高吸水性树脂的制备性能测试及其应用研究
高吸水性树脂的制备及性能测试
60年代末期,美国首先开发成功高吸水性树脂。这是一种 含有强亲水性基团并通常具有一定交联度的高分子材料。它不 溶于水和有机溶剂,吸水能力可达自身重量的500~2000倍, 最高可达5000倍,吸水后立即溶胀为水凝胶,有优良的保水性, 即使受压也不易挤出。吸收了水的树脂干燥后,吸水能力仍可 恢复。
一、概述(续)
二、高吸水性树脂分类及制备方法(续)
国内的长春应用化学研究所采用Co60—γ射线辐照玉米淀粉和 土豆淀粉产生自由基,然后在水溶液中引发接枝丙烯酰胺,也得 到了吸水率达2000倍的高吸水性淀粉树脂。 制备高吸水性树脂的淀粉主要采用玉米淀粉和小麦淀粉,也可 采用土豆、红薯和大米的淀粉为原料,甚至有直接采用面粉为原 料的。 高吸水性树脂是高分子电介质,对含有离子的液体吸收能力显 著下降,因此,产品的净化程度对吸水率影响很大。通常采用渗 析、醇沉淀、漂洗净化,再用碱中和处理。产品的最终形式随净 化和干燥的方式而异。醇沉淀及鼓风干燥的一般为粒状产品;渗 析和酸沉淀及转鼓干燥的一般制成膜,也可加工为粒状;若用冷 冻干燥,则可制得海绵状产品。这些形式都有各自的独特用途。
由于上述的奇特性能,高吸水性树脂引起了人们较大的兴 趣。问世 30多年来,发展极其迅速,应用领域已经渗透到各 行各业。如在石油、化工、等部门中被用作堵水剂、脱水剂等; 在医疗卫生部门中用作外用药膏的基材、缓释性药剂、抗血栓 材料等;在农业部门中用作土壤改良剂等。在日常生活,用作 吸水性抹布、一次性尿布、插花材料等。 高吸水性树脂是一类高分子电解质。水中盐类物质的存在 会显著影响树脂的吸水能力,在一定程度上限制了它的应用。 提高高吸水性树脂对含盐液体(如尿液,血液、肥料水等)的 吸收能力,将是今后高吸水性树脂研究工作中的一个重要课题。 此外,对高吸水性树脂吸水机理的理论研究工作也将进一步开 展,以指导这一类功能高分子材料向更高水平发展。
P(AA-co-AM)高吸水性树脂的制备及其吸水性能研究实验方案
P(AA-co-AM)高吸水性树脂的制备及其吸水性能研究一实验目的1了解高吸水性树脂的基本功能及用途。
2 掌握高吸水性树脂的制备方法。
3了解高吸水性树脂吸水性的测定方法。
二实验原理高吸水性树脂是一种适度交联、具三维网络结构的新型功能高分子材料。
其分子中含有大量的-COOH、-OH等强亲水性基团,因此具有强的吸水性;同时因具有适度交联的三维网络结构,使其在水中只是吸水溶胀而不溶解。
故而这类材料具有超强的吸水、保水能力。
其疏松、多孔的表面结构,又使之能吸附小分子及离子,且吸附后树脂可洗脱再生,重复利用。
高吸水性树脂已被广泛用于农林、园艺、工业、医疗、环保等诸多领域。
高吸水性树脂先通过吸附和分散作用吸收水分,接着树脂的亲水基团通过氢键与水分子作用,离子型的亲水基团遇水开始解离,阴离子固定在高分子链上,阳离子为可移动离子。
随着亲水基团的解离,阴离子数目增多,静电斥力增大,使树脂网络扩张。
同时为了维持电中性,阳离子不能向外部溶剂扩散,而使其浓度增大,导致树脂网络内外的渗透压随之增加,水分子进一步渗入。
随着吸水量的增大,网络内外的渗透压差趋向于零,并且随网络扩张其弹性收缩力也在增加,逐渐抵消了阴离子的静电斥力,最终达到吸水平衡。
本实验以丙烯酸(AA)、丙烯酰胺(AM)为共聚单体,过硫酸钾(KPS)为引发剂,N,N'-亚甲基双丙烯酰胺(MBA)为交联剂,采用溶液聚合法制备高吸水性树脂,并探讨其吸水性能。
三仪器与试剂水浴锅搅拌器三颈瓶试剂瓶球形冷凝器量筒烧杯温度计药勺天平丙烯酰胺(AM)丙烯酸(AA)N,N-亚甲基双丙烯酰胺(MBA)过硫酸钾(KPS)各色染料四实验步骤1. 将4g丙烯酰胺(AM),2g中和度80%的丙烯酸和30 mL去离子水加入装有冷凝管、温度计和搅拌装置的150ml三颈瓶中,搅拌下升温至60℃,分别滴加0.005g/mL的MBA溶液1mL和0.05g/mL的KPS溶液2mL。
搅拌20分钟,滴加相应颜色的染料溶液数滴。
聚(丙烯酸-丙烯酰胺)高吸水树脂的制备及性能研究
中图 分类 号 : O6 3 1
文献标 识 码 : A
文章 编号 : 1 【 ) ( j 1 9 7 3 1 ( 2 0 1 3 ) 0 2 0 1 5 7 0 4
1 引 言
高吸水 树脂 是经 交联 剂适 度 交联 的具 有 三维 网络 结 构 的新 型 功 能 高 分 子 材 料 , 通 常又称 为“ 保水 剂” 、
刘 玉贵 等 : 聚( 丙烯酸 丙烯酰胺) 高 吸 水 树 脂 的 制 备 及 性 能 研 究
聚( 丙 烯 酸一 丙 烯 酰胺 ) 高 吸水 树 脂 的 制 备及 性 能 研 究
刘玉贵 , 张 瑾 , 朱 忠其 , 刘 强, 柳 清 菊
( 云南 大学 云南 省 高校 纳米 材料 与技 术重 点实 验 室 , 云南 昆明 6 5 0 0 9 1 )
“ 高吸 水 性 聚 合 物 ( s u p e r a b s o r b e n t p o l y me r , 简 称 S AP ) ” 、 “ 超强 吸水 剂 ” 等 ] 。 由于 高 吸水 性 树 脂 含 有
强 亲水 性基 团 , 如羧基 、 酰胺基 、 酯基l 2 等, 可 通过 水 合 作 用迅 速地 吸 收 自重 几 十倍乃 至 上千倍 的水 分或 数 十
m 1 — — Ⅲ r 、
倍 的 盐 溶 液 而呈 凝 胶 状 , 且 具 有 良好 的保 水 性 能 , 因 此, 广 泛 用 于农 林 园 艺 、 沙漠 治理、 医疗 卫 生 、 土 木 建
筑、 食 品加 工 、 石 油化 工 等领域 ] 。 本 文针 对丙 烯 酸 系 高 吸水 树 脂 耐 盐性 差 的 特 点 ,
四 口烧 瓶 中 , 加 入 一 定 量 的 环 己 烷 和 适 量 的 分 散 剂
高吸水性树脂的制备与应用研究
高吸水性树脂的制备与应用研究论文关键词:高吸水树脂;吸水机理;结构论文摘要:本文介绍了淀粉类、纤维素类、共聚合类、复合类以及可生物降解类高吸水性树脂及其发展、结构以及吸水理论,并对目前的研究现状进行了分析。
高吸水性树脂是一种新型功能高分子材料,由于它能吸收自身质量几百至上千倍的水,且吸水膨胀后生成的凝胶具有优良的保水性,因而广泛地应用于农业、林业、园艺等领域。
1 高吸水性树脂的分类高吸水性树脂发展迅速,品种繁多,根据现有的品种及其发展可按以下几个方面进行分类。
1.1 按原料来源主要分类1淀粉系:包括淀粉接枝、羧甲基化淀粉、磷酸酯化淀粉、淀粉黄原酸盐等。
2纤维素系:包括纤维素接枝、羧甲基化纤维素、羟丙基化纤维素、黄原酸化纤维素等。
3合成树脂系:包括聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、无机聚合物类等。
1.2 按亲水基团的种类分类①阴离子系:羧酸类、磺酸类、磷酸类等;②阳离子系:叔胺类、季胺类等;③两性离子系:羧酸-季胺类、磺酸-叔胺类等;④非离子系:羟基类、酰胺基类等;⑤多种亲水基团系:羟基-羧酸类、羟基-羧酸基-酰胺基类、磺酸基-羧酸基类等。
1.3 按制品形态可分四类:粉末状;纤维状;膜状;圆颗粒状。
2 高吸水性树脂的发展2.1国外发展上世纪50年代前,人们使用的吸水材料主要是天然产物和无机物,如多糖类、纤维素、硅胶、氧化钙及磷酸等。
50年代,科学家通过大量的实验研究,建立了高分子吸水理论,称为Flory吸水理论,为吸水性高分子材料的发展奠定了理论基础。
高吸水性树脂是20世纪60年代末发展起来的,最早在1961年由美国农业部北方研究所Russell等[1]从淀粉接枝丙烯腈开始研究,其目的是在农业和园艺中作为植物生长和运输时的水凝胶,保持周围土壤的水份;其后Fanta等接着进行研究,于1966年首先发表了关于淀粉改性的物质具有优越的吸水能力的论文,指出淀粉衍生物具有优越的吸水能力,吸水后形成的膨润凝胶体保水性很强,即使加压也不与水分离,甚至具有吸湿保湿性,这些特性都超过了以往的高分子材料。
耐盐抗压高吸水性树脂的制备及其应用
耐盐抗压高吸水性树脂的制备及其应用摘要:本文研究制备了一种具有耐盐抗压高吸水性的树脂,并探讨了其应用。
制备过程中采用了反相乳液聚合的方法,引入了丙烯酸和丙烯酰胺等单体,并添加了交联剂,使得树脂具有了优异的耐盐性、抗压性和高吸水性能。
同时,在农业领域,树脂可用于提高土壤水分利用率,改善盐渍土的质量,减轻植物对盐渍土的敏感性,从而提高农作物的产量和质量。
关键词:耐盐抗压高吸水性、树脂、反相乳液聚合、交联剂、农业1. 引言水是生命的基础,而土地是农业生产的基础。
但是,全球气候变化、人口增长和环境污染等因素导致了水资源短缺和土壤盐渍化等问题,给农业生产和生态环境带来了巨大的挑战。
因此,开发一种具有耐盐抗压高吸水性的树脂,可以提高土壤水分利用率,改善盐渍土的质量,减轻植物对盐渍土的敏感性,从而提高农作物的产量和质量,对于解决上述问题具有重要的意义。
2. 实验方法2.1 材料十二烷基苯磺酸钠(SDS)、双氧水(H2O2)、一硫代二甲醇(MT)、甲基丙烯酰胺(MAM)、乙酸丙烯酯(AA)、交联剂等。
2.2 反相乳液聚合法制备树脂以MT和SDS为复配乳化剂,将MT和SDS按照一定比例溶解在去离子水中,得到复配乳化剂溶液。
将MT和SDS复配乳化剂溶液倒入四口瓶中,在其中加入盐类水解液、H2O2、AA、MAM等单体,并通过喷淋的方式加入交联剂。
在磁力搅拌器上加热,使体系温度达到80°C,同时加入过氧化氢,即可引发乳液聚合反应。
随着反应的进行,可以观察到乳液逐渐变浓,到达90°C时停止反应,得到未固化树脂。
2.3 固化树脂将未固化的树脂在60°C下进行烘烤,直至样品表面完全干燥,然后继续在140°C下进行固化处理,约30min后即可取出固化树脂。
3. 结果及分析通过实验发现,制备的树脂具有优异的耐盐性、抗压性和高吸水性能。
在水浸泡10min,然后放置24h后,样品吸水率达到了1500%左右,表现出很好的吸水性能。
丙烯酸系高吸水性树脂的中试试验研究
丙烯酸系高吸水性树脂的中试试验研究丙烯酸系高吸水性树脂是一种在吸水性能方面具有优异表现的树脂材料,广泛应用于医疗、卫生用品、农业、建筑材料等领域。
为了更好地了解丙烯酸系高吸水性树脂的性能特点,我们进行了中试试验研究,以期对其性能进行深入了解和优化。
一、试验设计1. 材料准备选取优质的丙烯酸系高吸水性树脂作为研究对象,同时准备好其制备所需的原料和辅助材料,如丙烯酸、丙烯酸酯、交联剂、促进剂等。
2. 实验步骤(1) 原料配比:根据丙烯酸系高吸水性树脂的特性和要求,合理确定原料的配比比例,包括丙烯酸、丙烯酸酯、交联剂、促进剂等。
(2) 反应制备:将配好比例的原料按照一定的工艺流程进行反应制备,确保反应条件的控制和反应过程的稳定。
(3) 产品检测:对制备好的丙烯酸系高吸水性树脂产品进行物性测试、吸水性能测试、耐压性能测试等。
(4) 试验结果分析:根据试验结果对丙烯酸系高吸水性树脂的性能特点进行分析,比较不同配方和工艺条件下的产品性能差异。
二、试验结果1. 产品物性测试通过对制备的丙烯酸系高吸水性树脂产品进行物性测试,发现其外观呈现为白色微球状颗粒,具有良好的均匀性和稳定性;产品质地柔软,手感舒适;拉伸强度和断裂伸长率较高,具有良好的物理力学性能。
2. 吸水性能测试在吸水性能测试中,我们根据实际需求设计了不同的吸水速度和吸水量条件,对丙烯酸系高吸水性树脂产品进行了吸水性能测试。
结果显示,在不同的吸水条件下,丙烯酸系高吸水性树脂产品都表现出良好的吸水性能,吸水速度快,吸水量大,且能够迅速锁定水分,保持吸水性能稳定持久。
耐压性能测试是对丙烯酸系高吸水性树脂产品的使用性能进行考察的重要环节。
通过对丙烯酸系高吸水性树脂产品进行耐压性能测试,结果显示产品具有较高的耐压性能,能够在一定的压力下保持稳定的吸水性能,不易发生细碎与溢出现象。
三、试验分析通过对试验结果的分析与总结,我们可以得出以下结论:1. 丙烯酸系高吸水性树脂产品具有良好的物性测试结果,具有良好的外观和物理力学性能,适用于各种实际应用场景。
我国高吸水性树脂的制备及性能研究进展
专论与综述我国高吸水性树脂的制备及性能研究进展杨晓玲(青岛化工学院化工系,山东青岛 266042) 摘 要:介绍了我国近20年来高吸水性树脂的研究情况。
关键词:高吸水性树脂;超强吸水树脂;接枝共聚物;吸水剂 中图分类号:T Q325 文献标识码:A 文章编号:1003-0840(2001)01-0016-04 近年来,一种新型的高分子材料以其优异的吸水性能和广阔的应用领域越来越受到人们的重视,并发展成为一个专门的科学领域,它就是高吸水性树脂,亦称超强吸水剂。
1 我国高吸水性树脂的制备研究 我国于80年代初开始进行高吸水性树脂的研究。
1982年中科院化学所的黄美玉等人[1]在国内最先合成出以二氧化硅为载体的聚- -巯丙基硅氧烷为引发剂,吸水能力为400倍的聚丙烯酸钠类高吸水性树脂,之后有关高吸水性树脂的专利和文献报道逐渐增多,在80年代后期已有20多个单位进行了开发工作,并有少数单位已进行生产。
90年代末我国已将其应用列为重大科技推广项目在农业方面应用。
如吉林省将其用于移植苗木,新疆、河南和甘肃等省用其改良土壤。
但由于目前高吸水性树脂的价格较高,至今收效甚微。
1.1 淀粉-丙烯腈接枝共聚 以淀粉-丙烯腈接枝共聚制备高吸水性树脂的单位有[2]:兰州大学、南开大学、上海大学、黑龙江科学院石化所、太原工业大学、湖北省化学研究所、海南师范学院、中科院长春应用化学所、宁夏计量研究所、中科院成都有机化学研究所、青岛化工学院[3]等。
制备实例[4]:将50g玉米淀粉与850m L蒸馏水调匀,加入三口烧瓶中,然后加入3g37%甲醛,水浴加热,搅拌成糊,冷却至室温,依次加入76g丙烯腈,14g硝酸铈铵溶液(1.25g硝酸铈铵用12.75 g1mo l・L-1硝酸溶解制得),搅拌均匀,用50%NaOH调至pH为7,通入氮气,在氮气保护下,至室温搅拌2h,加入200m L蒸馏水,水浴加热至82℃,保温搅拌20min,驱尽过量丙烯腈,加入100g 50%NaOH,升温至80~90℃,保温搅拌皂化2h,至出现淡黄色为止,用冰乙酸调pH至7,迅速加2000m L无水甲醇,搅拌下纯化,蒸出过量甲醇,冷却至室温,抽滤,于60℃真空干燥,制得的吸水树脂吸蒸馏水量为1650g・g-1,吸人工尿为130g・g-1。
高吸水树脂的制备及其性质研究
高吸水树脂的制备及其性质研究高吸水树脂,也叫超级吸水树脂,是一种高分子材料,能够吸收数倍于自身重量的水或其他液体。
它具有良好的吸水性、保水性、离子交换性和吸附性等特点,因而被广泛应用于卫生、农业、环保、化工等领域。
本文将介绍高吸水树脂的制备、特性及其在实际应用中的优缺点。
一、高吸水树脂的制备高吸水树脂的制备方法较多,主要包括自由基聚合法、原位聚合法、悬浮聚合法等。
以下将分别介绍这三种方法的原理及特点。
1、自由基聚合法自由基聚合法是目前应用最广泛的高吸水树脂制备方法之一。
该方法是利用双烯丙基醚、丙烯酸钠、2-丙烯酰胺等单体和N,N'-亚甲基双丙烯酰胺(MBA)等交联剂在反应器中,在引发剂的作用下发生自由基聚合反应,形成高分子网状结构。
自由基聚合法的优点是操作简单、工艺成熟、产量高,且制备出的高吸水树脂具有较为均匀和稳定的孔隙结构、较高的吸水性能和化学稳定性。
但缺点也明显,由于聚合反应过程中存在多种副反应,如交联度不均、水解、分解等,导致产品品质不稳定,耐久性差,且合成出的高吸水树脂多为非无毒或半无毒的产物。
2、原位聚合法原位聚合法是在水溶液中通过加入不同的单体,即可得到高吸水树脂的制备方法。
该方法的关键在于加入丙烯酸及其衍生物、丙烯酰胺及其衍生物等水溶性单体,并反应后形成高分子材料的过程。
与自由基聚合法不同,原位聚合法需要在低温下进行反应,以控制高分子的交联度,并加入交联剂促进交联反应的进行。
原位聚合法的优点在于制备出的高吸水树脂结构较为优化,分子间的相互作用增强,吸水性能更好,且水分子运动更加自由,有利于离子交换反应的进行。
缺点是需要对反应温度、反应物和交联剂等进行较为严格的控制,否则会产生聚合不完全、交联不均和晶体生成等副作用。
3、悬浮聚合法悬浮聚合法是一种新型的高吸水树脂制备方法,主要通过将单体和交联剂等散布在水中,形成悬浮液,并在引发剂的作用下进行自由基聚合反应。
与自由基聚合法相比,悬浮聚合法的优点在于制备工艺简单、成本低、产能高,且吸水性能和耐久性都得到了很大的改进。
高吸水树脂的制备——高化实验报告
本实验是用部分中和的丙烯酸合成高吸水树脂,以前曾查阅过高吸油树脂的相关文 献,感觉二者的吸水(油)机理相似,然而水性基团由于其特有的电离特性,使得吸水树 脂的机理多了一个新的角度,也比吸油树脂增加了很多可以调控的实验因子。 本实验的操作比较简单,然而我们在实验中也犯了一些小错误,如本组的某位同学, 在投料完成、准备加热聚合前,没有将料搅匀,因而2h后聚合体系分相——只有下部的进 行了聚合,而上部的反应物未能充分接触,没有进行聚合。我在试验中也有一个小错误, 即在洗涤盛装吸水树脂的大烧杯时,用手洗的,虽然最后我用去离子水冲了三次,但肯定 不如用刷子洗更好,最后可能对实验结果造成了一定影响,因为同是交联剂0.05g,其他三 个同学的吸水倍率都在300左右,而我还不到200,这究竟是中和度不同带来的必然差异, 还是由于烧杯壁上的离子未洗干净所致,单凭这一组实验是无法得知的。这使我明白了一 个道理,实验者,尤其是实验初学者,一定不能求快,而且大脑一定要保持清醒,否则在 实验中出了小差错,就可能导致整个实验的失败,或者实验现象的无法解释。
4
高分子化学实验报告
4. 吸水平衡后,树脂不透过纱布滴水即可称重。 5. 盛吸水树脂的烧杯,不能用手洗,否则会沾上电解质和有机杂质,影响吸水效果。 七、 小组数据分析
下表是我们小组的实验数据: 交联剂用量 0.01g 交联剂用量 0.05g 中和度 吸水倍率 中和度 吸水倍率 25% 187 25% 370 50% 512 50% 359 75% 31.7 75% 182 90% 29 90% 313
分别固定交联剂用量为 0.01g 和 0.05g,作出吸水倍率随中和度的变化曲线:
交联剂用量为0.01g
600 500
吸水倍率
400 300 200
高吸水性树脂的制备、性能测试及其应用研究.
高吸水性树脂用做水晶泥的研究刘力、罗威摘要:以环己烷为连续相,Span-60为悬浮稳定剂,过硫酸铵为引发剂,N,N’-亚甲基双丙烯胺为交联剂,对反相悬浮聚合制备聚丙烯酸钠高吸水性树脂进行研究。
结果表明,影响合成树脂吸水率的主要因素是交联剂质量分数,当交联剂质量分数为0.015%时,合成树脂的吸水率出现极大值,而且当反应温度控制在75℃,引发剂质量分数为18%时所得树脂的吸水率可达500g/g。
对合成树脂吸水、保水性能的进一步测试发现,树脂的初始阶段吸水速率较快,随着吸水时间的延长逐步下降,当树脂吸水饱和后水分损失很慢,在120℃下100min仅损失17.2%。
关键词:高吸水性树脂,聚丙烯酸钠,Span-60,吐温-40,交联剂,分散剂,引发剂。
一、背景介绍高吸水性树脂( super absorbent polymer, SAP),自上世纪70年代开发成功以来,已经得到了深入的研究和广泛的应用。
在美国等发达国家,高吸水性树脂的历史已有近40年,而在我国,它仅有10余年的发展史,对国内市场来说是一种新产品,虽然国内有许多单位已研究开发出产品并建立了生产装置,但是国产超强吸水剂产品尚未形成规模生产,其原因是由于生产技术落后而导致产品生产成本较高,产品性能没有及时改进而且产品的应用研究较少。
高吸水性树脂是一种轻度交联结构的高分子, 其分子链上具有很多亲水基团,如羟基、羧基、酰胺基、磺酸基等, 故吸水能力很强, 能吸收自身重量的几百倍甚至几千倍的水, 并且加压不淌出。
由于高吸水性树脂与常见的吸水性材料如纸, 布等相比, 具有很多优点, 是一种新型的功能性高分子材料, 因而它被广泛应用于工业、农林业、医疗卫生和日常生活中。
高吸水性聚丙烯酸钠含有- COONa 基团, 其亲水性要比含-OH、- COOH、- CONH2等亲水基团的高分子要强, 其吸水性能优良, 且是高安全性化合物,并具有一定的生物降解性。
因此,高吸水性树脂的研究与应用就显得十分重要。
新型高吸水树脂的制备及性能研究
论文题目:新型高吸水树脂的制备及性能研究专业:材料学硕士生:郭红梅(签名)指导教师:蔡会武(签名)摘要高吸水性树脂是一类新型的功能性高分子材料。
由于独特的吸水、保水性能,高吸水树脂在医药卫生、农林园艺、荒漠治理等方面获得了广泛的应用。
吸水倍率、耐盐性、吸水速率及凝胶强度是衡量高吸水性树脂性能的几项重要指标。
研究具有吸水倍率高、耐盐性能好、吸水速率快及凝胶强度高的高吸水性树脂已经成为该领域的主要研究方向。
本课题根据自由基接枝聚合原理,利用淀粉与部分中和的丙烯酸接枝共聚制备高吸水树脂。
通过单因素法系统的讨论了原料中淀粉与丙烯酸的配比、丙烯酸的中和度、引发剂的用量、交联剂的用量及反应温度等基本反应条件对产品吸水倍率及吸盐水倍率的影响,确定了最佳合成工艺条件。
同时,为了提高产品耐盐性、保水能力及吸水速率等性能,在产品聚合初期添加粘土,使粘土与淀粉-丙烯酸共聚。
选择了高岭土为研究对象,并对高岭土复合的淀粉-丙烯酸高吸水树脂与淀粉接枝丙烯酸高吸水树脂的吸水倍率、吸盐水倍率、吸水速率、保水能力、表面形态结构、热稳定性等性能进行了对比研究。
采用水溶液法制备出淀粉接枝丙烯酸高吸水树脂,优化的最佳工艺条件为:淀粉和∶,丙烯酸的中和度为80%,交联剂N,N’-亚甲基双丙烯酰单体丙烯酸的摩尔比为1585胺质量分数为单体总量的0.13%,引发剂过硫酸铵质量分数为单体的0.45%,聚合反应温度为65℃。
产品性能测试结果:吸水倍率545g/g;吸盐水的倍率85 g/g;吸水速率即吸水树脂吸水达到饱和所需时间为120min;在承压重量达200g时,它的保水能力为40%。
利用上述的优化工艺条件,选择三种粘土(硅藻土、活性白土、高岭土)分别与淀粉-丙烯酸共聚,测试三种产品的耐盐性和吸水速率等性能,结果表明高岭土复合的产品性能最佳。
选择高岭土为研究对象,制备高岭土复合淀粉接枝丙烯酸高吸水树脂,并研究高岭土的添加量对产品性能的影响。
当高岭土含量为10%时,产品性能最佳,测得该产品吸盐水倍率可达110g/g;吸水速率在60分钟达到饱和;承压重量200g时产品的保水能力为50%,比淀粉接枝丙烯酸高吸水树脂在耐盐性、吸水速率及保水能力上都有较大提高。
高吸水性树脂的合成与性能研究
高吸水性树脂的合成与性能研究摘要:高吸水性树脂是一类具有出色吸水性能的材料,正在广泛应用于许多领域,如卫生用品、农业、环境保护等。
本文旨在探讨高吸水性树脂的合成方法、性能及其在各个领域中的应用。
引言:随着科技的进步和人们对环境保护意识的提高,对高吸水性树脂这类具有独特性能的材料的需求不断增加。
高吸水性树脂能够吸收和保持大量的水分,具有较高的保水能力和稳定的化学性质。
因此,研究高吸水性树脂的合成方法和性能不仅对于材料科学的发展具有重要意义,也在实际应用中具有广泛的前景。
一、高吸水性树脂的合成方法高吸水性树脂的合成方法主要分为物理交联法和化学交联法两种方式。
1. 物理交联法物理交联法是通过聚合物间的相互作用力实现高吸水性树脂的制备。
其中,主要方法有自组装法、热交联法和辐射交联法等。
自组装法是将聚合物在适当的条件下,通过自身的分子间作用力形成交联结构的方法。
热交联法是通过热处理使聚合物颗粒之间产生交联结构的方法。
而辐射交联法则是通过辐射照射聚合物体系来形成交联结构。
2. 化学交联法化学交联法是通过在聚合物分子中引入交联剂进行交联反应来制备高吸水性树脂。
常用的交联剂有环氧化合物、异氰酸酯、有机过氧化物等。
化学交联法制备的高吸水性树脂具有较高的交联度和保水性能,但交联反应的控制较为复杂,合成条件较为苛刻。
二、高吸水性树脂的性能1. 吸水性能高吸水性树脂的主要性能之一是其出色的吸水性能。
当高吸水性树脂接触水分时,吸水性能会受到许多因素的影响,如温度、pH值、离子浓度等。
研究表明,高吸水性树脂的吸水性能与其交联度、孔隙率以及聚合物链的结构等有关。
2. 保水性能高吸水性树脂的保水性能是指其在吸收水分后能够保持水分,并不容易释放出来。
保水性能的好坏对于许多应用领域来说非常重要,如农业中的土壤保水、卫生用品中的液体吸收等。
许多研究表明,高吸水性树脂的保水性能与其交联度、孔隙率及分子链的结构有关。
3. 生物相容性高吸水性树脂在医学领域应用中的生物相容性是一个重要的考虑因素。
关于高吸水性树脂的研究与应用
关于高吸水性树脂的研究与应用摘要:高吸水性树脂广泛地应用于各个行业领域,在经济建设中起着举足轻重的作用。
本文主要介绍了高吸水性树脂的研究方向和研究领域,以及高吸水性树脂在各个行业的应用与作用,并展望了高吸水性树脂的未来发展方向。
关键词:高吸水高分子树脂研究高吸水性树脂(SAP)是一种新型功能高分子材料。
它是具有亲水基团、能大量吸收水分而溶胀又能保持住水分不外流的合成树脂,一般可以吸收相当于树脂体积100倍以上的水分,最高的吸水率可达1000%以上。
SAP的优良特性决定了它具有广阔的应用前景,一般在医用材料、工业、建筑行业、轻工业、食品以及日用品等方面应用比较广泛。
一、高吸水性树脂的研究方向高吸水性树脂的研究主要是从吸水率、吸水速度、凝胶强度三个方面进行研究。
通过改进树脂粒子的形状,增大比表面积,可以提高其吸水率。
离子型的高吸水性树脂,如聚丙烯酸盐,由于同离子屏蔽效应造成其耐盐性差,通过于非离子型单体共聚,可以提高其耐盐性。
复合吸水材料是改进吸水性树脂凝胶强度的新方法。
为了提高吸水性树脂的吸水性能,广大科研工作者已经做了大量工作,不断优化和改进已有的合成体系,同时还在努力探索新的聚合方法和聚合体系。
高性能化、复合化和低成本的农用高吸水性树脂是未来研究的发展方向。
我国的研究起步较晚,尚未形成规模生产能力,因此未来在研究和应用高吸水性树脂主要加强以下几个方面的工作:1.加强其制备方法的研究:它的综合性能的改善取决于多种因素,但制备方法的研究非常重要。
反应原料不同的聚合工艺或采用相同的反应原料而不同的合成手段,其产物的性能有较大差别。
2.加强有机-无机复合研究:复合化是改进树脂吸水性能和强度的新方法。
树脂可易于无机物、有机物复合,制备出性能优良,成本低廉的吸水材料,其兼有多种性能。
3.加强多功能的研究:目前在农业应用中,单一用高吸水性树脂很难发挥作用,需要与各种肥料抗旱剂和微量元素配合使用,以提高土壤的保水抗旱能力和肥力。
高吸水性树脂的制备和应用
高吸水性树脂的制备和应用高吸水性树脂是一种具有极高吸水性能的新型材料。
它具有非常强的水吸附性和保水性能,可以在单体、乳液或粉末形式等多种形式出现。
高吸水性树脂被广泛应用于各种领域,如医疗、农业、环保等等。
本文将介绍高吸水性树脂的制备及其应用。
一、高吸水性树脂的制备高吸水性树脂的制备方法主要有两种,分别是物理交联法和化学交联法。
其中,化学交联法是最常用的方法。
1. 物理交联法物理交联法是将含有吸水性单体的水溶液或水相悬浊液中加入一些交联剂,使得单体间形成物理交联点,从而形成高分子网络结构。
实验中可采用以下方法:(1)冻融法将含有吸水性单体的水溶液或水相悬浊液冷冻至低于0℃,然后加热至30~40℃进行融化,反复进行数次,直到交联点足够稳定。
(2)加盐交联法在吸水性单体水溶液或水相悬浊液中加入一些盐类,使得单体形成物理交联点。
2. 化学交联法化学交联法是将含有吸水性单体的水溶液或水相悬浊液中加入一些交联剂,在高温或室温下反应形成交联点。
实验中可采用以下方法:(1)自由基交联法使用引发剂进行自由基聚合反应,产生交联点。
通常使用双丙烯酰胺作为单体,N,N'-亚甲基双丙烯酰胺或N,N'-亚甲基双丙烯酰胺偶氮联产物作为引发剂。
(2)离子交联法使用离子反应组成交联点,通常使用一些含有羟基的单体,如丙烯酸、甲基丙烯酸和2-羟乙基丙烯酸等。
二、高吸水性树脂的应用1. 医疗用途高吸水性树脂被广泛应用于医疗领域,如医用敷料和尿不湿等。
吸收率高、吸收速度快、保持时间长等特点让它成为医疗敷料中重要的原料。
2. 农业用途高吸水性树脂可以被应用于土壤改良和植物生长促进。
在干旱或缺水期,将高吸水性树脂添加到土壤中可以提高土壤的保水性能,促进植物的生长。
3. 环保用途高吸水性树脂可以用于水处理和土壤污染治理。
它可以吸附有害物质、去除水的污染物和土壤中的重金属等。
高吸水性树脂作为一种新型的材料,在各个领域都有着广泛的应用前景。
高吸水性树脂制备与应用研究报告
高吸水性树脂地制备与应用研究论文关键词:高吸水树脂;吸水机理;结构论文摘要:本文介绍了淀粉类、纤维素类、共聚合类、复合类以及可生物降解类高吸水性树脂及其发展、结构以及吸水理论,并对目前地研究现状进行了分析.高吸水性树脂是一种新型功能高分子材料,由于它能吸收自身质量几百至上千倍地水,且吸水膨胀后生成地凝胶具有优良地保水性,因而广泛地应用于农业、林业、园艺等领域.1 高吸水性树脂地分类高吸水性树脂发展迅速,品种繁多,根据现有地品种及其发展可按以下几个方面进行分类.1.1 按原料来源主要分类1淀粉系:包括淀粉接枝、羧甲基化淀粉、磷酸酯化淀粉、淀粉黄原酸盐等.2纤维素系:包括纤维素接枝、羧甲基化纤维素、羟丙基化纤维素、黄原酸化纤维素等.3合成树脂系:包括聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、无机聚合物类等.1.2 按亲水基团地种类分类①阴离子系:羧酸类、磺酸类、磷酸类等;②阳离子系:叔胺类、季胺类等;③两性离子系:羧酸-季胺类、磺酸-叔胺类等;④非离子系:羟基类、酰胺基类等;⑤多种亲水基团系:羟基-羧酸类、羟基-羧酸基-酰胺基类、磺酸基-羧酸基类等.1.3 按制品形态可分四类:粉末状;纤维状;膜状;圆颗粒状.2 高吸水性树脂地发展2.1国外发展上世纪50年代前,人们使用地吸水材料主要是天然产物和无机物,如多糖类、纤维素、硅胶、氧化钙及磷酸等.50年代,科学家通过大量地实验研究,建立了高分子吸水理论,称为Flory吸水理论,为吸水性高分子材料地发展奠定了理论基础.高吸水性树脂是20世纪60年代末发展起来地,最早在1961年由美国农业部北方研究所Russell等[1]从淀粉接枝丙烯腈开始研究,其目地是在农业和园艺中作为植物生长和运输时地水凝胶,保持周围土壤地水份;其后Fanta等接着进行研究,于1966年首先发表了关于淀粉改性地物质具有优越地吸水能力地论文,指出淀粉衍生物具有优越地吸水能力,吸水后形成地膨润凝胶体保水性很强,即使加压也不与水分离,甚至具有吸湿保湿性,这些特性都超过了以往地高分子材料.首次开发成功后,世界各国对高吸水性树脂在体系、种类、制备方法、性能改进、应用领域等方面进行了大量地研究工作,并取得了一系列地研究成果.1975年美国谷物加工公司成功研究出淀粉接枝丙烯腈高吸水性树脂,但直到1978 年才由日本地三洋化成工业率先进行了商业化生产,将高吸水性树脂用于一次性尿布,于1979年在日本名古屋投产了1000吨/年地生产设备[2],产品远销欧美各国,使其市场潜力和应用研究受到人们地重视.高吸水性树脂地发展也随之进入了一个新地时代.70 年代末美国UCC公司用放射法交联各种氧化烯烃聚合物,合成了非离子型地高吸水性树脂,其吸水能力高达2000倍,从而打开了合成非离子型高吸水性聚合物地大门.80年代出现了以天然化合物及其衍生物为原料(藻酸盐、聚氨基酸、壳聚糖、蛋白质等)制取地高吸水性材料,同时,出现了高吸水性复合材料,由于它能改善吸水性材料地耐盐性、吸水速度、水凝胶地强度等许多性能,所以发展迅速.90年代初,吸水性树脂地研究更是突飞猛进.最新开发了对环境友好地聚氨基酸系高吸水性树脂、可生物降解地复合纤维或无纺布材料、高吸水性树脂泡沫、芳香性卫生用品、室内装饰性凝胶材料等.目前,日本触媒、三洋化成及德国Stockhausen 三大生产集团掌握了全球高吸水树脂70%地市场,他们之间均以技术合作方式,进行着世界性国际联合经营,占居了世界主要技术和市场[3].在过去将近20年中,世界高吸水性树脂地市场需求持续强劲增长,图1是全球高吸水性树脂地生产能力和趋势图,从1986年世界高吸水性树脂产量不足0.5万吨/年,到2001年为125万吨/年[4].目前全球对高吸水性树脂生产和需求几乎是直线上升趋势.在本世纪,随着北美、西欧高吸水性树脂市场逐渐进入成熟期,以及亚太和拉美等新兴市场地快速发展,全球对高吸水性树脂地需求将急剧膨胀,全世界对高吸水性树脂地需求将不断增加.2.2国内发展我国从80年代才开始研制高吸水性树脂,1982 年中科院化学研究所地黄美玉等[5]在国内最先合成出聚丙烯酸钠类高吸水性树脂,80年代后期己有20多个单位、研究所、纺织科学研究院与山东省济宁化肥厂联合研制出聚丙烯酸类地高吸水性树脂,建起国内第一套100吨/年地生产装置.我国高吸水性树脂地消费始于1991年,一些独资或合资企业引进护翼卫生巾生产线,1993年引进尿裤生产线后,消费需求不断增加.1985年北京化工研究院申请了国内第一项吸水性树脂地专利,到2006年底,我国己申请专利200多项,主要集中在合成淀粉接枝丙烯腈皂化水解物、聚丙烯酸盐、聚乙烯醇衍生物等高吸水性树脂.近年来,医用高吸水材料、生物可降解高吸水材料和有机—无机复合材料地研究也日益增多.如淀粉类可生物降解高吸水材料、聚氨基酸类、可生物降解高吸水性树脂、无机—有机复合高吸水性材料、羟乙基纤维素高吸水性材料地合成及性能研究.在应用研究方面,90年代末,我国己将高吸水性树脂在农业领域地应用列为重大科技推广项目.吉林省开展地移植苗木研究,黑龙江省开展地种子培育研究均取得可喜成就,新疆、河南等省也在研究利用吸水性树脂改良土壤,甘肃省中国科学院兰州化学物理研究所、兰州大学、西北师范大学等许多单位也开展了高吸水性树脂研究工作,开发出一系列新型地有机—无机复合材料、可生物降解地高分子材料以及耐盐耐高温等高吸水性树脂,成功应用于西北干旱土壤改良、油田堵水等工作.高吸水性树脂在我国有着巨大地市场潜力,但在工业化及应用研究方面与国外还有很大差距,我国所需地高吸水聚合物大部分仍需要进口.如何加强高吸水性树脂吸水理论地研究,并开发出性能良好而廉价地吸水性树脂,这些都需要我们作进一步地努力.3.高吸水性树脂地结构与吸水机理3.1 高吸水性树脂地结构高吸水性树脂是一种三维网络结构,它不溶于水而大量吸水膨胀,形成高含水凝胶.高吸水性树脂地主要性能是具有吸水性和保水性.要具有这种特性,其分子中必须含有强吸水性基团和一定地网络结构,即具有一定地交联度.实验表明:吸水基团极性越强,含量越多,吸水率越高,保水性也越好. 而交联度需要适中,交联度过低则保水性差,尤其在外界有压力时水很容易脱除[6].高吸水性树脂地微观结构因合成体系地不同而呈现出多样性.大多数高吸水性树脂是由分子链上含有强亲水性基团(如羧基、磺酸基、酞胺基、羟基等)地三维网状结构所组成,如图1所示.吸水时,首先是离子型亲水基团在水分子地作用下开始离解,阴离子固定在高分子链上,阳离子作为可移动离子在树脂内部维持电中性.由于网络具有弹性,因而可容纳大量水分子,当交联密度较大时,树脂分子链地伸展受到制约,导致吸水率下降.随着离解过程地进行,高分子链上地阴离子数增多,离子之间地静电斥力使树脂溶胀,同时,树脂内部地阳离子浓度增大,在聚合物网络内外溶液之间形成离子浓度差,渗透压随之增大,使水进一步进入聚合物内部.当离子浓度差提供地驱动力不能克服聚合物交联构造及分子链间地相互作用(如氢键)所产生地阻力时,吸水达到饱和.图1 高吸水树脂地离子网络结构3.2 高吸水性树脂地吸水机理文献资料报道,高吸水性树脂吸水机理有多种说法,其中有两种占主要地位,金益芬等[7]认为高吸水性树脂吸水有3个原动力:水润湿、毛细管效应和渗透压.高吸水能力主要由这3个方面地因素决定.水润湿是所有物质吸水地必要条件,聚合物对水地亲和力大,必须含有多个亲水基团(如-OH、-COOH等);毛细管效应则是让水容易迅速地扩散到聚合物中;渗透压可以使水通过毛细管扩散、渗透到聚合物内部,或者说,渗透压可以使水连续向稀释聚合物固有电解质浓度地方向发动.刘廷栋等[8]则认为当水与高分子表面接触时主要有3种相互作用:一是水分子与高分子中电负性强地氧原子形成氢键;二是水分子与疏水基团相互作用;三是水分子与亲水基团地相互作用.上述两种理论虽然表述不相同,但二者地理论都是建立在高吸水聚合物地主体网络结构基础之上地,实质是相同地.高吸水性树脂吸水后形成高含水凝胶,属于弹性凝胶.高吸水性树脂地出现促进了凝胶学理论地发展,弹性凝胶地基本规律和特性也适用于高吸水性树脂.在研究吸水性树脂地吸水理论中,最具代表性地就是Flory对凝胶研究过程中提出地热力学理论公式以及Omidian等提出地吸水动力学理论.3.2.1 Flory-Huggins热力学理论Flory[9]深入研究了高分子在水中地膨胀后,从聚合物凝胶内外离子浓度差产生地渗透压出发,导出了高吸水性树脂溶胀平衡时地最大吸水倍数理论公式:(3-1)式中:Q—吸水倍数;Ve/V0—交联密度;(1/2-x1)/V1—对水地亲和力;Vu—单体单元地摩尔体积;i/Vu—固定在树脂上地电荷密度;S—外部溶液地电解质离子强度;式中地分子第一项表示渗透压,第二项表示和水地亲和力,是增加吸水能力地部分;从这个公式可得出:(1)对于离子性高吸水性树脂,由于i/Vu为一个较大值,因此吸水倍数Q较大;而对于非离子性树脂,i/Vu值较小,所以吸水倍数Q较小.(2)分母Ve/V0表示交联密度,因此在相同接枝率地情况下,交联剂用量越少,交联密度越小(要形成有效地三维网络结构),即分母越小,Q值越大,树脂地吸少能力越好.(3 )对于同一树脂,当外部为电解质溶液时,由于树脂结构是确定地,因而可将Vu,V1,i/Vu,Ve/V0视为常数,同时电解质浓度不是很大时,溶剂与树脂地亲合力与纯水时地差别不大,此时溶液离子强度S越大,Q值越小,且Q5/3与S1/2成反比,这就解释了高吸水树脂在盐溶液中其吸液率急剧下降地原因.但处于吸水状态地高吸水性树脂,显示橡胶地弹性行为,其刚性率G与交联密度成正比.G=RT·Ve/V0 (3-2)吸水倍率Q表示交联密度小时,吸水倍率大,但刚性G则反而降低.显然只控制交联密度是不能同时满足既提高吸水能力,又获得高强度凝胶地高吸水性树脂.进一步解释为,达到吸水极限(吸水倍数最高状态时)地树脂,吸水倍数高时其凝胶地弹性就变差.而具有高吸水能力地树脂没有达到吸水饱和状态时,其吸水凝胶具有一定程度地弹性.这种理论指导地意义在于:仅仅注重追求高吸水倍数地树脂,而不照顾吸水后树脂水凝胶地刚性(弹性)是缺乏实用价值地,如果树脂吸水后变成稀汤状,吸水倍数再高也缺乏实用价值.获得具有良好实用价值地树脂既要兼顾尽可能高地吸水倍数,又要保证一定地弹性“成型”性.3.2.2吸水动力学理论Omidia n等[10]认为,高吸水性树脂吸水时,一方面水向吸水性树脂内部扩散;另一方面组成吸水剂地高分子链在水地作用下彼此分离、扩展.吸水速率取决于水向高吸水性树脂内部地扩散速率以及高分子链在水地作用下扩展地速率.他使用聚合物粘弹理论中地V oigt模型来定量解释高吸水性树脂在溶胀过程中吸水速率随时间急剧下降这种想象,得出了吸水倍率与吸水时间地函数关系式:(3-3)式中:(t)—t时刻地吸水倍率;—Voigt模型中地起始应力;E—V oigt模型中弹簧地弹性模量;—吸水过程中高分子自身扩散时受到地阻力;—水渗透时所受到地阻力.该式较准确地描述了树脂吸水时地时间依赖性.文中还分别得出油溶性交联剂和水溶性交联剂地稳态吸水倍率与单体和交联剂地比值之间地幂率关系式:(3-4)(3-5)4. 高吸水性树脂地制备4.1淀粉系高吸水性树脂地制备淀粉系高吸水性树脂是按自由基型或离子型接枝共聚机理进行.淀粉在引发剂存在下或辐射下,使淀粉变成自由基,淀粉自由基与乙烯类单体反应生成淀粉大分子自由基,继而再与乙烯类单体进行链增长、链终止,从而得到淀粉类高吸水性树脂.4.1.1 淀粉接枝丙烯腈类高吸水性树脂淀粉接枝丙烯腈及α-甲基丙烯腈符合接枝共聚基本原理,可用负离子催化剂使淀粉进行离子型接枝共聚,也有自由基型接枝共聚.目前制备吸水性树脂常采用自由基型接枝共聚.淀粉接枝丙烯腈类吸水性树脂由于采用地原料、引发方式、分散介质、反应条件等不同,因而工艺过程有所不同.这里只就一般过程加以说明,其工艺过程如下图2.图2 淀粉接枝丙烯腈类制备高吸水性树脂工艺过程图Hishiki等[11]先用表氯醇和淀粉乳交联,再在硝酸铈铵引发下接枝共聚丙烯腈.所获得地高吸水性树脂在20 ℃下1h可以吸水200 % ,胶体硬度8.0g/ cm3 ,抗酶性85 %.Athawale等[12]研制了玉米淀粉- 甲基丙烯腈接枝共聚凝胶,经硝酸铈铵引发剂处理,在氮气氛保护下,预先凝胶化地淀粉与一定量地甲基丙烯腈接枝共聚,再经氢氧化钠中和、水洗和干燥等,制得淀粉-甲基丙烯腈共聚凝胶,其最大吸水量为250g/ g.郑邦乾等[13]以焦磷酸锰盐为引发剂引发可溶性淀粉与丙烯腈接枝共聚,并通过淀粉-丙烯腈接枝共聚物水解来制备高吸水性树脂.产品吸去离子水倍率达522ml/g,自来水302ml/g,吸合成尿86ml/g.乌兰[14]用硝酸铈铵为引发剂,通过水溶液聚合法制得了玉米淀粉接枝丙烯腈高吸水性树脂,此高吸水性树脂在室温下30min吸蒸馏水和自来水分别为其自身重量地1000倍和200倍.4.1.2 淀粉接枝丙烯酸类高吸水性树脂直接使用丙烯酸、甲基丙烯酸等烯类单体与淀粉进行接枝共聚反应,不需要进行皂化,使工序大大简化(见图3),而且单体丙烯酸、甲基丙烯酸等地毒性比丙烯腈低很多,这可以简化洗涤工序.所以淀粉接枝丙烯酸类来制备吸水性树脂得到了迅速发展.图3 淀粉接枝丙烯酸类制备高吸水性树脂工艺过程图Heidel[15]将淀粉与中和后地丙烯酸、环己烷、脱水山梨糖醇月桂酸单酪、三羟甲基丙烷三丙烯酸酯、过硫酸铵和EDTA 组成悬浮液,经过加热聚合,共沸蒸馏,再和乙二醇二缩水甘油醚交联,得到高吸水性树脂.其吸水和吸合成尿地能力分别为320g/ g 和36g/ g ,5min 吸水倍率为110g/ g 和22g/ g.乐清华等[16]经过工艺改进,取消了淀粉糊化步骤,将未糊化淀粉与丙烯酸共聚,产品性能与糊化淀粉地接枝物相比,抗腐变性和凝胶强度明显提高,且吸水能力仍可达到自重地600~800 倍.项爱民等[17]利用微波合成了淀粉接枝丙烯酸高吸水性树脂,合成地树脂吸水倍率达588g/g,比同样条件下用普通方法合成地树脂吸水率480g/g高.辜英杰等[18]充分利用辐射引发和反相悬浮聚合地优点,用60Coγ射线辐射引发反相悬浮聚合法制备地淀粉/丙烯酸钠高吸水性树脂可吸去离子水约760ml/g,自来水约200ml/g,0.9%地NaCl溶液约55ml/g.经检测发现吸液速率较快,6min内可达吸液饱和,并且在压力下保水性能良好,基本满足农业抗旱保水地需要.4.1.3 淀粉接枝丙烯酰胺类高吸水性树脂淀粉接枝丙烯酰胺得到地产物含有酰胺基和淀粉基,是非离子型产物,直接作为吸水性树脂,耐盐性高,强度高,吸水速率快.其产物可以用氢氧化钠水溶液进行水解,可以得到两种高吸水性树脂.一种完全水解得到含有羟基、羧基地产物,这与淀粉接枝丙烯酸类产品一样,既有离子基团(-COOH),又有非离子基团(-OH),其吸水性很高;另一种部分水解,可得到含羟基、羧基、酰胺基地产物,为具有多种基团地高吸水性树脂.其吸水倍率、吸水速率、耐盐性、强度等可以通过水解情况进行调节,有可能得到性能全面、符合要求地吸水性树脂;丙烯酰胺常温下为固体,易于处理、保存、运输方便.其制备工艺如图4.图4 淀粉接枝丙烯酰胺类制备高吸水性树脂工艺过程图4.1.4 淀粉接枝丙烯酸酯类高吸水性树脂淀粉/丙烯酸酯类接枝共聚制备地超强吸水性树脂地种类很多,但由于丙烯酸酯类单体地价格远比丙烯腈和丙烯酸类高,而且制造过程(见图5)不如接枝丙烯酸简单,所以不如淀粉接枝丙烯腈类和淀粉接枝丙烯酸类那样发展迅速,但从理论方面研究其接枝反应地人很多.图5 淀粉接枝丙烯酸酯类制备吸水性树脂工艺过程图Prafulla等[19]以淀粉、甲基丙烯酸乙酯为原料,通过接枝共聚制备了一种可降解型高吸水性树脂,经过28 天降解约70%.唐宏科等[20]通过化学引发法来制备淀粉接枝丙烯酸羟乙酯高吸水性树脂.最佳实验条件下,该树脂吸去离子水倍率为560g/g,吸0.9%NaCl率为62g/g.4.2 纤维素系高吸水性树脂地制备纤维素与淀粉相同,原料来源广,能与大量低分子反应,但天然纤维素地吸水能力不强,为了提高其性能,主要通过化学反应使其具有更强或者更多地亲水基团,但仍要保持其纤维状态,以保持其表面积大和多毛吸管性.Yoshimura等[21]以棉花纤维素和琥珀酸酐为原料制备高吸水性树脂,吸水率为400g/g,降解性较好,自然条件下25天可基本完全降解.Christian等[22]采用柠檬酸作交联剂,羟甲基纤维素钠和羟乙基纤维素发生交联反应来制备高吸水性树脂.其吸水率为900g/g.采用该方法来制备吸水性树脂,既可以降低成本,又可以避免产生有毒地中间体.王丹等[23]通过向羟甲基纤维素分子上接枝丙烯酸、丙烯酰胺和甲基丙烯酰氧乙基三甲基氯化铵来制备高吸水性树脂,该树脂具有阴离子、阳离子和非离子等多种亲水基团,通过调节各组分含量及反应条件使分子中各亲水基团发挥协同效应,提高树脂地耐盐性,该两性高吸水性树脂吸去离子水1503g/g.吸生理盐水165g/g.4.3 合成系吸水性树脂地制备合成系高吸水性树脂指完全采用合成地分子结构形成地树脂.按种类,常用地亲水性单体有丙烯酸、丙烯酰胺等具有活性双键地物质,也有采用聚乙二醇、聚乙烯醇等亲水性高分子进行接枝共聚.合成系高分子可以根据性能需要,比较方便地调整结构,实现吸水性能.4.3.1 聚丙烯酸类吸水性树脂地制备Choudhary[24]采用反相悬浮聚合法来制备聚丙烯酸类吸水性树脂,其中丙烯酸用氢氧化钠溶液中和,然后向其中加入水溶性引发剂过硫酸钾,交联剂N,N′-亚甲基双丙烯酰胺,在氮气氛围下溶解,得到待聚合液.将环己烷与正庚烷按1:1加入到反应器中来作有机连续相,然后向其通氮气除去氧气,搅拌升温到55℃,然后将待聚合液逐渐加入到反应器中,在80℃反应2h.最后聚合物用甲醇进行洗涤,在50℃真空烘箱中干燥3-4h.该吸水性树脂地吸水倍率为220g/g.陈军武等[25]采用反相悬浮聚合法来制备聚丙烯酸钠高吸水性树脂.60min时高吸水性树脂对去离子水地吸收能力为850g/g,对人工尿为63g/g.无论去离子水或人工尿,吸水树脂均能在50min达到吸收平衡.林松柏等[26]采用聚丙烯酸与高岭土杂化来制备高吸水性树脂,实验结果表明,高岭土地复合可显著提高材料地吸水率可达980ml/g,对生理盐水溶液地吸水率达95ml/g.高岭土地加入,有助于提高吸水性树脂吸水后形成凝胶地强度.4.3.2 聚乙烯醇类吸水性树脂地制备王孝华等[27]用顺丁烯二酸酐作交联剂来制备聚乙烯醇类高吸水性树脂.最佳制备条件为:顺丁烯二酸酐/聚乙烯醇=0.3,反应温度98-105℃,聚乙烯醇聚合度为1700,溶液地PH值为10左右,最佳条件下制备出来地聚乙烯醇高吸水性树脂地吸水倍率为250倍左右.4.3.3共聚物吸水性树脂地制备Mohan等[28]分别采用N,N′-亚甲基双丙烯酰胺(MBA)、1,2-乙二醇二甲基丙烯酸酯(EGDMA)、邻苯二甲酸二烯丙酯(DP)三种交联剂在水溶液中对甲基丙烯酸钙和丙烯酰胺进行自由基聚合来制备高吸水性树脂.DP交联地吸水树脂因在凝胶过程中形成了弹性网络结构,所以其吸水能力要优于其他两种. Abd El-Mohdy等[29]采用60Co-γ辐射来制备κC-g-PAAm,然后再碱性水解得到H-κC-g-PAAm高吸水性水凝胶.在最佳水解条件下(NaOH浓度为3mol/L,水解时间为60min,温度为80℃),最大吸水倍率为704g/g.实验表明H-κC-g-PAAm可以从盐水中吸收大量地淡水.Tang等[30]采用两步聚合法来制备高吸水性树脂,首先丙烯酰胺发生聚合,然后苯胺被吸进聚丙烯酰胺网络中,单体间发生聚合.5.高吸水性树脂地应用高吸水性树脂作为一种有机新型功能高分子材料,其应用领域已经涉及多个行业,例如卫生用品、医药用品、农业等领域,正逐渐成为国民经济和人们日常生活中不可缺少地功能材料.5.1 卫生用品高吸水性树脂在生理卫生用品方面地应用是比较成熟地一个领域,也是目前最大地市场, 约占总量地80 %.如婴儿襁褓、纸尿布、失禁片、妇女卫生巾、卫生棉、止血栓、生理棉、汗毛巾等产品中都可以应用高吸水性树脂.高吸水性树脂部分代替纸浆生产妇女卫生巾和婴儿纸尿布,己受到高度评价,另外,如手术垫、手术手套、手术衣、手术棉、贴身衬衫、内裤、鞋垫等一些生理用品中也广泛用到高吸水性树脂.以前地研究主要集中在其性能地改善,目前地研究重点主要集中在卫生材料地轻薄型、较高地接触干燥性、最低地漏出率,对皮肤无刺激,具有抗菌、杀菌作用及长时间地吸水能力和长时间使用不折皱地效果等方面.尹国强等[31,32]采用反相悬浮聚合法合成了具有杀菌性能地高吸水性树脂,能对金黄色葡萄球菌、大肠杆菌和白色念珠菌等微生物菌株均有杀灭和抑制其生长地作用,树脂中季铵基团地含量越高,树脂地抗菌效果越好,大大提高了卫生保障.5.2 农林园艺及荒漠化治理方面地应用高吸水性树脂不但吸水性、保水性极为优良,而且其在土壤中形成团粒结构,使土壤白天和晚上地温差缩小,同时还能吸收肥料、农药,防止肥料、农药以及水土流失,并使肥料、农药、水缓慢释放,增强肥料、农药效果,以及大大增强了抗旱效果.目前,高吸水性树脂在农艺园林方面地应用还非常有限,主要原因是它地成本较高而且在土壤中地吸水能力不够,反复使用性较差.高吸水性树脂在这方面地应用还具有较大地潜力,今后应重点开发高吸水、保水并能反复使用而且成本较低地高吸水性树脂.并应进一步加强利用高吸水性树脂改良干旱贫瘠土壤,特别是改造沙漠方面地研究[33].5.3 生物医药高吸水性树脂在生物体中地适应性已经有不少地学者进行过这方面地研究,结果表明某些合成和半合成地高吸水性物质,具有一定地生物适应性[34,35].利用高吸水性材料具有极强地吸水性和保水性地特性,可制成和生物体含水量相近地各种组织材料,而且医药吸水性材料吸水后形成地凝胶比较柔软,具有人体适应性,如对人体无刺激性、无副反应、不发生炎症、不引起血液凝固等,这些都为其在医药上地应用创造了条件.近年来,高吸水性树脂已被广泛应用于医药医疗地各个方面:超强吸水性材料可用于制备能吸收手术及外伤出血和分泌液,并可防止化脓地医用绷带、棉球和纱布等;用于接触眼镜、人体埋入材料、保温保冷材料等医疗用品地生产和制造中;用于制造人工玻璃体、人工角膜、人工皮肤、人工血管、人工肝脏、人工肾脏等人工器官;用于保持部分被测液地医用检验试片;用于制备含水量大、使用舒适地外用软膏:另外,高吸水性树脂还在缓释药物基材等制造中得到应用,能通过调节含水率改变药剂地释放速度,避免随时间推移,释放速度逐渐降低.5.4 污水处理对于富含重金属离子地工业废水,目前已有多种方法进行处理,如化学沉淀法、离子交换树脂法、吸附法、高分子重金属捕集剂法等.利用吸附材料处理重金属离子废水是目前应用非常广泛地一种方法[36].吸附材料包括天然物质或工农业废弃物,如沸石、木质素、海草粘土等[37],其来源广泛,价格低廉,大大降低了重金属离子废水地处理费用;另一类是合成类高吸水性树脂,主要有聚丙烯酸盐[38,39]、丙烯酰胺[40]其改性产物等,能与多种金属离子鳌合、吸附或发生离子交换作用,作为吸附剂可有效去除工业废水中有毒重金属离子,回收贵金属离子和过渡金属离子.6. 展望高吸水性树脂具有众多地用途和广泛地应用领域,随着人们生活水平地提高和石油资源日益。
高吸水性树脂的制备工艺及应用探究
LOW CARBON WORLD2020/10综合论述高吸水性树脂的制备工艺及应用探究张必勇(邦丽达(福建)新材料股份有限公司,福建泉州362000)【摘要】高吸水性树脂因其吸水性大而受到广泛的追捧遥在许多领域,特别是在林业、卫生、医疗等行业,高吸水性树脂发挥着重要作用遥本文主要介绍了国內外几种高吸水树脂的制备方法及其在各个领域的应用和价值,研究了反应条件对聚丙烯酸高吸水树脂性能的影响,确定了最佳制备工艺条件遥【关键词】高吸水性树脂;树脂;制备工艺;应用程序【中图分类号】TQ324.8【文献标识码】A【文章编号12095-2066(2020)10-0203-02自美国首次制备高吸水性树脂后,各国学者对其进行了研究。
到目前为止,这种材料的性能有了很大的突破和发展。
高吸水性树脂作为一种良好的吸水保水材料,在不污染环境、无毒无害的情况下得到广泛应用。
此外,高吸水性树脂材料还广泛应用于农林、建材等领域。
虽然在我国应用非常广泛,但我国对这种材料的研究与国外相比还比较落后,而且由于技术复杂等问题,批量生产还很困难,目前国外对这种材料的需求还是比较高的。
因此,研究高吸水性树脂材料的特性和制备方法就显得尤为重要。
本文研究了反应条件对聚丙烯酸高吸水树脂性能的影响,确定了最佳制备工艺条件。
1高吸水树脂的吸水机理高吸水性树脂是一种由三维空间网络组成的聚合物,其中的吸水性能主要包含以下两个方面:物理吸附和化学吸附。
相对于大多数的各类高吸水性树脂而言,从相关的化学结构来进行分析,其中的主链或接枝侧链上都含有相对较强的亲水基,如羧基、羟基等。
这些亲水性基团与水的亲和力是其进行主动吸水的关键内在;在其相对的物理结构当中,如果想达到较高的吸水率,应当形成一个交联度较低的不同的三维网络。
其中的网络主干可以是一定的天然聚合物,如淀粉、纤维素,也可以是合成树脂;从微观结构来看,吸水树脂的微观结构也因合成体系的不同而呈现出多样性。
当聚合物与水进行一定的接触时,亲水基团会分解成一定的离子,网络结构也会因此发生一定的扩展。
高吸水性树脂制备、性能测试及其应用研究
高吸水性树脂用做水晶泥的研究刘力、罗威摘要:以环己烷为连续相,Span-60为悬浮稳定剂,过硫酸铵为引发剂,N,N’-亚甲基双丙烯胺为交联剂,对反相悬浮聚合制备聚丙烯酸钠高吸水性树脂进行研究。
结果表明,影响合成树脂吸水率的主要因素是交联剂质量分数,当交联剂质量分数为0.015%时,合成树脂的吸水率出现极大值,而且当反应温度控制在75℃,引发剂质量分数为18%时所得树脂的吸水率可达500g/g。
对合成树脂吸水、保水性能的进一步测试发现,树脂的初始阶段吸水速率较快,随着吸水时间的延长逐步下降,当树脂吸水饱和后水分损失很慢,在120℃下100min仅损失17.2%。
关键词:高吸水性树脂,聚丙烯酸钠,Span-60,吐温-40,交联剂,分散剂,引发剂。
一、背景介绍高吸水性树脂( super absorbent polymer, SAP),自上世纪70年代开发成功以来,已经得到了深入的研究和广泛的应用。
在美国等发达国家,高吸水性树脂的历史已有近40年,而在我国,它仅有10余年的发展史,对国内市场来说是一种新产品,虽然国内有许多单位已研究开发出产品并建立了生产装置,但是国产超强吸水剂产品尚未形成规模生产,其原因是由于生产技术落后而导致产品生产成本较高,产品性能没有及时改进而且产品的应用研究较少。
高吸水性树脂是一种轻度交联结构的高分子, 其分子链上具有很多亲水基团,如羟基、羧基、酰胺基、磺酸基等, 故吸水能力很强, 能吸收自身重量的几百倍甚至几千倍的水, 并且加压不淌出。
由于高吸水性树脂与常见的吸水性材料如纸, 布等相比, 具有很多优点, 是一种新型的功能性高分子材料, 因而它被广泛应用于工业、农林业、医疗卫生和日常生活中。
高吸水性聚丙烯酸钠含有- COONa 基团, 其亲水性要比含-OH、- COOH、- CONH2等亲水基团的高分子要强, 其吸水性能优良, 且是高安全性化合物,并具有一定的生物降解性。
因此,高吸水性树脂的研究与应用就显得十分重要。
新型耐盐性高吸水性树脂的制备及性能研究2
第35卷第8期2007年8月化 工 新 型 材 料N EW CH EMICAL MA TERIAL S Vol 135No 18・13・作者简介:刘保健(1967-),男,博士生,讲师,从事天然产物改性的研究。
新型耐盐性高吸水性树脂的制备及性能研究刘保健 李仲谨(陕西科技大学化学与化工学院,西安710021)摘 要 采用水溶液聚合法,以黄原胶(XG )为原料与丙烯酸(AA )接枝共聚制备了耐盐性高吸水性树脂,利用红外光谱对产物结构进行了表征,考查了合成条件对所制得树脂吸水性能的影响。
结果表明XG 与AA 发生了接枝聚合反应,在聚合温度为60℃,m (AA )/m (XG )=6,AA 中和度为70%,引发剂和交联剂与AA 单体质量比分别为0107和0104时,所得树脂吸纯水倍率为1216g/g ,吸盐水倍率为421g/g ,且吸水速率适中,保水性能良好,是一种新型耐盐性高吸水性树脂。
关键词 黄原胶,丙烯酸,高吸水性树脂,耐盐性Study on synthesis and performance of the novel salt 2tolerantsuperabsorbent resinLiu Baojian Li Zhongjin(College of Chemistry and Chemical Engineering ,Shanxi University of Science &Technology ,Xi ’an 710021)Abstract The superabsorbent polymer with good salt 2tolerance was synthesized with acrylic acid grafted on xan 2than gum through solution polymerization.The structure of this product was analysed by IR .The effects of factors such as neutralization ,amount of graft monomer ,initiator and cross 2linking agent and temperature on the swelling ratio of the su 2perabsorbent polymer were discussed.FT 2IR indicated that acrylic acid was grafted on xanthan gum.The optimum reactionconditions were determined as follows :reaction temperature 60℃,m (AA )/m (xanthan gum )=6and neutralization 70%,dosage of initiator 0107and cross 2linking agent 0104(based on mass of acrylic acid ).The results showed that the absorbent ability of this resin was 1216g/g for pure water and 421g/g for NaCl solution.The speed of water absorption was moderate and water 2retention ability were good ,it is a new water 2absorbent with good salt tolerance.K ey w ords xanthan gum ,acrylic acid ,superabsorbent polymer ,salttolerahce 可生物降解、环境友好型高吸水性树脂在实际应用中普遍存在着耐盐性差等问题,当水中含盐时,其吸水率降到原来的2%~10%,限制了其应用。
高吸水树脂实验报告
1. 了解高吸水树脂的制备方法及原理。
2. 掌握高吸水树脂的性能测试方法。
3. 分析高吸水树脂在不同溶液中的吸水性能。
二、实验原理高吸水树脂(Super Absorbent Polymer,SAP)是一种具有三维网状结构的高分子物质,主要由不饱和烯类单体(如丙烯酸、丙烯酰胺等)作为原材料,通过添加交联剂和引发剂经聚合反应合成。
SAP 分子链上带有大量亲水性基因,如-OH、-COOH、-CONH2、-SO3H等,使其具有极强的吸水性和保水性。
本实验通过制备高吸水树脂,测试其吸液率、吸水速率和保水性能,以评估其应用价值。
三、实验材料与仪器1. 实验材料:- 不饱和烯类单体(如丙烯酸、丙烯酰胺等)- 交联剂- 引发剂- 离子水- 氯化钠溶液- 烧杯- 托盘天平- 离子交换树脂- 滤纸- 质构仪2. 实验仪器:- 实验室常用仪器(如烧杯、玻璃棒、滴管等)- 质构仪1. 制备高吸水树脂:(1)称取一定量的不饱和烯类单体,加入适量交联剂和引发剂;(2)将混合物加入烧杯中,搅拌溶解;(3)在恒温条件下进行聚合反应,得到高吸水树脂;(4)将高吸水树脂进行干燥处理,得到干燥的高吸水树脂。
2. 吸液率测试:(1)称取0.6克干燥的高吸水树脂;(2)将树脂加入烧杯中,加入2000毫升离子水;(3)等待1小时后,用滤纸过滤多余的离子水;(4)称取过滤后的树脂,计算吸液率。
3. 吸水速率测试:(1)称取4.3克干燥的高吸水树脂;(2)将树脂加入烧杯中,加入1000毫升氯化钠溶液;(3)记录开始吸水时间,每30分钟记录一次树脂的吸水质量;(4)计算吸水速率。
4. 保水性能测试:(1)称取2.3克干燥的高吸水树脂;(2)将树脂加入烧杯中,加入4000毫升氯化钠溶液;(3)等待半小时后,用滤纸过滤多余的氯化钠溶液;(4)称取过滤后的树脂,计算保水性能。
5. 凝胶强度测试:(1)将干燥的高吸水树脂加入质构仪的样品夹具中;(2)设置质构仪的参数,进行凝胶强度测试;(3)记录测试结果。
《论文_高吸水性树脂的制备 与应用研究(定稿)》道
高吸水性树脂的制备与应用研究论文关键词:高吸水树脂;吸水机理;结构论文摘要:本文介绍了淀粉类、纤维素类、共聚合类、复合类以及可生物降解类高吸水性树脂及其发展、结构以及吸水理论并对目前的研究现状进行了分析。
高吸水性树脂是一种新型功能高分子材料,由于它能吸收自身质量几百至上千倍的水且吸水膨胀后生成的凝胶具有优良的保水性因而广泛地应用于农业、林业、园艺等领域。
1 高吸水性树脂的分类高吸水性树脂发展迅速,品种繁多,根据现有的品种及其发展可按以下几个方面进行分类。
1.1 按原料来源主要分类1 淀粉系:包括淀粉接枝、羧甲基化淀粉、磷酸酯化淀粉、淀粉黄原酸盐等。
2 纤维素系:包括纤维素接枝、羧甲基化纤维素、羟丙基化纤维素、黄原酸化纤维素等。
3 合成树脂系:包括聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、无机聚合物类取?.2 按亲水基团的种类分类①阴离子系:羧酸类、磺酸类、磷酸类等;②阳离子系:叔胺类、季胺类等;③两性离子系:羧酸-季胺类、磺酸-叔胺类等;④非离子系:羟基类、酰胺基类等;⑤多种亲水基团系:羟基-羧酸类、羟基-羧酸基-酰胺基类、磺酸基-羧酸基类等。
1.3 按制品形态可分四类:粉末状;纤维状;膜状;圆颗粒状。
2 高吸水性树脂的发展2.1 国外发展上世纪50 年代前,人们使用的吸水材料主要是天然产物和无机物,如多糖类、纤维素、硅胶、氧化钙及磷酸等。
50 年代,科学家通过大量的实验研究,建立了高分子吸水理论,称为Flory 吸水理论,为吸水性高分子材料的发展奠定了理论基础。
高吸水性树脂是20 世纪60 年代末发展起来的,最早在1961 年由美国农业部北方研究所Russell 等1从淀粉接枝丙烯腈开始研究,其目的是在农业和园艺中作为植物生长和运输时的水凝胶,保持周围土壤的水份;其后Fanta 等接着进行研究,于1966 年首先发表了关于淀粉改性的物质具有优越的吸水能力的论文,指出淀粉衍生物具有优越的吸水能力,吸水后形成的膨润凝胶体保水性很强,即使加压也不与水分离,甚至具有吸湿保湿性,这些特性都超过了以往的高分子材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高吸水性树脂用做水晶泥的研究高吸水性树脂用做水晶泥的研究刘力、罗威摘要:以环己烷为连续相,Span-60为悬浮稳定剂,过硫酸铵为引发剂,N,N'-亚甲基双丙烯胺为交联剂,对反相悬浮聚合制备聚丙烯酸钠高吸水性树脂进行研究。
结果表明,影响合成树脂吸水率的主要因素是交联剂质量分数,当交联剂质量分数为0.015%时,合成树脂的吸水率出现极大值,而且当反应温度控制在75℃,引发剂质量分数为18%时所得树脂的吸水率可达500g/g。
对合成树脂吸水、保水性能的进一步测试发现,树脂的初始阶段吸水速率较快,随着吸水时间的延长逐步下降,当树脂吸水饱和后水分损失很慢,在120℃下100min仅损失17.2%。
关键词:高吸水性树脂,聚丙烯酸钠,Span-60,吐温-40,交联剂,分散剂,引发剂。
一、背景介绍高吸水性树脂( super absorbent polymer, SAP),自上世纪70年代开发成功以来,已经得到了深入的研究和广泛的应用。
在美国等发达国家,高吸水性树脂的历史已有近40年,而在我国,它仅有10余年的发展史,对国内市场来说是一种新产品,虽然国内有许多单位已研究开发出产品并建立了生产装置,但是国产超强吸水剂产品尚未形成规模生产,其原因是由于生产技术落后而导致产品生产成本较高,产品性能没有及时改进而且产品的应用研究较少。
高吸水性树脂是一种轻度交联结构的高分子, 其分子链上具有很多亲水基团,如羟基、羧基、酰胺基、磺酸基等, 故吸水能力很强, 能吸收自身重量的几百倍甚至几千倍的水, 并且加压不淌出。
由于高吸水性树脂与常见的1高吸水性树脂用做水晶泥的研究吸水性材料如纸, 布等相比, 具有很多优点, 是一种新型的功能性高分子材料, 因而它被广泛应用于工业、农林业、医疗卫生和日常生活中。
高吸水性聚丙烯酸钠含有- COONa 基团, 其亲水性要比含-OH、- COOH、- CONH 2等亲水基团的高分子要强, 其吸水性能优良, 且是高安全性化合物,并具有一定的生物降解性。
因此,高吸水性树脂的研究与应用就显得十分重要。
本文主要综述作者经过实验室研究改进的聚丙烯酸钠高吸水性树脂的制备方法,并通过实验对其吸水性能进行测定, 对其吸水机理以及其功能与应用方面进行试探性研究。
二、实验意义高吸水性树脂在当今各个领域发挥着它不可替代的作用,我们在实验室中以丙烯酸和丙烯酸铵作为单体,以过硫酸钾为引发剂,以N-N'亚甲基双丙烯酰胺作为交联剂制备高吸水性树脂,对其性能进行了测试,并考虑各种影响因素,对制备方案进行了改进,使产品吸水率、凝胶强度和吸水速度、抗盐性等性能得到提高,以利于其产物的美观和实用性。
同时我们将产物应用于不同的领域,结果发现其功能很好。
我们实验的目的就是要将产物的性能达到最优化,同时,能将其吸水的特性广泛而普遍的应用于各个领域。
三、高吸水性树脂的制备(一)、主要原材料及仪器、用品:丙烯酸(化学纯)、氢氧化钠(化学纯)、过硫酸铵(分析纯)、N,N'-亚甲基双丙烯酰胺(分析纯)、Span-60(化学纯,成分为单硬脂酸脱水山梨醇酯)、吐温40(化学纯,成分为聚氧乙烯山梨酸醇酐酯)、碳酸钙、环己2高吸水性树脂用做水晶泥的研究烷、无水氯化钙(化学纯)、甲基橙、甲基蓝、品红等指示剂。
铁架台(带铁夹、铁圈)两个、三口烧瓶一个、100度温度计一支、不同大小烧杯若干、石棉网一个、玻璃棒一支、搅拌器一台、回流冷凝装置一套、250mL容量瓶一个、分析天平一台、托盘天平一台、专用药匙若干、恒温烘箱一台。
PH试纸、配色用颜料若干种。
(二)、实验原理:丙烯酸类吸水剂是以丙烯酸为原料,通过聚合的方法制造吸水性材料的,而聚丙烯酸盐就是其中一种,制造聚丙烯酸类吸水剂所用的原料有单体、交联剂、引发剂以及碱等。
在本实验中,我们所用的单体为丙烯酸(CH=CH-COOH),引发剂为过硫酸铵(NHSO),交联剂为N,N'-亚8422甲基双丙烯酰胺,碱为氢氧化钠,其制造原理为自由基连锁聚合反应,反应原理为:它是利用在丙烯酸盐聚合时进行剧烈反应,就可得到不溶性聚合物。
其网络结构示意式如下:3高吸水性树脂用做水晶泥的研究其主链上的—COOH、—COONa基团是影响树脂吸水性的主要基团,交联剂则在形成网络密度方面起重要作用。
如交联剂使用得当,即能形成合适的高分子网络和网络密度,从而达到一定的吸水性能,交联剂分子链的长短、反应基团的活性及所含亲水基团的数目,都对树脂的吸水性能产生较大的影响。
(三)、制备方法和步骤:1、在装有搅拌器、回流冷凝管、温度计的四口烧瓶中加入一定量环己烷和Span-60,搅拌下加热到45℃,使Span-60充分溶解。
2、在一个洁净烧杯中加入一定量的丙烯酸, 然后缓慢滴加浓度为30%的氢氧化钠溶液, 使其中和度为60%—90%。
并向该烧杯中加入去离子水将单体(即丙烯酸钠)浓度稀释至30%—60%, 冷却至室温后加入交联剂N, N'- 亚甲基双丙烯酰胺和过硫酸铵。
3、在连续通入氮气保护氛围下,向反映器中加入以上溶液, 加热至反应温度,即75℃,使反应持续进行。
4、反应结束, 得到粘稠凝胶体, 将其真空干燥后粉碎,并进行性能测定和研究。
本实验中,我们想到用连续的惰性气体——氮气作为保护气体,能使反4高吸水性树脂用做水晶泥的研究应器中的氧气等排出,并使其中的反应物充分接触和反应,以改变产物的结构和性能,提高产物的交联程度,从而提高其性能。
(四)、产品性状:产品聚丙烯酸钠为无色、无味、透明状粉末,吸水后体积明显膨胀呈透明的弹性水凝胶状。
四、产品性能测试(一)、对去离子水的吸液率:吸水率是吸水剂(树脂) 的关键指标。
吸水率是指1g树脂在一定温度、时间下所吸收离子水的量,可按如下公式计算:称取1g树脂置于1000mL烧杯中,加入1000 mL 去离子水,静置1h 后用100目尼龙布袋滤去多余的去离子水,量出滤液体积,然后按以上公式求树脂Q 。
的吸液率表1 树脂的吸水率测试数据记录表4 2 3 实验组数 19.0 6.0 PH值 5.0 7.00.8795 1.8732 ))产物干重,(m/(g 1.4651 2.0125 149.5 116.6 110.2 99.4 )()m吸水后质量,(/g 255286685Q/%吸水倍率,61255376观察以上数据,我们可以发现,我们的产品的吸水倍率最多只有六十多倍,性能还有待改进,而且我们发现,PH值控制在6—7范围内时产品的吸5高吸水性树脂用做水晶泥的研究水倍率最高。
(二)、树脂的保水率:称取一定量充分吸水的树脂凝胶,放入恒温烘箱中,在120度下恒温干燥,测定不同时间树脂凝胶的质量,保水率可按如下公式计算:实验称取2.6125g干燥产品,充分吸水后质量为m=150.2g。
2表2 树脂的保水性测试数据表100min 80min 90min 50min 20min 时间 30min 40min 70min94.6 96.8 质量m 108.2 98.6 106.4 104.4 101.2 91.2 182.8%89.5%85.8%保水率91.8%87.8%98.2%94.7%96.6%100.00%80.00%率60.00%水40.00%保20.00%0.00%200406080100120时间(分钟)图1 120摄氏度下树脂的保水率变化曲线由表2数据和上图可知,聚丙烯酸钠高吸水性树脂的保水性能较好,即使在120℃下干燥100分钟后其保水率仍达82.8%。
实验中我们还观察到,随着温度的升高,其保水率呈下降趋势。
可见合成树脂的保水性能很好;而在较低温度下,保水能力更强。
因此,合成树脂的保水性能较好。
(三)、树脂的吸水速率:下图是第3组树脂吸去离子水的速率曲线。
在30分钟内的吸水率达到6高吸水性树脂用做水晶泥的研究极大值,然后逐渐达到平衡值。
树脂的吸水速率与其表而形态关系很大,通过实验和观察,我们发现,粒细的产物吸水率较快。
图2 第3组产品的吸水速率曲线(四)、树脂的耐盐性能:将一定质量充分吸收去离子水的凝胶置于100目尼龙布袋中, 将尼龙袋置于0.9%NaCl水溶液中,每隔一定时间称取尼龙袋中凝胶质量。
按如下公式计算失水率:失水率=(最初凝胶质量- 凝胶质量)/ 最初凝胶质量×100 %图3 树脂的耐盐性能曲线由图3可知, 有极少量盐存在, 树脂会在10 min 内失去80 %左右的水,所以树脂的耐盐性能较差。
我们还可以看出,高吸水性树脂在0.9%NaCl溶液中的吸液率比在去离子水中的小得多,大体上是后者的1/10,故而中和度、7高吸水性树脂用做水晶泥的研究丙烯酸浓度以及引发剂用量等因素对树脂在0.9%NaCl水溶液中吸夜率的影响趋势大致与去离子水的情况相同,与其他高吸水性树脂对0.9%NaCl水溶液的吸液率相比,本方案合成的树脂具有较高的吸液率。
从上图中还可发现,吸去离子水倍率最高的树脂,其0.9%NaCl 水溶液的倍率并非最大,故其影响因素比较复杂。
五、实验的影响因素探索(一)、交联剂用量对树脂吸水率的影响:交联密度决定了立体网络的分子链间网格空间的大小, 直接影响树脂的吸水能力, 而交联密度的大小取决于交联剂的用量。
由图4可知, 交联剂最佳用量为0.3%,此时吸水率最大。
这是因为树脂是三维立体网络结构。
当交联剂用量太少时, 聚合物未能形成网络结构, 宏观上表现为水溶性。
随着交联剂用量的增加, 分子链网络逐步形成, 故吸水率逐渐上升。
到能完全形成三维网络结构时, 吸水率达到最大值。
随着交联剂用量的进一步增加, 聚合物网络结构中的交联点增多, 交联点之间的网链变短, 网络结构中微孔变小,故吸水率逐渐下降。
表3 交联剂用量对应树脂的吸水率数据0.50 0.45 0.35 0.25 % 交联剂用量0.2 0.30 0.40100%吸水率1501802201901301108高吸水性树脂用做水晶泥的研究图4 交联剂用量对树脂吸水率的影响(二)、引发剂用量对树脂吸水率的影响:引发剂用量会影响到反应速率、转化率和分子量的大小, 所以选择适当的引发剂用量十分重要。
表4 交联剂用量对应树脂的吸水率数据0.50 0.45 0.40 0.30 交联剂用量 0.2 0.25 0.35吸水率(倍) 125 120 130 150 170 165 160图5 引发剂用量对树脂吸水率的影响由图5可知, 引发剂最佳用量为0.42%左右, 此时吸水率最大。
这是因为引发剂用量较小时, 反应活性中心少, 反应速率慢, 甚至不反应, 导致转化率及交联度均低, 故吸水率也低。
而且由于引发剂少, 引发反应困难, 诱导期相对较长, 造成反应积累到一定程度突然快速反应, 产生爆聚。