计量经济学课件 ch13
计量经济学课件PPT课件
非线性模型转换方法
多项式回归
通过引入自变量的高次项,将非线性关系转化为线性 关系进行处理。
变量变换
对自变量或因变量进行某种函数变换,以改善模型的 拟合效果。
非参数回归
不假定具体的函数形式,通过数据驱动的方式拟合非 线性关系。
实例分析:金融时间序列预测
数据准备
收集金融时间序列数据,如股票 价格、交易量等,并进行预处理。
模型选择依据
Hausman检验,LM检验等。
实例分析:经济增长收敛性问题研究
研究背景
探讨不同国家或地区间经济增长差异及其收 敛性。
模型构建
选择合适的面板数据模型,设定经济增长收 敛假设。
实证分析
收集相关数据,运用计量经济学软件进行回 归分析,检验收敛性假设是否成立。
结论与政策建议
根据实证结果得出结论,提出促进经济增长 收敛的政策建议。
机器学习算法与计量经济学模型结合
将机器学习算法与传统计量经济学模型相结合,形成更具解释性和预测能力的混合模型。
大数据背景下计量经济学挑战与机遇
01
大数据背景概述
数据量巨大、类型多样、处理速度快等 特点。
02
计量经济学面临的挑 战
数据质量、计算效率、模型可解释性等 问题。
03
计量经济学面临的机 遇
利用大数据技术挖掘更多信息,提高模 型预测精度和政策评估效果;同时推动 计量经济学理论和方法的发展创新。
Geary's C指数
与Moran's I指数类似,也是用于检验全局空间自相关。
LISA集聚图 用于检验局部空间自相关,可以直观展示空间集聚或异常 值区域。
空间滞后和空间误差模型选择
空间滞后模型(SLM)
《计量经济学第一讲》课件
计量经济学是经济学中重要的分支,通过运用统计学和数学方法,研究经济 现象、测量经济关系、验证经济理论,并为经济政策提供科学依据。
简介
什么是计量经济学?
计量经济学是研究经济现象的定量分析方法, 通过建立数学模型,对经济关系进行测量、估 计和推断。
计量经济学的应用领域
计量经济学广泛应用于经济政策评估、市场预 测、企业决策和投资分析等领域。
最小二乘法的应用
4
数值。
广泛应用于回归分析、经济预测和金融 风险评估等领域。
模型诊断
为什么需要模型诊断?
模型诊断用于检验经济模型的合理性和有效性,发 现模型中的问题和不足。
模型诊断方法
- 验证模型的假设 - 分析残差 - 模型改进
总结
• 计量经济学是什么? • 计量经济学的重要性及应用领域 • 计量经济学方法的基础 • 计量经济学的未来研究方向
3 假设检验中的错误类
型
第一类错误(错误拒绝) 和第二类错误(错误接 受)。
参数估计
1
什么是参数估计?
参数估计是通过样本数据推断总体参数
最小二乘法的基本思想
2
的方法,用于量化经济模型中的未知参 数。
最小二乘法通过最小化观测值与模型预
测值之间的差异,选择最优的参数估计。
3
参
经济数据
- 交叉面数据 - 时间序列数据
- 宏观经济数据 - 微观经济数据 • 数据类型 • 数据来源
假设检验
1 假设检验的作用
假设检验用于验证经济模 型和理论是否符合实际数 据,评估变量之间的关系 是否显著和可靠。
2 假设检验的基本步骤
设定原假设和备择假设, 计算检验统计量,确定显 著性水平,做出决策。
《计量经济学》课件
本课程重点是实践案例、计量模型和数据分 析技巧。
学习资源
课程教材
本课程所用教材为《计量经济 学》(第二版,高等教育出版 社)。
参考资料
课程还提供丰富的参考及 自主学习提高学习效果。
评估方式
1
作业
每周有一个统计分析作业,和一个回
考试
我们欢迎学生分享反馈、与教 师和同学一起讨论和学习。祝 大家学习愉快!
数据分析技巧
课程将介绍数据预处理和 清洗、模型诊断和结果解 释等实用数据分析技巧。
结语
毕业资格
获得60分及以上,完成所有作 业及考试,满足毕业要求即可 获得毕业资格。
继续学习
本课程旨在为学生提供实用的 计量经济学研究工具及数据分 析技能。学生可以进一步学习 相关课程、投身学术及研究岗 位。
分享反馈
2
归分析作业。
期末考试涵盖课程所有内容和应用。
3
课堂表现
学生可以通过课堂发言和问题解答, 积极参与课堂互动,提高交流能力和 思维水平。
课程重点
实践案例
本课程以丰富实践案例为 特色,学生可以在实践环 节中更好地理解课程内容, 提高数据分析和建模能力。
计量模型
本课程将介绍常见的计量 经济学模型,包括线性回 归模型、非线性回归模型、 面板数据模型和时间序列 模型等。
《计量经济学》课件
欢迎来到《计量经济学》课程!本课程将帮助学生了解各种经济现象和模型, 并通过实践案例提高数据分析能力。
课程介绍
课程目标
学习计量经济学基本理论及模型应用,提高 经济数据分析能力。
课程内容
本课程将介绍计量经济学中的基本概念、统 计分析、回归分析、面板数据和时间序列分 析。
适用对象
计量经济学ch13计量经济学简化教材
若设定原假设 H0:模型 D 为真,则从估计模型 C 的估计 开始。 J 检验的问题:
可能同时接受模型 C 和 D,或者同时拒绝模型 C 和 D。
例子: Y 人均消费支出,X 人均可支配收入,
模型 C: 分布滞后模型 Yt=α1+α2Xt+α3Xt-1+ vi
模型 D: 自回归模型 Yt=β1+β2 Xt +β3 Yt-1 +ui
(13.2)
u2i=β4Xi3+u1i (2)包含了一个不相关或不应包含的变量(过度拟合)
Yi=λ1+λ2Xi+λ3Xi2+ λ4Xi3+λ5Xi4+u3i 则
(13.3)
u3i=u1i-δ5Xi4=u1i (3)错误的函数形式
lnYi=δ1+δ2Xi+δ3Xi2+ δ4Xi3+u4i
(13.4)
(4)测度误差所引起的设定错误
1
13.2.设定误差的类型
1.模型设定误差:其基本特征是与正确设定的模型相比较。
假定基于上述标准,正确设定的成本模型为:
Yi=β1+β2Xi+β3Xi2+ β4Xi3+u1i Y:总成本,X:产量
(13.1)
模型设定误差有如下 4 类:
(1) 漏掉了必要的变量(拟合不足)
Yi=α1+α2Xi+α3Xi2+u2i 则
1.589556 -1.395777 -2.192627 3.313917
Prob.
0.1304 0.1807 0.0425 0.0041
由于估计的α4的 t 值显著,拒绝模型 C.
估计 Yt=β1+β2 Xt +β3 Yt-1+ β4 YCt+ui
计量经济学课件全
11
数据
• 观测数据:主要是指统计数据和各种调查 数据。是所考察的经济对象的客观反映和 信息载体,是计量经济工作处理的主要现 实素材。
7
计量经济学构成要素
经济理论 模型
计量经济模型
数据 精炼的数据
数理统计理论 计量经济理论
采用计量经济技术并使用精练数据估计计量经济模型 应用
结构分析
经济预测
政策评价
计算机 8
三大要素
• 经济理论 • 数据 • 统计推断 • 经济理论、数据和统计理论这三者对于真
正了解现代经济生活中的数量关系都是必 要的,但本身并非是充分条件。三者结合 起来就是力量,这种结合便构成了计量经 济学。
• 按照时间的顺序,每隔一定的时间观测经 济变量的取值,所得到的统计数据。
• 观测对象是一个单位:一国,一地区,某 企业
• 时间间隔:可以是一年,一个季度,一个 月,一天,甚至更短,要视问题的性质和 重要性而定。
14
时间序列数据(time series data)
• 这类变量反应了变量的动态特征,即在时 间上的变动趋势。
GNP 10201.4 11954.5 14922.3 16917.8 18598.4 21662.5 26651.9 34560.5 46670 57494.9 66850.5 73142.7 76967.2
• 萨缪尔森:“经济计量学的定义为:在 理论与观测协调发展的基础上,运用相 应的推理方法,对实际经济现象进行数 量分析。”
计量经济学课件(PPT 42张)
新的研究领域
12
二、计量经济学的性质
若干代表性表述:
●“计量经济学是统计学、经济学和数学的结合。” (弗瑞希) ●“计量经济学是用数学语言来表达经济理论,以便通 过统计方法来论述这些理论的一门经济学分支。” (美国现代经济词典) ●“计量经济学可定义为:根据理论和观测的事实,运 用合适的推理方法使之联系起来同时推导,对实际经 济现象进行的数量分析。” (萨谬尔逊等)
宏观经济学与微观经济学
●《概率论与数理统计》基础
如随机变量、概率分布、期望、方差、协方差、点估计、 区间估计、假设检验、方差分析、正态分布、t 分布、F分 布等概念和性质
●《线性代数》基础
矩阵及运算、线性方程组等
●《经济统计学》知识
经济数据的收集、处理和应用
3
教 材及参考书
李子奈.计量经济学(第2版).高教,2005. 潘文卿,李子奈.计量经济学习题集.高教,2005. 古扎拉蒂.计量经济学基础 (第四版).人大, 2005.
应用计量经济学:时间序列分析(第二版).高教, 2006
布鲁克斯.金融计量经济学导论.西南财大,2005.
古亚拉提.经济计量学精要(原书第三版).机械 工业,2006. 庞皓.计量经济学.科学出版社,2007 邹平. 金融计量学.上海财经大学出版社,2005.
5
计量经济学
第一章 导 论
6
第一章
●什么是计量经济学
假定条件经常不能满足,需要建立一些专门的
经济计量方法
22
第二节 计量经济学的研究方法
需要做的工作
选择变量和数学关系式 —— 模型设定
确定变量间的数量关系 —— 估计参数
检验所得结论的可靠性 —— 模型检验
计量经济学课件全完整版
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。
计量经济学全册课件(完整)pptx
预测与置信区间
阐述如何利用一元线性回归模型进行 预测,并给出预测值的置信区间,以 评估预测的不确定性。
2024/1/28
8
多元线性回归模型
模型设定与参数估计
介绍多元线性回归模型的基本形 式,解释多个自变量对因变量的 影响,以及最小二乘法在多元线 性回归中的应用。
模型的统计性质
探讨多元线性回归模型的统计性 质,包括回归系数的解释、拟合 优度的度量、多重共线性的诊断 与处理等。
经典线性回归模型
REPORTING
2024/1/28
7
一元线性回归模型
模型设定与参数估计
介绍一元线性回归模型的基本形式, 解释因变量、自变量和误差项的含义 ,阐述最小二乘法(OLS)进行参数 估计的原理。
模型的统计性质
探讨一元线性回归模型的统计性质, 包括回归系数的解释、拟合优度的度 量(如R方)、回归系数的显著性检 验等。
贝叶斯计量经济学的定义
贝叶斯计量经济学是应用贝叶斯统计推断方法,对经济模 型进行参数估计、假设检验和预测的一门学科。
贝叶斯计量经济学的研究对象
贝叶斯计量经济学主要关注经济模型的参数估计和不确定 性问题,如线性回归模型、时间序列模型、面板数据模型 等。
贝叶斯计量经济学的研究方法
贝叶斯计量经济学的研究方法主要包括先验分布的设定、 后验分布的推导、马尔科夫链蒙特卡罗模拟(MCMC)等 。
介绍如何在EViews中导入数据,进行 数据清洗、转换和预处理等操作。
计量经济学模型估计
介绍如何在EViews中建立计量经济学 模型,进行参数估计、模型检验和预 测等操作。
24
Stata软件介绍及操作指南
Stata软件概述
Stata是一款流行的计量经济学软件,具有强大 的数据处理和统计分析功能。
《计量经济学》ppt课件
04
时间序列分析
时间序列基本概念与性质
时间序列定义
按时间顺序排列的一组数据,反映现象随时间 变化的发展过程。
时间序列构成要素
现象所属的时间(横坐标)和现象在某一时间 上的指标数值(纵坐标)。
时间序列性质
长期趋势、季节变动、循环变动和不规则变动。
时间序列平稳性检验方法
图形判断法
通过观察时间序列的折线图或散点图,判断 其是否具有明显的趋势或周期性变化。
05
非参数和半参数估计方法
非参数估计方法原理及应用
原理
非参数估计方法不对总体分布做具体假设,而是利用样本数据直接进行推断。其核心思想是通过核密度估计、最 近邻估计等方法,对样本数据的分布进行平滑处理,从而得到总体分布的估计。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
计量经济学研究方法与工具
研究方法
主要包括理论建模、实证分析和政策评估等方法。
工具
运用数学、统计学和计算机技术等多种工具,如回归分析、时间序列分析、面 板数据分析等。
02
经典线性回归模型
线性回归模型基本概念
线性回归模型定义
描述因变量与一个或多个自变量之间线性关系的数学模型。
回归方程
表示因变量与自变量之间关系的数学表达式,形如 Y=β0+β1X1+β2X2+…+βkXk。
利用指数平滑技术对时间序列进行预测, 适用于具有线性趋势和一定周期性变化的 时间序列。
ARIMA模型
神经网络模型
计量经济学课件完整版
计量经济学课件完整版计量经济学课件完整版一、课程简介计量经济学是经济学领域的一门重要学科,它利用数学、统计学和经济学等学科的知识和方法,对经济现象进行量化和分析。
本课程将系统地介绍计量经济学的基本概念、方法和应用,旨在帮助学生掌握计量经济学的理论和实践技能,为进一步学习和研究经济学打下坚实的基础。
二、课程内容本课程共分为八个单元,包括:1、回归分析基础2、模型选择与优化3、时间序列分析4、面板数据分析5、多元回归分析6、离散选择模型7、因子分析8、协整分析每个单元都包括理论讲解、案例分析、软件操作和习题等内容,让学生全面了解和掌握计量经济学的方法和技术。
三、课程安排本课程共36学时,安排如下:1、理论讲解(20学时)2、软件操作与实践(10学时)3、习题课与答疑(6学时)四、教学目的通过本课程的学习,学生将能够:1、掌握计量经济学的基本概念和方法;2、熟练运用常用的计量经济学软件进行数据分析;3、了解计量经济学在经济学领域的应用;4、提高解决实际问题的能力,为未来的学习和工作打下基础。
五、教学方法本课程采用多种教学方法,包括:1、课堂讲解:教师通过讲解和演示,帮助学生掌握计量经济学的基本理论和方法;2、案例分析:通过分析实际案例,让学生了解计量经济学在实践中的应用;3、小组讨论:学生分组进行讨论和交流,加深对课程内容的理解;4、实践操作:通过上机实践,让学生掌握计量经济学软件的操作技巧。
六、考核方式本课程的考核方式包括:1、平时作业:完成课程对应的练习题和思考题,占总成绩的30%;2、期中考试:进行期中考试,考核学生对课程内容的掌握情况,占总成绩的30%;3、期末考试:进行期末考试,全面考核学生对课程内容的理解和应用能力,占总成绩的40%。
七、参考资料本课程推荐以下参考书籍:1、《计量经济学基础》(作者:高铁梅);2、《计量经济学》(作者:斯托克);3、《应用计量经济学》(作者:詹姆斯·H·斯托克等)。
《计量经济学》课件
序计 量 经 济 研 究 的 工 作 程
(三)参数估计
矩法 常用的参数估计方法极大似然法
最小二乘法
• 矩法——以样本矩代替总体矩建立方程, 求解参数的方法。
• 极大似然法——根据极大似然原理建立方 程,求解参数的方法。
• 最小二乘法——根据最小二乘原理建立方 程,求解参数的方法。
(四)模型的检验
前定变量外 滞生 后变 变量 量
滞后内生变量 滞后外生变量
前期的内生变量 前期的外生变量
• (4)控制变量
• 控制变量——人为设置的反映政策要求、决策 者意愿、经济系统的运行条件和运行状态等方 面的变量。
模型设计工作
经济变量的确定 模型方程的设定
• 计量经济模型——为了研究分析经济系统中的经 济变量之间的数量关系而采用的随机性 的数学方程。 y f (x1, x2 ,, xn ) u
• 结构分析包括:(1)利用模型分析和测度系统 中某一变量的(绝对和相对)变化对其他变量 的影响;(2)比较分析变量及参数变化对经济 系统平衡的影响;(3)分析与研究变量相互关 系的变化对经济系统平衡点位移的内在联系。
• 政策评价——利用计量经济模型和计算机技术, 模拟在不同政策(或决策)条件下,经济系统 运行的态势和结果,对政策(或决策)进行评 价和优选。
济 学 概
• 数理经济学为计量经济学提供经济模型; • 经济统计学为计量经济学提供经济数据;
述 • 数理统计学为计量经济学提供分析工具和
研究方法;
计量经济学与相关学科的关系图
经济学
数理经 济学
计量经 济学
经济统 计学
数学
数理统 计学
统计学
(四) 计量经济学的分类
计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pooling Cross Sections across Time: Simple Panel Data Methods
Types of Cross Sections across Time
Often loosely use the term panel data to refer to any data set that has both a cross-sectional dimension and a time-series dimension. More precisely it’s only data following the same cross-section units over time. Otherwise it’s a pooled cross-section.
BEE2006 - Statistics and Econometrics
Pooling Cross Sections across Time: Simple Panel Data Methods Wooldridge (2008), Chapter 13
Pooling Independent Cross Sections across Time The Chow Test for Structural Change across Time Policy Analysis with Pooled Cross Sections Two-Period Panel Data Analysis Policy Analysis with Two-Period Panel Data Differencing with More Than Two Time Periods Potential Pitfalls in First Differencing Panel Data
4 / 39
Pooling Cross Sections across Time: Simple Panel Data Methods
Pooling Independent Cross Sections across Time
Why would we like to use independently pooled cross sections? - to increase the sample size. Pooling is helpful as long as the relationship between the dependent variable and at least some of the independent variables remain constant over time. The typical problem with pooled cross sections is that the population may have different distributions indifferent time periods. Usually we allow the intercept to differ across periods. This is accomplished by including dummy variables for different time periods.
3 / 39
Pooling Cross Sections across Time: Simple Panel Data Methods
Pooling Independent Cross Sections across Time
We may want to pool cross sections just to get bigger sample sizes. We may want to pool cross sections to investigate the effect of time. We may want to pool cross sections to investigate whether relationships have changed over time.
A panel data (longitudinal data) - we follow the same individuals, families, cities, countries, etc., across time. Example: a panel data set on individual wages, hours, education, etc., collected by randomly selecting people from a population at a given point in time must be followed at several subsequent points in time.
yxitk + uit
2 / 39
Pooling Cross Sections across Time: Simple Panel Data Methods
Types of Cross Sections across Time
Two kinds of data sets: An independently pooled cross section - we randomly sample from a large population at different points in time. Example: we can draw a random sample on the selling prices, square footage, number of bathrooms, and so on, of houses sold in a particular metropolitan area.