二次函数的梯形的存在性问题
专题02二次函数中四边形的存在性问题-2023年中考数学毕业班二轮热点题型归纳与变式演练 (原卷版)
专题02 二次函数中四边形的存在性问题目录最新模考题热点题型归纳【题型一】 梯形存在性【题型二】 平行四边形存在性【题型一】 梯形存在性【典例分析】(2023杨浦区一模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0)、B(3,0).C(2,3)三点,且与y轴交于点D.(1)求该抛物线的表达式,并写出该抛物线的对称轴;(2)分别联结AD、DC,CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.【提分秘籍】梯形是相对限制较少的一类四边形,要使得一个四边形是梯形,只需要有其中一组对边平行,另一组对边不平行即可。
所以,在此类问题中,要么对点有较高的限制 (在某一直线上),要么对梯形形状有较高要求(等腰或直角)。
综合利用各个条件,才能求出最后的结果【变式演练】1.(2023青浦区一模)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x22﹣x的“不动点”的坐标;②向左或向右平移抛物线y=x22﹣x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.2.【2021年青浦二模】(12分)已知:如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C,对称轴是直线x=1,顶点是点D.(1)求该抛物线的解析式和顶点D的坐标;(2)点P为该抛物线第三象限上的一点,当四边形PBDC为梯形时,求点P的坐标;(3)在(2)的条件下,点E为x轴正半轴上的一点,当tan(∠PBO+∠PEO)=时,求OE的长.【题型二】 平行四边形存在性【典例分析】(2022•宝山区二模)已知抛物线y=ax2+bx﹣2(a≠0)经过点A(1,0)、B(2,0),与y轴交于点C.(1)求抛物线的表达式;(2)将抛物线向左平移m个单位(m>2),平移后点A、B、C的对应点分别记作A1、B1、C1,过点C1作C1D⊥x轴,垂足为点D,点E在y轴负半轴上,使得以O、E、B1为顶点的三角形与△A1C1D相似,①求点E的坐标;(用含m的代数式表示)②如果平移后的抛物线上存在点F,使得四边形A1FEB1为平行四边形,求m的值.【提分秘籍】解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使计算又好又快.已知定点的个数不同,选用的方法也不同,通常有以下两种情况:1、如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.2、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.【变式演练】﹣与x轴1.【2021年杨浦二模】如图,已知在平面直角坐标系xOy中,直线y=x5相交于点A,与y轴相交于点B,抛物线y=ax2+6x+c经过A、B两点.(1)求这条抛物线的表达式;(2)设抛物线与x轴的另一个交点为C,点P是抛物线上一点,点Q是直线AB上一点,当四边形BCPQ是平行四边形时,求点Q的坐标;(3)在第(2)小题的条件下,联结QC,在∠QCB内作射线CD与抛物线的对称轴相交于点D,使得∠QCD=∠ABC,求线段DQ的长.2.(2021·上海宝山区·九年级一模)已知抛物线()20=+¹经过y ax bx a()1,3B-两点,抛物线的对称轴与x轴交于点C,点 D与点B关于抛A,()4,0物线的对称轴对称,联结BC、BD.(1)求该抛物线的表达式以及对称轴;(2)点E在线段BC上,当CED OBDÐÐ时,求点 E的坐标;=(3)点M在对称轴上,点N在抛物线上,当以点O、A、M、N为顶点的四边形是平行四边形时,求这个平行四边形的面积.﹣经过点A(﹣3.【2021年崇明二模】(12分)已知抛物线y=ax2+bx41,0),B(4,0),与y轴交于点C,点D是该抛物线上一点,且在第四象限内,联结AC、BC、CD、BD.(1)求抛物线的函数解析式,并写出对称轴;(2)当S△BCD=4S△AOC时,求点D的坐标;(3)在(2)的条件下,如果点E是x轴上的一点,点F是抛物线上一点,当点A、D、E、F为顶点的四边形是平行四边形,请直接写出点E的坐标.【题型三】 矩形的存在性【典例分析】【提分秘籍】二次函数中的矩形存在性问题相交于平行四边形的存在性问题而言,其难度更大。
二次函数存在性问题
2012年二次函数存在性问题一、二次函数中有关面积的存在性问题例1(10山东潍坊)如图所示,抛物线与x 轴交于点()()1030A B -,、,两点,与y 轴交于点()03.C -,以AB 为直径作M ⊙,过抛物线上一点P 作M ⊙的切线PD ,切点为D ,并与M ⊙的切线AE 相交于点E ,连结DM 并延长交M ⊙于点N ,连结.AN AD 、 (1)求抛物线所对应的函数关系式及抛物线的顶点坐标;(2)若四边形EAMD 的面积为求直线PD 的函数关系式;(3)抛物线上是否存在点P ,使得四边形EAMD 的面积等于DAN △的面积?若存在,求出点P 的坐标;若不存在,说明理由.答案:解:(1)因为抛物线与x 轴交于点()()1030A B -,、,两点,设抛物线的函数关系式为:()()13y a x x =+-,∵抛物线与y 轴交于点()03C -,,∴()()30103a -=+-, ∴ 1.a =所以,抛物线的函数关系式为:223y x x =--,又()214y x =--,因此,抛物线的顶点坐标为()14-,.(2)连结EM ,∵EA ED 、是M ⊙,的两条切线,∴EA ED EA AM ED MN =⊥⊥,,,∴EAM EDM △≌△又四边形EAMD的面积为∴EAM S =△∴12AM AE =· 又2AM =,∴AE =因此,点E的坐标为(11E -或(21.E --,当E 点在第二象限时,切点D 在第一象限. 在直角三角形EAM中,tan EA EMA AM ∠=== ∴60EMA ∠=°,∴60DMB ∠=° 过切点D 作DF AB ⊥,垂足为点F ,∴1MF DF ==, 因此,切点D的坐标为(2.设直线PD 的函数关系式为y kx b =+,将((12E D -、的坐标代入得2k b k b=+=-+⎪⎩解之,得33k b ⎧=-⎪⎪⎨⎪=⎪⎩所以,直线PD的函数关系式为33y x =-+当E 点在第三象限时,切点D 在第四象限.同理可求:切点D的坐标为(2,,直线PD的函数关系式为y x = 因此,直线PD 的函数关系式为33y x =-+或33y x =-(3)若四边形EAMD 的面积等于DAN △的面积 又22EAM DAN AMD EAMD S S S S ==△△△四边形, ∴AMD EAM S S =△△∴E D 、两点到x 轴的距离相等,∵PD 与M ⊙相切,∴点D 与点E 在x 轴同侧, ∴切线PD 与x 轴平行,此时切线PD 的函数关系式为2y =或 2.y =-当2y =时,由223y x x =--得,1x =当2y =-时,由223y x x =--得,1x =故满足条件的点P 的位置有4个,分别是()()()1231112P P P ++-、、、()412.P --说明:本参考答案给出了一种解题方法,其它正确方法应参考标准给出相应分数.强化训练★1、(10广东深圳)如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (-2,0),B (-1, -3).(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(3)在第(2)问的结论下,抛物线上的点P 使S △P AD =4S △ABM 成立,求点P 的坐标.答案:(1)、因为点A 、B 均在抛物线上,故点A 、B 的坐标适合抛物线方程∴403a c a c +=⎧⎨+=-⎩ 解之得:14a c =⎧⎨=-⎩;故24y x =-为所求(2)如图2,连接BD ,交y 轴于点M ,则点M 就是所求作的点 设BD 的解析式为y kx b =+,则有203k b k b +=⎧⎨-+=-⎩,12k b =⎧⎨=-⎩,故BD 的解析式为2y x =-;令0,x =则2y =-,故(0,2)M -(3)、如图3,连接AM ,BC 交y 轴于点N ,由(2)知,易知BN=MN=1, 易求AM BM ==图2122ABM S =⨯= ;设2(,4)P x x -,依题意有:214422AD x -=⨯ ,即:2144422x ⨯-=⨯解之得:x =±0x =,故 符合条件的P 点有三个:1234),(4),(0,4)P P P --★2、.矩形OBCD 在如图所示的平面直角坐标系中,其中三个顶点分别为O (0,0)、B (0,3)、D (-2,0),直线AB 交x 轴于点A (1,0).(1)求直线AB 的解析式;(2)求过A 、B 、C 三点的抛物线的解析式,并写出其顶点E 的坐标;(3)过点E 作x 轴的平行线EF 交AB 于点F .将直线AB 沿轴向右平移2个单位,与x 轴交于点G ,与EF 交于点H .请问过A 、B 、C 三点的抛物线上是否存在点P ,使得S △P AG =3 4S △PEH.若存在,求点P二、二次函数中构建直角三角形与相似形的存在性问题例2 (2010甘肃)(12分) 如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y轴交于点C (0,-3),设抛物线的顶点为D . (1)求该抛物线的解析式与顶点D 的坐标;(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.解:(1)设该抛物线的解析式为c bx ax y ++=2,由抛物线与y 轴交于点C (0,-3),可知3-=c .即抛物线的解析式为32-+=bx ax y . ………………………1分把A (-1,0)、B (3,0)代入, 得30,9330.a b a b --=⎧⎨+-=⎩解得2,1-==b a .∴ 抛物线的解析式为y = x 2-2x -3. ……………………………………………3分 ∴ 顶点D 的坐标为()4,1-. ……………………………………………………4分 说明:只要学生求对2,1-==b a ,不写“抛物线的解析式为y = x 2-2x -3”不扣分. (2)以B 、C 、D 为顶点的三角形是直角三角形. ……………………………5分理由如下:过点D 分别作x 轴、y 轴的垂线,垂足分别为E 、F.在Rt △BOC 中,OB=3,OC=3,∴ 182=BC . …………………………6分 在Rt △CDF 中,DF=1,CF=OF-OC=4-3=1,∴ 22=CD . …………………………7分 在Rt △BDE 中,DE=4,BE=OB-OE=3-1=2,∴ 202=BD . …………………………8分 ∴ 222BD CD BC =+, 故△BCD 为直角三角形. …………………………9分 (3)连接AC ,可知Rt △COA ∽ Rt △BCD ,得符合条件的点为O (0,0). ………10分过A 作AP 1⊥AC 交y 轴正半轴于P 1,可知Rt △CAP 1 ∽ Rt △COA ∽ Rt △BCD ,求得符合条件的点为)31,0(1P . …………………………………………11分 过C 作CP 2⊥AC 交x 轴正半轴于P 2,可知Rt △P 2CA ∽ Rt △COA ∽ Rt △BCD , 求得符合条件的点为P 2(9,0). …………………………………………12分 ∴符合条件的点有三个:O (0,0),)31,0(1P ,P 2(9,0).三、二次函数中构建等腰三角形的存在性问题例3(10重庆潼南)如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.答案:解:(1)∵二次函数bx x y +=221∴⎩⎨⎧-==++1022c c b解得: b =-21c =-1 ∴二次函数的解析式为21=y (2)设点D 的坐标为(m ,0∴ OD =m ∴AD =2-m 由△AD E ∽△AOC 得,AO AD =∴122DEm =- ∴DE =22m -∴△CDE 的面积=21×22m-×m=242m m +-=41)1(412+--m当m =1时,△CDE 的面积最大 ∴点D 的坐标为(1,0)(3)存在 由(1)知:二次函数的解析式为121212--=x x y 设y=0则1212102--=x x 解得:x 1=2 x 2=-1 ∴点B 的坐标为(-1,0) C (0,-1)设直线BC 的解析式为:y =kx +b∴ ⎩⎨⎧-==+-10b b k 解得:k =-1 b =-1∴直线BC 的解析式为: y =-x -1在Rt △AOC 中,∠AOC=900OA=2 OC=1 由勾股定理得:AC=5 ∵点B(-1,0) 点C (0,-1) ∴OB=OC ∠BCO=450①当以点C 为顶点且PC=AC=5时, 设P(k , -k -1)过点P 作PH ⊥y 轴于H题图26∴∠HCP=∠BCO=450 CH=PH=∣k ∣ 在Rt △PCH 中k 2+k 2=()25 解得k 1=210, k 2=-210 ∴P 1(210,-1210-) P 2(-210,1210-) ②以A 为顶点,即AC=AP=5设P(k , -k -1),过点P 作PG ⊥x 轴于GAG=∣2-k ∣ GP=∣-k -1∣ 在Rt △APG 中 AG 2+PG 2=AP 2(2-k )2+(-k -1)2=5 解得:k 1=1,k 2=0(舍)∴P 3(1, -2)③以P 为顶点,PC=AP 设P(k , -k -1) 过点P 作PQ ⊥y 轴于点Q PL ⊥x 轴于点L ,∴L(k ,0)∴△QPC 为等腰直角三角形, PQ=CQ=k 由勾股定理知CP=PA=2k∴AL=∣k -2∣, PL=|-k -1|在Rt △PLA 中(2k)2=(k -2)2+(k +1)2 解得:k =25∴P 4(25,-27) 综上所述: 存在四个点:P 1(210,-1210-) P 2(-210,1210-) P 3(1, -2) P 4(25,-27) 三、二次函数中构建四边形的存在性问题(一)二次函数中构建梯形的存在性问题例4 (10山东临沂)如图,二次函数y = -x 2+ax +b 的图像与x 轴交于A (-21,0)、 B (2,0)两点,且与y 轴交于点C ;(1) 求该拋物线的解析式,并判断△ABC 的形状;(2) 在x 轴上方的拋物线上有一点D ,且以A 、C 、D 、B 四 点为顶点的四边形是等腰梯形,请直接写出D 点的坐标; (3) 在此拋物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由。
二次函数中的存在性问题
⼆次函数中的存在性问题⼆次函数中的存在性问题存在性问题是指判断满⾜某种条件的事物是否存在的问题,这类问题的知识覆盖⾯较⼴,综合性较强,题意构思⾮常精巧,解题⽅法灵活,对学⽣分析问题和解决问题的能⼒要求较⾼,是近⼏年来各地中考的“热点”。
这类题⽬解法的⼀般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出⽭盾,就做出“不存在”的判断。
以下⼏篇内容为⼏种典型的⼆次函数中出现的存在性问题,希望⼤家在以后的学习中如果遇到此类型时能够轻松解决。
⼀、特殊三⾓形的存在性问题(⼀)⼆次函数中的等腰三⾓形存在性问题如果△ABC是等腰三⾓形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.因此,解等腰三⾓形的存在性问题时,通常要进⾏分类讨论。
这类问题有⼏何法和代数法两种⽅法,我们要根据具体情况灵活选择简便的⽅法。
⼏何法⼀般分三步:分类、画图、计算.代数法⼀般也分三步:罗列三边长,分类列⽅程,解⽅程并检验.(⼆)⼆次函数中的直⾓三⾓形存在性问题如果△ABC是直⾓三⾓形,那么存在①∠A为直⾓,②∠B为直⾓,③∠C为直⾓三种情况.因此,解直⾓三⾓形的存在性问题时,通常要进⾏分类讨论。
这类问题有⼏何法和代数法两种⽅法,我们要根据具体情况灵活选择简便的⽅法。
⼏何法⼀般分三步:分类、画图、计算.代数法⼀般也分三步:罗列三边长,分类列⽅程,解⽅程并检验.(三)⼆次函数中的等腰直⾓三⾓形存在性问题在解决等腰直⾓三⾓形存在性问题时,往往要⽤到⼏何和代数相结合的⽅法,设出点的坐标后,利⽤等腰直⾓三⾓形的⼏何性质及函数关系式列⽅程求解,最常⽤到的有:①两直⾓边相等,直⾓边与斜边的⽐为1:√2;②斜边中线垂直于斜边,且等于斜边的⼀半。
③直⾓顶点处构造三垂直,得到全等三⾓形,利⽤对应边的等量关系求解。
二次函数中的梯形、菱形存在性问题 学生版
二次函数中的梯形、菱形存在性问题学生版二次函数在数学中起着重要的作用。
学生在研究二次函数时,常常会遇到与梯形和菱形相关的问题。
本文将讨论二次函数中梯形和菱形的存在性问题。
梯形的存在性问题一个梯形是由两个平行线段和连接它们的两个非平行线段组成的四边形。
在二次函数中,存在一个梯形的问题是问是否有一组值可以满足二次函数图像上的四个点构成一个梯形。
具体而言,我们需要找到一组x坐标值,使得对应的y坐标值满足梯形的定义。
在解决梯形的存在性问题时,我们可以利用二次函数的性质。
首先,如果一个函数的二次项系数为正,则函数图像是开口向上的抛物线。
这意味着我们可以通过选择x坐标值,使得对应的y坐标值形成一个梯形。
然而,如果二次项系数为负,则函数图像是开口向下的抛物线。
在这种情况下,我们无法找到一组值构成一个梯形。
菱形的存在性问题一个菱形是一个具有四个相等边长且相邻两边互相垂直的四边形。
在二次函数中,存在一个菱形的问题是问是否有一组值可以满足二次函数图像上的四个点构成一个菱形。
具体而言,我们需要找到一组x坐标值,使得对应的y坐标值满足菱形的定义。
解决菱形的存在性问题与解决梯形的问题类似。
如果二次函数图像是对称的,即以y轴或x轴为对称轴,则可以找到一组值构成一个菱形。
这是因为对称性保证了相邻两边互相垂直,并且相等边长可以通过选择x或y坐标值来实现。
总的来说,在二次函数中,梯形和菱形的存在性问题取决于函数的性质。
通过了解二次函数的开口方向和对称性,我们可以判断是否存在满足梯形和菱形定义的点集。
二次函数的存在性问题(Word版解析+答案)
中考压轴题解析二次函数的存在性问题【典例分析】【考点 1】二次函数与相似三角形问题例1】已知抛物线y ax2 bx 3与 x轴分别交于A( 3,0),B(1,0)两点,与 y轴交于点 C.2)点 F 是线段 AD 上一个动点.1AD .2ABC 相似?若相似,求出点 F 的坐标;若不相似,请说明理由.变式1-1】如图,抛物线y ax2 2x c经过A( 1,0),B两点,且与y轴交于点C(0,3) ,抛物线与直线y x 1交于A,E 两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B 的左侧,若以P,B,C为顶点的三角形与ABE相似,求点P的坐AF①如图 1,设k ,当 k 为何值时,CFAD1)求抛物线的表达式及顶点 D 的坐标;标.1【变式1-2】如图,已知抛物线y m(x 2)(x m)(m > 0)与 x 轴相交于点 A,B,与 y轴相交于点 C,且点 A 在点 B 的左侧 .( 1)若抛物线过点( 2, 2),求抛物线的解析式;(2)在( 1)的条件下,抛物线的对称轴上是否存在一点H ,使 AH+CH 的值最小,若存在,求出点 H 的坐标;若不存在,请说明理由;(3)在第四象限内,抛物线上是否存在点M ,使得以点 A,B,M 为顶点的三角形与△ACB 相似?若存在,求出 m 的值;若不存在,请说明理由 .考点 2】二次函数与直角三角形问题BC交于点D,连接AC 、AD ,求VACD的面积;3 点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F ,问是否存在点E使VDEF 为直角三角形?若存在,求出点E 坐标,若不存在,请说明理由.例2】如图,抛物线y ax2bx c a 0的顶点坐标为2, 1 ,图象与y 轴交于点C 0,3 ,与x轴2 设抛物线对称轴与直线【变式2-1】如图,经过x 轴上A( 1,0), B(3,0)两点的抛物线y m(x 1)2 4m (m 0)交y 轴于点C ,设抛物线的顶点为D ,若以DB 为直径的⊙ G 经过点C ,求解下列问题:1)用含m的代数式表示出C,D 的坐标;2)求抛物线的解析式;3)能否在抛物线上找到一点Q,使△BDQ 为直角三角形?如能,求出Q点的坐标,若不能,请说明理由。
2020年中考专题练习---梯形的存在性问题
A B C M 1 M 2梯形是相对限制较少的一类四边形,要使得一个四边形是梯形,只需要有其中一组对边平行,另一组对边不平行即可。
所以,在此类问题中,要么对点有较高的限制(在某一直线上),要么对梯形形状有较高要求(等腰或直角)。
综合利用各个条件,才能求出最后的结果.1、 知识内容:梯形的限制较少,所以可能出现的情况就会有很多,在处理时需要想清所有可能情况,再进行讨论处理。
有一种比较常见的情况是:若已知三点ABC ,另一点M 在某固定直线上,形成的四边形ABCM 为梯形,则会有两种情况:①AM //BC ;②CM //AB ,如图所示。
梯形的存在性问题内容分析知识结构模块一:一般梯形的存在性问题 知识精讲2、 解题思路:(1) 根据题目条件,求出已知3个点的坐标;(2) 分情况进行讨论;(3) 对可能的各种情况,求出已知边所在直线的方程;(4) 根据直线方程,求得与其平行的直线的方程,再解出待求点的坐标;(5) 根据题目实际情况,验证所有可能点是否满足要求并作答.注:若两条直线平行,则这两条直线的斜率相等.【例1】 在平面直角坐标系中,已知抛物线223y x bx c =++与x 轴交于点A (1-,0)和点B ,与y 轴交于点C (0,2-).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形, 求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t ,0),且t > 3,如果BDP ∆和CDP ∆的面积相 等,求t 的值.【答案】见解析.【解析】(1)将A 、C 代入抛物线解析式,解得抛物线解析式为:224233y x x =--. 对称轴为:直线1x =.(2)E 点为(1,0),分情况讨论: ①AC // EF 例题解析。
二次函数中的梯形、菱形存在性问题 学生版
二次函数中的梯形、菱形存在性问题学生版引言二次函数是数学中一类重要的函数,在求解问题时经常被使用。
本文将讨论二次函数中的梯形和菱形存在性问题。
我们将探讨在何种情况下,二次函数图像可以形成梯形和菱形,以及梯形和菱形的特征和性质。
梯形的存在性问题在二次函数中,当函数图像呈现梯形形状时,我们需要考虑以下情况:1.当二次函数的二次项系数为正数时,函数图像可以形成正梯形。
正梯形的特点是上底和下底之间的差值逐渐增大。
2.当二次函数的二次项系数为负数时,函数图像可以形成倒梯形。
倒梯形的特点是上底和下底之间的差值逐渐减小。
3.当二次函数的二次项系数为零时,函数图像将退化为一条直线,无法形成梯形。
菱形的存在性问题在二次函数中,当函数图像呈现菱形形状时,我们需要考虑以下情况:1.当二次函数的一次项系数为零时,函数图像将变为一个完美的菱形。
菱形的特点是上底和下底之间的差值恒定。
2.当二次函数的一次项系数不为零时,函数图像将出现略微变形的菱形。
菱形的特点是上底和下底之间的差值会随着一次项系数的变化而变化。
结论在二次函数中,梯形和菱形的形成与二次项系数和一次项系数的取值有关。
通过了解二次函数的系数对函数图像形状的影响,我们可以更好地理解二次函数的性质和特点。
深入研究二次函数中梯形和菱形存在性问题,有助于学生对二次函数的图像有着更清晰的认识和理解。
以上是关于二次函数中的梯形、菱形存在性问题的学生版文档。
希望能够帮助学生们更好地理解和应用二次函数的图像特点。
二次函数存在性问题及解答
初中数学二次函数存在性问题总复习试题及解答1.(10广东深圳)如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (-2,0),B (-1, -3). (1)求抛物线的解析式;(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(3)在第(2)问的结论下,抛物线上的点P 使S △P AD =4S △ABM 成立,求点P 的坐标.答案:(1)、因为点A 、B 均在抛物线上,故点A 、B 的坐标适合抛物线方程∴403a c a c +=⎧⎨+=-⎩ 解之得:14a c =⎧⎨=-⎩;故24y x =-为所求 (2)如图2,连接BD ,交y 轴于点M ,则点M 就是所求作的点 设BD 的解析式为y kxb =+,则有203k b k b +=⎧⎨-+=-⎩,12k b =⎧⎨=-⎩,故BD 的解析式为2y x =-;令0,x =则2y =-,故(0,2)M -(3)、如图3,连接AM ,BC 交y 轴于点N ,由(2)知,OM=OA=OD=2,90AMB ∠=︒ 易知BN=MN=1,易求AM BM ==122ABMS=⨯=;设2(,4)P x x -, 依题意有:214422AD x -=⨯,即:2144422x ⨯-=⨯解之得:x =±,0x =,故 符合条件的P点有三个:123((0,4)P P P --图22. (10北京)在平面直角坐标系xOy 中,抛物线y = -41-m x 2+45mx +m 2-3m +与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上。
(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的 垂线,与直线OB 交于点E 。
延长PE 到点D 。
使得ED =PE 。
以PD 为斜边在PD 右侧作等腰直角三角形PCD (当P 点运动 时,C 点、D 点也随之运动) 当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求 OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止 运动,P 点也同时停止运动)。
二次函数存在性问题1 教师版
x y
„ „
-3
5 -2
-2 -4
1
5 -2
2 0
„ „
(1) 求 A、B、C 三点的坐标; (2) 若点 D 的坐标为(m,0),矩形 DEFG 的面积为 S,求 S 与 m 的函数关系,并指出 m 的取值范围; (3) 当矩形 DEFG 的面积 S 取最大值时,连接 DF 并延长至 点 M,使 FM=k·DF,若点 M 不在抛物线 P 上,求 k 的取值 范围.
二.二次函数与四边形的面积 例 1.(资阳市)25.如图 10,已知抛物线 P:y=ax2+bx+c(a≠0) 与 x 轴交于 A、B 两点(点 A 在 x 轴的正半轴上), 与 y 轴交于点 C, 矩形 DEFG 的一条边 DE 在线段 AB 上, 顶点 F、 G 分别在线段 BC、 AC 上,抛物线 P 上部分点的横坐标对应的纵坐标如下:
2 将 C 点的横坐标 x=2 代入 y x 2x 3 得 y=-3,∴C(2,-3)∴直线 AC 的函数解析式是 y=-x-1
(2)设 P 点的横坐标为 x(-1≤x≤2)则 P、E 的坐标分别为:P(x,-x-1) ,
2 2 2 E( ( x, x 2 x 3) ∵P 点在 E 点的上方,PE= ( x 1) ( x 2 x 3) x x 2
2 2 m2 6m 5 2 . 当 m 6m 5 2 时, 解得 m 3 6 . 当 m 6m 5 2 时, 解得 m 3 2 .
2) 或 (3 6, 2) 或 (3 2, 2) 或 (3 2, 2) 时, 当点 P 运动到 (3 6, PP ∥OD ,以点 D,O,P,P 为顶点的四边形是平行四边形.
二次函数与几何综合类存在性问题课件
03
注意答案的完整性和规 范性;
04
在解答过程中,注意逻 辑的严密性和推理的准 确性。
02
二次函数与几何综合类存在
性问题的类型
以二次函数为背景的存在性问题
总结词
这类问题主要考察二次函数的性质,如开口方向、对称轴、顶点等,以及这些 性质在几何图形中的应用。
详细描述
这类问题通常会给出二次函数的一般形式,如$f(x) = ax^2 + bx + c$,然后要 求求解满足某些条件的点或线。例如,求函数$f(x) = x^2 - 2x$在$x$轴上的交 点,或求函数$f(x) = x^2 - 2x$的对称轴等。
3. 将代数结果和几何结果相互印证,得出最终结论。
04
二次函数与几何综合类存在
性问题的实例分析
实例一
总结词
利用抛物线的性质和点到直线距离公式,求出最小值。
详细描述
设抛物线方程为 $y = ax^2 + bx + c$,直线方程为 $y = mx + n$。首先,将抛线上的点 $(x, y)$ 到直线的距离表示为 $d = frac{|ax^2 + bx + c - mx - n|}{sqrt{m^2 + 1}}$。然后,利用抛物线的 性质和极值定理,求出 $d$ 的最小值。
实例三
总结词
利用双曲线的性质和点到直线距离公 式,求出最小值。
详细描述
设双曲线方程为 $frac{x^2}{a^2} frac{y^2}{b^2} = 1$,直线方程为 $y = mx + n$。首先,将双曲线上的点 $(x, y)$ 到直线的 距离表示为 $d = frac{|mx - y + n|}{sqrt{m^2 + 1}}$。然后,利用双曲线的性质和极值定理 ,求出 $d$ 的最小值。
二次函数教学中存在的问题及解决策略
二次函数教学中存在的问题及解决策略摘要:函数是初中数学课程的基本概念之一,是教学的重要内容,在九年级数学教学中,二次函数又是重中之重。
而在实际课堂教学中,学生的认知水平与二次函数的内容存在着一定的矛盾,使学生难以真正掌握这一模块的知识。
鉴于此,教师应找到学生在二次函数学习中产生困难的原因并对此深入分析,在找到原因后,教师还需要有针对性地解决这一问题,从而使教学呈现出高效性。
关键词:二次函数教学;存在问题;解决策略引言二次函数是学生在简单基础的一次函数之外所接触到的函数部分内容。
尽管相对于更加复杂的三次函数以及三角函数简单许多,但相对于一次函数而言难度大大增加,并且对学生接下来的函数部分学习有着准备性、基础性的作用,教师必须重视二次函数的教学设计,绝不能掉以轻心。
同时,由于学生的数学基础水平不同,教师在联系一次函数展开教学的过程中也需要重视方式方法,在帮助学生理解的基础上带领学生对简单一次函数进行基本的复习,在融会贯通的前提下优化整体教学质量。
1初中生学习二次函数困难的原因学生在学习二次函数时,存在困难的因素有很多。
最主要体现在三个方面。
其一,二次函数知识本身的原因。
因为函数概念本身就具有一定的抽象性,并且二次函数的图像和性质具有一定的复杂性,相比较之前学生学习过的一次函数,图象所反应出的性质更加复杂。
此外,二次函数的应用问题也是学生学习困难的原因之一,由于实际问题产生的背景复杂,涉及到的变量多,使学生在建立数学模型时存在很大的困难;其二,学生自身的原因。
由于学生的认知发展水平不够,并且九年级学生的抽象思维还未真正形成,他们在学习二次函数时,思维只能停留在具体数字的认识上;其三,教师的教学方法较为陈旧。
受传统教育理念的影响,教师还选择照本宣科,忽视学生思维的发展,例如,在判断哪些为二次函数时,教师往往以题海战术训练学生,这样会使学生达不到理解的程度。
2二次函数教学的有效策略1.巧用信息技术,降低理解难度二次函数呈现出一定的抽象性,对学生而言,容易使他们产生思维的障碍,鉴于此,信息技术的出现能够为课堂教学注入新活力,同时,也能够在一定程度上降低学生的理解难度。
二次函数存在性问题(一题多问)
【原题】已知,如图1,经过点A (-3,0)的抛物线2y ax bx c =++与x 轴相交于点B (-2,-2)及原点O .点D 是抛物线第二象限图像上的一点,AH ⊥x 轴与H 点,且tan ∠DAH =4. 【问题】(1)求点D 坐标及抛物线的解析式;(2)在线段OB 下方的抛物线上有一点M ,当△MOB 的面积最大时,求点M 的坐标,并求出最大面积.A 图1xyH BDOA xyBDO(3)在(2)的条件下,抛物线上是否存在点N (不与M 重合),使得S △OBN =S △OBM ,若存在,求出N 点坐标;若不存在,请说明理由. 变式练习:抛物线上是否存在点N ,使得S △OBN =14S △OBD .(4)连接BD ,取BD 中点F ,在抛物线的对称轴上是否存在一点Q ,使得QF +QD 的值最小,求出点Q 坐标,并求出QF +QD 的最小值.变式练习:①连接BD ,取BD 中点F ,点R 、S 分别是x 轴、y 轴上的动点,当四边形DFRS 的周长最小时,求出R 、S 的坐标,并求出四边形DFRS 周长的最小值.②连接BD ,在x 轴上是否存在一点Q ,使得∣QD -QB ∣的值最大,若存在,求出点Q 坐标,并求出最大值;若不存在,请说明理由.③连接AD ,点M 、N 分别是线段OD 、AD 上的动点,连接AM ,MN ,当AM +MN 的值最小时,求出点N 的坐标.④将线段OB 向左移动m 个单位长度,得到线段O ′B ′连接O ′D 、B ′D ,是否存在这样的m ,使得O ′D +B ′D 的值最小?若存在,求出m 的值;若不存在,请说明理由.⑤已知P (0,a )、Q (0,a +3)是y 轴上的两个动点,当四边形BDQP 的周长最小时,求a 的值.A xyBDOA xyBDO(5)在(4)的条件下,点G 是线段OD 上的动点,当△DFG 是等腰三角形时,求点G的坐标.(6)在(4)的条件下,点G 是线段OD 上的动点,把△BFG 沿着线段FG 翻折,是否存在这样的点G ,使△BFG 与△DFG 的重叠部分的面积等于△BDG 的14,若存在,求出DG 的长;若不存在,请说明理由.(7)若点K 在抛物线上,点L 在抛物线的对称轴上,且A 、O 、K 、L 为顶点的四边形是平行四边形,求点K 的坐标;A xyBDOA xyBDOA xyBDO变式练习:若点K 在抛物线上,点L 在x 轴上,且A 、B 、K 、L 为顶点的四边形是平行四边形,求点K 的坐标.(若求L 的坐标呢?)(8)若点U 是抛物线对称轴上一点,当△ADU 是Rt △时,求点U 的坐标.A xyBDOA xyBDO(9)连接BD ,点N 是直线BD 上的一点,在y 轴的正半轴,是否存在一点M ,使得∠MNO =45°,且存在唯一的N 点,若存在,求出M 点坐标;若不存在,请说明理由.变式训练:连接BD ,把△OBD 沿着OD 翻折,使得点B 落在第一象限的点B ˊ处,点P从点D 出发向点B 作匀速运动,点Q 从点B ˊ出发向点D 作匀速运动,两点同时出发,速度均为每秒一个单位长度,连接OP ,OQ ,当时间t 为多少秒时,PO 平分∠BPQ 的同时,QO 平分∠PQ B ˊ?A xyBDOA xyBDOB ˊ(10)P 是抛物线上的第一象限内的动点,过点P 作PT ⊥x 轴,垂足为T ,是否存在点P ,使得以P 、T 、A 为顶点的三角形△BOD 相似?若存在,求出点P 的坐标;若不存在,请说明理由.变式练习:P 是抛物线上的一点,过点P 作PT ⊥x 轴,垂足为T ,过点B 作BI ⊥x 轴,垂足为I ,是否存在点P ,使得以P 、T 、A 为顶点的三角形△ABI 相似?若存在,求出点P 的坐标;若不存在,请说明理由.(11)若点C 在抛物线上,且∠CDO =∠BDO ,试探究:在(2)的条件下,是否存在点G ,使得△GOD ∽△COB ?若存在,请求出所有满足条件的点G 坐标;若不存在,请说明理由.I A xyBDOCA xyBDO。
初中数学二次函数中存在性问题研究
初中数学二次函数中存在性问题研究摘要:在初中阶段的数学教学实践活动中,二次函数占据重要的部分,并且也是整个初中数学教学的重难点。
二次函数作为初中数学学习过程中难度最大的内容,导致很多学生对二次函数的学习具有恐惧心理,甚至对于二次函数的内涵不甚了解。
二次函数中的存在性问题因为其独有的抽象性,需要教师对学生给予及时的引导,从而保障教学内容的输出和教学效率的提升。
本文就初中数学二次函数中存在性问题进行研究,并提出相应的教学策略。
关键词:初中数学;二次函数;存在性;策略初中数学二次函数中存在性问题的相应教学实践备受关注,而且在日常教学过程中,二次函数中存在性的问题是教师最难教、学生最难学的重难点问题。
在二次函数的教学中,教师需要在循序渐进的教学过程中,引导学生逐渐具备数形结合的思想。
在这一过程中,想要让学生对二次函数中存在性问题有深入、细致的了解,就需要开创性的教学模式,加深学生对二次函数中存在性相关数学问题的理解,以二次函数的相关特点为教学基础,在提升学生数学素养的同时,提高学生学习二次函数的效率。
一、初中数学二次函数中存在性问题初中数学二次函数中的存在性问题不是重要的考察点,以图形为载体,具有较强的综合性、技巧性和全面性,对学生掌握知识的程度和学习迁移能力有较高的要求,所以初中阶段的学生一般对这一问题具有一定的抵触情绪,所以,初中数学教师在教学实践活动中,初中数学教师需要格外关注初中数学二次函数中存在性问题的教学实践,在对重点知识进行整理的基础上进行系统化、全面化的讲授和教学。
在初中数学二次函数存在型问题的教学中,主要有以下两个方面,一是初中二次函数中三角形的存在性问题,包括直角三角形、相似三角形等,二是初中二次函数中梯形的存在性问题,包括等腰梯形、直角梯形等,这些知识点都具有一定的延展性。
例1,如图所示,直线y=3x+3和x轴相交,交点为A点,和y轴也有交点,通过A、B两个点的抛物线和x轴相交,交点是C(3,0).(1)试着计算这条抛物线的解析式;(2)试问在抛物线的对称轴上是否有没有一个点,设该点为Q,可以构成一个等腰三角形ABQ ?如果有符合条件的点,请计算出该点 Q的坐标是什么;如果没有符合条件的点,试着说明原因.解析:(1)当x=0时,y=3;当y=0时,x=-1,由于A的坐标为(-1,0),B的坐标为(0,3),C的坐标为(3,0);在此,我们可以设抛物线的解析式,具体表示为y=a(x+1)(x-3),通过该解析式,可以求出a的值是-1,所以可以求出这条抛物线的解析式是y=-(x+1)(x-3)=-x²+2x+3.(2)存在抛物线的对称轴为:x= -1+3/2=1,如图中对称轴与x轴的交点即为Q1,故OA=OQ1,BO与AQ1互相垂直,即AB=QB,Q1 (1,0) ;当Q2A=Q2B时,设Q2的坐标为(1,m),故2²+m²=1²+ (3-m) 2,即m=1,Q 2(1,1);当Q3A=AB时,设Q3(1,n),则2² + n ² =1² +3²,n>o ,故 n的值就是√6,所以Q3的坐标为(1,√6),综上所述,符合条件的Q点坐标一共有三个,分别是Q1、Q2、Q3,三个点的坐标分别是(1,0)(1,1)(1,√6).例2,如下图所示,二次函数y=x+ax+b的图像和x轴有两个交点,交点设为A、B,A、B两点的坐标已.试问,在这条y=x+ax+b的抛物线上,求能够在这个图中构成一个以A、C、B、P四点为顶点的直角梯形的点P的坐标.首先需要验证AC和BC两条直线是互相垂直的,在这一条件的基础上,具体有两种情况存在,一种情况是,以BC作为底边,BC和AP相互平行,这样就可以计算出直线BC的解析式,然后将直线AP看作是直线BC平移所得的,直线AP的解析式和直线BC解析式相同,A点的坐标带入这一解析式当中之后,直线AP的具体解析式可知,就可以得到P点的坐标;另一种情况是以AC作为底边,假设直线BP和直线AC互相平行,与第一种情况同理,也可以计算P点的另一种坐标情况。
二次函数综合(动点)问题——梯形存在问题培优学案(横版)
适பைடு நூலகம்学科
初中数学
适用年级
初中三年级
适用区域
全国新课标
课时时长(分钟)
60分钟
知识点
1、二次函数y=ax2+bx+c的图像和性质
2、梯形性质
3、梯形模型探究
学习目标
一、知识与技能
1、掌握二次函数y=ax2+bx+c的图像和性质;
2、掌握梯形的性质;
3、会对梯形模型进行探究,分类讨论不同的情况。
三、情感、态度与价值观
1、培养学生的处理图像综合运用的能力;
2、让学生养成从特殊到一般,从简单到复杂的学习方法;
3、形成对图形的处理能力,形成解题技巧,树立对解决此类问题的信心。
学习重点
是否存在一点使得四边形是梯形,如果存在求出点的坐标
学习难点
在x轴上存在一点P,在抛物线上是否存在一点Q使得四边形是梯形,如果存在求出点Q的坐标
②如果是梯形则用一组对边平行去求解待定参数,如果是直角梯形则分四个内角分别为直角去分类求解,如果是等腰梯形则用两腰相等去求解。
三、例题精析
【例题1】
【题干】(昭通)如图:二次函数y=-x2+ax+b的图象与x轴交于A(- ,0),B(2,0)两点,且与y轴交于点C.
(1)求该抛物线的解析式,并判断△ABC的形状;
(1)如果两点关于对称轴对称,则有对称轴 ;
(2)两点之间距离公式:已知两点 ,
则由勾股定理可得:
练一练:已知A(0,5)和B(-2,3),则AB=。
(3)中点公式:已知两点 ,则线段PQ的中点M为 。
练一练:已知A(0,5)和B(-2,3),则线段AB的中点坐标是
二次函数中的十二大存在性问题(学生版)
二次函数中的十二大存在性问题【题型1二次函数中等腰三角形的存在性问题】【题型2二次函数中直角三角形的存在性问题】【题型3二次函数中等腰直角三角形的存在性问题】【题型4二次函数中全等三角形的存在性问题】【题型5二次函数中平行四边形的存在性问题】【题型6二次函数中菱形的存在性问题】【题型7二次函数中矩形的存在性问题】【题型8二次函数中正方形的存在性问题】【题型9二次函数中面积问题的存在性问题】【题型10二次函数中线段问题的存在性问题】【题型11二次函数中角度问题的存在性问题】【题型12二次函数中最值问题的存在性问题】【题型1二次函数中等腰三角形的存在性问题】1(2023春·甘肃张掖·九年级校考期中)如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究),并求出最大面积及E点的坐标.(3)在该抛物线的对称轴上是否存在点M,使以C、P、M为顶点的三角形为等腰三角形?若存在,请求出所符合条件的点M的坐标;若不存在,请说明理由;1(2023春·广西贵港·九年级统考期末)如图,抛物线y=ax2+3x+c a≠0和与x轴交于点A-2,0点B,与y轴交于点C0,8,点P为直线BC上方抛物线上的动点,连接CP,PB,直线BC与抛物线的对称轴l交于点E.(1)求抛物线的解析式;(2)求△BCP的面积最大值;(3)点M是抛物线的对称轴l上一动点.是否存在点M,使得△BEM为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.2(2023春·山西晋城·九年级校考期末)如图1,抛物线y=ax2+bx+3与x轴交于A-1,0两,B4,0点,与y轴交于点C,顶点为D.点P是直线BC上方抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点Q.(1)求抛物线的表达式;(2)求线段PQ的最大值;(3)如图2,过点P作x轴的平行线交y轴于点M,连接QM.是否存在点P,使得△PQM为等腰三角形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.3(2023•沙坪坝区校级模拟)如图1,抛物线y=ax2+bx+2(a≠0)交x轴于点A(-1,0),点B(4,0),交y轴于点C.连接BC,过点A作AD∥BC交抛物线于点D(异于点A).(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上一动点,过点P作PE∥y轴,交AD于点E,过点E作EG⊥BC于点G,连接PG.求△PEG面积的最大值及此时点P的坐标;(3)如图2,将抛物线y=ax2+bx+2(a≠0)水平向右平移32个单位,得到新抛物线y1,在y1的对称轴上确定一点M,使得△BDM是以BD为腰的等腰三角形,请写出所有符合条件的点M的坐标,并任选其中一个点的坐标,写出求解过程.【题型2二次函数中直角三角形的存在性问题】1(2023春·四川广安·九年级校考期中)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(-3,2),B(0,-2),其对称轴为直线x=52,C0,1 2为y轴上一点,直线AC与抛物线交于另一点D.(1)求抛物线的函数表达式;(2)试在线段AD下方的抛物线上求一点E,使得△ADE的面积最大,并求出最大面积;(3)在抛物线的对称轴上是否存在一点F,使得△ADF是直角三角形?如果存在,求点F的坐标;如果不存在,请说明理由.1(2023春·辽宁盘锦·九年级校考期中)如图,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的横坐标;(3)点P是对称轴上的一动点,是否存在某一点P使P、B、C为顶点的三角形是以BC为直角边的直角三角形?若存在,请直接写出所有符合条件的P点坐标;不存在,说明理由.2(2023春·广东梅州·九年级校考期中)已知二次函数y=x2+bx+c的图象经过A(-2,5),B(-1,0),与x轴交于点C.(1)求这个二次函数的解析式;(2)点P直线AC下方抛物线上的一动点,求△PAC面积的最大值;(3)在抛物线对称轴上是否存在点Q,使△ACQ是直角三角形?若存在,直接写出点Q的坐标,若不存在,请说明理由.3(2023春·甘肃金昌·九年级统考期中)平面直角坐标系中,抛物线y=a(x-1)2+92与x轴交于A,B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式,并直接写出点A,C的坐标;(2)在抛物线的对称轴上是否存在点P,使△BCP是直角三角形?若存在,请直接写出点P的坐标,若不存在,请说明理由;(3)如图,点M是直线BC上的一个动点,连接AM,OM,是否存在点M使AM+OM最小,若存在,请求出点M的坐标,若不存在,请说明理由;【题型3二次函数中等腰直角三角形的存在性问题】1(2023春·山西阳泉·九年级统考期末)综合与探究:在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A-1,0作平行于x轴的直线l,直线l与抛物线y,与y轴交于点C,过动点D0,m和点B4,0=ax2+bx-2相交于点E,F.(1)求抛物线的表达式;(2)求m的取值范围;(3)直线l上是否存在一点P,使得△BCP是以BC为直角边的等腰直角三角形?若存在,求m的值;若不存在,请说明理由.1(2023春·福建漳州·九年级校考期中)如图①,已知抛物线y=ax2+bx+3的图象经过点B1,0,与y 轴交于点A,其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的角平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连接PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2(2023春·湖南湘西·九年级统考期末)如图,在平面直角坐标系中,直线y =-x +3交x轴于点B ,交y 轴于点C ,直线AD 交x 轴于点A ,交y 轴于点D ,交直线BC 于点E -12,72,且CD =1.(1)求直线AD 解析式;(2)点P 从B 点出发沿线段BA 方向以1个单位/秒的速度向终点A 运动(点P 不与A ,B 两点重合),设点P 的运动时间为t ,则是否存在t ,使得△AEP 为等腰直角三角形?若存在,请求出t 的值,若不存在,请说明理由;(3)在(2)的条件下,点P 出发的同时,点Q 从C 点出发沿射线CO 方向运动,当点P 到达终点时,点Q 也停止运动,连接AQ ,PQ ,设△APQ 的面积为S ,S 与t 的函数关系式为S =32t 2-12t +2120≤t <1a t -1 t -7 1<t <7,其图象如图2所示,结合图1、图2的信息,请求出a 的值及当△APQ 的面积取得最大值时AQ 的长.3(2023春·北京通州·九年级统考期末)如图,抛物线y1=ax2-2x+c的图象与x轴交点为A和B,与y 轴交点为D0,3,与直线y2=-x-3交点为A和C.(1)求抛物线的解析式;(2)在直线y2=-x-3上是否存在一点M,使得△ABM是等腰直角三角形,如果存在,求出点M的坐标,如果不存在请说明理由.(3)若点E是x轴上一个动点,把点E向下平移4个单位长度得到点F,点F向右平移4个单位长度得到点G,点G向上平移4个单位长度得到点H,若四边形EFGH与抛物线有公共点,请直接写出点E的横坐标x E的取值范围.【题型4二次函数中全等三角形的存在性问题】1(2023·陕西咸阳·统考三模)如图,抛物线y=14x2-2x+3与x轴交于A、B两点,抛物线的顶点为C,对称轴为直线l,l交x轴于点D.(1)求点A、B、C的坐标;(2)点P是抛物线上的动点,过点P作PM⊥y轴于点M,点N在y轴上,且点N在点M上方,是否存在这样的点P、N,使得以点P、M、N为顶点的三角形与△BCD全等,若存在,请求出点P、N的坐标;若不存在,请说明理由.1(2023·甘肃陇南·统考一模)如图,抛物线y=x2+bx+c与x轴交于A-1,0,B两点,与y轴交于点C0,-3.(1)求抛物线的函数解析式;(2)已知点P m,n在抛物线上,当-1≤m<3时,直接写出n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D坐标为2,3,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.2(2023·陕西咸阳·统考三模)如图,抛物线y=14x2-2x+3与x轴交于A,B两点,抛物线的顶点为C,对称轴为直线l,l交x轴于点D.(1)求点A、B、C的坐标;(2)点P是抛物线上的动点,过点P作PM⊥y轴于点M,点N在y轴上,且点N在点M上方,是否存在这样的点P、N,使得以点P、M、N为顶点的三角形与△BCD全等,若存在,请求出点P、N的坐标;若不存在,请说明理由.3(2023·内蒙古通辽·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+22=(2+1)2].【题型5二次函数中平行四边形的存在性问题】1(2023春·云南临沧·九年级统考期末)如图,抛物线y=ax2+bx-3与x轴交于A-1,0两点,、B3,0与y轴交于点C.(1)求抛物线的解析式;(2)若点D是抛物线上的一点,当△ABD的面积为10时,求点D的坐标;(3)点P是抛物线对称轴上的一点,在抛物线上是否存在一点Q,使得以B、C、P、Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.1(2023春·山东东营·九年级校考期末)如图,已知抛物线y=ax2+bx+3与x轴交于A-1,0、B3,0两点,与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)若点P为线段BC上的一动点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求点P的坐标;(3)在(2)的条件下,当△BCM的面积最大时,点D是抛物线的对称轴上的动点,在抛物线上是否存在点E,使得以A、P、D、E为顶点的四边形为平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.2(2023春·重庆梁平·九年级统考期末)如图1,在平面直角坐标系中,抛物线y=-2x2+4x+6与y轴交于点A,与x轴交于点E,B(E在B的左侧).(1)如图2,抛物线的顶点为点Q,求△BEQ的面积;(2)如图3,过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD 平行于y轴交AB于点D、交AC于点F,当点P在何位置时,PD+CF最大?求出最大值;(3)在(2)条件下,当PD+CF最大时,将抛物线y=-2x2+4x+6沿着射线AB平移,使得抛物线经过点C,此时得到新抛物y ,点N是原抛物线对称轴上一点,在新抛物线y 上是否存在一点M,使以点A,D,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的所有坐标,若不存在,请说明理由.3(2023春·重庆江北·九年级重庆十八中校考期末)如图1,抛物线y=ax2+bx+3a≠0与x轴正半轴交于点A,B,与y轴正半轴交于点C,且OC=OB=3OA,点D为抛物线的顶点.(1)求该抛物线的函数表达式;(2)点P为直线BC下方该抛物线上任意一点,点E为直线BC与该抛物线对称轴的交点,求△PBE面积的最大值;(3)如图2,将该抛物线沿射线CB的方向平移22个单位后得到新抛物线y ,新抛物线y 的顶点为D ,过(2)问中使得△PBE面积为最大时的点P作平行于y轴的直线交新抛物线y 于点M.在新抛物线y 的对称轴上是否存在点N,使得以点P,D ,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【题型6二次函数中菱形的存在性问题】1(2023春·重庆云阳·九年级校联考期中)如图1,抛物线y=ax2+bx+c(a≠0)与x轴相交于点A、B(点B在点A左侧),与y轴相交于点C(0,3).已知点A坐标为(1,0),△ABC面积为6.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,过点P作直线BC的垂线,垂足为点E,过点P作PF∥y轴交BC于点F,求△PEF周长的最大值及此时点P的坐标:(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y ,平移后的抛物线与原抛物线相交于点D,点M为直线BC上的一点,点N是平面坐标系内一点,是否存在点M,N,使以点B,D,M,N为顶点的四边形为菱形,若存在,请直接写出点M的坐标;若不存在,请说明理由.1(2023春·甘肃庆阳·九年级统考期末)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C0,-3,点P是直线BC下,点A在原点的左侧,点B的坐标为3,0方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO所在直线翻折,得到四边形POP C,那么是否存在点P,使四边形POP C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的面积.点,抛物线y=-x2+bx+c经过点B,且与x轴交于点C(2,0).(1)求该抛物线的解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,四边形OAMB的面积为S,求S与m的函数表达式,并求出S的最大值;(3)若点P在平面内,点Q在直线AB上,平面内是否存在点P使得以O,B,P,Q为顶点的四边形是菱形.若存在,求出点P的坐标;若不存在,请说明理由.点,抛物线y=-x2+bx+c经过点B,且与x轴交于点C(2,0).(1)求该抛物线的解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,四边形OAMB的面积为S,求S与m的函数表达式,并求出S的最大值;(3)若点P在平面内,点Q在直线AB上,平面内是否存在点P使得以O,B,P,Q为顶点的四边形是菱形.若存在,求出点P的坐标;若不存在,请说明理由.【题型7二次函数中矩形的存在性问题】1(2023春·浙江湖州·九年级统考期末)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x-1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=13,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.1(2023·山东东营·东营市胜利第一初级中学校考三模)已知抛物线y=ax2+bx-4a≠0交x轴于点A4,0和点B-2,0,交y轴于点C.(1)求抛物线的解析式;(2)如图,点P是抛物线上位于直线AC下方的动点,过点P分别作x轴、y轴的平行线,交直线AC于点D,交x轴于点E,当PD+PE取最大值时,求点P的坐标及PD+PE最大值.(3)在抛物线上是否存在点M,对于平面内任意点N,使得以A、C、M、N为顶点且AC为一条边的四边形为矩形,若存在,请直接写出M、N的坐标,不存在,请说明理由.2(2023春·内蒙古通辽·九年级校考期中)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(-1,0)两点,交y轴于点C.(1)求抛物线的解析式和对称轴.SΔABC,求R的坐标.(2)若R为第一象限内抛物线上点,满足SΔRAC=12(3)若点P在抛物线的对称轴上,点Q是平面直角坐标系内的任意一点,是否存在点P使得A、C、P、Q为顶点的四边形是矩形,若存在,请直接写出所有符合条件的点P的坐标.3(2023春·广东江门·九年级校考期末)如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2a≠0、B两点,交y轴于点C,其对称轴为x=1.5,交x轴于A-1,0(1)求该抛物线的函数解析式;(2)P为第四象限内抛物线上一点,连接PB,过点C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标.(3)在(2)的条件下,将抛物线y=ax2+bx-2a≠0向右平移经过点Q,得到新抛物线,点E在新抛物线的对称轴上,是否在平面内存在一点F,使得以A、P、E、F为顶点的四边形是矩形?若存在,直接写出点F的坐标;若不存在,请说明理由.【题型8二次函数中正方形的存在性问题】1(2023·辽宁阜新·阜新实验中学校考一模)如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点P为抛物线上的动点.(1)求该抛物线的函数表达式;(2)点D为直线y=x上的动点,当点P在第四象限时,求四边形PBDC面积的最大值及此时点P的坐标;(3)已知点E为x轴上一动点,点Q为平面内任意一点,是否存在以点P,C,E,Q为顶点的四边形是以PC为对角线的正方形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.1(2023·陕西西安·校考模拟预测)如图,已知拋物线y=-x2+2x+c与x轴交于点A3,0,B与y轴交于点C.(1)求c的值及该抛物线的对称轴;(2)若点D在直线AC上,点E是平面内一点.是否存在点E,使得以点A,B,D,E为顶点的四边形为正方形?若存在,请求出点E的坐标;若不存在,请说明理由.2(2023·山西晋中·山西省平遥中学校校考模拟预测)如图,二次函数y=-x2+2x+3的图象与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.连接BC.点P是抛物线第一象限内的一个动点,设点P的横坐标为m,过点P作直线PD⊥x轴于点D.交BC于点E.过点P作BC的平行线,交y轴于点M.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)在点P的运动过程中,求使四边形CEPM为菱形时,m的值;(3)点N为平面内任意一点,在(2)的条件下,直线PM上是否存在点Q使得以P,E,Q,N为顶点的四边形是正方形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.3(2023·江西赣州·统考一模)已知二次函数C1:y=mx2-2mx+3(m≠0).(1)有关二次函数C1的图象与性质,下列结论中正确的有.(填序号)①二次函数C1的图象开口向上;②二次函数C1的图象的对称轴是直线x=1;③二次函数C1的图象经过定点(0,3)和(2,3);④函数值y随着x的增大而减小.(2)当m=1时,①抛物线C1的顶点坐标为;②将抛物线C1沿x轴翻折得到抛物线C2,则抛物线C2的表达式为;(3)设抛物线C1与y轴相交于点E,过点E作直线l∥x轴,与抛物线C1的另一交点为F,将抛物线C1沿直线l翻折,得到抛物线C3,抛物线C1,C3的顶点分别记为P,Q.是否存在实数m,使得以点E,F,P,Q为顶点的四边形为正方形?若存在,请求出m的值;若不存在,请说明理由.【题型9二次函数中面积问题的存在性问题】1(2023春·四川广安·九年级统考期末)如图1,抛物线y=ax2+bx+3经过A1,0两点,交y轴于,B3,0点C.(1)求抛物线的函数解析式.(2)在抛物线的对称轴上是否存在一点M,使得△ACM的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.S△BCA,请直接写出点P的横坐(3)如图2,连接BC,若在BC下方的抛物线上存在一点P,使得S△BCP=12标.1(2023春·江西九江·九年级校考期中)如图,已知二次函数L1:y=x2+bx+c与x轴交于A、B两点,A点坐标(-1,0),B点坐标(3,0),与y轴交于点C,直线L2:y=x+n经过点A.(1)求二次函数L1的表达式及顶点P的坐标;(2)二次函数L3与二次函数L1关于X轴对称,直线L2与二次函数L3相交于A、D两点.①直接写出二次函数L3的表达式;②求出D点的坐标;③在直线L2上半部分的二次函数L3上,是否存在一点M,使得△AMD的面积最大?若存在,请求出M坐标,并求出最大面积.2(2023春·山东东营·九年级东营市实验中学校考期中)如图,抛物线y=ax2+bx+c a≠0与y轴交于点C0,4.,点B4,0,与x轴交于A-2,0(1)求抛物线的解析式;(2)若点M是抛物线上的一动点,且在直线BC的上方,当S△MBC取得最大值时,求点M的坐标;(3)在抛物线上是否存在点P,使三角形ABP的面积为12?若存在,直接写出点P的坐标;若不存在,请说明理由.3(2023春·福建泉州·九年级统考期末)如图,在平面直角坐标系xOy中,顶点为E1,4的抛物线y= ax2+bx+c与x轴从左到右依次交于A,B两点,与y轴的交点为C0,3,P是抛物线对称轴右侧图象上的一点,且在x轴的上方.(1)求此抛物线的解析式;(2)若直线BP与抛物线对称轴交于点D,当BD-CD取得最大值时,求点P的坐标;(3)若直线BC与抛物线对称轴交于点F,连接PC,PE,PF,记△PCF,△PEF的面积分别为S1,S2,判断2S1+S2是否存在最大值.若存在,求出最大值;若不存在,请说明理由.【题型10二次函数中线段问题的存在性问题】1(2023春·内蒙古巴彦淖尔·九年级校考期中)如图1,抛物线y=ax2+bx+c a≠0与x轴交于A-8,0.点E是第二象限内抛物线上的一个动点,设点E的横坐标 两点,与y轴交于点D0,4,C2,0为n,过点E作直线EB⊥x轴于点B,作直线AD交EB于点F.(1)求该抛物线的解析式;(2)如图1,当△EFD是以FD为底边的等腰三角形时,求点E的坐标;(3)如图2,连接CD,过点E作直线l∥CD,交y轴于点H,连接BH.试探究:在点E运动的过程中,是否存在点E,使得FD=BH,若存在,请求出点E的坐标;若不存在,请说明理由.1(2023春·四川南充·九年级统考期中)如图,平面直角坐标系中的Rt△AOB和Rt△COD全等,直角边OB、OD在x轴上.已知点C的坐标为4,2,过A、C两点的直线分别交x轴、y轴于点E、F,抛物线y=ax2+bx+c经过O、A、C三点.(1)写出点A的坐标并求该抛物线的函数解析式;(2)点G为抛物线上位于线段OC所在可直线上方部分的一动点,求G到直线OC的最大距离和此时点G 的坐标;(3)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM的边AM与边BP相等?若存在,求出此时点P的坐标;若不存在,请说明理由.2(2023春·云南曲靖·九年级统考期末)已知抛物线y=x2+bx+c与x轴交于点A-1,0两,B3,0点,与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使得B、C两点到直线AM的距离相等,如果存在,求出点M的坐标,如果不存在,请说明理由;(3)点P为x轴上一动点,以P为旋转中心,把线段BC逆时针旋转90°,得到线段GH,其中点B的对应点为点G,当抛物线的对称轴刚好经过GH中点时,求此时点P的坐标.3(2023春·安徽阜阳·九年级校考期末)如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=-2与x轴交于点C,直线y=-2x+1经过抛物线上一点B2,m,且与y轴.直线x=-2分别交于点D、E.(1)求m的值及该抛物线对应的函数关系式;(2)①判断△CBE的形状,并说明理由;②判断CD与BE的位置关系;(3)若P x,y是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.【题型11二次函数中角度问题的存在性问题】1(2023春·辽宁葫芦岛·九年级统考期末)如图,在平面直角坐标系中,已知抛物线y=-x2+bx+c与x轴交于A,B4,0在抛物线上,点P是抛物线上一动点.两点,与y轴交于点C,点D3,4(1)求该抛物线的解析式;(2)如图1,连接OD,若OP平分∠COD,求点P的坐标;(3)如图2,连接AC,BC,抛物线上是否存在点P,使∠CBP+∠ACO=45°?若存在,请直接写出点P的坐标;若不存在,请说明理由.1(2023春·内蒙古鄂尔多斯·九年级统考期末)如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y=-x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在第四象限的抛物线上是否存在一点M,使△MBC的面积为27?若存在,求出M点坐标;若不存在,请说明理由.(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出P点坐标;若不存在,请说明理由.2(2023春·江苏盐城·九年级统考期末)如图,抛物线y=12x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A-4,0,C0,-2.(1)求抛物线的函数表达式;(2)点E是线段AC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDAF的面积最大?求出四边形CDAF的最大面积及此时E点的坐标;(3)在y轴上是否存在点P,使得∠OAP+∠OAC=60°?若存在,请直接写出P点的坐标,若不存在,请说明理由.3(2023春·浙江湖州·九年级统考期末)如图,在平面直角坐标系中,直线y=12x-2与x轴交于点A,与y轴交于点C,抛物线y=12x2+bx+c经过A,C两点,与x轴的另一交点为点B,点P为抛物线上的一个动点.(1)求抛物线的函数表达式;(2)当△ACP的面积与△ABC的面积相等时,求点P的坐标;(3)是否存在点P,使得∠ACP=∠ABC-∠BAC,若存在,请直接写出点P的横坐标;若不存在,请说明理由.【题型12二次函数中最值问题的存在性问题】1(2023春·甘肃庆阳·九年级统考期中)如图,已知抛物线y=38x2-34x-3与x轴的交点为点A、D(点A在点D的右侧),与y轴的交点为点C.(1)直接写出A、D、C三点的坐标;(2)在抛物线的对称轴上找一点M,使得MD+MC的值最小,并求出点M的坐标;(3)设点C关于抛物线对称轴的对称点为点B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由.1(2023春·浙江宁波·九年级校考期中)对于给定的两个函数,任取自变量x 的一个值,当x <0时,它们对应的函数值互为相反数;当x ≥0时,它们对应的函数值相等,我们称这样的两个函数互为“伴随”函数.例如:一次函数y =x -3,它的“伴随”函数为y =-x +3x <0 x -3x ≥0 .(1)已知点M -2,1 在一次函数y =-mx +1的“伴随”函数的图象上,求m 的值.(2)已知二次函数y =-x 2+4x -12.①当点A a ,32 在这个函数的“伴随”函数的图象上时,求a 的值.②当-3≤x ≤3时,函数y =-x 2+4x -12的“伴随”函数是否存在最大值或最小值,若存在,请求出最大值或最小值;若不存在,请说明理由.。
二次函数存在性问题
摘要:存在性问题是中考数学的常见题型,特别是和二次函数有机结合的试题,知识覆盖面广,综合性强,题意构思精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高.掌握这一题型的特征与解法,既可以培养学生的理性思考,又可以拓宽学生的解题思路,渗透数学思想方法.现以二次函数为背景,通过具体实例对存在性问题进行分析.关键词:存在性问题;二次函数;数学思想;解法探讨存在性问题是命题的结论不确定的一类问题,这类问题常常出现“是否存在”、“是否有”、“是否变化”等疑问句,以示结论有待判断.这类试题可以有效地检测与区分学生的学习潜能,在中考试卷中经常出现,分值较高且多为压轴题.但由于这类问题形式新颖,解法多样,解答时需综合运用基础知识、基本技能和数学思想方法去探究结论,学生不易求解,导致中考失分.对于以函数图象为载体的存在性问题,解题的技巧性和综合性更强,对知识的迁移能力、灵活运用能力和分析问题的能力要求更高,有较高的区分度,能较好地反映数学试卷的选择功能.解答存在性问题的策略:一般从存在的方面入手,辅以方程思想、数形结合思想和分类讨论思想等进行计算、推理,对得出的结果进行分析、验证,寻求结论成立的条件,若能找到这个条件(与题设、定理、公理相吻合),则问题的回答是肯定的,即存在成立;若找不到这个条件或找到的条件与题设矛盾,则问题的回答是否定的,即结论不存在.这个探求结论的过程可以概括为假设—推证—定论,从而对“是否存在”做出准确判定和正确推断.现以2012年中考试题为例,对中考试题中由抛物线上的点构成的存在性问题加以归类说明,以供参考.一、相似(全等)三角形的存在性问题例1(2012年贵州·遵义卷)如图1,已知抛物线y =ax 2+bx +c (a ≠0)的图象经过原点O ,交x 轴于点A ,其顶点B 的坐标为(3,-3姨).(1)求该抛物线的函数关系式及点A 的坐标;(2)在抛物线上求点P ,使S △POA =2S △AOB ;(3)在抛物线上是否存在点Q ,使△QAO 与△AOB 相似?如果存在,求出点Q 的坐标;如果不存在,说明理由.图1解:(1)y =3姨9x 2-23姨3x ,A 的坐标为(6,0).(2)如图2,由S △POA =2S △AOB ,得23姨=3姨x 2-23姨x ,所以P 1(3+33姨,23姨),P 2(3-33姨,23姨).图2图3(3)如图3,过点B 作BC ⊥Ox 于点C ,则有tan ∠OBC =33姨=3姨.所以∠OBC =60°,∠OBA =120°.分2种情况:①当点Q 在x 轴下方时,△QAO 就是△BAO.此时点Q 坐标为Q (3,-3姨);②当点Q 在x 轴上方时,假设△ABO ∽△QAO ,则有AQ =OA =6,∠OAQ =120°.作QD ⊥Ox ,垂足为点D ,则∠QAD =60°.收稿日期:2013-04-10作者简介:朱广科(1972-),男,江苏丰县人,中学高级教师,主要从事数学教育和中考数学试题研究.朱广科(江苏省丰县初级中学)以二次函数为背景的存在性问题例析所以QD =33姨,AD =3.所以OD =9.此时点Q 坐标是(9,33姨).而(9,33姨)满足关系y =3姨9x 2-23姨3x ,即点Q 在抛物线上.根据对称性可知,点(-3,33姨)也满足条件.所以点Q 坐标为Q 1(3,-3姨),Q 2(9,33姨),Q 2(-3,33姨).【点评】此类存在性问题形式为“是否存在某点(线段),使得两三角形相似(全等),若存在,求出某点坐标,若不存在,说明理由”.解决此题思路是先找出等腰△BAO 中顶角∠OBA =120°的特殊结构,根据相似三角形的对应边成比例的性质,即可求出点Q 坐标,再验证点Q 是否在抛物线上.此题渗透了数形结合思想和分类讨论思想,分类讨论点Q 的位置,即点Q 可能在x 轴上方,也可能在其下方.解决相似(全等)三角形的存在性问题常常用到分类思想,首先确定分类标准,然后画出示意图,再根据相似(全等)图形的性质,列出适当的函数关系式或方程直接求解.练习1(2012年山东·东营卷):已知抛物线y =3姨2x 2+bx +63姨经过点A (2,0).设顶点为点P ,与x 轴的另一交点为点B .(1)求b 的值,求出点P 、点B 的坐标.(2)如图4,在直线y =3姨x 上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,说明理由.(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,试举例验证你的猜想;如果不存在,试说明理由.二、特殊三角形的存在性问题例2(2012年江苏·扬州卷)如图5,已知抛物线y =ax 2+bx +c 经过A (-1,0),B (3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M,使△MAC 为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,说明理由.解:(1)抛物线的解析式y =-x 2+2x +3.(2)如图6,直线BC 的函数关系式y =-x +3.当x =1,y =2时,△PAC 的周长最小,点P 的坐标为(1,2).(3)抛物线的对称轴为x =1,设M (1,m ),则MA 2=m 2+4,MC 2=m 2-6m +10,AC 2=10.假设△MAC 为等腰三角形,则分3种情况讨论:①若MA =MC ,则MA 2=MC 2.所以有m 2+4=m 2-6m +10.得m =1.②若MA =AC ,则MA 2=AC 2.所以有m 2+4=10.得m =±6姨.③若MC =AC ,则MC 2=AC 2.所以有m 2-6m +10=10.得m =0,m =6.当m =6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去.综上可知,存在点M ,使△MAC 为等腰三角形且坐标为(1,6姨),(1,-6姨),(1,1),(1,0).【点评】此类存在性问题形式为“是否存在某点(线段),使得某个三角形是特殊三角形,若存在,求出某点坐标,若不存在,说明理由”.由于△MAC 的腰和底没有明确,因此要分三种情况①MA =AC ,②MA =MC ,②AC =MC 来讨论.可先设出点M 的坐标,然后用点M 纵坐标表示△MAC 的三边长,再按上面的三种情况建立方程求解.所以,解决本题的关键是分类讨论思想的灵活运用,难点是用含m 的代数式正确表示三角形的三边长.解决特殊三角形的存在性问题,主要利用特殊三角形的性质:对于等边三角形的存在性,首先判断是等腰三角形,再根据60°的条件确定这个三角形是等边三角形;对于等腰直角三角形的存在性,一般按顶点分三种情况讨论,然后根据勾股定理和等腰直角三角形的性质,列出方程或函数关系式直接求解.练习2(2012年海南卷):如图7,顶点为P (4,-4)的二次函数图象经过原点(0,0),点A 在该图象上,OA 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接AN 、ON .(1)求该二次函数的关系式.图7P Mx yOlN A图4图5B C A Oxy54321-11234-1-2l 图6B C P A Oxy54321-11234-1-2l试题研究图12BA B ′A ′O y2211-1-2-1-2(2)若点A 的坐标是(6,-3),求△ANO 的面积.(3)当点A 在对称轴l 右侧的二次函数图象上运动,请解答下列问题:①证明:∠ANM =∠ONM.②△ANO 能否为直角三角形?如果能,求出所有符合条件的点A 的坐标,如果不能,说明理由.三、特殊四边形的存在性问题例3(2012年湖南·娄底卷)如图8,已知二次函数y =x 2-(m 2-2)x -2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足11+12=1.(1)求这个二次函数的解析式;(2)探究:在直线y =x +3上是否存在一点P ,使四边形PACB 为平行四边形?如果有,求出点P 的坐标;如果没有,说明理由.图8B C PAO x y -33解:(1)x 1+x 2=m 2-2,x 1x 2=-2m .1x 1+1x 2=x 1+x 2x 1x 2=m 2-2-2m=12.解得m 1=-2,m 2=1.当m =-2时,x 2-2x +4=0,Δ=b 2-4ac =-12<0,不符合题意,舍去;当m =1时,x 2+x -2=0,其判别式Δ=b 2-4ac =9>0,符合题意.所以m =1,抛物线的解析式为y =x 2+x -2.(2)假设在直线y =x +3上存在一点P ,使四边形PACB 为平行四边形.如图9所示,连接PA 、PB 、AC 、BC ,过点P 作PD ⊥Ox 于点D .因为抛物线y =x 2+x -2与x 轴交于A 、B 两点,与y 轴交于点C ,所以A (-2,0),B (1,0),C (0,-2).所以OB =1,OC =2.因为四边形PACB 为平行四边形,所以PA ∥BC ,PA =BC.所以∠PAD =∠CBO.所以∠APD =∠OCB .所以Rt △PAD ≌Rt △CBO.所以PD =OC =2,即y P =2.所以x P =-1.所以P (-1,2).所以在直线y =x +3上存在一点P ,使四边形PACB 为平行四边形,且点P 坐标为(-1,2).【点评】此类存在性问题形式为“是否存在某点(线段),使得某个四边形是特殊的四边形,若存在,求出某点坐标,若不存在,说明理由”.解决思路是首先假设在直线y =x +3上存在一点P ,使四边形PACB 为平行四边形,则会有一组对边平行且相等,即PA ∥BC ,PA =BC ,进而通过三角形全等,求出点P 坐标.此题综合考查了二次函数的图象与性质、抛物线与x 轴的交点、一元二次方程根的解法及根与系数关系、一次函数、平行四边形的性质以及全等三角形的判定与性质等有关知识,综合性强.同时,此题还渗透了数形结合思想.解决特殊四边形的存在性问题,主要利用特殊四边形的性质以及转化的思想方法:平行四边形的存在性一般根据对角线互相平分,建立方程或函数关系式解决;矩形的存在性可以利用矩形的顶角是直角转化为直角三角形的存在性问题;菱形的存在性可以利用菱形的邻边相等和图形的对称性,可转化为等腰三角形的存在性问题.练习3(2012年陕西卷)如图10,如果一条抛物线y =ax 2+bx +c(a ≠0)与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是________三角形;(2)若抛物线y =-x 2+bx (b >0)的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图10,△OAB 是抛物线y =-x 2+b ′x (b ′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过三点O 、C 、D 的抛物线的表达式;若不存在,说明理由.此题辅助线如图11所示.四、图形周长、面积等数量关系的存在性问题例4(2012年山东·菏泽卷)如图12,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在图9BC PAD Oxy图11B CE AD xyO y图10B E AxO点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积4倍?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出四边形PB ′A ′B 的两条性质.解:(1)A ′(-1,0),B ′(0,2),抛物线的解析式为y =-x 2+x +2.(2)设P (x ,y ),则x >0,y >0,点P 坐标满足y =-x 2+x +2.如图13,连接PB 、PO 、PB ′.所以S四边形PB ′A ′B=S △B ′OA ′+S △PB ′O +S △POB =12·1·2+12·2·x +12·2·y =x +(-x 2+x +2)+1=-x 2+2x +3.假设四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍,则-x 2+2x +3=4,即x 2-2x +1=0,解得x =1.此时y =-12+1+2=2,即P (1,2).所以存在点P (1,2),使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍.(3)四边形PB ′A ′B 为等腰梯形.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.【点评】此类存在性问题形式为“是否存在某点(线段),使得一个图形的面积(或周长等)是另一个图形的面积(或周长等)的几倍(相等),若存在,求出某点坐标,若不存在,说明理由”.解决的思路是首先假设存在点P ,使得四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍,进而得到关于x 的一元二次方程.解题的难点是用含x 的代数式表示四边形PB ′A ′B 的面积,若能求出x 值且符合题意,即表示存在,否则,结论不存在.所以,解决几何图形的周长、面积等数量关系的存在性问题,要先通过画图、推理,确定存在性,再建立函数关系式或列方程求解,最后根据题意取舍或验证假设.练习4(2012年贵州·铜仁卷)如图14,已知:直线y =-x +3交x 轴于点A ,交y 轴于点B ,抛物线y =ax 2+bx +c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线y =-x +3上有一点P ,使△ABO 与△ADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使△ADE 的面积等于四边形APCE 的面积?如果存在,求出点E 的坐标;如果不存在,说明理由.五、图形周长、面积等最值的存在性问题例5(2012年湖南·岳阳卷)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm ,锅深3dm ,锅盖高1dm (锅口直径与锅盖直径视为相同),建立直角坐标系如图15所示,如果把锅纵断面的抛物线记为C 1,把锅盖纵断面的抛物线记为C 2.(1)求C 1和C 2的解析式;(2)如图16,过点B 作直线BE :y =13x -1交C 1于点E -2,-5△△,连接OE 、BC ,在x 轴上求一点P ,使以点P 、B 、C 为顶点的△PBC 与△BOE 相似,求出点P 的坐标;(3)如果(2)中的直线BE 保持不变,抛物线C 1或C 2上是否存在一点Q ,使得△EBQ 的面积最大?若存在,求出点Q 的坐标和△EBQ 面积的最大值;若不存在,请说明理由.解:(1)抛物线C 1:y =13x 2-3(-3≤x ≤3);抛物线C 2:y =-19x 2+1(-3≤x ≤3).(2)如图17,若以点P 、B 、C 为顶点的△PBC 与△BOE 相似,需考虑2种情况:①∠CBP 1=∠EBO ,且OB BE =BP 1BC,P 16,∠△0;②∠P 2BC =∠EBO ,且BC BP 2=OB BE ,P 2-23,∠△.综上,符合条件的点P 为P 16,∠△0,P 2-23,∠△0.(3)如图18,作直线l ∥BE ,设直线l :y =13x +b .①当直线l 与抛物线C 1只有一个交点时,13x +b =13x 2-3,即x 2-x -(3b +9)=0.图13BP AB ′A ′O y2-1-2-1-2211y BDOCAx3-13图14图18A (-3,0)C (0,1)B (3,0)D (0,-3)Oy x Q 2EQ 1ll 图17A (-3,0)C (0,1)B (3,0)D (0,-3)P 2P 1O yxE图15CBD Oy xA图16CBD Oy xAE试题研究所以该交点Q 212,-3512.Q 2到直线BE :13x -y -1=0的距离12×13+-3512 ×(-1)+(-1)132+(-1)2姨=510姨8=2510姨40;②当直线l 与抛物线C 2只有一个交点时,13x +b =-19x 2+1,即x 2+3x +9b -9=0.所以该交点Q 1-3,3.Q 1到直线BE :13x -y -1=0的距离-32×13+(-1)×34+(-1)1 2+(-1)2姨=2710姨40.所以符合条件的点Q 为Q 1-32,34.△EBQ 的最大面积S max =12×BE ×2710姨40=458.【点评】此类存在性问题形式为“是否存在某点(线段),使得某个图形的面积(周长、线段长等)最大(小),若存在,求出某点坐标,若不存在,说明理由”.本题综合考查了函数解析式的表示、相似三角形的判定和性质、图形面积的解法等有关知识.问题(3)的难度较大,解决的关键是明确当直线与抛物线只有一个交点时,存在面积最大值,进而建立关于交点横坐标的方程,再利用距离公式求出交点到BE 的距离.另外,题目在设计上结合了一定的生活元素,形式较为新颖,同时渗透了数形结合思想和分类讨论的思想,讨论直线l 可能和抛物线C 1有一个交点,也可能和抛物线C 2有一个交点.由此可见,几何图形的周长、面积等最值的存在性问题,首先要根据关键点的坐标,建立一个合适的函数关系式,再根据函数关系式自变量的取值范围或图形的特殊性质来确定相应的最大值和最小值.练习5(2012年辽宁·阜新卷):如图19,在平面直角坐标系中,二次函数y =ax 2+bx +c 的图象与x 轴交于A (-3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;(4)点Q 是直线AC 上方的抛物线上一动点,过点Q 作QE ⊥Ox ,垂足为点E .是否存在点Q ,使以点B 、Q 、E 为顶点的三角形与△AOC 相似?若存在,直接写出点Q 的坐标;若不存在,说明理由;(5)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A 、C 、M 、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.综上所述,解决和抛物线有关的存在性问题,需要用运动与变化的眼光去观察和研究图形,抓住其中的等量关系和变量关系,渗透方程函数思想,寻找要解决问题中的相等关系或不等关系;根据题目中的条件,应科学进行分类,渗透分类讨论思想,从而使问题的解答完整无遗漏;画出图形,将抽象的数学语言与直观的图形结合起来,把数量关系转化为图形的性质来解决,或把图形问题转化为数量关系来处理,渗透数形结合思想,利用“数”计算“形”,利用“形”判断“数”.逐步达到《义务教育数学课程标准(2011年版)》所倡导的“数学思想蕴含在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括.学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想”,进一步提高学生综合运用知识的能力.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M ].北京:北京师范大学出版社,2012.[2]毛永生.教学思想录—中学数学卷[M ].江苏教育出版社:钟善基,1996.[3]范鸿.2010中考阅读理解型试题简析[J ].中国数学教育,2011(3):30-33.[4]朱广科.以平面坐标系为背景的动态几何问题[J ].中国数学教育(初中版),2011(7/8):84-88.[5]武瑞雪.对中学数学建模教学的探讨[J ].教学月刊,2011(12):5-7.[6]石树伟.问题研究:入乎其内,出乎其外--以一道二次函数题的研究为例[J ].中国数学教育(初中版),2011(7/8):78-80,84.[7]李东.中考二次函数应用题的难点设置浅探[J ].中国数学教育(初中版),2011(7/8):89-91.[8]李树臣.全方位扫描二次函数考点[J ].中国数学教育(初中版),2011(9):41-44.[9]曹经富.立足教材习题注重知识延伸:二次函数的专题复习[J ].中国数学教育(初中版),2012(7/8):56-58.[10]袁爽,顾洪敏,刘金英.“二次函数y =ax 2的图象“(第1课时)教学设计与点评[J ].中国数学教育(初中版),2012(5):20-24.图19BCyAOxP。
二次函数存在性问题剖析
A8PC EOD FB l 3y x =xy 83 二次函数存在性问题——作图问题一、存在三角形:1、如图,已知抛物线y=-x 2+2x+3交x 轴于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。
(1)求点A 、B 、C 的坐标。
(2)若点M 为抛物线的顶点,连接BC 、CM 、BM ,求△BCM 的面积。
(3)连接AC ,在x 轴上是否存在点P 使△ACP 为等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由。
2.如图,过A (8,0)、B (0,83)两点的直线与直线x y 3=交于点C .平行于y 轴的直线l 从原点O 出发,以每秒1个单位长度的速度沿x 轴向右平移,到C 点时停止;l 分别交线段BC 、OC 于点D 、E ,以DE 为边向左侧作等边△DEF ,设△DEF 与△BCO 重叠部分的面积为S (平方单位),直线l 的运动时间为t (秒).(1)直接写出C 点坐标和t 的取值范围; (2)求S 与t 的函数关系式;(3)设直线l 与x 轴交于点P ,是否存在这样的点P ,使得以P 、O 、F 为顶点的三角形为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.A 8C OB 备用图183 x y3y x =3、已知:如图,二次函数y =x 2+(2k –1)x +k +1的图象与x 轴相交于O 、A 两点. (1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B ,使锐角△AOB 的面积等于3.求点B 的坐标; (3)对于(2)中的点B ,在抛物线上是否存在点P ,使∠POB =90°?若存在,求出点P 的坐标,并求出△POB 的面积;若不存在,请说明理由.4.如图,直线1y x =--与抛物线24y ax bx =+-都经过点(1,0)A -、(3,4)B -.(1)求抛物线的解析式;(2) 动点P 在线段AC 上,过点P 作x 轴的垂线与抛物线相交于点E ,求线段PE 长度的最大值; (3) 当线段PE 的长度取得最大值时,在抛物线上是否存在点Q ,使△PCQ 是以PC 为直角边的直角三角形?若存在,请求出Q 点的坐标;若不存在.请说明理由.A BOC 图9yxP Ex5、如下图,已知抛物线2114y x =+,直线y=kx+b 过点B (0,2) (1)、求b 的值:(2)将直线y=kx+b 绕着点B 旋转到与x 轴平行得 位置时(如图1),直线与抛物线2114y x =+相交,其中一个交点为P ,求出点P 的坐标;(3)、将直线y=kx+b 继续绕着点B 旋转,与抛物线2114y x =+相交,其中一个交点为C ,(如图2),过点C 作x 轴的垂线CM ,点M 为垂足,是否存在这样的点C ,使△CBM 为等边三角形?若存在,请求出点C 的坐标?若不存在,请说明理由。
二次函数解析几何--存在性问题
二次函数解析几何专题——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
一、方法总结解存在性问题的一般步骤:(1)假设点存在;(2)将点的坐标设为参数;(3)根据已知条件建立关于参数的方程或函数。
二、常用公式(1)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB|=221221)()(y y x x -+-(2)中点坐标公式:1212,22x x y y x y ++==(3)斜率公式:①;②(为直线与x 轴正方向的夹角)2121y y k x x -=-tan k θ=θ(4)①对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2②如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.题型一 面积问题例1.如图,抛物线y =-x 2+bx +c 与x 轴交于A (1,0),B (-3,0)两点.(1)求该抛物线的解析式;(2)在(1)中的抛物线上的第二象限内是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值;若不存在,请说明理由.变式练习:1.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.O B A CyxA xy BO能力提升:1.(2013菏泽)如图1,△运动到何处时,四边形PDCQ的面积最小?此时四边形2.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.3.如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.yD BMA CO xE 图1的坐标,并求出△POB的面积;若不存在,请说明理由.)中抛物线的第二象限图象上是否存在一点与△POC的坐标;若不存在,请说明理由;c的图象的顶点C的坐标为(0,-2),交m(m>1)与x轴交于D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的梯形的存在性问题
1、如图,平面直角坐标系xOy中,已知抛物线经过A(4,0)、B(0,4)、C(-2,0)三点.
(1)求抛物线的解析式;
(2)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断共有几个位置能使以点P、Q、B、O为顶点且以BO为其中一条底边的四边形是直角梯形,请求出相应的点Q的坐标.
(2010•武清区二模)已知二次函数图象的对称轴为直线x=2,经过两点(0,3)和(-1,8),并与x
轴的交点为B、C(点C在点B左边),其顶点为点P.
(1)求此二次函数的解析式;
(2)如果直线y=x向上或向下平移经过点P,求证:平移后的直线一定经过点B;
(3)在(2)的条件下,能否在直线y=x上找一点D,使得以点O、P、B、D为顶点的四边形是等腰梯
形?若能,请求出点D的坐标;若不能,请简要说明你的理由.
变式练习:
如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;
(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(说出解题思路)
(3)在此抛物线上是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.
方法规律
梯形存在性问题:三个定点,一个动点:三个定点,每两个定点作为底,过另一定点平行于底的直线,直线与二次函数的交点,再判断是否符合条件。
实战训练
在平面直角坐标系中,点A和点B分别在x轴的负半轴和y轴的正半轴上,且OA、OB分别是关于x的方程x2-7x+12=0的两个根(OA<OB)
(1)求直线AB的解析式;。