子束焊接是一种高能电子束通过束缚电子与工件表面相互作用,将电子动能转化为热能,从而实现零件的熔化和焊接的先进技术。
这种焊接技术在零部件制造中具有广泛的应用,能够提高零部件的质量、效率和可靠性。
以下将介绍一些电子束焊接技术在不同领域的实际应用案例。
1. 航空航天领域航空航天领域对零部件的质量和可靠性要求极高,因此电子束焊接技术得到了广泛应用。
例如,飞机发动机零部件的制造中广泛采用电子束焊接技术。
该技术能够实现高强度、高质量的焊接,确保承受高温和高压的环境下的可靠性。
此外,电子束焊接还被用于制造航天器的燃烧室和液氢推进器等部件,确保其在极端环境下的工作性能和安全性。
2. 汽车制造领域汽车制造领域对零部件的质量和耐久性要求也很高,并且对于轻量化、高效能的需求也越来越大。
电子束焊接技术在汽车制造中起到了重要作用。
例如,汽车发动机的缸体焊接中,电子束焊接能够实现高强度、无瑕疵的焊接,提供可靠的密封性和耐用性。
此外,电子束焊接还在汽车零部件的连接件、车身结构和悬挂系统等方面得到了广泛应用,提高了整车的质量和安全性。
3. 电子设备制造领域电子设备制造领域对于高精度和高可靠性的需求很高,因此电子束焊接技术在该领域的应用也较为广泛。
例如,在半导体制造过程中,电子束焊接被用于连接不同层次的电子元件,确保其电气连接的稳定性和可靠性。
此外,电子束焊接还被用于连接液晶显示器的电子线路板,实现高精度的焊接和封装。
这些应用都极大地促进了电子设备的小型化、高性能化和可靠性。
4. 医疗器械制造领域医疗器械的制造对于材料的纯度、焊接的精确性和耐腐蚀性都有很高的要求。
电子束焊接技术在医疗器械的制造中得到了广泛应用。
例如,在人工关节的制造中,电子束焊接技术能够实现金属部件的高精度、无瑕疵的连接,确保关节的稳定性和耐久性。
此外,电子束焊接还被用于连接心脏起搏器和其他医疗器械的电子元件,提供可靠的电气连接。
电子束焊接技术在工业中的应用与发展
要: 介绍 1电子束 焊接及 其主 要特点 , 概括 总 结 1近 年 来电子 束 焊 接 在航 空航 天、 电子 与
仪 表 、 车等I 业领域 中的应 用现 状 , 汽 并对其今 后的发展 作 1展 望 。 关 键词 : 电子束 焊接 ; 用现 状 ; 应 发展
电子 束焊接 及 其主 要特 点的 基 础上 , 括 总结 了 电 概 子束焊 接在 各个 工 业领 域 中的 应 用现 状, 对 其 今 并
后 的发展 作 了展望 。
1 电 子束 焊接 的特征 由于 高能 量 密度 的 电子 束 流集 中作 用 的结 果 , 使 得 电子 束焊 接熔池 “ 小孔 ” 成机理 与 其他熔化 焊 形 有所 不 同。根 据真 空 度 的 不 同, 电子 束 焊 接 可分 为 高 真空焊 接 、 低真 空 焊接 和 非真 空焊 接三 种 。 电子 束 焊接过 程是 , 压加 速 装 置 形成 的高 功 率 电子 束 高 流, 通过 磁透 镜会 聚 , 到很 小的 焦 点 ( 功 率 密度 得 其 可达 1 0 w/ )轰 击置 于真 空或 非真 空 的 焊 0~19 m , 件 时, 电子 的动能 迅 速转 变 为热 能 , 化 金属 , 现 熔 实 金属 焊接 的 目的 。 电子 束焊 接的 特点 可概括 如 下 : () 1 电子 束斑 点直径 小 , 加热 功 率 密度 大, 接 焊
A s a tT ee c P e i ( B bt c :h l  ̄nb皿1 l唱 E w)a d n i c a c r ̄ saeil d c ,n er et r e w a n mn h r t l i r n o ue adt cn a e sc l d h e
电子束焊接技术在工业中的应用和发展
电子束焊接技术在工业中的应用和发展摘要:本文介绍了电子束焊接及主要特点,总结了近年来电子束焊接在航空航天、电子与仪表、汽车等工业领域中应用现状,并对其发展作了展望。
关键词:电子束焊接应用现状发展abstract:the electron beam welding(ebw) and its main characteristics are introduced,and the recent applications of electron beam welding on various industries including aviation and aerospace,electron and instrument,automobile are concluded. the progress trend of ebw also is prospected. key words:electron beam welding;recentapplication;development电子束焊接(ebw)是以高能密度电子束作为能量载体对材料和构件实现焊接和加工的新型特种加工工艺方法和现代焊接技术,自50年代首先应用于核工业,经过四十多年的发展,电子束焊接不仅在一些高新技术领域充分应用,而且已成为一般工业部门的一种重要加工手段。
一、电子束焊接的特征由于高能量密度的电子束流集中作用的结果,使电子束焊接熔池“小孔”形成机理与其他熔化焊有所不同。
电子束焊接过程是,高压加速装置形成的高功率电子束流,通过磁透镜会聚,得到很小的焦点(其功率密度可达104~109w/cm2),轰击置于真空或非真空的焊件时,电子的动能迅速转变为热能,熔化金属,实现金属焊接的目的。
电子束焊接的特点可概括如下:(1)电子束斑点直径小,加热功率密度大,焊接速度快,热影响区小;(2)可获得深宽比大的焊缝,焊接厚件时可以不开坡口一次成形;(3)多数构件是在真空条件下焊接,焊缝纯洁度高;(4)规范参数易于调节,工艺适应性强;(5)适于焊接多种金属材料;(6)焊接热输入低,焊接热变形小。
航空发动机制造的电子束焊接技术分析
航空发动机制造的电子束焊接技术分析航空发动机制造是航空工业中的重要一环,而电子束焊接技术则是航空发动机制造中不可或缺的关键工艺之一。
本文将对航空发动机制造中电子束焊接技术的应用进行深入分析,对该技术的原理、优势和发展趋势进行探讨。
一、电子束焊接技术的原理电子束焊接是一种利用电子束的高速能量来熔化焊缝,并实现焊接的工艺。
其原理是在真空或几乎真空的环境中,利用电子枪产生高速电子束,通过控制电子束的运动轨迹和能量大小,将其瞄准焊接部位,使焊接部位受到电子束的瞬间高温熔化,从而实现焊接。
电子束焊接技术的主要特点包括焊接温度高、焊缝较窄、热影响区小、焊接速度快、热变形小等。
这些特点使得电子束焊接技术在航空发动机制造中具有得天独厚的优势,成为航空发动机关键零部件焊接的首选技术之一。
1. 高温合金零部件的焊接航空发动机中使用的大部分零部件都是由高温合金材料制成的,而这些高温合金材料往往难以进行常规的焊接。
而电子束焊接技术的高能量密度和局部加热能力,使其能够轻松应对这些高难度的焊接任务。
航空发动机中的涡轮叶片、轴承支座等关键零部件的焊接往往采用电子束焊接技术,确保了零部件的高质量和可靠性。
2. 不锈钢和钛合金的焊接航空发动机中有些零部件的结构非常复杂,包括内部空腔、壁厚不均匀、边缘形状复杂等特点。
这些零部件的焊接需要一定的工艺技术和装备保证。
而电子束焊接技术由于其焊接过程不受重力和惯性的影响,能够在复杂结构零部件的焊接工艺中发挥其独特优势,确保焊接质量。
1. 自动化程度提高随着航空发动机制造的数字化和智能化程度不断提高,电子束焊接技术也向着自动化方向不断发展。
自动化的焊接设备和控制系统能够实现焊接过程的智能化控制和监测,提高焊接效率和质量。
2. 材料范围扩大随着航空发动机制造中新材料的不断涌现,电子束焊接技术也在不断扩大其适用材料的范围。
除了传统的高温合金、不锈钢和钛合金,电子束焊接技术也逐渐应用于复合材料、高强度钢等新型材料的焊接工艺中。
高能束焊接技术的发展和应用
高能束焊接技术的发展和应用随着制造业的不断发展,高能束焊接技术逐渐成为一种越来越重要的工艺。
高能束焊接技术是一种利用高能量的电子、光子或离子束来完成焊接、切割和表面改性等工艺的技术。
它具有焊接速度快、能量密度高、变形小等优点,被广泛应用于航空航天、汽车制造、电子工业、医疗器械等领域。
高能束焊接技术的发展可以追溯到上世纪五十年代,当时主要应用于核工业领域。
随着国际间高能束技术的研究交流,高能束技术也逐渐得到了广泛的应用和发展。
在航空航天领域,高能束焊接技术可以用来制造航天器发动机、飞行器发动机喷气喉等重要部件。
在船舶制造领域,高能束焊接技术可以大幅缩短船体建造周期,提高船体质量和疲劳寿命。
在汽车制造领域,高能束焊接技术可以用来制造汽车车身和发动机等部件。
在电子工业领域,高能束焊接技术可以用来制造电子元器件、太阳能电池板等产品。
在医疗器械领域,高能束技术可以用来制造医疗器械的金属部件。
高能束技术的原理是利用高能量的电子、光子或离子束来加热和熔化工件表面,在保持焊接部位几乎不变形的同时完成焊接。
高能束焊接技术的能量密度极高,可以达到几千万到几亿焦/毫米,因此可以在很短的时间内完成焊接过程。
高能束焊接技术通常包括电子束焊、激光焊和离子束焊三种。
在这三种方法中,激光焊是应用最广泛的一种方法。
激光焊接可以完成多种材料的焊接,包括金属、塑料、玻璃等。
高能束焊接技术的应用带来了许多好处:首先,高能束焊接技术可以大大缩短制造周期和提高生产效率。
其次,在高能束焊接技术中,焊接区域的热影响区较小,因此可以减少材料的变形。
此外,高能束焊接技术还可以提高焊缝的质量,减少焊接缺陷和气孔等缺陷的产生。
然而,高能束焊接技术也存在一些局限性,例如高能束焊接设备的成本较高,操作难度较大,需要高技能人才进行操作等。
此外,大多数高能束焊接技术对材料的要求较高,材料的种类、大小等要求比较严格。
综上所述,高能束焊接技术是一种极具发展潜力的技术。
电子束焊技术
特种焊接技术———电子束焊接利用加速和聚焦的电子束轰击置于真空或非真空中的焊件所产生的热能进行焊接的方法,称为电子束焊(Electronic Beam Welding)。
电子束焊是高能量密度的焊接方法,它利用空间定向高速运动的电子束,撞击工件表面后,将部分动能转化成热能,使被焊金属熔化,冷却结晶后成焊缝。
电子束撞击工件时,其动能的96%可转化为焊接所需的热能,能量密度高达103~105kw/cm2,而焦点处的最高温度达5930o C左右。
电子束焊在工业上的应用只有50多年的历史,首先是用于原子能及宇航工业,继而扩大到航空、汽车、电子、电气、机械、医疗、石油化工、造船、能源等几乎所有工业部门,创造了巨大的社会及经济效益。
电子束焊中的核心装置是电子枪,其作用是发射电子,并使其加速和聚焦。
一种常用的三极电子枪枪体,其电极系统由阴极、偏压电极和阳极组成。
阴极处于高的负电位,与接地的阳极之间形成电子束的加速电场。
偏压电极相对于阴极呈负电位,通过调节其负电位的大小和改变偏压电极形状及位置可以调节电子束流的大小和改变电子束流的形状。
一、电子束焊接的工作原理在真空条件下。
从电子枪中发射的电子束在高电压(通常为20~300kV)加速下,通过电磁透镜聚焦成高能量密度的电子束。
当电子束轰击工件时,电子的动能转化为热能,焊区的局部温度可以骤升到6000℃以上。
使工件材料局部熔化实现焊接。
当电子束撞击到工件表面时,电子动能转化为热能,使金属迅速熔化蒸发。
在高压金属正气的作用下熔化的金属被排开,电子束继续撞击深处的固态金属,很快在被焊工件上钻出一个琐形小孔,表面的高温还可以向焊接件深层传导。
随着电子束与工件的相对移动,液态金属沿小孔周围流向熔池后部,逐渐冷却,凝固形成了焊缝。
提高电子束的功率密度可以增加穿透深度。
形成深熔焊的主要原因是金属蒸气的反作用力。
它的增加与电子束焊的功率密度成正比。
电子束功率密度低于103kw/cm2时,金属表面不产生大量蒸发现象,电子束穿透能力很小。
焊接技术的发展及发展趋势
焊接技术的发展及发展趋势引言概述:焊接技术是一种重要的金属连接技术,随着科技的不断进步和工业的发展,焊接技术也在不断发展和改进。
本文将从五个方面详细阐述焊接技术的发展及发展趋势。
一、焊接技术的历史发展1.1 古代焊接技术:古代人类使用火焰和金属熔化的方式进行焊接,如早期的铜焊接。
1.2 工业革命时期:随着工业革命的兴起,焊接技术得到了进一步的发展,出现了电弧焊、气焊等新的焊接方法。
1.3 现代焊接技术:现代焊接技术主要包括激光焊接、等离子焊接、电子束焊接等高级焊接方法。
二、焊接技术的应用领域2.1 制造业:焊接技术在制造业中广泛应用,如汽车制造、船舶制造、飞机制造等。
2.2 建筑业:焊接技术在建筑业中用于连接钢结构,提高建筑物的稳定性和安全性。
2.3 能源行业:焊接技术在能源行业中用于石油、天然气管道的连接,确保能源的输送和储存。
三、焊接技术的发展趋势3.1 自动化和智能化:随着科技的进步,焊接设备和技术越来越自动化和智能化,提高了焊接的效率和质量。
3.2 环保和节能:焊接技术的发展趋势是追求环保和节能,减少焊接过程中的能源消耗和环境污染。
3.3 材料和工艺的创新:焊接技术的发展离不开新材料和新工艺的应用,如高强度钢的焊接、激光焊接等。
四、焊接技术的挑战和问题4.1 焊接质量控制:焊接过程中需要严格控制焊接质量,以确保焊接连接的强度和可靠性。
4.2 人才培养和技术更新:焊接技术的发展需要专业的人才支持,同时需要不断学习和更新技术知识。
4.3 安全和环境保护:焊接过程中需要注意安全和环境保护,避免产生有害气体和废弃物。
五、未来焊接技术的展望5.1 三维打印技术与焊接的结合:三维打印技术的兴起为焊接技术带来了新的发展机遇,可以实现复杂结构的焊接。
5.2 脉冲焊接技术的应用:脉冲焊接技术具有高能量集中和热输入控制的特点,有望在未来得到更广泛的应用。
5.3 焊接机器人的发展:焊接机器人的发展将进一步提高焊接的自动化水平,实现更高效、精确的焊接操作。
电子束焊接技术的发展历程与趋势
电子束焊接技术的发展历程与趋势电子束焊接技术是一种高能电子束与工件相互作用,将工件焊接接头部分局部加热熔化的先进焊接技术。
其发展历程可以追溯到20世纪40年代,经过几十年的发展,如今已经成为重要的焊接技术之一,并展现出了许多前景广阔的发展趋势。
电子束焊接技术最早是由美国的战争部门在第二次世界大战期间开发出来的。
当时,由于战争的需要,需要高效、快速且稳定的焊接技术来生产大量军用设备和武器。
电子束焊接技术就应运而生,它能够提供高能量的电子束,能够在极短的时间内将焊接接头加热至熔化温度,实现快速焊接,这一特点使得电子束焊接技术在军事行业得到了广泛应用。
随着科技的进步和工业的发展,电子束焊接技术逐渐转向了民用领域。
上世纪60年代,电子束焊接技术开始应用于航空航天行业,用于焊接飞机、火箭等航空器件。
这一时期,电子束焊接技术迅速发展,技术水平得到了大幅提升,并在航空航天领域的应用中发挥了重要作用。
进入21世纪,随着科技的不断进步和人们对高质量焊接产品的需求增大,电子束焊接技术又迎来了新的发展机遇。
首先,电子束焊接技术在航空航天、船舶、交通工具以及核能等领域的应用得到了进一步扩展。
这些行业对焊接接头的质量和可靠性要求极高,而电子束焊接技术能够提供出色的焊接品质和良好的焊缝成型。
其次,电子束焊接技术的应用领域逐渐扩大,包括汽车制造、电子器件、管道管线等行业,其高质量、高效率的焊接特点受到了广泛关注。
未来,电子束焊接技术还有许多发展趋势可以期待。
首先,随着科学技术的不断进步,电子束发射器件的性能将进一步提高。
目前,常用的电子束发射器件为线性加速器,但是这种设备较大、能耗高。
未来,可能会出现更小型、高效、低耗能的发射器件,从而降低设备成本,提高生产效率。
其次,电子束焊接技术与其他先进技术的融合将进一步推动其发展。
例如,激光技术与电子束焊接技术相结合,可以提供更高的能量密度和更精细的控制,进一步优化焊接接头的质量。
此外,3D打印技术与电子束焊接技术的结合也有广阔的前景。
高能束焊接技术的发展和应用
高能束焊接技术的发展和应用高能束焊接技术是一种高效、高精度的焊接方法,它利用高能束作为热源,将工件上的两个或多个金属材料焊接在一起。
随着工业技术的不断发展,高能束焊接技术在航空航天、汽车制造、电子器件制造等领域得到了广泛应用。
本文将就高能束焊接技术的发展历程、工作原理和应用前景进行介绍。
一、高能束焊接技术的发展历程高能束焊接技术的发展可以追溯到20世纪40年代,当时人们开始尝试利用电子束、激光束和等离子束等高能源来进行焊接。
20世纪60年代,随着激光技术的进步,激光束焊接技术逐渐成熟,取得了一系列重要进展。
1970年代,电子束焊接技术也得到了快速发展,成为了航空航天领域、核能工程领域最主要的焊接方法之一。
随着科学技术的不断进步,高能束焊接技术变得更加精确、高效,应用领域也不断扩大。
二、高能束焊接技术的工作原理高能束焊接技术是利用高能束的热源对工件进行加热,使其达到熔化状态,然后将两个或多个工件进行熔汇从而实现焊接。
根据高能束的种类不同,高能束焊接技术又可分为激光束焊接、电子束焊接和等离子束焊接。
激光束焊接是指利用激光器产生的激光束对工件进行加热,通过激光束的高能量密度,将工件表面局部加热至熔化状态,然后使两个或多个工件在熔融态时迅速相互融合,从而完成焊接。
激光束焊接技术由于其高能量密度、热输入小、热影响区小等特点,逐渐成为了航空航天、汽车制造、电子器件制造等领域的主要焊接方法。
电子束焊接则是利用电子发射器产生的电子束对工件进行加热,在高能电子束的作用下,工件表面的金属被迅速加热至熔点,然后实现焊接。
电子束焊接技术由于其高能量密度、焊接速度快等特点,被广泛应用于核能工程、宇航工程、航空制造等高端领域。
等离子束焊接是一种利用等离子束对材料进行加热的焊接方法,通常利用等离子束切割机产生的等离子束对工件进行加热,然后实现焊接。
等离子束焊接技术由于其对材料的热输入小、热影响区小等特点,被广泛应用于微电子器件制造、微细连接技术等领域。
电子束焊接技术
电子束焊接技术电子束焊接技术(Electron Beam Welding,EBW)是一种高能束焊接技术,采用电子束作为能量源进行焊接。
它具有高能量密度、深焊能力和小热影响区等优势,广泛应用于航空航天、汽车制造和核工程等领域。
本文将介绍电子束焊接技术的原理、应用及未来发展趋势。
一、电子束焊接技术的原理电子束焊接技术利用带电粒子束(即电子束)的动能进行焊接。
它通过加速器将电子加速到非常高的速度,然后通过电场或磁场控制电子束的方向进行聚焦。
当电子束聚焦到极小的直径时,电子与被焊接材料碰撞并转化为热能。
这种高能量密度的热能可瞬间将工件局部区域加热至熔化状态,形成焊缝。
二、电子束焊接技术的应用1. 航空航天领域:电子束焊接技术在航空航天领域具有广泛的应用。
它能够焊接高强度、高温合金材料,满足飞机发动机、燃气轮机和航天器的要求。
电子束焊接技术还能实现长轴件的自动化焊接,提高生产效率。
2. 汽车制造:汽车制造行业对焊接质量和效率有着严格的要求。
电子束焊接技术能够焊接汽车车身、发动机和底盘等关键部件,确保焊缝的强度和密封性。
此外,电子束焊接技术还可以减少零件的变形,提高整体车身结构的稳定性。
3. 核工程:核工程领域要求焊接材料具有高强度和较低的辐射损伤。
电子束焊接技术能够实现高纯度材料的焊接,避免杂质引入。
电子束焊接技术还可以焊接厚度较大的核材料,保证核反应堆等设备的可靠性和安全性。
三、电子束焊接技术的未来发展趋势随着科学技术的不断进步,电子束焊接技术也将迎来更广阔的应用前景。
以下是未来电子束焊接技术的发展趋势:1. 自动化与智能化:随着自动化技术的不断发展,电子束焊接技术将越来越多地应用于自动化生产线。
通过与机器人和控制系统的集成,实现焊接过程的自动控制和监测。
2. 优化设计与模拟:利用计算机辅助设计和数值模拟软件,对电子束焊接过程进行优化设计和模拟预测。
通过模拟分析,优化焊接参数和工艺,提高焊接质量和效率。
关于电子束焊接应用
关于电子束焊接应用机械制造及自动化专业1班小组成员:组长:刘浩王静泽,陈磊,杨一,马自超,杨成林,刘淑芳,王晓雪摘要:在当今时代,电子束焊接术的每一个进步的积累使人类的航空制造技术更加的完善和强健。
电子束焊接技术因其高能量密度和优良的焊缝质量,率先在国内航空工业得到应用。
先进发动机和飞机工业中已广泛应用了电子束焊接技术,取得了很大的经济效益和社会效益,该项技术从上世纪八十年代开始逐步在向民用工业转化。
汽车工业、机械工业等已广泛应用该技术。
最早研发电子束技术的国家是德国,凭借先进和敏锐的科学研发能力,德国的电子束当前已经处于行业中的领先地位。
电子束焊接的应用涵盖了从薄膜焊接到一次性接合200mm得两个共建的焊接。
电子束技术的产生使得机械零件的设计具有了更多的自由度,同时,它还广泛应用在航空航天和太空开发部件的加工、船舶制造业或电子和汽车工业的批量生产上。
关键词:电子束焊接应用一、电子束焊的工作原理和分类高电位能使电子得到高能量,通常表现为电子具有很高的动能。
电子束焊正是利用高速电子流轰击工件接缝处所产生的热能,使金属熔合的一种焊接方法。
电子轰击工件时,动能转变为热能。
会聚的电子束用于焊接时可达到的功率密度非常高,所以可以焊接其他方法不能焊接的材料,并能使焊缝非常小。
同时电子束的快速可控性更是大大拓宽了它的用途。
1、工作原理电子束是从电子枪中产生的。
通常电子是以热发射或场致发射的方式从发射体(阴极)逸出的。
这时电子的能量只有几个电子伏特,在25~300kV的加速电压的作用下,电子被加速到0.3~0.7倍的光速,具有一定的动能,这时电子的功率已大大提高,经电子枪中静电透镜和电磁透镜的会聚作用,电子成为功率密度很高的电子束。
这种电子束撞击到工作表面,电子的动能就转变为热能,使金属迅速熔化和蒸发。
在高压金属蒸汽的作用下熔化的金属被排开,电子束就能继续撞击深处的固态金属,很快在被焊工件上“钻”出一个小孔,小孔的周围被液态金属包围。
焊接技术在航空航天工业中的应用
焊接技术在航空航天工业中的应用150060摘要:焊接技术是航空航天工业的重要连接技术,在航空航天材料加工过程中,处于重要地位,焊接技术已成为飞机制造中的关键技术,为飞机的设计和制造提供了技术保证。
本文对电子束焊、激光焊、搅拌摩擦焊、线性摩擦焊、扩散焊的原理、特点及应用进行了介绍。
关键词:电子束焊;激光焊;搅拌摩擦焊;线性摩擦焊;扩散焊一、通用技术分类通过分析电子束焊接、激光焊接和搅拌摩擦焊等常用焊接技术的特点和优势,可以了解它们在航空航天工业中的重要意义。
1、电子束焊电子束焊( EBW)是在真空环境下利用会聚的高速电子流轰击工件接缝,将电子动能转变为热能,使被焊金属熔合的一种焊接方法。
作为高能束流加工技术的重要组成部分,电子束焊具有能量密度高、焊接深宽比大、焊接变形小、可控精度高、焊接质量稳定和易实现自动控制等突出优点,也正是山于这些特点,电子焊接技术在航空、航天、兵器、电子、核工业等领域已得到广泛的应用。
在航空制造业中,电子束焊接技术的应用,大大提高了飞机发动机的制造水平,使发动机中的许多减重设计及异种材料的焊接成为现实,同时为许多整体加工难以实现的零件制造提供了一种加工途径;另外,电子束焊接本身所具有的特点成功地解决了航空、航天业要求各种焊接结构具有高强度、低重量和极高可靠性的关键技术问题。
所以在国内外的航空和航大工业中,电子束焊接已成为最可靠的连接方法之一。
2、激光焊激光技术采用偏光镜反射激光产生的光束使其集中在聚焦装置中产生巨大能量的光束,如果焦点靠近工件,工件就会在几毫秒内熔化和蒸发,这一效应可用于焊接工艺。
激光焊具有焊接设备装置简单、能量密度高、变形小、精度高、焊缝深宽比大、能在室温或特殊条件下进行焊接、可焊接难熔材料等优点。
激光焊接主要用于飞机大蒙皮的拼接和机身附件的装配。
美国在20世纪70年代初的航空航天工业中,已利用15kW的CO2仿激光焊机弧光器针对飞机制造业中的各种材料、零部件进行了激光焊接试验、评估及工艺的标准化。
电子束焊的原理及应用范围
电子束焊的原理及应用范围1. 电子束焊的原理电子束焊(Electron Beam Welding)是一种高能电子束加热下的焊接技术,采用电子束直接加热工件,并通过热传导进行焊接。
其原理主要涉及以下几个方面:•电子束的生成与加速:电子束由电子枪产生,其中包括热阴极、孔型、阳极和聚束器等。
热阴极在高温下,通过热发射发射出电子,电子经过孔型形成束流,然后通过阳极和聚束器聚焦形成直径较小的电子束。
•电子束的聚焦:聚束器由磁场或电场组成,可将电子束聚焦成较小的束斑,从而提高焊接质量。
聚束过程中,还需要考虑电子束的碰撞损耗、散射等参数,以确保焊接质量。
•电子束的控制与定位:通过调整电子枪和聚束器的参数,可以控制电子束的能量、速度和聚焦程度,实现焊接位置的精确定位。
•电子束的加热与焊接:电子束高速击中工件表面,将能量转化为热能,工件表面瞬时升温,进而引起工件的熔化和焊接。
由于电子束的高能量密度和焦点小,焊接的热影响区域非常小,从而减少了热变形和应力的产生。
2. 电子束焊的应用范围电子束焊具有以下几个特点,使其在各个领域都有广泛的应用:•高能量密度:电子束焊的电子束速度非常高,能量密度大,因此能够在短时间内将焊接区域加热至高温,从而实现快速焊接。
这种高能量密度的特点使得电子束焊特别适用于对焊接速度有要求的应用场景,如汽车、航空航天、电子器件等领域。
•小热影响区域:电子束焊的焦点非常小,热影响区域非常小,因此可以在不破坏工件的情况下进行焊接。
这使得电子束焊适用于对工件材料有特殊要求的场合,如钛合金、高温合金等难焊材料的焊接。
•高度自动化:电子束焊可以与计算机控制系统相结合,实现高度自动化的焊接过程。
通过预先编程,可以精确控制焊接参数,实现复杂焊接任务的精确执行。
•良好的焊接质量:电子束焊可以实现高质量的焊接,焊接接头强度高,焊缝外观美观,无气孔、夹渣等缺陷。
这种高质量的焊接特性使得电子束焊在航空、航天等关键领域得到广泛应用。
电子束焊是什么焊接方法
电子束焊是什么焊接方法电子束焊是一种高能束焊接方法,它利用电子束对工件进行加热熔化,然后通过焊接材料的自身流动和凝固形成焊缝。
电子束焊是一种非常高效的焊接方法,具有热输入小、焊接变形小、焊缝质量高等优点,因此在航空航天、船舶制造、汽车制造等领域得到了广泛应用。
首先,电子束焊的原理是利用电子枪产生高速电子束,通过聚焦装置将电子束聚焦到极小的直径,然后照射到工件上。
在电子束照射的瞬间,工件表面的材料受到高速电子束的冲击而受热,瞬间融化形成熔池,然后通过熔池的流动和凝固形成焊缝。
电子束焊的焊接过程在真空或者低压环境下进行,这样可以避免电子束与空气中的氧气发生作用,保证焊接的质量。
其次,电子束焊具有独特的优点。
首先,电子束焊的热输入非常小,焊接过程中工件的热影响区非常窄,因此可以减少焊接变形,特别适合焊接厚度薄的工件。
其次,电子束焊的焊缝质量非常高,焊缝表面光滑,无气孔、夹杂等缺陷,焊接强度高。
另外,电子束焊还可以焊接高熔点金属,如钛合金、镍基合金等,具有广泛的适用性。
最后,电子束焊也存在一些局限性。
首先,电子束焊设备成本较高,需要真空或者低压环境,设备维护成本也较高。
其次,电子束焊对工件的加工要求较高,需要保证工件表面的清洁度和平整度。
另外,电子束焊焊接速度较慢,不适合大批量生产。
总的来说,电子束焊是一种高效、高质量的焊接方法,具有广泛的应用前景。
随着焊接技术的不断发展,电子束焊在航空航天、核工业、汽车制造等领域的应用将会更加广泛,为工业制造提供更加可靠的焊接解决方案。
电子束焊接技术的分析与研究
管理及其他M anagement and other电子束焊接技术的分析与研究高 杰摘要:20世纪70年代,伴随着电子束焊接技术的不断发展,电子束焊接装备的可靠性和作业的自动化水平不断提升,再加上对机器制造行业技术革新的迫切需求,电子束焊不但在高端行业站稳了脚跟,更因其精密的焊接特性,被广泛应用于普通机器制造行业。
80年代后期,电子束焊接技术更是利用其高穿透性,将其应用于大厚度和重型构件的焊接。
电子束焊接技术属于一种高科技产品,它的发展也受到了社会各界人士的广泛关注。
在当前社会发展的背景下,人们对于高科技产品的要求越来越高。
基于此,本文对电子束焊接技术进行了分析与研究。
关键词:电子束;焊接技术;技术应用在国内航空工业中,电子束焊接技术的使用非常普遍,对其技术的要求也更加苛刻。
目前,在国内,有三种焊接技术,第一种是电弧焊接技术,第二种是电阻焊接技术,第三种是电子束焊接技术。
前两种常规的焊接工艺在对精度要求不高的加工工艺中得到了比较多的使用,但在受空间约束和对精度要求比较高的条件下就存在着很大的局限。
因此,电子束焊接技术的问世,有效地弥补了国内在焊接工艺方面存在的缺陷和短板,使得国内的焊接技术在焊接质量和降低焊接成本方面都得到了很大程度的改善和提高,在国内的制造产业中具有十分广阔的应用前景。
21世纪以来,电子束作为一种先进和成熟的焊接工艺,已在国内外众多的航空航天、核电、电力、机械和汽车等工业生产中占有举足轻重的地位。
1 电子束焊接技术1.1 电子束的原理电子束焊接是利用高速运动的电子流在工件上产生局部加热熔融的热源焊接技术,从而达到焊接的目的。
在焊接过程中,电子束主要通过被焊材料表面反射,然后再被聚焦到被焊材料的表面上,电子束的能量和波长也有很大的关系。
其原理分析如下:①电子源。
电子束焊接采用的是电子加速器或电子枪进行电子束生成,这些电子源通常采用高频电子管或固态透明场发射器等,能够产生高速精密可控的电子束,并可以通过加速电压调节电子束的速度和能量。
电子束焊接的原理应用
电子束焊接的原理应用1. 电子束焊接的原理电子束焊接是一种利用高速电子束对工件进行熔化和焊接的方法。
它是一种非常高效、精确的焊接技术,广泛应用于航空航天、汽车制造、电子器件等领域。
电子束焊接的原理主要包括以下几个方面:1.电子束的产生:电子束通过加速器加速电子,形成高速电子束。
一般来说,电子束的能量越高,焊接的功率越大,焊接速度也越快。
2.电子束的聚焦:经过加速器加速后的电子束,通过一系列的磁场和电场装置进行聚焦,使电子束变得更加密集。
聚焦的目的是使电子束能够集中到一个较小的区域内,提高焊接的精度和效率。
3.电子束与工件的交互作用:电子束照射到工件表面时,会与工件原子或分子发生碰撞,使原子或分子的动能增加,使其发生熔化。
同时,电子束的能量也会使工件表面产生局部融化。
4.焊接缺陷的控制:电子束焊接过程中,可能会出现一些缺陷,如焊接变形、气孔等。
为了控制焊接缺陷,可以采用预热、焊缝设计、焊接参数优化等措施。
2. 电子束焊接的应用电子束焊接具有以下优点,使其在工业生产中得到了广泛应用:1.高焊接速度和精度:由于电子束的高速和可调控的能量,电子束焊接速度快,焊接精度高,能够满足高精度焊接的需求。
2.不产生氧化反应:电子束焊接过程中,焊接区域几乎没有氧气存在,避免了焊点氧化的问题,保证了焊接质量。
3.无需外部填充材料:电子束焊接过程中,不需要使用外部填充材料,减少了焊接工艺的复杂性,降低了焊接成本。
4.高能量密度:电子束焊接的能量密度非常高,能够迅速将焊接区域加热到高温,提高焊接效率。
基于以上的优点,电子束焊接在以下领域得到了广泛应用:•航空航天:航空航天领域对于焊接质量和工艺要求非常高,电子束焊接能够满足这些要求,并且减少了焊接变形的问题。
•汽车制造:汽车领域对焊接质量和工艺的要求也很严格,电子束焊接可以提高焊接速度和质量,并且减少了焊接热影响区域。
•电子器件:电子器件制造中,电子束焊接可以实现高精度焊接,保证器件的电气连接可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子束焊接技术在工业中的应用和发展
摘要:本文介绍了电子束焊接及主要特点,总结了近年来电子束焊接在航空航天、电子与仪表、汽车等工业领域中应用现状,并对其发展作了展望。
关键词: 电子束焊接应用现状发展
电子束焊接(EBW)是以高能密度电子束作为能量载体对材料和构件实现焊接和加工的新型特种加工工艺方法和现代焊接技术,自50年代首先应用于核工业,经过四十多年的发展,电子束焊接不仅在一些高新技术领域充分应用,而且已成为一般工业部门的一种重要加工手段。
一、电子束焊接的特征
由于高能量密度的电子束流集中作用的结果,使电子束焊接熔池“小孔”形成机理与其他熔化焊有所不同。
电子束焊接过程是,高压加速装置形成的高功率电子束流,通过磁透镜会聚,得到很小的焦点(其功率密度可达104~109W/cm2),轰击置于真空或非真空的焊件时,电子的动能迅速转变为热能,熔化金属,实现金属焊接的目的。
电子束焊接的特点可概括如下:
(1)电子束斑点直径小,加热功率密度大,焊接速度快,热影响区小;
(2)可获得深宽比大的焊缝,焊接厚件时可以不开坡口一次成形;
(3)多数构件是在真空条件下焊接,焊缝纯洁度高;
(4)规范参数易于调节,工艺适应性强;
(5)适于焊接多种金属材料;
(6)焊接热输入低,焊接热变形小。
但是电子束焊接方法也有一些不足,如:
(1)电子束焊机结构复杂,控制设备精度高,所需费用高;
(2)焊接前对接头加工、装配要求严格,以保证接头位置准确、间隙小而且均匀;
(3)真空电子束焊接时,被焊工件尺寸和形状常常受到工作室的限制,每次装卸工件要求重新抽真空;
(4)冷却过程中快速凝固,引起焊接缺陷,如气孔、焊接脆性等;
(5)电子束易受杂散电磁场的干扰,影响焊接质量;
(6)电子束焊接时产生的X射线需要严加防护,以保证操作人员的健康和安全。
二、电子束焊接的分类
1、根据焊件所处真空度的差异可分为:
(1)高真空电子束焊接(真空度为10-4~10-1Pa):该方法电子散射小,作用在工件上的功率密度高,穿透深度大,焊缝深
宽比大,适宜于活性金属、难熔金属及质量要求高的工件焊接,应用最为广泛。
(2)低真空电子束焊接(真空度为10-1~10Pa)。
与高真空电子束焊相比,电束较宽,工作距离较大,真空系统简单,生产效率高,成本低。
减弱了焊接时金属的蒸发等。
(3)非真空电子束焊接(无真空工作室):在大气压力的环境中焊接,电束散射宽,焊缝较宽、深宽比小,可焊大尺寸的工件。
焊接时,束流进入大气前先经过充满氦的气室,而后与氦气一起进入大气。
2、根据电子枪加速电压又可分为:
(1)高压电子束焊接:加速电压大于120千伏,束斑直径小,功率密度大,工作距离长,焊缝的深宽比大,焊缝精密,变形小,适用于单道焊缝的大厚度板材和难熔、热敏材料的焊接。
(2)中压电子束焊接:加速电压范围为40~100千伏,满足除极薄材料外的一般厚度材料的焊接,可用局部真空室满足大型件的焊接。
(3) 低压电子束焊接:加速电压低于40千伏,功率密度小,工作距离短,焊缝稍宽,畸变稍大,适用于焊缝深宽比小的薄板焊接。
3、按电子束对材料的加热机制分
(1)热传导焊接:作用在工件表面的功率密度<105W/cm2,电子束转化的热能通过热传导使工件熔化,熔化金属不产生显著的蒸发。
(2)深熔焊接:作用在工件表面的功率密度>105W/cm2,金属被熔化并伴有强烈的蒸发,形成熔池小孔,电子束穿入小孔内部与金属直接作用,焊缝深宽比大。
三、电子束焊接在工业上的应用:
1、飞机和航天飞行器
电子束已被用来将钛锻件焊接成新型直升机的转翼,现代战斗机的机翼箱等。
发动机上一些其他部件如透平罩、压缩机箱体以及飞机的燃料驱动系统和着陆起落架等也都采用了电子束焊接。
由于电子束焊接的变形和热影响区小,已被用于航天飞机发动机的装配焊接,如主燃烧室、热气歧管、高(低)压燃料涡轮泵、高(低)压氧化剂涡轮泵、燃料预燃烧室、氧化剂预燃烧器等间的焊接。
2、发电设备
电子束焊接以其独有的优点正在发电设备的制造方面取代传统的焊接方法。
如美国、日本等国家都已使用真空电子束焊接取代埋弧焊工艺焊接汽轮机定子和汽轮机导向叶片。
使用埋弧焊需要几天才能完成的焊接,使用电子束焊接后仅需几个小时就能完成。
3、汽车工业
使用电子束焊接方法焊接汽车后桥,省去了坡口的制作的准备。
由于在真空条件下施焊,电子束焊接大大地清除了产生气孔、裂纹、夹渣等这些缺陷的可能,强度得到了保证,获得了极佳的经济效益。
此外,真空电子束焊接还用来焊接汽车驱动轮、扭矩变换器、行星齿轮支座、飞轮、滑叉等,都取得了前所未有的效果。
4、电子元器件
随着现代工业对电子线路和元器件的要求越来越高,电子束焊在电子行业发挥着越来越重要的作用。
真空电子束用来焊接密封晶体管已取代钎代焊焊接晶体
管连接接头。
有些电子线路和元器件要求其焊缝在焊完后继续保持在真空密封装置内,焊缝不得有腐蚀性杂质,电子束焊接正是满足这种要求的最有效方法。
5、机械基础件
电子束也用来焊接有特殊要求的机械基础件,如轴、轴承、齿轮、金属带锯、双金属带等。
对于硬度极高的金属的切断,使用电子束,可将高速钢型材焊在柔韧的载体带上。
适当选择高速钢型材宽度,使得铣锯齿时,齿间,即断裂危险区位于柔韧性载体带上,这样,就能使高速钢齿尖达到最佳硬度,带锯能在最佳经济效益下实现最大负荷。
6、核工业产品
电子束焊接最早应用于核工业产品部件,近些年来,在这一领域得到更充分的发展。
如:一种核工业多种用途的真空电子束焊机,在离子推进系统中,它应用于难熔、耐蚀金属的焊接和不同金属之间的连接,焊缝无裂纹和泄漏,变形也相当小。
四、电子束焊接的发展趋势
美国和苏联的宇航员还在太空实验室进行了电子束焊接和切割试验,展现了电子束焊接的广阔发展前景,今后电子束焊接的发展趋势可以概括为:
(1)继续扩大在航空航天工业中的应用范围,并在修复领域发挥作用;
(2)焊接设备将趋向多功能化和柔性化;
(3)非真空电子束焊接的研究和应用将日益成为热点;
(4)在厚大件和批量生产中继续发挥其独特优势;
(5)电子束焊接将成为空间结构焊接的强有力工具。
五、点评:
(1)电子束焊的分类可以通过环境压强的不同而分为三种以及电子加速电压的不同而划分;
(2)电子束焊机得以如此广泛应用和迅速发展的重要原因是它不断采用大量的先进技术,如涡轮分子泵、高压电束枪、高压绝缘系统、光学测量装置、焊缝自动扫描、焊缝跟踪器、CNC等;
(3)电子束焊接技术的前景将随着各种新材料、新结构、新技术和新领域的不断涌现,电子束焊接将会获得进一步的开发和应用,并在现代工业中发挥日益重要的作用;
(4)电子束焊的安全防护应该在我们实际操作中被人所重视,由于它的能量高,穿透能力强,所以安全必须做很好的防护;
(5)电子束焊的小孔效应从根本上改变了焊接熔池的传质、传热规律,由一般熔焊方法的“导热焊”转变为“穿空焊”。
可以有效的提高电子束的功率密度和增加穿透深度。