传感器原理及应用复习
传感器原理及应用复习资料
传感器原理及应用复习资料1.传感器由敏感元件、转换元件、基本电路三部分组成; 被测量 敏感元件 转换元件 基本电路 电量输出①敏感元件感受被测量;②转换元件将响应的被测量转换成电参量(电阻、电容、电感);③基本电路把电参量接入电路转换成电量;④核心部分是转换元件,决定传感器的工作原理。
2. 传感器的基本特性:①静态特性:当输入量(X )为静态或变化缓慢的信号时,输入输出关系称静态特性。
静态特性主要包括:线性度、迟滞、重复性、灵敏度、漂移和稳定性②动态特性:当输入量随时间(频率)变化时,输入输出关系称动态特性。
影响传感器动态特性除固有因素外,还与输入信号的形式有关,在对传感器进行动态分析时一般采用标准的正弦信号和阶跃信号。
A.输入信号按正弦变化时,分析动态特性的相位、振幅、频率,称频率响应;B.输入信号为阶跃变化时,对传感器随时间变化过程进行分析,称阶跃响应(瞬态响应).频率响应 阶跃响应3.电阻应变式传感器是将被测的非电量转换成电阻值的变化,再经转换电路变换成电量(电流、电压)输出。
金属电阻应变片的基本原理基于电阻应变效应:即导体在外力作用下产生机械形变时阻值发生变化。
通过弹性元件可将位移、压力、振动等物理量通过应力变化,并转换为电阻的变化进行测量,这是应变式传感器测量应变的基本原理。
4.直流电桥总结:单臂电桥输出电压11R R 4E U ∆•= 电压灵敏度4E K u =半桥差动电路全桥差动电路5. 电桥线路补偿:被测试件位置上安装一个补偿片处于相同的温度场;等臂电桥输出U0 与桥臂参数的关系为()2B 310R R -R R A U=。
如果 R1R3 = RBR4,电桥平衡时输出为零;若R1、RB 温度系数相同,当无应变而温度变化时ΔR1 = ΔRB ,电桥为平衡状态;当有应变时,R1有增量ΔR1,ΔR1=R1k0ε,补偿片无变化,ΔRB = 0;电桥输出为 U0 ∝R1R3 k0ε;可见此时电桥的输出电压与温度无关。
传感器原理与应用复习要点
传感器原理与应用复习要点传感器是一种将非电学量转换为电学信号的装置,广泛应用于各个领域。
其原理可以分为物理效应、化学效应和生物效应三类。
下面是传感器原理与应用的复习要点:1.物理效应传感器:-热敏电阻:利用物质的电阻随温度变化的特性,常用于温度测量。
-压电传感器:利用压电材料电荷随机梯度变化的特性,可用于压力、力和加速度的测量。
-光电传感器:利用光的吸收、散射或发射等特性,常用于光强度、颜色和距离的测量。
-磁敏电阻:利用材料的磁阻随磁场变化的特性,可用于磁场的测量。
2.化学效应传感器:-pH传感器:利用溶液中氢离子浓度对电位的影响,用于测量酸碱度。
-气体传感器:利用气体与特定材料发生化学反应,测量气体浓度或类型。
-电化学传感器:利用电化学反应产生的电位差,测量氧气、氢气等的浓度。
3.生物效应传感器:-生物传感器:利用生物体与特定物质相互作用的特性,测量生物学参数,如酶、抗原和抗体等。
-DNA传感器:利用DNA序列的特定识别反应,用于检测和识别DNA的序列。
传感器的应用:1.工业自动化:传感器可用于测量温度、压力、流量、液位等工业参数,实现工业自动化控制。
2.环境监测:用于监测大气污染物质、水质、土壤质量等环境参数。
3.医疗保健:用于测量心率、体温、血压等生物参数,实现远程医疗监护。
4.智能家居:用于检测温度、湿度、光线等,实现智能调控家居环境。
5.汽车工业:应用于测量车速、转向角度、发动机参数,提升安全性和性能。
6.农业领域:用于监测土壤水分、光照强度、气温等农作物生长参数,实现精确农业。
总结起来,传感器的原理涉及物理、化学和生物效应,应用广泛,包括工业自动化、环境监测、医疗保健、智能家居、汽车工业和农业等领域。
对传感器的深入理解和应用有助于提升各个领域的技术水平和生活质量。
传感器复习题与答案
传感器复习题与答案传感器原理与应⽤复习题第⼀章传感器概述1.什么是传感器?传感器由哪⼏个部分组成?试述它们的作⽤和相互关系。
(1)传感器定义:⼴义的定义:⼀种能把特定的信息(物理、化学、⽣物)按⼀定的规律转换成某种可⽤信号输出的器件和装置。
⼴义传感器⼀般由信号检出器件和信号处理器件两部分组成;狭义的定义:能把外界⾮电信号转换成电信号输出的器件。
我国国家标准对传感器的定义是:能够感受规定的被测量并按照⼀定规律转换成可⽤输出信号的器件和装置。
以上定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的⼀种检测装置;能按⼀定规律将被测量转换成电信号输出;传感器的输出与输⼊之间存在确定的关系。
(2)组成部分:传感器由敏感元件,转换元件,转换电路组成。
(3)他们的作⽤和相互关系:敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输⼊,转换成电路参量;上述电路参数接⼊基本转换电路,便可转换成电量输出。
2.传感器的总体发展趋势是什么?现代传感器有哪些特征,现在的传感器多以什么物理量输出?(1)发展趋势:①发展、利⽤新效应;②开发新材料;③提⾼传感器性能和检测范围;④微型化与微功耗;⑤集成化与多功能化;⑥传感器的智能化;⑦传感器的数字化和⽹络化。
(2)特征:由传统的分⽴式朝着集成化。
数字化、多动能化、微型化、智能化、⽹络化和光机电⼀体化的⽅向发展,具有⾼精度、⾼性能、⾼灵敏度、⾼可靠性、⾼稳定性、长寿命、⾼信噪⽐、宽量程和⽆维护等特点。
(3)输出:电量输出。
3.压⼒、加速度、转速等常见物理量可⽤什么传感器测量?各有什么特点?本⾝发热⼩,缺点是输出⾮线性。
4(1)按传感器检测的量分类,有物理量、化学量,⽣物量;(2)按传感器的输出信号性质分裂,有模拟和数字;(3)按传感器的结构分类,有结构性、物性型、复合型;(4)按传感器功能分类,单功能,多功能,智能;(5)按传感器转换原理分类,有机电、光电、热电、磁电、电化学;(6)按传感器能源分类,有有源和⽆源;根据我国的传感器分类体系表,主要分为物理量传感器、化学量传感器、⽣物量传感器三⼤类。
《传感器原理及应用》复习题
《传感器原理及应⽤》复习题《传感器原理及应⽤》复习题1.静态特性指标其中的线性度的定义是指。
2.传感器的差动测量⽅法的优点是减⼩了⾮线性误差、。
3. 对于等臂半桥电路为了减⼩或消除⾮线性误差的⽅法可以采⽤的⽅法。
4.⾼频反射式电涡流传感器实际是由和两个部分组成的系统,两者之间通过电磁感应相互作⽤,因此,在能够构成电涡流传感器的应⽤场合中必须存在材料。
5. 霍尔元件需要进⾏温度补偿的原因是因为其系数和受温度影响⼤。
使⽤霍尔传感器测量位移时,需要构造⼀个。
6.热电阻最常⽤的材料是和,⼯业上被⼴泛⽤来测量的温度,在测量温度要求不⾼且温度较低的场合,热电阻得到了⼴泛应⽤。
7.现有霍尔式、电涡流式和光电式三种传感器,设计传送带上塑料零件的计数系统时,应选其中的传感器。
需要测量某设备的外壳温度,已知其范围是300~400℃,要求实现⾼精度测量,应该在铂铑-铂热电偶、铂电阻和热敏电阻中选择。
8. ⼀个⼆进制光学码盘式传感器,为了达到1″左右的分辨⼒,需要采⽤或位码盘。
⼀个刻划直径为400 mm的20位码盘,其外圈分别间隔为稍⼤于µm。
9.⾮功能型光纤传感器中的光纤仅仅起传输光信息的作⽤,功能型光纤传感器是把光纤作为元件。
光纤的NA值⼤表明。
10. 现有霍尔式、电涡流式和光电式三种传感器,设计传送带上塑料零件的计数系统时,应选其中的传感器。
需要测量某设备的外壳温度,已知其范围是300~400℃,要求实现⾼精度测量,应该在铂铑-铂热电偶、铂电阻和热敏电阻中选择。
11.光照使半导体电阻率变化的现象称为内光电效应,基于此效应的器件除光敏电阻外还有处于⼯作状态的光敏⼆极管。
光敏器件的灵敏度可⽤特性表征,它反映光电器件的输⼊光量与输出光电流(电压)之间的关系。
选择光电传感器的光源与光敏器件时主要依据器件的特性。
12.传感器⼀般由 ____、 ____、及辅助电源四个部分组成。
13.传感器的灵敏度是指稳态标准条件下,输出与输⼊的⽐值。
传感器的原理及实用技术期末复习1
实用标准文案精彩文档 3.简要说明电容式传感器的原理电容式传感器能将被测量转换为传感器电容变化,传感器有动静两个极板,极板间的电容为C=ε0εr A/δ0式中:ε0 真空介电常数8.854×10-12F/m εr 介质的相对介电常数 δ0 两极板间的距离 A 极板的有效面积当动极板运动或几班见的介质变化就会引起传感器电容值的变化,从而构成变极距式,变面积式和变介质型的电容式传感器。
4.简述电涡流传感器工作原理及其主要用途。
电涡流式传感器就是基于涡流效应工作的。
电涡流式传感器具有结构简单、频率响应快、灵敏度高、抗干扰能力强、体积小、能进行非接触测量等特点,因此被广泛用于测量位移、振动、厚度、转速、表面温度等参数,以及用于无损探伤或作为接近开关,是一种很有发展前途的传感器。
6.简述光敏电阻的工作原理。
光敏电阻是一种基于光电导效应(内光电效应)工作的元件,即在光的照射下,半导体电导率发生变化的现象。
光照时使半导体中载流子浓度增加,从而增大了导电性,电阻值减小。
照射光线愈强,电阻值下降愈多,光照停止,自由电子与空穴逐渐复合,电阻又恢复原值。
7.什么叫零点残余电压?产生的原因有哪些?当衔铁处于差动电感的中间位置时,无论怎样调节衔铁的位置,均无法使测量转换电路输出为零,总有一个很小的输出电压,这种微小误差电压称为零点残余电压。
产生零点残余电压的具体原因有:① 差动电感两个线圈的电气参数、几何尺寸或磁路参数不完全对称;② 存在寄生参数,如线圈间的寄生电容及线圈、引线与外壳间的分布电容;③ 电源电压含有高次谐波;④ 磁路的磁化曲线存在非线性。
8.简述霍尔传感器的工作原理。
金属或半导体薄片两端通控制电流 ,并在薄片的垂直方向上施加磁感应强度为 的磁场,那么,在垂直于电流和磁场的方向上将产生电势 (称为霍尔电势电压),这种现象称为霍尔效应。
霍尔电势的大小正比于控制电流和磁感应强度, 称为霍尔元件的灵敏度,它与元件材料的性质与几何尺寸有关。
传感器原理及应用期末复习资料
信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。
1.什么是传感器?广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。
狭义:能把外界非电信息转换成电信号输出的器件。
国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
2.传感器由哪几个部分组成?分别起到什么作用?传感器一般由敏感元件、转换原件和基本电路组成。
敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。
传感器的核心部分是转换原件,转换原件决定传感器的工作原理。
3.传感器的总体发展趋势是什么?传感器的应用情况。
传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。
未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。
发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。
4.了解传感器的分类方法。
所学的传感器分别属于哪一类?按传感器检测的范畴分类:物理量传感器、化学量传感器、生物量传感器按传感器的输出信号分类:模拟传感器、数字传感器按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器按传感器的功能分类:单功能传感器、多功能传感器、智能传感器按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器电化学传感器按传感器的能源分类:有源传感器、无源传感器国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传感器含12个小类:力学量、热学量、光学量、磁学量、电学量、声学量、射线、气体、离子、温度传感器以及生化量、生理量传感器。
1.传感器的性能参数反映了传感器的输入输出关系2.传感器的静态特性是什么?由哪些性能指标描述?主要性能参数的意义是什么1线性度:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,线性度RL是表征实际特性与拟合直线不吻合的参数拟合方法:理论线性度(理论拟合)、 c、端基线性度(端点连线拟合)d、独立线性度(端点平移)最小二乘法线性度2迟滞:传感器在正、反行程期间输入、输出曲线不重合的现象称迟滞(迟环)。
传感器原理与应用复习范围
绪论一、传感器:将各种非电量(包括物理量、化学量、生物量等),按照一定的规律转换成便于处理和传输的另一种物理量(一般为电量)的装置。
二、传感技术:是利用各种功能材料实现信息检测的一门应用技术,是检测(传感)原理、材料科学、工艺加工等三要素的最佳结合。
三、传感器的组成:传感器一般有敏感元件、转换原件和测量电路三部分组成,有事还需要加辅助电源。
四、传感器分类:1.按输入量分类如输入量分别为温度、压力、位移、速度、加速度、湿度等非电量时,则相应的传感器称为温度传感器、压力传感器、位移传感器、速度传感器、加速度传感器、湿度传感器等。
2.按测量原理分类现有传感器的测量原理主要是基于电磁原理和固体物理学理论。
如根据变电阻的原理,相应的有电位器式、应变式传感器;根据变磁阻的原理,相应的有电感式、差动变压器式、电涡流式传感器;根据半导体有关理论,则相应的有半导体力敏、热敏、光敏、气敏等固态传感器。
3.按结构型和物性型分类所谓结构型传感器,主要是通过机械结构的几何形状或尺寸的变化,将外界被测参数转换成相应的电阻、电感、电容等物理量的变化,从而检测出被测信号,这种传感器目前应用的最为普遍。
物性型传感器则是利用某些材料本身物理性质的变化而实现测量,它是以半导体、电介质、铁电体等作为敏感材料的固态器件。
五、传感器的发展趋向1.传感器的固态化,2、传感器的集成化和多功能化3.传感器的图像化4.传感器的智能化第1章传感器的一般特性§1-1 传感器的静态特性传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为静态特性。
传感器静态特性的主要指标有以下几点:一、线性度(非线性误差)在规定条件下,传感器校准曲线与拟合直线间最大偏差与满量程(F·S)输出值的百分比称为线性度。
二、灵敏度传感器的灵敏度指到达稳定工作状态时输出变化量与引起此变化的输入变化量之比。
线性传感器校准曲线的斜率就是静态灵敏度K。
传感器及应用复习
传感器及应用复习名词解释:10道第1章传感器的基本知识传感器:传感器就是利用物理效应、化学效应、生物效应,把被侧的物理量、化学量、生物量等非电量转换成电量的器件或装置。
应力:截面积为S的物体受到外力F的作用并处于平衡状态时,在物体单位截面积上引起的内力称为应力。
应变:应变是物体受外力作用时产生的相对变形。
εl:纵向应变,εr:横向应变110-6ε胡克定律与弹性模量:胡克定律:当应力未超过某一限值时,应力与应变成正比;E为弹性模量或杨氏模量,单位为N/m2;G为剪切模量或刚性模量,τ为切应力第2张线性位移传感器及应用应变式传感器由弹性敏感元件、电阻应变片和应变电桥组成。
电感式传感器原理:把可移动的铁心称为衔铁,通过测杆与被侧运动物体接触,就可把运动物体的位移转换成电感或互感的变化。
电涡流式传感器原理:电涡流式传感器是一个绕在骨架上的导线所构成的空心线圈,它与正弦交流电源接通,通过线圈的电流会在线圈的周围空间产生交变磁场。
压电效应:当某些电介质受到一定方向外力作用而变形时,其内部便会产生极化现象,在他们的上下表面会产生符号相反的等量电荷;当外力的方向改变时,其表面产生的电荷极性也随之改变;当外力消失后又恢复不带电状态,这种现象称为压电效应。
霍尔效应:在通有电流的金属板上加一匀强磁场,当电流方向与磁场方向垂直时,在与电流和磁场都垂直的金属板的两表面间出现电势差,这个现象称为霍尔效应。
光电效应:当物质受光照射后,物质的电子吸收了光子的能量所产生的电现象称为光电效应。
①外光电效应:外光电效应即光电子发射效应,在光的作用下使电子逸出物体表面;②内光电效应:内光电效应有光电导效应、光电动势效应及热电效应。
第3章位移传感器在制造业中的应用第4章力与运动学量传感器及应用第5章压力、流量和物位传感器及应用第6章温度传感器及应用热电效应(赛克威尔效应):将两种不同导体A、B两端连接在一起组成闭合回路,并使两端处于不同温度环境,在回路中会产生热电动势而形成电流,这一现象称为热电效应。
传感器原理及应用_复习总结
传感器原理及应用总结➢传感器一般由敏感元件、转换元件、转换电路三部分组成。
➢传感器的基本特性通常用其静态特性和动态特性来描述。
➢电阻传感器的基本原理是将各种被测非电量转为对电阻的变化量的测量,从而达到测量的目的。
➢金属丝电阻应变片与半导体应变片的工作原理主要区别在于前者利用导体形变引起电阻变化、后者利用半导体电阻率变化引起电阻变化。
➢金属丝在外力作用下发生机械形变时它的电阻值将发生变化,这种现象称应变效应;半导体或固体受到作用力后电阻率要发生变化,这种现象称压阻效应。
直线的电阻丝绕成敏感栅后,长度相同但应变不同,圆弧部分使灵敏度K下降了,这种现象称为横向效应。
➢光电开关和光电断续器是开关式光电传感器的常用器件,主要用来检测物体的靠近、通过等状态。
➢光电式传感器由光源、光学元器件和光电元器件组成光路系统,结合相应的测量转换电路而构成。
➢硅光电池的光电特性中,光照度与其短路电流呈线性关系。
➢光敏二极管的结构与普通二级管类似。
它是在反向电压下工作的。
➢压电传感元件是一种力敏感元件,它由压电传感元件和测量转换电路组成。
➢压电式传感器的工作原理是基于某些电介质材料的压电效应。
它是典型的有源传感器。
➢压电材料在使用中一般是两片以上,在以电荷作为输出的地方一般是把压电元件并联起来,而当以电压作为输出的时候则一般是把压电元件串联起来。
➢差动电感式传感器与单线圈电感式传感器相比,线性好、灵感度提高一倍、测量精度高。
➢螺线管式差动变压器式传感器理论上讲,衔铁位于中心位置时输出电压为零,而实际上差动变压器输出电压不为零,我们把这个不为零的电压称为零点残余电压;利用差动变压器测量位移时如果要求区别位移方向(或正负)可采用相敏检波电路。
➢差动变压器式传感器理论上讲,衔铁位于中心位置时输出电压为零,而实际上差动变压器输出电压不为零,我们把这个不为零的电压称为零点残余电压;利用差动变压器测量位移时如果要求区别位移方向(或正负)可采用相敏检波电路。
传感器原理及应用复习题
一、判断题(在正确的后面划√,错误的后面划×)1. 传感器是获取信息的重要途径和手段,它相当于人的五官。
传感器技术是构成现代信息技术的三大支柱之一,在一定程度上它决定着机器人水平的高低。
()2. 传感器正从传统的分立式朝着集成化、微型化、多功能化、智能化、网络化、光机电一体化的方向发展。
()3. 物联网是将各种信息传感器设备按约定的协议与互联网结合起来,形成一个巨大的网络,进行信息交换和通信,以实现智能化的识别、定位、跟踪、监控和管理的一种网络。
()4. 传感器实际输入输出曲线偏离理想拟合直线的程度称为线性度,通常用最大偏差与满量程输出之比的百分数来表示。
()5. 在稳定工作条件下,传感器的灵敏度是一个无单位的常数,它与外加电源电压无关。
()6. 在相同条件下,传感器在正行程(输入量由小到大)和反行程(输入量由大到小)期间,所得输入、输出曲线不重合的现象称重复性。
()7. 一阶传感器系统的动态响应主要取决于时间常数,越小越好,减少时间常数可以改善传感器频率特性,加快响应过程。
()8. 二阶传感器对阶跃信号响应和频率响应特性的好坏很大程度上取决于阻尼系数和固有频率。
()9. 直线电阻丝绕成敏感栅后,虽然长度相同,但应变不同,圆弧部分使灵敏度下降,这种现象称为横向效应。
敏感栅越窄,基片越长的应变片,横向效应越小。
()10. 压阻式传感器是利用半导体材料压阻效应制作的电阻式应变传感器,其性能优于金属应变效应制作的电阻式应变传感器,主要用于压力测量。
()11.电容传感器本身电容量较大,连接电缆的电容量很小(每米几百皮法),这样在低频时电缆的容抗较大,对传感器灵敏度影响就较大,因此低频工作时的电容传感器连接电缆的长度不能任意变化。
()12.脉冲宽度调制电路适用于任何形式的电容传感器,并有理论线性度。
该电路不需解调、检波,对电源也没有什么严格要求,是电容传感器的常用电路。
()13.根据电涡流效应制作的传感器称电涡流传感器。
传感器复习重点(传感器原理及其应用)(精心整理)
传感器原理及其应用第一章传感器的一般特性1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。
2)传感器又称变换器、探测器或检测器,是获取信息的工具广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。
狭义:能把外界非电信息转换成电信号输出的器件。
国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
3)传感器的组成:敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。
转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。
基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。
4)传感器的静态性能指标(1)灵敏度定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比,传感器输出曲线的斜率就是其灵敏度。
①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。
(2)线性度定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。
线性度又可分为:①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。
②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。
端基直线定义:实际平均输出特性首、末两端点的连线。
③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。
④独立线性度:以最佳直线作为参考直线的线性度。
⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。
(3)迟滞定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。
即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。
(4)重复性定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输出之间相互偏离的程度。
传感器原理与应用复习题及参考答案
《传感器原理与应用》课程复习资料传感器按输出量形类可分为、、。
3.热敏电阻常数B大于零的是温度系数的热敏电阻。
4.传感器的灵敏度是指稳态标准条件下,输出与输入的比值。
对线性传感器来说,其灵敏度是。
5.振筒式传感器是以均匀作为敏感元件,将或密度的变化转换成。
6.我们学过的参量式传感器有、、误差按出现的规律分、、。
9.若测量系统无接地点时,屏蔽导体应连接到信号源的。
10.用弹性元件和电阻应变片及一些附件可以组成应变片传感器,按用途划分用应变式传感器、应变式传感器等(任填两个)。
11.由光电管的光谱特性看出,检测不同颜色的光需要选用不同的光电管,以便利用光谱特性的区段。
对传感器进行动态的主要目的是检测传感器的动态性能指标。
15.目前应用于压电式传感器中的压电材料通常有、、。
16.采用热电阻作为测量温度的元件是将的测量转换为的测量。
17.按热电偶本身结构划分,有热电偶、热电偶、热电偶。
传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过的能力。
21.根据电容式传感器的工作原理,电容式传感器有、、三种基本类型22.空气介质变隙式电容传感器中,提高灵敏度和减少非线性误差是矛盾的,为此实际中大都采用式电容传感器23.热敏电阻正是利用半导体的数目随着温度变化而变化的特性制成的敏感元件。
24.传感器通常由、、三部分组成。
25.传感检测系统目前正迅速地由、数字式,向方向发展。
二、单项选择题:1.差动变压器传感器的配用测量电路主要是 [ ]A.差动相敏检波电路B.差动整流电路C.直流电桥D.差动电桥2.目前我国使用的铂热电阻的测量范围是 [ ]A.-200~850℃B.-50~850℃C.-200~150℃D.-50~150℃3.测量范围大的电容式位移传感器的类型为 [ ]A.变极板面积型B.变极距型C.变介质型D.容栅型4.应变式压力传感器主要用于液体、气体压力的测量,测量范围是 [ ]A.102~106p aB.105~107p aC.104~107p aD.106~109p a5.在两片间隙为 1mm的两块平行极板的间隙中插入什么,可测得最大的容量 [ ]A.塑料薄膜B.干的纸C.湿的纸D.玻璃薄片6.测得某检测仪表的输入信号中,有用信号为20毫伏,干扰电压也为20毫伏,则此时的信噪比为 [ ]A.20dBB.1 dBC.0 dB7.按照工作原理分类,固体图象式传感器属于 [ ]A.光电式传感器B.电容式传感器C.压电式传感器D.磁电式传感器8.热电偶可以测量 [ ]A.压力B.电压C.温度D.热电势9.利用相邻双臂桥检测的应变式传感器,为使其灵敏度高、非线性误差小 [ ]A.两个桥臂都应当用大电阻值工作应变片B.两个桥臂都应当用两个工作应变片串联C.两个桥臂应当分别用应变量变化相反的工作应变片D.两个桥臂应当分别用应变量变化相同的工作应变片10.变气隙式自感传感器,当街铁移动靠近铁芯时,铁芯上的线圈电感量 [ ]A.增加B.减小C.不变D.不确定11.热电阻测量转换电路采用三线制是为了 [ ]A.提高测量灵敏度B.减小非线性误差C.提高电磁兼容性D.减小引线电阻的影响12.发现某检测仪表机箱有麻电感,必须采取什么措施 [ ]A.接地保护环B.将机箱接大地C.抗电磁干扰13.电涡流式传感器激磁线圈的电源是 [ ]A.直流B.工频交流C.高频交流D.低频交流14.下列被测物理量适合于使用红外传感器进行测量的是 [ ]A.压力B.力矩C.温度D.厚度15.固体半导体摄像元件CCD是一种 [ ]A.PN 结光电二极管电路B.PNP型晶体管集成电路C.MOS 型晶体管开关集成电路D.NPN型晶体管集成电路16.在以下几种传感器当中( )属于自发电型传感器。
传感器原理与应用-复习思考题
复习思考题一、填空题1、按能量角度分析,典型的传感器构成方法有三种,即自源型、带激励源型以及外源型,前两者属于能量转换型,后者是能量控制型。
2、将温度转换为电势大小的热电式传感器是热电偶传感器,而将温度变化转换为电阻大小的热电式传感器是热电阻(金属材料)或热敏电阻(半导体材料)。
3、电感式传感器也称为变磁阻式传感器,它是利用电磁感应原理将被测物理量转换成线圈自感系数和互感系数的变化,再由测量电路转换为电压或电流的变化,从而实现非电量到电量的转换。
4、容栅传感器实际上是多个差动式变面积型电容传感器的并联,它具有误差平均效应,测量精度很高。
5、热电偶传感器的工作基础是热电效应,其产生的热电势包括接触电势和温差电势两部分。
热电偶的中间导体(连接导体)定律是工业上运用补偿导线法进行温度补偿的理论基础;中间温度定律为制定分度表奠定了理论基础;根据中间导体定律,可允许采用任意的焊接方式来焊接热电偶。
6、用于制作压电传感器的常用压电材料是石英晶体和压电陶瓷。
7、基于外光电效应的器件有光电管和光电倍增管;基于内光电效应的器件有光敏电阻、光电池、光敏二极管和光敏晶体管等。
二、选择题:1. 被测信号x(t)的最高频率为fm 时,采样频率fc至少为___C____,才能恢复原始波形,否则,会引起信号失真。
A 0.5fm B fmC 2fm2. 某传感器的精度为2%FS,满量程输出为100mV,可能最大的误差为__A____。
A 2 mVB 1 mVC 4 mVD 6 mV3. 传感器在正、反行程中输入输出曲线不重合称为___B_____。
A 非线性误差B 迟滞C 重复性4. 一弹性式压力传感器在加压过程和减压过程中,输入值相同,但传感器的输出却不一致,这种现象称为____C______。
A 弹性元件的非线性B 弹性后效C 弹性滞后D 弹性元件的不稳定5. 传感器的输出分辨率____D____输入分辨率。
A 大于B 等于C 小于D 不相关6. 传感器能检测到的最小输入增量为_____D______。
传感器原理复习总结
1.传感器的作用传感器实际上是一种功能块,其作用是将来自外界的各种信号转换成电信号。
传感器所检测的信号品种极其繁多。
为了对各种各样的信号进行检测、控制,就必须获得尽量简单易于处理的信号,这样的要求只有电信号能够满足。
电信号能较容易地进行放大、反馈、滤波、微分、存贮、远距离操作等。
2.传感器(Transducer或Sensor)定义:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件组成”。
传感器有时也叫换能器、变换器、变送器或探测器。
从定义中可看出传感器有两个功能:既敏感和变换。
3. 传感器通常由敏感元件、转换元件二部分组成,有时也将测量电路及辅助电源作为传感器的组成部分。
4.传感器的输出—输入关系特性就是传感器的基本特性。
传感器的静态特性是指传感器在被测量处于稳定状态时(静态的输入信号)的输出—输入关系。
5衡量传感器静态特性的主要技术指标是:线性度、灵敏度、精确度、迟滞、重复性和分辨率等。
6线性误差(Linearity Error)线性误差是指在规定条件下(利用一定等级的校准设备,对传感器进行反复循环测试)得出输出--输入特性曲线与拟合直线(fitting straight line)间最大偏差与满量程F·S—full span)输出值的百分比称为线性误差7灵敏度是指传感器在稳态下输出变化量(增量)与输入变化量(增量)的比值,即K=输出变化量/输入变化量=ΔY/ΔX灵敏度越高,系统反映输入微小变化的能力就越强。
在电子测量中,灵敏度越高往往容易引入噪声并影响系统的稳定性及测量范围,在同等输出范围的情况下,灵敏度越大测量范围越小,反之则越大。
8. 分辨力是指传感器可能感受到的被测量的最小变化的能力9,是指在一定时间间隔内,传感器的输出存在着与被测量无关的、不需要的变化。
漂移包括零点漂移和灵敏度漂移。
10.准确度指测量仪器给出的示值和真值的接近程度。
11传感器的动态特性是指传感器在测量动态信号时,输出对输入的响应特性12传感器的发展趋势1)开发新型传感器2)开发新材料3)新工艺的采用4)集成化、多功能化5)智能化第二章光电式传感器1.将光量转换为电量的器件称为光电传感器或光电元件。
传感器原理及应用复习题库
传感器原理及应用复习题库第一章 概述1、传感器一般由敏感元件、转换元件、基本电路三部分组成。
62、传感器图用图形符号由符号要素正方形和等边三角形组成,正方形表示转换元件,三角形表示敏感元件,“X ”表示被测量,“*”表示转换原理。
7第二章 传感器的基本特性1、传感器动态特性的主要技术指标有哪些?它们的意义是什么?答:1)传感器动态特性主要有:时间常数τ;固有频率n ω;阻尼系数ξ。
2)含义:τ越小系统需要达到稳定的时间越少;固有频率n ω越高响应曲线上升越快;当n ω为常数时响应特性取决于阻尼比ξ,阻尼系数ξ越大,过冲现象减弱,1ξ≥时无过冲,不存在振荡,阻尼比直接影响过冲量和振荡次数。
2、有一温度传感器,微分方程为30/30.15dy dt y x +=,其中y 为输出电压(mV) , x 为输入温度(℃)。
试求该传感器的时间常数和静态灵敏度。
解:对微分方程两边进行拉氏变换,Y(s)(30s+3)=0.15X(s)则该传感器系统的传递函数为: ()0.150.05()()303101Y s H s X s s s ===++ 该传感器的时间常数τ=10,灵敏度k=0.053、测得某检测装置的一组输入输出数据如下:试用最小二乘法原理拟合直线,求其线性度和灵敏度。
(10-12)1、解: b kx y +=)(b kx y i i i +-=∆22)(i i ii i i x x n y x y x n k ∑-∑∑∑-∑=222)()(i i i i i i i x x n y x x y x b ∑-∑∑∑-∑∑=代入数据求得68.0=k 25.0=b ∴ 25.068.0+=x y238.01=∆ 35.02-=∆ 16.03-=∆ 11.04-=∆ 126.05-=∆ 194.06-=∆ x0.9 2.5 3.3 4.5 5.7 6.7 y 1.1 1.6 2.6 3.2 4.0 5.0%7535.0%100max ±=±=⨯∆±=FS L y L γ 第三章 电阻式传感器1、何为电阻应变效应?怎样利用这种效应制成应变片?答:导体在受到拉力或压力的外界力作用时,会产生机械变形,同时机械变形会引起导体阻值的变化,这种导体材料因变形而使其电阻值发生变化的现象称为电阻应变效应。
传感器原理与应用复习要点
第一章传感器的一般特性1.传感器技术的三要素。
传感器由哪3部分组成?2.传感器的静态特性有哪些指标?并理解其意义。
3.画出传感器的组成方框图,理解各部分的作用。
4.什么是传感器的精度等级?一个0.5级电压表的测量范围是0~100V,那么该仪表的最大绝对误差为多少伏?5.传感器工作在差动状态与非差动状态时的优点有哪些?灵敏度、非线性度?第二章应变式传感器6.应变片有那些种类?金属丝式、金属箔式、半导体式。
7.什么是压阻效应?8.应变式传感器接成应变桥式电路的理解、输出信号计算。
应变片桥式传感器为什么应配差动放器?9.掌握电子称的基本原理框图,以及各部分的作用。
10.电阻应变片/半导体应变片的工作原理各基于什么效应?11.半导体应变片与金属应变片各有哪些特点。
第三章电容式传感器12.电容式传感器按工作原理可分为哪3种?13.寄生电容和分布电容对电容式传感器有什么影响?解决电缆电容影响的方法有那些?14.什么是电容电场的边缘效应?理解等位环的工作原理。
15.运算法电容传感器测量电路的原理及特点。
第四章电感式传感器16.了解差动变压器的用途及特点。
17.差动变压器的零点残余电压产生的原因?第五章压电式传感器18.什么是压电效应?什么是逆压电效应?常用压电材料有哪些?19.压电传感器能否测量缓慢变化和静态信号?为什么?20.压电传感器的前置放大器电路形式主要有哪两种?理解电压放大器、电荷放大器的作用。
第六章数字式传感器21.光栅传感器的原理。
采用什么技术可测量小于栅距的位移量?22.振弦式传感器的工作原理。
第七章热电式传感器23.热电偶的热电势由那几部分组成?24.热电偶的三定律的理解。
25.掌握热电偶的热电效应。
26.热电偶冷端补偿原理和必要性及补偿电桥法的补偿原理。
27.铂电阻采用三线制接线方式的原理和特点?28.采用负温度系数热敏电阻稳定晶体管放大器静态工作点的工作原理。
29.集成温度传感器AD590的主要特点。
传感器原理及应用复习题
一、填空题(每题3分)1、传感器通常由直接响应于被测量的敏感元件、产生可用信号输出的转换元件、以及相应的基本转换电路组成。
2、金属材料的应变效应是指金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象。
3、半导体材料的压阻效应是半导体材料在受到应力作用后,其电阻率发生明显变化。
4、金属丝应变片和半导体应变片比较其相同点是它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化。
5、金属丝应变片和半导体应变片比较其不同点是金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。
6、固体受到作用力后电阻率要发生变化,这种现象称压阻效应。
7、应变式传感器是利用电阻应变片将材料应变转换为电阻变化的传感器。
8、要把微小应变引起的微小电阻变化精确地测量出来,需采用特别设计的测量电路,通常采用电桥电路。
9、电容式传感器利用了将非电量的变化转换为电容量的变化来实现对物理量的测量。
10、变极距型电容传感器做成差动结构后,灵敏度提高原来的2倍。
11、电容式传感器的优点主要有测量范围大、灵敏度高、动态响应时间短、机械损失小、结构简单、适应性强。
12、电容式传感器主要缺点有寄生电容影响较大、当电容式传感器用于变间隙原理进行测量时具有非线性输出特性。
13、电感式传感器是建立在电磁感应基础上的一种传感器。
14、电涡流传感器从测量原理来分,可以分为高频扫射式和低频透射式两大类。
15、电感式传感器可以分为自感式、互感式、涡流式三大类。
16、压电式传感器可等效为一个电荷源和一个电容并联,也可等效为一个与电容相串联的电压源。
17、压电式传感器是一种典型的自发电型传感器(或发电型传感器) ,其以某些电介质的压电效应为基础,来实现非电量检测的目的。
18、某些电介质当沿一定方向对其施力而变形时内部产生极化现象,同时在它的表面产生符号相反的电荷,当外力去掉后又恢复不带电的状态,这种现象称为(正压电)效应;在介质极化方向施加电场时电介质会产生形变,这种效应又称电致伸缩效应。
传感器原理及应用复习题18
一、名词解释线性度;灵敏度;重复性;标定;零点残余电压;电畴;磁阻效应;电涡流;压电效应;光电导效应;光生伏特效应;接触电势;温差电势二、选择题1. 已知某一阶传感器的传递函数为510+s ,则该传感器的静态灵敏度和时间常数分别为[ ]。
A .k =10,τ =5B .k =1,τ =0.5C .k =5,τ =0.2D .k =2,τ =0.22. 热释电红外探测器对波长没有选择性,在用于人体防盗报警时,滤光片应只允许通过的波长范围大致为[ ]。
A .0.8~1.3μmB .3~5μmC .8~12μmD .15~20μm3. 电容式传感器采用双层屏蔽等电位传输技术的目的是为了[ ]。
A .减少寄生电容的影响B .减少边缘效应C .补偿温度变化的影响D .测量动态信号4. 压阻式传感器在某一方向上受到作用力时,它的电阻值会发生明显变化,引起这个变化的因素是[ ]。
A .几何尺寸B .磁导率C .极化电荷D .电阻率5. 为了获得较好的动态特性,在二阶传感器设计时,一般阻尼系数选择[ ]。
A .ξ >1B .ξ ≈ 0C .ξ = 1D .ξ ≈ 0.76. 利用电涡流式传感器测量位移时,为了得到较好的线性和灵敏度,其激励线圈半径r 与被测物体的距离x 应该满足[ ]A .r≈x B .r =(0.2~0.5) x C .r << x D .r = (0.05~0.15) x7. 要设计一个能测量-200~800℃范围的温度仪表,应选用[ ]。
A.K型热电偶B.铂热电阻C.热敏电阻D.LM35集成温度传感器8.电阻应变式传感器是应用最广泛的传感器之一,它[ ]。
A.只能测量应变B.只能测量电阻的相对变化C.可以测量所有的被测量D.可以测量能转化为应变的被测量9. 差动电容传感器采用差动脉冲调宽电路时,其输出电压正比于[ ]。
A.电源电压B.参考电压C.触发器输出的高电平电压D.触发器输出的低电平电压10. 按照传感器的一般分类方法,热电偶属于[ ]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.简答题(40分)1.传感器的基本概念及基本功能传感器就是借助于检测元件(敏感元件)接受一定形式的信息,并按一定的规律将它转换成另一种信息的装置。
它获取的信息,可以是各种物理量、化学量和生物量,而转化后的信息也有各种形式。
目前,将传感器接收到的信息转化为电信号是最常用的一种形式(电信号包括电压,电流及频率信号)基本功能:信息收集,信号数据的转换2.传感器的基本组成并说出每部分的功能传感器通常是由敏感元件,转换元件和调节转换电路三部分组成其中敏感元件是指传感器中能够直接感受或响应被测量的部分;转换元件是指传感器中能够将敏感元件感受或响应的被测量转换成电信号的部分;调节转换电路是指将非适合电量进一步转换成适合电量的部分。
3.传感器的发展趋势1新特性(努力实现传感器的新特性)2可靠性(确保传感器的可靠性,延长其使用寿命)3集成智能(体感传感器的集成化和智能化程度)4微型(传感器微型化)5仿生(发展仿生物传感器)6新材料(新型功能材料开发)7多融合(多传感器信息融合)4.按被测量的不同传感器可以分为哪几类1按感知外界信息基本效应不同分为物理传感器,化学传感器,和生物传感器等2按被测量不同分为力学量/热量/液体成分/气体成分/真空/光/磁/离子/放射线传感器等2按敏感材料不同分为金属/半导体/光纤/陶瓷/高分子材料/复合材料传感器等3按工作原理不同分为应变式/电感式/电容式/压电式/磁电式/光电式/热电式/气敏/湿敏传感器等5.传感器的特性及其概念6.传感器的静态特性包括那几个重要指标传感器的特性是指传感器的输入量和输出量之间的对应关系。
通常分为静态特性:输入不随时间变化而变化的特性(重要指标包括线性度、灵敏度、重复性、迟滞、零点漂移、温度漂移等)动态特性:输入随时间变化而变化的特性(可从时域和频率方面即对应阶跃响应法和频率响应法方面分析)7..电感式传感器的概念及每类传感器的基本概念1应变式传感器:基于电阻应变片的应变效应(对半导体应变片而言为压阻效应)。
2电感式传感器:基于电磁感应原理,利用磁路磁阻变化引起传感器线圈的电感(自感系数或互感系数)变化来检测非电量的一种机电转换装置。
常见有自感式,互感式,涡流式等。
3电容式传感器:可以把某些非电量的变化通过一个可变电容器转换成电容量变化的装置。
常见有变极距型,变面积型,变介质型。
4压电式传感器:基于压电材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量原理。
压电式传感器是典型的有源传感器,常见有单向力,双向力,三向力。
5磁电式传感器:利用电磁感应原理将运动速度转换成感应电动势输出的传感器。
又称感应式或电动式传感器。
常见有磁电感应式,霍尔式,磁敏电阻,慈磁敏二极管,磁敏晶体管。
6光电式传感器:利用光电器件把光信号转换成电信号的装置。
先将被测量的变化转换成光量的变化,通过光电器件把光量的变化转化为相应的电量变化,实现非电量测量。
常见有光敏电阻,光敏二极管,光敏晶体管。
7热电式传感器:将温度变化转换为电量变化的装置,它利用敏感元件的特征参数随温度变化而变化的特性来达到测量目的。
常见有热电阻,热电偶,热敏元件。
8气敏传感器:用来测量气体的类别,浓度和成分的传感器。
由“识别”和“放大”两部分非组成。
常见分为半导体气敏传感器和非半导体气敏传感器两类。
9湿敏传感器:用以感受大气湿度并转化为适当电信号的传感器。
8.画图并说明电涡流传感器测转速的基本原理在一个旋转金属体上加一个有N个齿的齿轮,旁边安装电涡流传感器,如下图所示,当旋转体转动时,电涡流传感器将周期地改变输出信号,改输出信号的频率可由频率计测出,由此可计算出转速9.根据电容量大小的公式说明电容式传感器的几种类型,并画出电容式传感器的等效电路BA电容式传感器的电容量为d AC ε=,其中r εεε0=,m F /1085.8120-⨯≈ε,为真空介电常数;rε为极板间介质相对介电常数;A 为两平行板所覆盖的面积;d 为两平行板间的距离。
据此原理,故可将电容式传感器分为变极距型,变面积型,变介质型。
其等效电路如图所示。
其中s R 代表引线电阻、电容支架和极板间的电阻(其值随着f 增大而增大,故在高频时才加以考虑)。
L 应包括电缆的电感。
p R 为并联损耗电阻,代表极板间的泄漏电阻和极板间的介质损耗(随着f 增大其值即容抗减小,对系统的影响随之减弱)10.什么是压电效应及其分类。
为什么不能用压电传感器测静态压力压电效应是当沿着一定方向对某些电介质施力而使它变形时,其内部就产生极化现象,同时在它的两个表面上便产生符号相反的电荷;当外力去掉后,又重新恢复不带电状态的现象,这种现象又称为正压电效应。
(当作用力的方向改变时,电荷的极性也随着改变)相反,当在电介质的极化方向上施加电场时,这些电解质也会产生变形,这种现象称为逆压电效应。
压电传感器可以等效为一个电荷发生器或电容器,但其产生的电荷量很微弱,在极短的时间内便会由自身泄漏掉,只有在动态力作用下,电荷才可以不断补充,不至于完全泄漏掉。
故在静态作用力作用下,无论是否受力,无论受力多大,都无信号输出。
所以压电传感器不能用于静态测量。
11.说明压电传感器转换电路中的电压放大器与电荷放大器的优缺点及各自要解决的问题压电式传感器本身的内阻抗很高,而输出能量较小,因此它的转换电路通常需要接入一个高输入阻抗的前置放大器,其作用为:1. 把它的高输出阻抗变换为低输出阻抗;2.放大传感器输出的微弱信号。
压电传感器的输出可以是电压信号,也可以是电荷信号,因此前置放大器也有两种形式:电压放大器和电荷放大器。
正压电 变形(压力) 逆压电 极化(电场) 机械能电能电压放大器:输出电压sc U 与压电元件的输出电压成正比,但易受电缆电容c C 的影响。
电荷放大器:基于密勒效应。
低频响应较电压放大器好得多,可以实现对准静态的物理量进行测量。
输出电压sc U 与q 成正比,与电缆电容c C 无关。
价格高,电路复杂,维护较为困难。
12.磁电感应式传感器的基本概念及其分类(与第七题重合)利用电磁感应原理将运动速度转换成感应电动势输出的传感器。
又称感应式或电动式传感器。
磁电感应式传感器是一种机—电能量转换型传感器,是利用导体和磁场发生相对运动产生感应电动势的原理而制作。
适用于振动,转速,扭矩等测量。
常见有磁电感应式,霍尔式,磁敏电阻,慈磁敏二极管,磁敏晶体管。
13.霍尔传感器基本原理及其可能应用场合基于霍尔元件的霍尔效应,霍尔效应是物质在磁场中表现的一种特性,它是由于运动电荷在磁场中受到洛仑兹力作用产生的结果。
当把一块金属或半导体薄片垂直放在磁感应强度为B 的磁场中,沿着垂直于磁场方向通电流c I ,就会在薄片的另一对侧面积间产生电动势h U ,这种=现象称为霍尔效应,所产生的电动势称为霍尔电动势,这种薄片(一般为半导体)称为霍尔片或霍尔元件。
霍尔元件有对磁场敏感,结构简单,频率响应宽,动态范围大,寿命长,无接触等优点,可广泛用于测量技术、自动化技术、和信息处理等方面。
例如霍尔位移传感器,霍尔转速测量,汽车霍尔点火器,霍尔传感器无接触测电流。
14.什么是外光电效应,内光电效应15.什么是光生伏特效应,光电导效应,分别列举相关器件光电效应即为光电器件在光能的激发下产生某些电特性的变化。
1在光照射下,电子逸出物体表面向外发射发射的现象称为外光电效应,又称光电发射效应。
基于此原理工作的光电式传感器有光电管和光电倍增管。
2通过入射光子引起物质内部产生光生载流子,这些光生载流子引起物质电学性质发生变化,这种现象称为内光电效应。
内光电效应分为和光电导效应和光生伏特效应。
a.光电导效应:绝大多数高电阻率的半导体,受光照射吸收光子能量后,产生电阻率降低而易于导电的现象。
基于此原理工作的光电式传感器有光敏电阻。
b.光生伏特效应:光照射引起PN 结两端产生电动势的现象称为光生伏特效应。
基于此原理工作的光电式传感器有光敏二极管,光敏晶体管(又称光敏三极管)。
16.什么叫热电效应,热电偶的基本工作原理是什么在两种不同的导体(或半导体)A 和B 组成的闭合回路中,如果他们两个的结点的温度不同,则回路中会产生一个电动势,通常称这种电动势为热电动势,这种现象就是热电效。
热电偶的工作原理便是基于热电效应。
17.热电偶有哪些基本定律1中间温度定理:热电偶AB 的热电动势仅取决于热电偶的材料及结点温度。
而与温度沿热电极的分布以及热电极的尺寸和形状无关。
2中间导体定律:在热电偶AB 回路中,只要接入的第三导体两端温度相同,则对回路的总热电动势没有影响。
3标准电极定律:当热电偶回路的两个结点温度为T 、0T 时,用导体AB 组成热电偶的热电动势等于热电偶AC 和热电偶CB 的热电动势的代数和。
- + 光生电子—空穴对 图15-2-b PN 结光生伏特效应原理图18.什么是智能传感器,常见的智能传感器的形式智能传感器就是带微处理器、兼有信息监测和信息处理功能的传感器,其最大特点是将传感器检测信息的功能与微处理器的信息处理功能有机的融合在一起。
简而言之,智能传感器就是带有智能芯片的集成传感器。
形式:1将传感器与微处理器集成在一个芯片上。
2传感器通过总线接口直接匹配微处理器。
19.智能传感器的基本功能及其特点功能:1具有自校准和故障自诊断功能2具有数据储存、逻辑判断、和信息处理功能3具有组态功能,使用灵活4具有双向通信功能特点:1精度高2量程宽3多参数多功能测量4自适应能力强5较高的性能价格比20.C语言和汇编语言混合编程形式1C语言内嵌汇编语言2汇编语言使用C语言定义的全局变量3C语言中调用汇编函数4汇编语言中调用C语言函数21.智能传感器中使用的六种总线HART(Highway Addressable Remote Transducer),可寻址远程传感器高速通道的开放通信协议总线(单总线)I2总线(两线式串行总线 Inter-Integrated Circuit)2.C总线(系统管理总线 System Management Bus)总线(串行外设接口 Serial Peripheral Interface)Wire总线(Micro wire串行接口是SPI的精简接口,能满足通常外设的需求)总线(通用串行总线 U niversal S erial B us)。