STM32F103C8T6手册

合集下载

stm32f103c8t6的数据手册

stm32f103c8t6的数据手册

《STM32F103C8T6的数据手册》一、概述STM32F103C8T6是ST公司生产的32位ARM Cortex-M3内核的微控制器,具有丰富的外设接口和强大的性能,广泛应用于工业控制、自动化设备、消费类电子产品等领域。

本文旨在对STM32F103C8T6的数据手册进行全面的介绍,帮助读者更好地理解和应用这款微控制器。

二、概览1. 器件简介STM32F103C8T6是一款高性能、低功耗的微控制器,拥有72MHz 工作频率,64KB Flash存储器和20KB RAM。

其丰富的外设接口包括多个通用定时器、串行通信接口、模拟-数字转换器等,适用于各种复杂的应用场景。

2. 功能特性STM32F103C8T6的主要功能特性包括:- ARM Cortex-M3内核- 64KB Flash存储器、20KB RAM- 丰富的外设接口:通用定时器、串行通信接口、模拟-数字转换器等- 低功耗模式:多种低功耗模式可选,满足不同需求3. 应用领域STM32F103C8T6广泛应用于工业控制、自动化设备、消费类电子产品等领域,如工业控制器、电源管理系统、医疗设备等。

三、详细规格1. 通用定时器STM32F103C8T6内置了多个通用定时器,可用于生成精准的定时脉冲,计数器和PWM输出等功能。

2. 串行通信接口该微控制器支持多种串行通信接口,包括SPI、I2C和USART,可用于与外部设备进行高速数据传输。

3. 模拟-数字转换器STM32F103C8T6配备了多个模拟-数字转换器,可实现精确的模拟信号采集和处理。

4. 中断控制器中断控制器可实现对各种外部事件的响应,提高系统的实时性和稳定性。

5. 时钟控制时钟控制模块支持多种时钟源和分频设置,可满足不同应用场景的时序要求。

6. 低功耗模式STM32F103C8T6支持多种低功耗模式,包括待机模式、休眠模式和停止模式,有效降低系统功耗,延长电池寿命。

7. 引脚定义STM32F103C8T6具有多种引脚,可供用户定义为输入/输出口,用于连接外部设备和传感器。

stm32f103c8t6中文手册

stm32f103c8t6中文手册

stm32f103c8t6中文手册STM32F103系列微处理器,STM32F103器件* * STM32F103 * * Cortex-M3内核,CPU速度为72 MHz,最大闪存为1 MB。

包括电机控制外设和USB全速接口。

STM32系列臂式Cortex-M3 32位闪存微控制器具有低功耗,低电压,出色的性能和实时功能。

包类型系列适用于您的嵌入式应用程序。

MCU体系结构具有易于使用的STM32平台,适用于包括电机驱动,PC和游戏,HVAC以及工业应用在内的应用。

32位RISC引脚对引脚软件兼容的SRAM 高达96 KB 闪存高达1MB电源:2 V至3.6 V温度范围:-40至+ 85°C或-40至+ 105°C?stm32f1系列32位臂?皮质?-M3微控制器,意法半导体的STM32闪存微控制器。

STM32系列是基于ARM cortex Gamma M3的核心突破-嵌入式应用程序特殊开发的核心。

STM32系列受益于对Cortex-M3体系结构的增强,其中包括thumb-2指令集,该指令集提供了更高的性能,更好的编码密度,更快的中断响应以及所有领先的工业功耗。

出色的实时性能,出色的效率和新的外围设备,最大限度地提高了串行引脚,外围设备和软件兼容性之间的集成Stm32f103c8t6是中密度性能线,配备了Arm Cortex-M3 32位微控制器和48通道LQFP 封装。

它结合了高性能RISC内核,72MHz的工作频率,高速嵌入式存储器,增强的I / O范围以及与两条APB总线的外部连接。

Stm32f103c8t6具有12位ADC,计时器,PWM计时器,标准和高级通信接口。

全面的省电模式使设计人员能够设计低功耗应用。

工作电压范围:2V至3.6v.64k字节闪存。

20K字节SRAM.CRC 计算单元,96位唯一ID。

两个12位,1μs ADC(最多10个通道)。

7通道DMA控制器,3个通用定时器和1个高级控制定时器。

stm32f030c8t6手册

stm32f030c8t6手册

STM32F030C8T6概述基于手臂?32位ARM STM32 Cortex-M MCU?皮质?-M处理器为MCU用户带来更多自由。

保持了产品的32位,完全集成,低功耗和低功耗功能。

这些不同的STM32器件具有无与伦比的性能,建立在行业标准的核心之上,并提供多种工具和软件供您选择。

该系列产品是小型项目和整个平台的理想选择。

Stm32f03系列微处理器和stm32f0系列微控制器基于STM Microelectronics公司的Arm Cortex-M0手臂,包括入门级手臂皮质。

M0手臂?M0 32位RISC内核。

Stm32f030提供高速嵌入式存储器以及各种增强型外设和I / O,具有I2C,SPI和USART通信接口,以及12位ADC,16位定时器和高级控制PWM定时器。

意法半导体的stm32f0 MCU高级架构与STM32平台相结合,可以实现低功耗应用设计并提供不同的封装类型。

手臂皮质?-M0核心处理器与所有带嵌入式闪存和SRAM的ARM 工具和软件兼容。

Stm32f030 ARM处理器微控制器(MCU)适用于各种应用程序,包括应用程序控制和用户界面,手持设备,A / V接收器,PC外设,游戏平台,消费类电器,打印机,警报系统和HVAC。

频率:48MHz CPU闪存:最高64 kbSRAM:最大8 KB电源:2.4至3.6 V温度范围:-40至+ 85°CSTM32F0系列32位ARM?皮质?-M0微控制器,意法半导体stm32f0系列32位闪存微控制器(MCU)是否基于ARM皮质?-M0内核,专为嵌入式应用程序而设计。

STM32手臂皮质?意法半导体的M处理器受益于Cortex-M0体系结构的增强,包括数字信号处理,实时性能,低电压和低功耗。

主流系列的圣臂?STM32 F0提供32位性能,特别是具有易于使用的功能的小型项目或平台决策。

STM32F103C8T6 Blue pill Arduino 应用指南

STM32F103C8T6 Blue pill Arduino 应用指南

STM32F103C8T6 Blue pill Arduino应用指南对于初学者,它可能很难使用基于STM32F103C8T6的流行和便宜的Blue pill板。

这是因为使用像KEIL这样的嵌入式开发工具对初学者来说并不容易。

这种基于ARM Cortex-M3架构的32位微控制器远优于传统的arduino板。

你可以把它比作阿杜伊诺到期,但它有一个非常小的大小,像阿杜伊诺纳米。

缺乏适当的文件,互联网上的所有内容都相当分散。

所以,这里有一些让你轻松入门的东西。

步骤:1.首先从此媒体this mediafire link下载所有资源。

从zip文件中提取数据的密码是:techshopbd。

2.打开资源STM32蓝皮文件夹。

将Arduino_STM32复制到草图簿文件夹/硬件。

转到arduino IDes>,您将找到草图簿文件夹的位置。

如果没有硬件文件夹,请创建一个名为"硬件"(所有小写字母)的文件夹。

你的arduino IDE现在已经准备好吃Blue pill了。

3.查看下一页的引脚图。

usb端口旁边有2个黄色跳线。

它们是引导选项。

将引导0引脚连接到3V3,将引导1引脚连接到GND,在启动电源或按下重置按钮时以SPI 模式启动主板。

4.现在将FTDI板(FT232RL)连接到Blue pill。

您可以使用任何这个或这个或这个。

将FTDI TX连接到Blue pill RX1(PA10)和FTDI RX到Blue pill TX1(PA9)。

5.连接GND。

如果您的FTDI电源引脚为5V,请将其连接到蓝色丸板的5v引脚。

如果是3.3伏,请连接到标记为3.3的引脚。

将5v连接到任何3.3v Blue pill板引脚将永久损坏它。

6.使用USB端口将FTDI主板连接到您的PC。

您必须将FTDI驱动程序安装到PC才能使用FTDI板。

你会发现足够的资源在互联网上。

菲,是阿杜伊诺ꞏ纳诺的司机7.关闭arduino IDE,如果它是开放的。

stm32f103c8t6 tf卡简单的读写函数

stm32f103c8t6 tf卡简单的读写函数

stm32f103c8t6 tf卡简单的读写函数STM32F103C8T6是一款常用的微控制器,它内部集成了SDIO接口,可以方便地与TF卡进行数据读写。

在本文中,我将介绍一些简单的读写函数,以帮助您在STM32F103C8T6上使用TF卡。

下面是相关内容:一、TF卡介绍TF卡(T-Flash卡)是一种袖珍型存储卡,广泛应用于移动设备中。

它的体积小、价格低廉,并且容量可扩展。

在STM32F103C8T6上使用TF卡,可以实现大量数据存储,方便后续的读写操作。

二、初始化函数在使用TF卡之前,我们需要进行初始化操作。

以下是一个简单的TF卡初始化函数示例:```c#include "stm32f10x.h"void TF_Card_Init(){// 初始化SPI接口RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);SPI_InitTypeDef SPI_InitStructure;SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;SPI_InitStructure.SPI_Mode = SPI_Mode_Master;SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;// 更多SPI参数配置,如速率、时钟极性等// ...SPI_Init(SPI1, &SPI_InitStructure);SPI_Cmd(SPI1, ENABLE);// 等待TF卡初始化完成while(TF_Card_SendCommand(CMD0, 0) != 0x01);}```该函数使用了STM32F10x库,通过SPI1接口与TF卡进行通信。

在实际使用中,您需要根据TF卡的具体规格进行参数的设置和修改。

三、读取函数TF卡的读取操作可以通过发送命令和读取数据实现。

stm32f103c8t6中文手册

stm32f103c8t6中文手册

STM32F103系列微处理器,STM微电子设备**STM32F103**Cortex-M3内核,CPU速度为72MHz,最大闪存为1MB。

包括电机控制外设和USB全速接口。

STM32系列arm型Cortex-M3 32位闪存微控制器具有功耗低、电压低、性能优良、实时性好等特点。

这一系列的包类型可以在您的嵌入式应用程序中使用。

MCU架构具有易于使用的STM32平台,适用于电机驱动、PC和游戏、HVAC和工业应用等应用。

32位RISC针对针软件兼容SRAM高达96 KB闪存高达1MB电源:2 V至3.6 V温度范围:-40至+85°C或-40至+105°C stm32f1系列32位arm?皮质?-m3微控制器,STMicroelectronics(STMicroelectronics)基于arm cortex的32位闪存微控制器STM32系列™M3核心突破了嵌入式应用的特殊开发核心。

STM32系列得益于Cortex-M3体系结构的增强,包括Thumb-2指令集,它可以传递更高的性能、更好的编码密度、更快的中断响应以及所有领先的工业功耗。

卓越的实时性能、卓越的效率和全新的外围设备可以最大限度地实现系列管脚之间的集成、外围设备和软件的兼容性Stm32f103c8t6是一款中密度性能线,配备Arm Cortex-M3 32位微控制器,48路LQFP 封装。

它结合了一个高性能的RISC核心,72MHz工作频率,高速嵌入式存储器,增强的I/O范围和外部连接两个APB总线。

Stm32f103c8t6具有12位模数转换器、定时器、PWM定时器、标准和高级通信接口。

综合省电模式允许设计师设计低功耗应用. 工作电压范围:2V到3.6v。

64k字节的闪存。

20K字节SRAM.CRC计算单元,96位唯一ID。

两个12位1μs ADC(最多10个通道)。

7通道DMA控制器,3个通用定时器和1个高级控制定时器。

STM32F103C8T6中文资料_引脚图_最小系统

STM32F103C8T6中文资料_引脚图_最小系统

Contents STM32F103x8,STM32F103xB Contents1Introduction (9)2Description (9)2.1Device overview (10)2.2Full compatibility throughout the family (13)2.3Overview (14)2.3.1ARM®Cortex™-M3core with embedded Flash and SRAM (14)2.3.2Embedded Flash memory (14)2.3.3CRC(cyclic redundancy check)calculation unit (14)2.3.4Embedded SRAM (14)2.3.5Nested vectored interrupt controller(NVIC) (14)2.3.6External interrupt/event controller(EXTI) (15)2.3.7Clocks and startup (15)2.3.8Boot modes (15)2.3.9Power supply schemes (15)2.3.10Power supply supervisor (15)2.3.11Voltage regulator (16)2.3.12Low-power modes (16)2.3.13DMA (17)2.3.14RTC(real-time clock)and backup registers (17)2.3.15Timers and watchdogs (17)2.3.16I²C bus (19)2.3.17Universal synchronous/asynchronous receiver transmitter(USART)..192.3.18Serial peripheral interface(SPI) (19)2.3.19Controller area network(CAN) (19)2.3.20Universal serial bus(USB) (19)2.3.21GPIOs(general-purpose inputs/outputs) (20)2.3.22ADC(analog-to-digital converter) (20)2.3.23T emperature sensor (20)2.3.24Serial wire JTAG debug port(SWJ-DP) (20)3Pinouts and pin description (21)4Memory mapping (34)2/105DocID13587Rev16STM32F103x8,STM32F103xB Contents5Electrical characteristics (35)5.1Parameter conditions (35)5.1.1Minimum and maximum values (35)5.1.2Typical values (35)5.1.3Typical curves (35)5.1.4Loading capacitor (35)5.1.5Pin input voltage (35)5.1.6Power supply scheme (36)5.1.7Current consumption measurement (37)5.2Absolute maximum ratings (37)5.3Operating conditions (38)5.3.1General operating conditions (38)5.3.2Operating conditions at power-up/power-down (39)5.3.3Embedded reset and power control block characteristics (40)5.3.4Embedded reference voltage (41)5.3.5Supply current characteristics (41)5.3.6External clock source characteristics (51)5.3.7Internal clock source characteristics (55)5.3.8PLL characteristics (57)5.3.9Memory characteristics (57)5.3.10EMC characteristics (58)5.3.11Absolute maximum ratings(electrical sensitivity) (60)5.3.12I/O current injection characteristics (61)5.3.13I/O port characteristics (62)5.3.14NRST pin characteristics (68)5.3.15TIM timer characteristics (69)5.3.16Communications interfaces (70)5.3.17CAN(controller area network)interface (75)5.3.1812-bit ADC characteristics (76)5.3.19T emperature sensor characteristics (80)6Package characteristics (81)6.1Package mechanical data (81)6.2Thermal characteristics (93)6.2.1Reference document (93)6.2.2Selecting the product temperature range (94)DocID13587Rev163/105Contents STM32F103x8,STM32F103xB7Ordering information scheme (96)8Revision history (97)4/105DocID13587Rev16STM32F103x8,STM32F103xB List of tables List of tablesT able1.Device summary (1)T able2.STM32F103xx medium-density device features and peripheral counts (10)T able3.STM32F103xx family (13)T able4.Timer feature comparison (17)T able5.Medium-density STM32F103xx pin definitions (28)T able6.Voltage characteristics (37)T able7.Current characteristics (38)T able8.Thermal characteristics (38)T able9.General operating conditions (38)T able10.Operating conditions at power-up/power-down (39)T able11.Embedded reset and power control block characteristics (40)T able12.Embedded internal reference voltage (41)T able13.Maximum current consumption in Run mode,code with data processingrunning from Flash (42)T able14.Maximum current consumption in Run mode,code with data processingrunning from RAM (42)T able15.Maximum current consumption in Sleep mode,code running from Flash or RAM (44)T able16.Typical and maximum current consumptions in Stop and Standby modes (45)T able17.Typical current consumption in Run mode,code with data processingrunning from Flash (48)T able18.Typical current consumption in Sleep mode,code running from Flash orRAM (49)T able19.Peripheral current consumption (50)T able20.High-speed external user clock characteristics (51)T able21.Low-speed external user clock characteristics (51)T able22.HSE4-16MHz oscillator characteristics (53)T able23.LSE oscillator characteristics(f LSE=32.768kHz) (54)T able24.HSI oscillator characteristics (55)T able25.LSI oscillator characteristics (56)T able26.Low-power mode wakeup timings (57)T able27.PLL characteristics (57)T able28.Flash memory characteristics (57)T able29.Flash memory endurance and data retention (58)T able30.EMS characteristics (59)T able31.EMI characteristics (59)T able32.ESD absolute maximum ratings (60)T able33.Electrical sensitivities (60)T able34.I/O current injection susceptibility (61)T able35.I/O static characteristics (62)T able36.Output voltage characteristics (66)T able37.I/O AC characteristics (67)T able38.NRST pin characteristics (68)T able39.TIMx characteristics (69)T able40.I2C characteristics (70)T able41.SCL frequency(f PCLK1=36MHz.,V DD_I2C=3.3V) (71)T able42.SPI characteristics (72)T B startup time (74)T B DC electrical characteristics (75)DocID13587Rev165/105List of tables STM32F103x8,STM32F103xBT B:Full-speed electrical characteristics (75)T able46.ADC characteristics (76)T able47.R AIN max for f ADC=14MHz (77)T able48.ADC accuracy-limited test conditions (77)T able49.ADC accuracy (78)T able50.TS characteristics (80)T able51.VFQFPN366x6mm,0.5mm pitch,package mechanical data (82)T able52.UFQFPN487x7mm,0.5mm pitch,package mechanical data (83)T able53.LFBGA100-10x10mm low profile fine pitch ball grid array packagemechanical data (85)T able54.LQPF100,14x14mm100-pin low-profile quad flat package mechanical data (87)T able55.UFBGA100-ultra fine pitch ball grid array,7x7mm,0.50mm pitch,packagemechanical data (88)T able56.LQFP64,10x10mm,64-pin low-profile quad flat package mechanical data (89)T able57.TFBGA64-8x8active ball array,5x5mm,0.5mm pitch,package mechanical data (90)T able58.LQFP48,7x7mm,48-pin low-profile quad flat package mechanical data (92)T able59.Package thermal characteristics (93)T able60.Ordering information scheme (96)T able61.Document revision history (97)6/105DocID13587Rev16STM32F103x8,STM32F103xB List of figures List of figuresFigure1.STM32F103xx performance line block diagram (11)Figure2.Clock tree (12)Figure3.STM32F103xx performance line LFBGA100ballout (21)Figure4.STM32F103xx performance line LQFP100pinout (22)Figure5.STM32F103xx performance line UFBGA100pinout (23)Figure6.STM32F103xx performance line LQFP64pinout (24)Figure7.STM32F103xx performance line TFBGA64ballout (25)Figure8.STM32F103xx performance line LQFP48pinout (26)Figure9.STM32F103xx performance line UFQFPN48pinout (26)Figure10.STM32F103xx performance line VFQFPN36pinout (27)Figure11.Memory map (34)Figure12.Pin loading conditions (36)Figure13.Pin input voltage (36)Figure14.Power supply scheme (36)Figure15.Current consumption measurement scheme (37)Figure16.Typical current consumption in Run mode versus frequency(at3.6V)-code with data processing running from RAM,peripherals enabled (43)Figure17.Typical current consumption in Run mode versus frequency(at3.6V)-code with data processing running from RAM,peripherals disabled (43)Figure18.Typical current consumption on V BAT with RTC on versus temperature at differentV BAT values (45)Figure19.Typical current consumption in Stop mode with regulator in Run mode versustemperature at V DD=3.3V and3.6V (46)Figure20.Typical current consumption in Stop mode with regulator in Low-power mode versustemperature at V DD=3.3V and3.6V (46)Figure21.Typical current consumption in Standby mode versus temperature atV DD=3.3V and3.6V (47)Figure22.High-speed external clock source AC timing diagram (52)Figure23.Low-speed external clock source AC timing diagram (52)Figure24.Typical application with an8MHz crystal (53)Figure25.Typical application with a32.768kHz crystal (55)Figure26.Standard I/O input characteristics-CMOS port (64)Figure27.Standard I/O input characteristics-TTL port (64)Figure28.5V tolerant I/O input characteristics-CMOS port (65)Figure29.5V tolerant I/O input characteristics-TTL port (65)Figure30.I/O AC characteristics definition (68)Figure31.Recommended NRST pin protection (69)Figure32.I2C bus AC waveforms and measurement circuit (71)Figure33.SPI timing diagram-slave mode and CPHA=0 (73)Figure34.SPI timing diagram-slave mode and CPHA=1(1) (73)Figure35.SPI timing diagram-master mode(1) (74)B timings:definition of data signal rise and fall time (75)Figure37.ADC accuracy characteristics (78)Figure38.Typical connection diagram using the ADC (79)Figure39.Power supply and reference decoupling(V REF+not connected to V DDA) (79)Figure40.Power supply and reference decoupling(V REF+connected to V DDA) (80)Figure41.VFQFPN366x6mm,0.5mm pitch,package outline(1) (82)Figure42.VFQFPN36recommended footprint(dimensions in mm)(1)(2) (82)DocID13587Rev167/105List of figures STM32F103x8,STM32F103xBFigure43.UFQFPN487x7mm,0.5mm pitch,package outline (83)Figure44.UFQFPN48recommended footprint (84)Figure45.LFBGA100-10x10mm low profile fine pitch ball grid array packageoutline (85)Figure46.Recommended PCB design rules(0.80/0.75mm pitch BGA) (86)Figure47.LQFP100,14x14mm100-pin low-profile quad flat package outline (87)Figure48.LQFP100recommended footprint(1) (87)Figure49.UFBGA100-ultra fine pitch ball grid array,7x7mm,0.50mm pitch,package outline (88)Figure50.LQFP64,10x10mm,64-pin low-profile quad flat package outline (89)Figure51.LQFP64recommended footprint(1) (89)Figure52.TFBGA64-8x8active ball array,5x5mm,0.5mm pitch,package outline (90)Figure53.Recommended PCB design rules for pads(0.5mm pitch BGA) (91)Figure54.LQFP48,7x7mm,48-pin low-profile quad flat package outline (92)Figure55.LQFP48recommended footprint(1) (92)Figure56.LQFP100P D max vs.T A (95)8/105DocID13587Rev16STM32F103x8,STM32F103xB Introduction 1IntroductionThis datasheet provides the ordering information and mechanical device characteristics ofthe STM32F103x8and STM32F103xB medium-density performance line microcontrollers.For more details on the whole STMicroelectronics STM32F103xx family,please refer toSection2.2:Full compatibility throughout the family.The medium-density STM32F103xx datasheet should be read in conjunction with the low-,medium-and high-density STM32F10xxx reference manual.The reference and Flash programming manuals are both available from theSTMicroelectronics website .For information on the Cortex™-M3core please refer to the Cortex™-M3T echnicalReference Manual,available from the website at the following address:/help/index.jsp?topic=/com.arm.doc.ddi0337e/2DescriptionThe STM32F103xx medium-density performance line family incorporates the high-performance ARM Cortex™-M332-bit RISC core operating at a72MHz frequency,high-speed embedded memories(Flash memory up to128Kbytes and SRAM up to20Kbytes),and an extensive range of enhanced I/Os and peripherals connected to two APB buses.Alldevices offer two12-bit ADCs,three general purpose16-bit timers plus one PWM timer,aswell as standard and advanced communication interfaces:up to two I2Cs and SPIs,threeUSART s,an USB and a CAN.The devices operate from a2.0to3.6V power supply.They are available in both the–40to+85°C temperature range and the–40to+105°C extended temperature range.Acomprehensive set of power-saving mode allows the design of low-power applications.The STM32F103xx medium-density performance line family includes devices in six differentpackage types:from36pins to100pins.Depending on the device chosen,different sets ofperipherals are included,the description below gives an overview of the complete range ofperipherals proposed in this family.These features make the STM32F103xx medium-density performance line microcontrollerfamily suitable for a wide range of applications such as motor drives,application control,medical and handheld equipment,PC and gaming peripherals,GPS platforms,industrialapplications,PLCs,inverters,printers,scanners,alarm systems,video intercoms,andHVACs.DocID13587Rev169/105TimersCommunicationDescription STM32F103x8,STM32F103xB 2.1Device overviewTable2.STM32F103xx medium-density device features and peripheral1.On the TFBGA64package only15channels are available(one analog input pin has been replaced by‘Vref+’).10/105DocID13587Rev16Peripheral STM32F103Tx STM32F103Cx STM32F103Rx STM32F103Vx Flash-Kbytes64128641286412864128SRAM-Kbytes20202020 General-purpose3333Advanced-control1111SPI12222I C1222USART2333USB1111CAN1111 GPIOs2637518012-bit synchronized ADCNumber of channels210channels210channels2(1)16channels216channels CPU frequency72MHzOperating voltage 2.0to3.6VOperating temperaturesAmbient temperatures:-40to+85°C/-40to+105°C(see Table9)Junction temperature:-40to+125°C(see Table9)Packages VFQFPN36LQFP48,UFQFPN48LQFP64,TFBGA64LQFP100,LFBGA100,UFBGA100f l a s ho b lI n t e r f a c eB u s M a t r i xA HB :F m a x =48/72M H zA PB 2:F m a x =48/72M H zA PB 1:F m a x =24/36M H zpbusPCLK2 HCLK CLOCK RTC AWUTAMPER -RTCSTM32F103x8, STM32F103xBDescriptionFigure 1. STM32F103xx performance line block diagramTRACECLKTRACED[0:3] as ASNJTRSTTRSTJTDIJTCK/SWCLK JTMS/SWDIOJTDO as AFTPIUTrace/trigSW/JTAGCortex -M3 CPUIbusF max : 7 2M Hz DbusTraceControlle rFlash 128 KB64 bitPOWERVOLT. REG. 3.3V TO 1.8V@VDDV DD = 2 to 3.6VV SSNVICSystemSRAM20 KB@VDDGP DMA7 channelsPCLK1 FCLKPLL &MANAGTXTAL OSC4-16 MHzOSC_INOSC_OUTRC 8 MHzNRST @VDDASUPPLYSUPERVISIONRC 40 kHz @VDDA@VBATIWDG Standby interfaceV BATVDDA VSSA 80AF PA[15:0] PB[15:0]POR / PDRPVDEXTIWAKEUPGPIOAGPIOBRstIntAHB2 AHB2APB2 APB1XTAL 32 kHzBackup reg Backu p i nterf ace TIM2 TIM3OSC32_IN OSC32_OUT4 Channels 4 ChannelsPC[15:0]GPIOCTIM 44 ChannelsPD[15:0]GPIOD PE[15:0] GPIOEUSART2USART3RX,TX, CTS, RTS,CK, SmartCard as AFRX,TX, CTS, RTS, CK, SmartCard as AF4 Channels3 compl. ChannelsETR and BKINMOSI,MISO, SCK,NSS as AFRX,TX, CTS, RTS,TIM1SPI12x(8x16bit)SPI2I2C1 I2C2MOSI,MISO,SCK,NSS as AFSCL,SDA,SMBA as AFSCL,SDA as AFSmartCard as AFUSART1@VDDAbxCANUSBDP/CAN_TXUSB 2.0 FSUSBDM/CAN_RX16AF V REF+ V REF -12bit ADC1 IF12bit ADC2 IFSRAM 512BWWDGTemp sensorai14390d1. T A = –40 °C to +105 °C (junction temperature up to 125 °C).2. AF = alternate function on I/O port pin.DocID13587 Rev 1611/105peripheralsIf (APB2 prescaler =1) x1 ADC /2, 4, 6, 8 ADCCLKDescriptionSTM32F103x8, STM32F103xBFigure 2. Clock treeFLITFCLKto Flash programming interface8 MHz HSI RCHSIUSBPrescaler 48 MHzUSBCLKto USB interface/2/1, 1.572 MHz maxClockHCLKto AHB bus, core, memory and DMA PLLSRCSWPLLMUL/8Enable (3 bits)to Cortex System timerFCLK Cortex..., x16 x2, x3, x4 PLLHSIPLLCLK HSESYSCLK72 MHz max AHB Prescaler /1, 2..512 APB1Prescaler/1, 2, 4, 8, 16free running clock36 MHz max PCLK1to APB1Peripheral Clock Enable (13 bits)TIM2,3, 4to TIM2, 3and 4CSSIf (APB1 prescaler =1) x1 TIMXCLKelse x2 Peripheral ClockEnable (3 bits)OSC_OUTOSC_IN4-16 MHzHSE OSCPLLXTPRE/2APB2Prescaler/1, 2, 4, 8, 16TIM1 timer 72 MHz maxPeripheral ClockEnable (11 bits) PCLK2peripherals to APB2to TIM1 TIM1CLK else x2 Peripheral ClockOSC32_INOSC32_OUTLSE OSC32.768 kHz/128LSERTCCLKto RTCPrescaler Enable (1 bit) to ADCRTCSEL[1:0]LSI RCLSIto Independent Watchdog (IWDG)40 kHzIWDGCLKLegend:HSE = high -speed external clock signalHSI = high -speed internal clock signalMCOMainClock Output/2PLLCLKHSI LSI = low -speed internal clock signal LSE = low -speed external clock signalHSESYSCLKMCOai149031. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.2. For the USB function to be available, both HSE and PLL must be enabled, with USBCLK running at 48 MHz.3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.12/105DocID13587 Rev 16STM32F103x8, STM32F103xBDescription2.2 Full compatibility throughout the familyThe STM32F103xx is a complete family whose members are fully pin -to -pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low -density devices, the STM32F103x8 and STM32F103xB are referred to as medium -density devices, and the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high -density devices.Low - and high -density devices are an extension of the STM32F103x8/B devices, they are specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low - density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High -density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I 2S and DAC, while remaining fully compatible with the other members of the STM32F103xx family .The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE are a drop -in replacement for STM32F103x8/B medium -density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.1.For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7),the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium -density devices.DocID13587 Rev 16 13/105PinoutLow -density devicesMedium -density devices High -density devices 16 KB Flash 32 KB Flash (1) 64 KB Flash 128 KB Flash 256 KB Flash 384 KB Flash 512 KB Flash6 KB RAM 10 KB RAM 20 KB RAM 20 KB RAM 48 KB RAM 64 KB RAM 64 KB RAM144 5 × USART s 4 × 16-bit timers, 2 × basic timers2 3 × SPIs, 2 × I Ss, 2 × I2Cs USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIOFSMC (100 and 144 pins) 100 3 × USART s 3 × 16-bit timers 2 2 × SPIs, 2 × I Cs, USB, CAN, 1 × PWM timer2 × ADCs 64 2 × USART s 2 × 16-bit timers 2 1 × SPI, 1 × I C, USB, CAN, 1 × PWM timer 2 × ADCs 48 36Description STM32F103x8,STM32F103xB 2.3Overview2.3.1ARM®Cortex™-M3core with embedded Flash and SRAMThe ARM Cortex™-M3processor is the latest generation of ARM processors for embeddedsystems.It has been developed to provide a low-cost platform that meets the needs of MCUimplementation,with a reduced pin count and low-power consumption,while deliveringoutstanding computational performance and an advanced system response to interrupts.The ARM Cortex™-M332-bit RISC processor features exceptional code-efficiency,delivering the high-performance expected from an ARM core in the memory size usuallyassociated with8-and16-bit devices.The STM32F103xx performance line family having an embedded ARM core,is thereforecompatible with all ARM tools and software.Figure1shows the general block diagram of the device family.2.3.2Embedded Flash memory64or128Kbytes of embedded Flash is available for storing programs and data.2.3.3CRC(cyclic redundancy check)calculation unitThe CRC(cyclic redundancy check)calculation unit is used to get a CRC code from a32-bitdata word and a fixed generator polynomial.Among other applications,CRC-based techniques are used to verify data transmission orstorage integrity.In the scope of the EN/IEC60335-1standard,they offer a means ofverifying the Flash memory integrity.The CRC calculation unit helps compute a signature ofthe software during runtime,to be compared with a reference signature generated at link-time and stored at a given memory location.2.3.4Embedded SRAMTwenty Kbytes of embedded SRAM accessed(read/write)at CPU clock speed with0waitstates.2.3.5Nested vectored interrupt controller(NVIC)The STM32F103xx performance line embeds a nested vectored interrupt controller able tohandle up to43maskable interrupt channels(not including the16interrupt lines ofCortex™-M3)and16priority levels.•Closely coupled NVIC gives low-latency interrupt processing•Interrupt entry vector table address passed directly to the core•Closely coupled NVIC core interface•Allows early processing of interrupts•Processing of late arriving higher priority interrupts•Support for tail-chaining•Processor state automatically saved•Interrupt entry restored on interrupt exit with no instruction overhead14/105DocID13587Rev16万联芯城专注电子元器件配单服务,只售原装现货库存,万联芯城电子元器件全国供应,专为终端生产,研发企业提供现货物料,价格优势明显,BOM配单采购可节省逐个搜索购买环节,只需提交BOM物料清单,商城即可为您报价,解决客户采购烦恼,为客户节省采购成本,点击进入万联芯城。

STM32f103C8T6入门学习记录

STM32f103C8T6入门学习记录

STM32自学笔记作者:忙碌的小姚新浪微博:@忙碌的小姚新浪博客:/mlxiaoyao222目录STM32 自学笔记 (1)第一章 (3)我与STM32 的那些日子 (3)第二章 (4)使用固件库建立一个工程 (4)1、了解STM32F103的固件库 (4)2、创建第一个工程 (4)3、接下来就是管理工程文件了 (9)4、编写main.c 和文件路径 (10)第三章 (14)STM32点亮第一个LED 使用keil for ARM MDK 软件仿真 (14)1、Main.c 函数代码: (14)2、代码分析: (15)3、软件仿真介绍: (16)第四章 (19)串口的使用 (19)1、为什么要用串口? (19)2、STM32跟PC机(也就是电脑)如何连接 (19)3、代码分析 (20)4、仿真及调试 (23)5、串口接收数据 (25)第五章 (27)通用定时器的使用 (27)1、STM32F103内部定时器有哪些? (27)2、如何进行程序编写 (27)3仿真结果观察 (30)4对第四章串口的补充 (31)5工程代码 (35)第一章我与STM32 的那些日子STM32这块板子是在阿莫上跟一个老师买的,砍了半天100块钱。

包括一个Jlink v8仿真器(好像65块左右),和一块STM32系统板。

那已是一年前的事了。

那时我刚大三,刚学了半年51,于是想学点更高级的。

但我好像属于三分钟热度的这种人,买回来学了一个星期,就学不动了,寄存器操作,固件库的使用根本就没明白是怎么一回事,之后就没有然后了。

现在看到那块板子,总有一种说不出的滋味,要是当时能咬牙切齿努力学习,说不定现在也不会安静地坐在电脑前一字一句敲打这篇激励性文章了。

对于STM32我没用任何基础,唯一有的也只是一年前学的那一个星期,不过那已不重要了,我现在仍是一个小白。

作为一个初学者,也许是坐井观天,看的是片面的,可能有很多观点是错误的,希望读者朋友能勇于指出来。

stm32f103c8t6 手册

stm32f103c8t6 手册

很高兴能成为你的文章写手,并协助你撰写关于STM32F103C8T6的一篇深度、广度兼具的文章。

在本文中,我将全面评估并深入探讨这个主题,希望能帮助你更深入地理解这款产品。

第一部分:STM32F103C8T6概述1. STM32F103C8T6是什么STM32F103C8T6是意法半导体公司生产的一款低功耗、高性能的32位微控制器。

它采用ARM Cortex-M3内核,拥有丰富的外设和丰富的通信接口,广泛应用于工业自动化、消费类电子产品和通信设备等领域。

2. 主要特性- ARM Cortex-M3内核- 最高72MHz主频- 64KB闪存和20KB SRAM- 丰富的外设:定时器、通信接口、模拟输入输出等- 低功耗设计- 丰富的开发工具和生态系统3. 应用领域STM32F103C8T6广泛应用于各种领域,包括工业自动化(PLC、工业控制)、消费类电子产品(智能家居、智能穿戴设备)、通信设备(路由器、交换机)等。

第二部分:深入探讨STM32F103C8T61. 开发环境和工具在使用STM32F103C8T6进行开发时,我们可以使用意法半导体提供的STM32CubeMX和Keil等集成开发环境,以及丰富的示例代码和文档。

2. 外设和通信接口STM32F103C8T6具有丰富的外设和通信接口,比如定时器、串口通信、I2C、SPI等。

这些外设和通信接口的灵活应用能够满足各种不同应用场景的需求。

3. 低功耗设计在物联网和便携式设备等领域,低功耗设计是十分重要的。

STM32F103C8T6通过低功耗模式和智能电源管理单元等设计,可以满足对功耗要求较高的应用需求。

第三部分:我的个人观点和理解在使用STM32F103C8T6进行开发的过程中,我深刻体会到了它的灵活性和强大性能,尤其是在处理复杂的任务和对功耗要求严格的场景下表现突出。

意法半导体提供的丰富开发工具和文档也为开发者提供了极大的便利。

我相信,在未来的发展中,STM32F103C8T6将在更多领域展现出其强大的潜力,并推动物联网和智能设备等领域的发展。

STM32最小系统使用手册

STM32最小系统使用手册

STM32最小系统使用手册修订历史1.STM32F103C8T6最小系统简介硬件资源:1、STM32F103C8主芯片一片2、贴片8M晶振(通过芯片内部PLL最高达72M)ST官方标准参数3、LM1117-3.3V稳压芯片,最大提供800mA电流4、一路miniUSB接口,可以给系统版供电,预留USB通讯功能5、复位按键6、标准JTAG下载口一个,支持JLink,STLink7、BOOT选择端口8、IO扩展排针20pin x 29、电源指示灯1个10、功能指示灯一个,用于验证IO口基本功能11、预留串口下载接口,方便和5V开发板连接,用串口即可下载程序12、尺寸:64mm X 36.4mm13、高性能爱普生32768Hz晶振,价格是直插晶振的10倍价格,易起振14、20K RAM,64K ROM ,TQFP48封装模块说明BOOT短路帽设置说明BOOT1=x BOOT0=0 从用户闪存启动,这是正常的工作模式。

(上电运行程序或者JTAG方式下载程序时候使用)BOOT1=0 BOOT0=1 从系统存储器启动,这种模式启动的程序功能由厂家设置。

(从固化的bootloader启动,一般用于ISP下载时候使用)BOOT1=1 BOOT0=1 从内置SRAM 启动,这种模式可以用于调试。

下载程序方法:需要TTL模块下载工具(已安装好驱动)推荐使用本店开发的CP2102 USB-TTL模块对STM32最小系统进行下载程序。

(CP2102与其他的JLINK或者STLINK比价格要便宜很多,只能用于下载,不能用于DEBUG调试程序)1.CP2102和STM32用杜邦线按照以下连接后,接在电脑USB接口TXD -----------> RX1RXD -----------> TX1GND -----------> GND2.将STM32上的BOOT选择短路帽进行设置(进入ISP下载模式)BOOT1 -----------> 0BOOT0 -----------> 13.将CP2102与电脑连接后,打开MCUISP软件,✓点击“搜索串口”,“Port”选项会有可用的COM选项。

stm32f103c8t6实训注意事项

stm32f103c8t6实训注意事项

stm32f103c8t6实训注意事项标题:STM32F103C8T6实训注意事项——从入门到精通的全面指南导言:STM32F103C8T6是常用的ARM Cortex-M3内核的微控制器芯片,广泛应用于各种嵌入式系统开发和实训项目中。

然而,对于初学者来说,可能会面临一些挑战和困惑。

在本文中,我将为您提供一份全面指南,帮助您快速入门并掌握STM32F103C8T6的实训注意事项。

无论您是想参与课程项目,还是进行个人项目开发,本文都将为您提供宝贵的经验和技巧。

目录:1. 什么是STM32F103C8T6?2. 准备工作2.1 资源准备2.2 环境搭建3. 开发工具介绍3.1 集成开发环境(IDE)3.2 编程语言选择4. 电路设计与连接4.1 器件选型与电路设计4.2 连接与布局规划5. STM32F103C8T6的编程基础5.1 主要功能模块介绍5.2 寄存器配置与编程风格5.3 常用库函数与操作6. 实训项目注意事项6.1 实训目标与任务分解6.2 项目逐步展开与调试6.3 常见问题与解决方法7. 结论与展望正文:1. 什么是STM32F103C8T6?STM32F103C8T6是意法半导体(STMicroelectronics)公司推出的一款32位ARM Cortex-M3内核的微控制器芯片。

它具有丰富的外设和高性能的计算能力,被广泛应用于嵌入式系统、工控设备和物联网等领域。

2. 准备工作2.1 资源准备在开始实训之前,您需要收集一些必要的资源,包括STM32F103C8T6开发板、USB接口线、电路设计工具等。

您也需要下载并安装相应的开发工具和官方文档。

2.2 环境搭建为了能够顺利进行实训项目,您需要搭建一个稳定和高效的开发环境。

这包括安装并配置开发工具、设置编译器和调试器等方面。

在这一步骤中,您可以选择合适的集成开发环境(IDE)和编程语言,以满足您的需求。

3. 开发工具介绍3.1 集成开发环境(IDE)在进行STM32F103C8T6的开发时,选择一个合适的IDE是至关重要的。

stm32f103c8t6中文手册

stm32f103c8t6中文手册

STM32F103系列微处理器,STM32F103器件* * STM32F103 * * Cortex-M3内核,CPU速度为72 MHz,最大闪存为1 MB。

包括电机控制外设和USB全速接口。

STM32系列臂式Cortex-M3 32位闪存微控制器具有低功耗,低电压,出色的性能和实时功能。

包类型系列适用于您的嵌入式应用程序。

MCU体系结构具有易于使用的STM32平台,适用于包括电机驱动,PC和游戏,HVAC以及工业应用在内的应用。

32位RISC引脚对引脚软件兼容的SRAM 高达96 KB闪存高达1MB电源:2 V至3.6 V温度范围:-40至+ 85°C或-40至+ 105°Cᦇstm32f1系列32位臂?皮质?-M3微控制器,意法半导体的STM32闪存微控制器。

STM32系列是基于ARM cortex Gamma M3的核心突破-嵌入式应用程序特殊开发的核心。

STM32系列受益于对Cortex-M3体系结构的增强,其中包括thumb-2指令集,该指令集提供了更高的性能,更好的编码密度,更快的中断响应以及所有领先的工业功耗。

出色的实时性能,出色的效率和新的外围设备,最大限度地提高了串行引脚,外围设备和软件兼容性之间的集成Stm32f103c8t6是中密度性能线,配备了Arm Cortex-M3 32位微控制器和48通道LQFP 封装。

它结合了高性能RISC内核,72MHz的工作频率,高速嵌入式存储器,增强的I / O范围以及与两条APB总线的外部连接。

Stm32f103c8t6具有12位ADC,计时器,PWM计时器,标准和高级通信接口。

全面的省电模式使设计人员能够设计低功耗应用。

工作电压范围:2V至3.6v.64k字节闪存。

20K字节SRAM.CRC计算单元,96位唯一ID。

两个12位,1μs ADC(最多10个通道)。

7通道DMA控制器,3个通用定时器和1个高级控制定时器。

MEMORY存储芯片STM32F103C8T6中文规格书

MEMORY存储芯片STM32F103C8T6中文规格书

Features•ARM® 32-bit Cortex®-M3 CPU Core –72 MHz maximum frequency,1.25 DMIPS/MHz (Dhrystone2.1)performance at 0 wait state memoryaccess–Single-cycle multiplication and hardware division•Memories–64 or 128 Kbytes of Flash memory–20 Kbytes of SRAM•Clock, reset and supply management – 2.0 to 3.6 V application supply and I/Os–POR, PDR, and programmable voltage detector (PVD)–4-to-16 MHz crystal oscillator–Internal 8 MHz factory-trimmed RC–Internal 40 kHz RC–PLL for CPU clock–32 kHz oscillator for RTC with calibration •Low-power–Sleep, Stop and Standby modes–V BAT supply for RTC and backup registers • 2 x 12-bit, 1 µs A/D converters (up to 16channels)–Conversion range: 0 to 3.6 V–Dual-sample and hold capability–Temperature sensor•DMA–7-channel DMA controller–Peripherals supported: timers, ADC, SPIs, I2Cs and USARTs•Up to 80 fast I/O ports–26/37/51/80 I/Os, all mappable on 16 external interrupt vectors and almost all5 V-tolerant •Debug mode–Serial wire debug (SWD) & JTAGinterfaces•7 timers–Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter andquadrature (incremental) encoder input –16-bit, motor control PWM timer with dead-time generation and emergency stop – 2 watchdog timers (Independent andWindow)–SysTick timer 24-bit downcounter•Up to 9 communication interfaces–Up to 2 x I2C interfaces (SMBus/PMBus)–Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control)–Up to 2 SPIs (18 Mbit/s)–CAN interface (2.0B Active)–USB 2.0 full-speed interface•CRC calculation unit, 96-bit unique ID •Packages are ECOPACK®Table 1. Device summaryReference Part numberSTM32F103x8STM32F103C8, STM32F103R8STM32F103V8, STM32F103T8STM32F103xBSTM32F103RB STM32F103VB,STM32F103CB, STM32F103TB找Memory、FPGA、二三极管、连接器、模块、光耦、电容电阻、单片机、处理器、晶振、传感器、滤波器,上深圳市美光存储技术有限公司August 20152.2 Full compatibility throughout the familyThe STM32F103xx is a complete family whose members are fully pin-to-pin, software andfeature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 areidentified as low-density devices, the STM32F103x8 and STM32F103xB are referred to asmedium-density devices, and the STM32F103xC, STM32F103xD and STM32F103xE arereferred to as high-density devices.Low- and high-density devices are an extension of the STM32F103x8/B devices, they arespecified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers andperipherals. High-density devices have higher Flash memory and RAM capacities, andadditional peripherals like SDIO, FSMC, I2S and DAC, while remaining fully compatible withthe other members of the STM32F103xx family.The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xEare a drop-in replacement for STM32F103x8/B medium-density devices, allowing the userto try different memory densities and providing a greater degree of freedom during thedevelopment cycle.Moreover, the STM32F103xx performance line family is fully compatible with all existingSTM32F101xx access line and STM32F102xx USB access line devices.2.3.13 DMAThe flexible 7-channel general-purpose DMA is able to manage memory-to-memory,peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supportscircular buffer management avoiding the generation of interrupts when the controllerreaches the end of the buffer.Each channel is connected to dedicated hardware DMA requests, with support for softwaretrigger on each channel. Configuration is made by software and transfer sizes betweensource and destination are independent.The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose andadvanced-control timers TIMx and ADC.Description STM32F103x8, STM32F103xBAdvanced-control timer (TIM1)The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6channels. It has complementary PWM outputs with programmable inserted dead-times. Itcan also be seen as a complete general-purpose timer. The 4 independent channels can beused for•Input capture•Output compare•PWM generation (edge- or center-aligned modes)•One-pulse mode outputIf configured as a general-purpose 16-bit timer, it has the same features as the TIMx timer. Ifconfigured as the 16-bit PWM generator, it has full modulation capability (0-100%).In debug mode, the advanced-control timer counter can be frozen and the PWM outputsdisabled to turn off any power switch driven by these outputs.Many features are shared with those of the general-purpose TIM timers which have thesame architecture. The advanced-control timer can therefore work together with the TIMtimers via the Timer Link feature for synchronization or event chaining.General-purpose timers (TIMx)There are up to three synchronizable general-purpose timers embedded in theSTM32F103xx performance line devices. These timers are based on a 16-bit auto-reloadup/down counter, a 16-bit prescaler and feature 4 independent channels each for inputcapture/output compare, PWM or one-pulse mode output. This gives up to 12 inputcaptures/output compares/PWMs on the largest packages.The general-purpose timers can work together with the advanced-control timer via the TimerLink feature for synchronization or event chaining. Their counter can be frozen in debugmode. Any of the general-purpose timers can be used to generate PWM outputs. They allhave independent DMA request generation.These timers are capable of handling quadrature (incremental) encoder signals and thedigital outputs from 1 to 3 hall-effect sensors.Independent watchdogThe independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It isclocked from an independent 40 kHz internal RC and as it operates independently of themain clock, it can operate in Stop and Standby modes. It can be used either as a watchdogto reset the device when a problem occurs, or as a free-running timer for application timeoutmanagement. It is hardware- or software-configurable through the option bytes. The countercan be frozen in debug mode.Window watchdogThe window watchdog is based on a 7-bit downcounter that can be set as free-running. Itcan be used as a watchdog to reset the device when a problem occurs. It is clocked fromthe main clock. It has an early warning interrupt capability and the counter can be frozen indebug mode.。

stm32f103c8t6程序工作流程

stm32f103c8t6程序工作流程

stm32f103c8t6程序工作流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!STM32F103C8T6 程序工作流程引言STM32F103C8T6 是一款常用的嵌入式微控制器,广泛应用于各种嵌入式系统和电子设备中。

stm32f030c8t6手册

stm32f030c8t6手册

STM32F030C8T6概述基于ARM?的32位ARM STM32 Cortex-M单片机?皮质?-M处理器,给MCU用户带来更多的自由。

该系列32位产品集成了高性能、实时功能、数字信号处理、低功耗、低电压运行,同时保持了完全集成和易于开发的功能。

这些不同的STM32设备具有无与伦比的性能,并且建立在行业标准的核心之上,并提供各种工具和软件供您选择。

这一系列产品是小型项目和整个平台的理想选择。

stm32f03系列微处理器、stm32f0系列微控制器是基于STM微电子公司的Arm Cortex-M0 Arm,包括入门级Arm Cortex?M0 32位RISC核心。

Stm32f030提供高速嵌入式存储器和各种增强型外围设备和I/O,具有I2C、SPI和USART等通信接口,以及12位ADC、16位定时器和高级控制PWM定时器。

ST公司的stm32f0 MCU高级体系结构与STM32平台相结合,可以实现低功耗的应用设计,提供不同的封装类型。

手臂皮质?-M0核心处理器与嵌入式闪存和SRAM兼容所有ARM 工具和软件。

Stm32f030 ARM处理器微控制器(MCU)适用于多种应用,包括应用程序控制和用户界面、手持设备、a/V接收器、PC外围设备、游戏平台、消费类电器、打印机、报警系统和HVAC。

频率:48MHz CPU闪存:高达64 KBSRAM:最高8 KB电源:2.4至3.6 V温度范围:-40至+85°CSTM32F0系列32位ARM?皮质?-M0微控制器,STMicroelectronicsSTM32F0系列32位闪存微控制器(MCU)是否基于ARM cortex?-M0内核,专为嵌入式应用开发。

STM32手臂皮质?ST的M处理器受益于Cortex-M0架构的增强,包括数字信号处理、实时性能、低电压和低功耗。

主流系列的圣臂?STM32 F0提供32位性能,特别适用于具有易于使用功能的小型项目或平台决策。

stm32f103c8t6 技术手册

stm32f103c8t6 技术手册

STM32F103C8T6技术手册第一部分:引言1. STM32F103C8T6概述1.1 STM32F103C8T6是STMicroelectronics推出的一款高性能、低功耗的32位MCU。

它基于ARM Cortex-M3内核,最高主频可达72MHz。

1.2 该芯片集成了丰富的外设接口,如通用定时器、串行通信接口、模拟数字转换器等,可满足各种应用需求。

1.3 STM32F103C8T6广泛应用于工业控制、消费类电子、医疗设备等领域,受到广大工程师的青睐。

2. 技术手册的编写目的2.1 本技术手册旨在为工程师提供STM32F103C8T6的详尽资料,帮助其更好地了解和应用该芯片。

2.2 通过介绍芯片的主要特性、功能框图、引脚定义、外设接口等内容,让工程师能够快速上手STM32F103C8T6,加快产品开发进程。

第二部分:主要特性3. STM32F103C8T6主要特性3.1 ARM Cortex-M3内核,最高主频72MHz3.2 64KB Flash存储器,20KB RAM3.3 7个通用定时器,4个串行通信接口3.4 12位模数转换器,多种数字电源控制接口第三部分:功能框图和外设接口4. 功能框图4.1 展示了STM32F103C8T6的内部结构和各个功能模块的连接关系,方便工程师理解芯片的工作原理。

5. 引脚定义5.1 详细介绍了芯片引脚的功能定义和电气特性参数,便于工程师进行外部连接设计。

6. 外设接口6.1 介绍了芯片集成的各种外设接口,包括通用定时器、串行通信接口、模拟数字转换器等,以及它们的应用场景和接口规范。

第四部分:应用范例7. 应用范例7.1 以LED控制、ADC采集、串口通信等典型应用为例,演示了如何在STM32F103C8T6上实现基本的功能,为工程师提供参考和借鉴。

第五部分:附录8. 相关参考资料8.1 提供了关于ARM Cortex-M3内核、STM32F103系列芯片的相关参考资料信息,方便工程师进一步深入学习和研究。

stm32f103c8中文数据手册

stm32f103c8中文数据手册

文章题目:深入解读STM32F103C8中文数据手册1. 简介在今天的文章中,我将为你深入解读STM32F103C8中文数据手册,这是一款常用的单片机芯片,具有广泛的应用领域。

通过全面了解数据手册,我们可以更好地理解这款芯片的功能和性能,为实际的应用提供坚实的理论基础。

2. 总览让我们简要概述一下STM32F103C8芯片的主要特点和功能。

该芯片是由STMicroelectronics公司生产的一款32位ARM Cortex-M3内核的微控制器,具有丰富的外设和强大的性能。

在数据手册中,我们可以找到关于芯片的详细参数、引脚定义、外设功能等重要信息。

3. 详细参数在数据手册中,我们可以找到芯片的详细参数表,包括但不限于时钟频率、存储器容量、通信接口、定时器、中断控制器等。

通过仔细研读这些参数,我们可以更好地了解芯片的性能和特点,为后续的应用开发提供参考。

4. 引脚定义除了详细参数外,数据手册还包含了引脚定义和管脚功能说明。

了解每个引脚的具体功能和定义对于硬件设计和板级调试至关重要。

在实际的应用中,我们需要根据数据手册中的信息进行正确的引脚连接和配置,确保芯片能够正常工作。

5. 外设功能STM32F103C8芯片拥有丰富的外设功能,包括通用定时器、串行通信接口、模拟数字转换器、通用并行接口等。

数据手册中对于每个外设都有详细的功能描述和配置说明,这些信息对于软件开发和系统集成至关重要。

6. 我的观点和理解在我看来,深入理解STM32F103C8中文数据手册对于芯片的应用开发至关重要。

只有通过全面了解芯片的功能和特性,我们才能够更好地设计和开发相应的应用,提高系统的稳定性和性能。

我对于数据手册中的对于每个外设都有详细的功能描述和配置说明这一点深以为然,因为这些信息对于软件开发和系统集成至关重要。

7. 总结回顾STM32F103C8中文数据手册包含了丰富的信息,包括详细的参数、引脚定义和管脚功能说明、以及外设功能描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档