高二数学上册各章节知识点总结(大纲版)

合集下载

高二数学上学期知识点

高二数学上学期知识点

高二数学上学期知识点高二数学上学期知识点回顾高二数学上学期是学习数学的关键时期,掌握好这些知识点对于学习下学期的数学课程将起到至关重要的作用。

本文将对高二数学上学期的主要知识点进行回顾,并简要介绍每个知识点的应用和重要性,以帮助同学们更好地复习和巩固。

一、函数与方程数学上学期的重点之一是函数与方程的学习。

函数是数学中非常基础且重要的概念,是描述两个变量之间关系的一种方式。

在高二上学期,同学们学习了一次函数、二次函数和指数函数等多种函数的性质和图像特征。

掌握这些函数的性质和图像,对于后续学习解析几何、微积分等课程起到了必要的铺垫。

二、三角函数三角函数是高中数学中的重要内容,主要包括正弦函数、余弦函数和正切函数等。

在高二上学期,同学们学习了三角函数的基本性质、图像和运算法则,并通过解三角方程等应用题巩固理论知识。

三角函数在物理、几何等学科中应用广泛,掌握好三角函数的性质和运用方法能够为学习其他学科提供便利。

三、数列与数学归纳法数列是数学中一个重要的概念,它可以描述一组按照某种规律排列的数。

在高二上学期,同学们学习了等差数列、等比数列和斐波那契数列等几种常见数列的性质和求解方法,并学习了数列极限的相关概念。

数列的学习不仅有助于培养逻辑思维和数学推理能力,还为后续学习数学分析等课程奠定了基础。

四、平面向量平面向量是高中数学中的一门重要课程,它不仅涉及向量的定义和性质,还包括向量的运算、共线性等内容。

在高二上学期,同学们学习了平面向量的基本概念和运算,学会了解决平面向量相关的几何问题。

平面向量在几何、物理等学科中应用广泛,掌握好平面向量的知识和运用方法对于解决实际问题具有重要意义。

五、概率与统计概率与统计是高中数学的一门重要分支,它涉及到随机事件的发生规律和数据的分析处理。

在高二上学期,同学们学习了概率的基本概念、计算方法和性质,并学会了应用概率解决实际问题。

统计学的学习则包括数据的收集、整理和图表表示等内容,旨在掌握数据的分析和处理方法。

高二上册数学重点知识归纳

高二上册数学重点知识归纳

1.高二上册数学重点知识归纳(1)总体和样本:①在统计学中,把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查2.高二上册数学重点知识归纳1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);试验的全部结果所构成的区域长度(面积或体积)3、几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等、4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。

这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。

通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。

高二上册数学书知识点

高二上册数学书知识点

高二上册数学书知识点高二上册数学书涵盖了许多重要的数学知识点,这些知识点是我们在学习和理解数学概念以及解题过程中所必须掌握的。

本文将会整理和总结这些数学知识点,以帮助大家更好地复习和掌握数学。

一、集合与函数1. 集合的概念和表示方法- 集合:由一些特定的元素构成的整体。

- 元素:属于一个集合的个体。

- 表示方法:列举法、描述法、解析法。

2. 集合的运算- 交集:包含属于两个(或两个以上)集合中的共同元素的集合。

- 并集:包含属于两个(或两个以上)集合中的所有元素的集合。

- 差集:属于一个集合而不属于另一个集合的元素所构成的集合。

- 互斥:两个集合没有共同元素。

3. 函数的概念和性质- 定义:函数是两个集合之间的对应关系。

- 性质:自变量、因变量、单射、满射、一一对应。

二、数列与数列的前n项和1. 等差数列- 定义:数列中任意两个相邻项之间的差值相等。

- 通项公式:an = a1 + (n-1)d。

- 前n项和公式:Sn = (n/2)(a1 + an)。

2. 等比数列- 定义:数列中任意两个相邻项之间的比值相等。

- 通项公式:an = a1 * r^(n-1)。

- 前n项和公式:Sn = a1 * (1 - r^n) / (1 - r)。

3. 递推数列- 定义:数列中的每一项都是前一项通过某种规则计算得到的。

三、平面向量与几何应用1. 向量的概念和运算- 定义:有大小和方向的量。

- 向量的表示:用有向线段表示,箭头指向表示方向。

- 向量的运算:加法、减法、数量积、向量积。

2. 向量的数量积与向量的模长- 定义:向量的数量积是两个向量的模长之积与它们夹角的余弦值的乘积。

- 经验:两个向量的数量积等于其中一个向量在另一个向量上的投影与第二个向量的模长的乘积。

3. 向量的向量积与向量的模长- 定义:向量的向量积是两个向量的模长之积与它们夹角的正弦值的乘积。

- 经验:两个向量的向量积等于以它们为两边的平行四边形的面积。

高二上册数学知识点归纳

高二上册数学知识点归纳

高二上册数学知识点归纳高二上册数学课程是学生在高中阶段的重要阶段,本文将对这个学期中的数学知识点进行归纳和总结,以帮助同学们更好地掌握和复习这些知识。

一、函数与导数1. 函数的概念与性质:函数的定义、定义域、值域、奇偶性、周期性等基本性质。

2. 高阶导数与导数求解:利用迭代法求解函数的导数,运用函数的性质进行导数运算。

3. 高中函数的应用:包括函数的最值问题、函数的单调性、函数图像与方程的解等应用。

二、三角函数1. 基本概念与性质:正弦、余弦、正切、余切等函数的定义与性质。

2. 三角函数的特殊值:特殊角的三角函数值,以及利用特殊角求解其它三角函数值。

3. 三角函数的图像变换:在平面直角坐标系中,通过变换求解三角函数的图像。

4. 三角方程与三角函数的应用:包括三角方程的解、三角函数的图像分析等。

三、解析几何1. 直线与平面方程:点斜式、两点式、标准式等直线方程的求解,平面方程的求解与应用。

2. 曲线与方程:圆、椭圆、抛物线、双曲线等曲线方程的特征与应用。

3. 空间直线与平面:直线的方向向量,两直线的位置关系,平面的法向量及交线问题。

四、数列与数列极限1. 数列的概念与性质:数列的定义,等差数列、等比数列等常见数列的性质。

2. 数列求和与通项公式:利用数列的性质,求解数列的和与通项公式。

3. 数列的极限:数列极限的定义与性质,极限的计算方法与应用。

五、排列与组合1. 排列与组合的基本概念:阶乘、排列、组合等基本概念及其性质。

2. 排列与组合的计算方法:确定性计数法、不确定性计数法等方法。

3. 应用问题的解决:包括抽签、选课、分组等实际问题的解决方法。

六、概率与统计1. 概率与统计的基本概念:事件、概率、频率、样本空间等基本概念。

2. 概率计算与事件关系:计算概率的方法,事件的相互关系与运算。

3. 统计与图表表示:频数表、频率分布直方图、统计图等的制作与解读。

七、三角恒等变换1. 基本恒等变换:平凡恒等式、倒角公式、和差化积等的运用。

高二数学知识点总结大大全

高二数学知识点总结大大全

高二数学知识点总结大全(必修)第1章空间几何体11 .1柱、锥、台、球的结构特征1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积2rrlSππ+=4 圆台的表面积22RRlrrlSππππ+++=5 球的表面积24RSπ=(二)空间几何体的体积1柱体的体积hSV⨯=底2锥体的体积hSV⨯=底313台体的体积hSSSSV⨯++=)31下下上上(4球体的体积334RVπ=第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面222rrlSππ+=D CBAαAC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

高二数学上知识点总结

高二数学上知识点总结

高二数学上知识点总结高二数学上知识点学生掌握情况总结求解并证明不等式教师评价求点的运动轨迹求解双曲线的焦点、渐近线求解抛物线的焦点、焦距、渐近线判定直线和圆、圆和圆之间的位置关系求解最大值、最小值在生活中的应用扩展阅读:高二数学上册各章节知识点总结大纲版欢迎光临《中学数学信息网》127@不等式单元知识总结一、不等式的性质1.两个实数a与b之间的大小关系1a-b>0a>b;2a-b=0a=b;3a-b<0a<b.4ab>1a>b;若a、bR,则5ab=1a=b;6ab<1a<b.2.不等式的性质1a>bb<a对称性2a>bb>ca>c传递性3a>ba+c>b+c加法单调性a>bc>0ac>bc4乘法单调性a>bc<0ac<bc5a+b>ca>c-b移项法则6a>bc>da+c>b+d同向不等式可加7a>bc<da-c>b-d异向不等式可减8a>b>0c>d>0ac>bd同向正数不等式可乘《中学数学信息网》系列资料欢迎光临《中学数学信息网》127@9a>b>00<c<dac>bd异向正数不等式可除10a>b>0nNan>bn正数不等式可乘方11a>b>0nNna>nb正数不等式可开方12a>b>01a<1b正数不等式两边取倒数3.绝对值不等式的性质1|a|≥a;|a|=aa≥0,-aa<0.2如果a>0,那么||<a2<a2-a<<a;||>a2>a2>a或<-a.3|ab|=|a||b|.4|ab|=|a||b|b≠0.5|a|-|b|≤|a±b|≤|a|+|b|.6|a1+a2++an|≤|a1|+|a2|++|an|.二、不等式的证明1.不等式证明的依据1实数的性质:a、b同号ab>0;a、b异号ab<0a-b>0a>b;a-b<0a<b;a-b=0a=b2不等式的性质略3重要不等式:①|a|≥0;a2≥0;a-b2≥0a、b∈R②a2+b2≥2aba、b∈R,当且仅当a=b时取“=”号③ab2≥aba、bR,当且仅当a=b时取“=”号2.不等式的证明方法1比较法:要证明a>ba<b,只要证明a-b>0a-b<0,这种证明不等式的方《中学数学信息网》系列资料迎光临《中学数学信息网》127@法叫做比较法.用比较法证明不等式的步骤是:作差变形判断符号.2综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.3分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类1解一元一次不等式.2解一元二次不等式.3可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:1正确应用不等式的基本性质.2正确应用幂函数、指数函数和对数函数的增、减性.3注意代数式中未知数的取值范围.3.不等式的同解性1fg>0与f>0g>0或f<0g<0同解.2fg<0与f>0f<0g<0或同解.g>0《中学数学信息网》系列资料迎光临《中学数学信息网》127@3f>0f<0f>0与或同解.g≠0gg>0g<0f>0f<0f4<0与或同解.g≠0gg<0g>05|f|<g与-g<f<g同解.g>06|f|>g①与f>g或f<-g其中g≥0同解;②与g<0同解.f>[g]27f>g与f≥0或f≥0g≥0g<0同解.8f<g与f<[g]2同解.f≥09当a>1时,af>ag与f>g同解,当0<a<1时,af>ag与f<g同解.10当a>1时,ogf>gaf>ogag与f>0同解.f<g当0<a<1时,ogaf>ogag与f>0同解.g>0单元知识总结一、坐标法1.点和坐标建立了平面直角坐标系后,坐标平面上的点和一对有序实数,建立了一一对应的关系.2.两点间的距离公式设两点的坐标为的坐标为0,0,则用集合的观点,上述定义中的两条可以表述为:1M∈∈的坐标;②立式:写出适合条件的集合|};③代换:用坐标表示条件,列出方程f,=0;④化简:化方程f,=0为最简形式;⑤证明:以方程的解为坐标的点都是曲线上的点.上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.2由方程画曲线图形的步骤:①讨论曲线的对称性关于轴、轴和原点;②求截距:方程组f,00的解是曲线与轴交点的坐标;《中学数学信息网》系列资料欢迎光临《中学数学信息网》127@方程组f,00的解是曲线与轴交点的坐标;③讨论曲线的范围;④列表、描点、画线.3.交点求两曲线的交点,就是解这两条曲线方程组成的方程组.4.曲线系方程过两曲线f1,=0和f2,=0的交点的曲线系方程是f1,+λf2,=0λ∈R.四、圆1.圆的定义平面内与定点距离等于定长的点的集合轨迹叫圆.2.圆的方程1标准方程-a2+-b2=r2.a,b为圆心,r为半径.特别地:当圆心为0,0时,方程为2+2=r22一般方程2+2+D+E+F=0 D2配方22E2DE24F24当D2+E2-4F>0时,方程表示以-DE2,-2为圆心,以12D2E24F为半径的圆;当D2+E2-4F=0时,方程表示点-D2,-E2当D2+E2-4F<0时,方程无实数解,无轨迹.3参数方程以a,b为圆心,以r为半径的圆的参数方程为arcoθbrinθθ为参数特别地,以0,0为圆心,以r为半径的圆的参数方程为《中学数学信息网》系列资料迎光临《中学数学信息网》127@rcoθrinθθ为参数3.点与圆的位置关系设点到圆心的距离为d,圆的半径为r.1点在圆外d>r;2点在圆上d=r;3点在圆内d<r.4.直线与圆的位置关系设直线:A+B+C=0和圆C:-a2+-b2=r2,则d|AaBbC|A2B2.1相交直线与圆的方程组成的方程组有两解,△>0或d<r;2相切直线与圆的方程组成的方程组有一组解,△=0或d=r;3相离直线与圆的方程组成的方程组无解,△<0或d>r.5.求圆的切线方法1已知圆2+2+D+E+F=0.①若已知切点0,0在圆上,则切线只有一条,其方程是D0E00022F0.当+D000,0在圆外时,0+02+E2+F=0表示过两个切点的切点弦方程.②若已知切线过圆外一点0,0,则设切线方程为-0=-0,再利用相切条件求,这时必有两条切线,注意不要漏掉平行于轴的切线.③若已知切线斜率为,则设切线方程为=+b,再利用相切条件求b,这时必有两条切线.2已知圆2+2=r2.①若已知切点与一个定点的距离和它到一条定直线的距离的比是常数e=ca0<e<1时,这个点的轨迹是椭圆.2图形和标准方程图8-1的标准方程为:22a2+b2=1a>b>08-2的标准方程为:22图b2+a2=1a>b>03几何性质《中学数学信息网》系列资料迎光临《中学数学信息网》127@条件{M|MF1||MF2|=2a,2a>|F1F2|}|MF|MF{M|1|2|点M到=1的距离点M到1}2的距离=e,0<e<标准方程2222a2b21a>b>0b2a21a>b>0顶点A1-a,0,A2a,0A10,-a,A20,aB10,-b,B20,bB1-b,0,B2b,0轴对称轴:轴,轴.长轴长|A1A2|=2a,短轴长|B1B2|=2b焦点F1-c,0,F2c,0F10,-c,F20,c焦距|F1F2|=2cc>0,c2=a2-b2离心率e=ca0<e<1准线方程a2a2a21:=c;=a22:c1:=c;2:=c焦点半径|MF1|=a+e0,|MF1|=a+e0,|MF2|=a-e0|MF2|=a-e0>外点和椭圆2200的关系a2b210,0在椭圆上<内=为切线斜率±a22,b2=为切线斜率±b22,a2切线方程000a2+b2=10b2+a2=10,0为切点0,0为切点切点弦0,0在椭圆外0,0在椭圆外000方程a2+b2=1b2+0a2=1|-12-1|12或|12|12弦长公式其中1,1,2,2为割弦端点坐标,为割弦所在直线的斜率2.双曲线1定义定义1:平面内与两个定点F1、F2的距离的差的绝对值等于常数小于|F1F2|的点的轨迹叫做双曲线这两个定点叫双曲线的焦点.《中学数学信息网》系列资料迎光临《中学数学信息网》127@定义2:动点到一定点的距离与它到一条定直线的距离之比是常数ee>1时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点.2图形和标准方程图8-3的标准方程为:22a2-b2=1a>0,b>0图8-4的标准方程为:22a2-b2=1a>0,b>03几何性质《中学数学信息网》系列资料迎光临《中学数学信息网》127@|MF1|-|MF2|=2a,a>0,2a<|F1F2|}.条件||MF1||MF2|点M到==e,e>1}.1的距离点M到2的距离标准方程2a2-2b =1a>0,b>0222a2-b2=1a>0,b>0顶点A1-a,0,A2a,0A10,-a,A20,a轴对称轴:轴,轴,实轴长|A1A2|=2a,虚轴长|B1B2|=2b焦点F1-c,0,F2c,0F10,-c,F20,c焦距|F1F2|=2cc>0,c2=a2+b2离心率e=cae>1a2a2准线方程a2a21:=-c;2:=c1:=-c;2:=c渐近线=±b或22=±a 程2-方aab2=0b或22a2-b2=0共渐近线222的双曲线a2-b2=≠0a2-2b2=≠0系方程焦点半径|MF1|=e0+a,|MF1|=e0+a,|MF=2|=±e0a2-2ab2|MF=2|=±e0b2-2aa2>为切线斜率bba 或<-a>为切线斜率aab或<-b切线方程00a2-0b2=1a2-0b2=10=,a2的切线方程:0为切点000为切点2=,a200,0为切点切点弦0,0在双曲线外0,0在双曲线外方程00a2-0b2=1a2-0b2=1|12-1|12或|1-2|12弦长公式其中1,1,2,2为割弦端点坐标,为割弦所在直线的斜率3.抛物线1定义《中学数学信息网》系列资料迎光临《中学数学信息网》127@平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线叫做抛物线的准线.2抛物线的标准方程,类型及几何性质,见下表:①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离.②的几何意义:焦点F到准线的距离.③弦长公式:设直线为=+b抛物线为2=2,|AB|=12|2-1|=112|2-1|焦点弦长公式:|AB|=+1+24.圆锥曲线椭圆、双曲线、抛物线统称圆锥曲线的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.二、利用平移化简二元二次方程1.定义缺项的二元二次方程A2+C2+D+E+F=0A、C不同时为0※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程.A=C是方程※为圆的方程的必要条件.A与C同号是方程※为椭圆的方程的必要条件.A与C异号是方程※为双曲线的方程的必要条件.A与C中仅有一个为0是方程※为抛物线方程的必要条件.2.对于缺项的二元二次方程:A2+C2+D+E+F=0A,C不同时为0利用平移变换,可把圆锥曲线的一般《中学数学信息网》系列资料迎光临《中学数学信息网》127@方程化为标准方程,其方法有:①待定系数法;②配方法.h22h2a2+b2=1或b2+2椭圆:a2=1中心O′h,双曲线:h222h2a2-b2=1或a2-b2=1中心O′h,抛物线:对称轴平行于轴的抛物线方程为-2=2-h或-2=-2-h,顶点O′h,.对称轴平行于轴的抛物线方程为:-h2=2-或-h2=-2-顶点O′h,.以上方程对应的曲线按向量a=-h,-平移,就可将其方程化为圆锥曲线的标准方程的形式.《中学数学信息网》系列资料。

最全面高二上册数学知识点归纳总结

最全面高二上册数学知识点归纳总结

最全面高二上册数学知识点归纳总结高二上册数学知识点归纳总结一、函数的基本知识1. 概念:函数可以理解为一种变量间关系,在数学上,常用符号表示为y=f(x),y是自变量x的函数。

2. 函数的定义域:指函数中自变量的取值范围。

3. 函数的值域:指函数值的取值范围。

4. 奇偶性:奇函数指f(-x)=-f(x),偶函数指f(-x)=f(x),若函数同时满足这两个限制,则称其为周期为2的函数。

5. 函数图象:表示函数在坐标系中的图形。

6. 函数的单调性:函数的单调性可以分为单调递增和单调递减,指的是函数在定义域上单调的增加或者减少。

7. 函数的极值:指函数在定义域上取到的最大值或最小值,可以分为极大值和极小值。

二、三角函数1. 正弦函数sina和余弦函数cosa:定义在坐标平面上以x轴为横轴为一周期的函数。

2. 正切函数tana和余切函数cota:正切函数定义为y=tanx=sinx/cosx,余切函数定义为y=cotx=cosx/sinx。

3. 三角函数的诱导公式:即sin(a±b)=sinacosb±cosasinb,cos(a±b)=cosacosb∓sinasinb,tan(a±b)=(tana±tanb)/(1∓tana*tanb)。

4. 三角函数的基本关系:根据定义,sin^2x+cos^2x=1,1+tan^2x=sec^2x,1+cot^2x=csc^2x。

三、解方程1. 一元一次方程:即形如ax+b=0的方程,通过变形可解得x=-b/a。

2. 一元二次方程:即形如ax^2+bx+c=0的方程,通过配方法、求根公式或者绝对值法可解。

3. 不等式:可以通过加缀、化解绝对值、移项变形、整体乘除等方法进行求解。

4. 二元一次方程组:即形如ax+by=c,dx+ey=f的两个方程,通过消元法(加减、代入、变形)可以求解方程组。

四、图像的性质1. 轨迹:指定一条件,在坐标系中任取一点,不断执行该条件操作,所得的点形成的图形。

高二数学上册单元知识点

高二数学上册单元知识点

高二数学上册单元知识点本文将为您详细介绍高二数学上册的各个单元知识点,包括函数与方程、空间几何、数列与数学归纳法、三角函数和立体几何五个部分。

让我们逐一进行讨论。

一、函数与方程在这一单元中,我们将学习到各种类型的函数和方程。

其中包括一次函数、二次函数、指数函数、对数函数、三角函数等。

我们将学习它们的定义、性质及其在实际问题中的应用。

此外,我们还将学习如何求解一元一次方程、一元二次方程以及简单的不等式。

二、空间几何在这一单元中,我们将着重研究平面几何和立体几何。

我们将学习平面几何中的图形性质、相交定理和距离计算等内容。

在立体几何方面,我们将学习到各种立体图形的性质、体积和表面积的计算等。

三、数列与数学归纳法在这一单元中,我们将学习数列的概念及其性质。

我们将重点学习等差数列和等比数列的求和公式和通项公式推导。

此外,我们还将学习如何利用数学归纳法证明数学问题。

四、三角函数在这一单元中,我们将深入研究三角函数及其应用。

我们将学习正弦函数、余弦函数和正切函数等的定义、性质和图像变化规律。

同时,我们还将学习三角函数的复合、反函数和解三角方程等内容。

五、立体几何在这一单元中,我们将进一步研究立体几何。

我们将学习圆锥、圆柱、圆盘以及球等立体图形的性质和计算。

此外,我们还将学习空间几何中的向量概念和向量的运算,以及向量在实际问题中的应用。

通过学习以上五个单元,我们将全面掌握高二数学上册的知识点。

这些知识将帮助我们更好地理解数学概念,提高我们的数学分析和解决问题的能力。

希望本文的详细介绍能够帮助您更好地理解高二数学上册的单元知识点,并在学习中取得好成绩。

祝您学业进步!。

高二数学上册各章节知识点总结(大纲版)

高二数学上册各章节知识点总结(大纲版)

高二数学上册各章节知识点总结(大纲版) 不等式单元知识总结一、不等式的性质1.两个实数a与b之间的大小关系:1) a-b>0 ⇔ a>b;2) a-b=0 ⇔ a=b;3) a-b<0 ⇔ a<b;4) a/b>1 ⇔ a>b (若a、b∈R+)5) a/b=1 ⇔ a=b (若a、b∈R+)6) a/b<1 ⇔ a<b (若a、b∈R+)2.不等式的性质:1) a>b ⇔ b<a (对称性)2) a>b ∧ b>c ⇒ a>c (传递性)3) a>b ⇔ a+c>b+c (加法单调性)4) a>b ∧ c<0 ⇒ ac<bc (乘法单调性)5) a+b>c ⇔ a>c-b (移项法则)6) a>b ∧ c>d ⇒ a+c>b+d (同向不等式可加)7) a>b ∧ cb-d (异向不等式可减)8) a>b ∧ c>d ⇒ ac>bd (同向正数不等式可乘)9) a>b ∧ cd (异向正数不等式可除)10) a>b ∧ n∈N ⇒ a^n>b^n (正数不等式可乘方)11) a>b ∧ n∈N ⇒ n√a>n√b (正数不等式可开方)12) a>b ⇒ 1/a<1/b (正数不等式两边取倒数)3.绝对值不等式的性质:1) |a|≥a;|a|=a (a≥0),|a|=-a (a<0)2) 若a>0,则 |x|a ⇔ x^2>a^2 ⇔ x>a 或 x<-a。

3) |a·b|=|a|·|b|4) |a/b|=|a|/|b| (b≠0)5) |a|-|b|≤|a±b|≤|a|+|b|6) |a1+a2+…+an|≤|a1|+|a2|+…+|an|二、不等式的证明1.不等式证明的依据:1) 实数的性质:a、b同号⇔ ab>0;a、b异号⇔ ab0 ⇔a>b;a-b<0 ⇔ a<b;a-b=0 ⇔ a=b2) 不等式的性质 (略)3) 重要不等式:①|a|≥a^2;②a^2+b^2≥2ab (a、b∈R,当且仅当a=b时取“=”号);③(a+b)/2≥√(ab) (a、b∈R+,当且仅当a=b时取“=”号)2.不等式的证明方法 (略)直线方程的基本形式有点斜式、斜截式、两点式、截距式、参数式和一般式。

高二上数学知识点总结

高二上数学知识点总结

高二上数学知识点总结在高二上学期的数学学习中,我们学习了许多重要的数学知识点。

下面将对这些知识点进行总结,以帮助大家更好地回顾和巩固所学内容。

一、集合与函数1. 集合的概念与表示方法:集合是由一些确定的对象构成的整体,可以使用列举法、描述法和集合间关系表示。

2. 集合运算:交集、并集、差集与补集等。

3. 函数的概念与性质:函数是两个集合之间的一种特殊关系,包括定义域、值域、单调性、奇偶性等概念。

二、三角函数与解三角形1. 弧度制与角度制:介绍了弧度制与角度制的相互转换关系。

2. 正弦定理与余弦定理:通过正弦定理与余弦定理可以求解任意三角形的边长和角度。

3. 解三角形:利用已知条件和三角函数的性质来求解三角形的各边长和角度。

三、平面向量1. 向量的概念与表示方法:向量是具有大小和方向的量,可以使用有向线段表示,也可以使用坐标表示。

2. 向量的运算:向量的加法、减法、数量积和向量积等。

3. 向量的应用:向量的平移、共线、垂直等应用。

四、导数与函数的应用1. 导数的定义与性质:介绍了导数的概念,导函数的性质以及一阶导数与高阶导数。

2. 函数的极值与最值:利用导数的应用来求解函数的极值和最值问题。

3. 函数与图像:介绍了函数的单调性、凹凸性等性质与函数图像的关系。

五、数列与数学归纳法1. 数列的概念与表示方法:数列是一系列按照一定规律排列的数。

2. 数列的通项与求和公式:数列的通项公式表示了数列中的任意一项与项号之间的关系,求和公式表示了数列前n项和的计算方法。

3. 数学归纳法:数学归纳法是证明数学命题的一种常用方法,包括基本步骤和归纳假设。

六、概率与统计1. 随机事件与概率:随机事件与样本空间、必然事件、不可能事件等概念的引入,及概率的计算方法。

2. 离散型随机变量与概率分布:介绍了离散型随机变量的概念,概率分布的计算和性质。

3. 统计学应用:对样本调查的数据进行统计分析,包括频数分布、频率分布、累积频率等。

高二数学知识点上学期

高二数学知识点上学期

高二数学知识点上学期上学期,高二学生在数学学科中学习了许多重要的知识点,这些知识点为他们今后的学习打下了坚实的基础。

本文将详细介绍高二数学上学期的主要知识点,帮助学生回顾和巩固所学内容。

一、函数与方程1. 二次函数二次函数是高中数学中重要的知识点之一。

我们学习了二次函数的定义、性质以及图像的特征。

二次函数的标准方程为y =ax^2 + bx + c,其中a、b、c为常数,a不为零。

我们学习了如何通过图像的形状和位置,确定二次函数的性质,如顶点、对称轴、开口方向等。

2. 三角函数在上学期,我们学习了常用的三角函数:正弦、余弦和正切函数。

通过学习三角函数的定义及其性质,我们可以求解各种三角函数方程,解决与角度有关的问题。

同时,还学习了三角函数的图像和周期性等特点。

3. 指数与对数指数和对数是数学中常见的运算方法。

上学期,我们学习了指数与对数的定义、性质以及运算规则。

通过掌握指数与对数的基本知识,我们可以解决各种与指数对数有关的问题,如指数方程、对数方程等。

二、解析几何1. 平面向量平面向量是解析几何的重要内容之一。

我们学习了平面向量的定义、运算规则以及与向量相关的性质。

通过学习平面向量,我们可以解决各种几何问题,如线段的中点、向量共线与垂直关系等。

2. 平面直角坐标系平面直角坐标系是解析几何的基础。

我们学习了如何在平面直角坐标系中表示点、直线和圆等几何对象。

通过掌握平面直角坐标系的基本概念,我们可以进行几何图形的性质研究和计算。

三、概率与统计1. 随机事件与概率概率与统计是数学的一个重要分支,也是现实生活中常用的一种分析方法。

我们学习了随机事件的基本概念和性质,并通过概率的定义和公式计算事件出现的可能性。

概率与统计的应用涉及到生活中的许多问题,如抽样调查、样本空间等。

2. 统计分布与统计参数在统计学中,我们学习了统计分布与统计参数的概念和计算方法。

通过统计分布和统计参数的研究,我们可以描述和分析样本数据的特征,进而作出推断和判断。

高二数学上知识点

高二数学上知识点

高二数学上 知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征----棱柱:棱锥:棱台:圆柱:圆锥:圆台:球: 1.2空间几何体的三视图和直观图1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下2 画三视图的原则: 长对齐、高对齐、宽相等 3斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积3 圆锥的表面积2S rl r ππ=+4 圆台的表面积22Srl r Rl R ππππ=+++5 球的表面积24S R π= 6扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径) (二)空间几何体的体积1柱体的体积 V S h =⨯底2锥体的体积 13V S h =⨯底3台体的体积1)3V S S h =+⨯下上(4球体的体积343V R π= 第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.1 1 平面含义:平面是无限延展的,无大小,无厚薄。

2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:222rrl S ππ+=(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A l B l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭ 公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 ⇒ 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。

高中数学各章节知识点汇总

高中数学各章节知识点汇总

高中数学各章节知识点汇总高中数学各章节知识点汇总名目第一章集合与命题 (1)一、集合 (1)二、四种命题的形式 (2)三、充分条件与必要条件 (2)第二章别等式 (1)第三章函数的基本性质 (2)第四章幂函数、指数函数和对数函数(上) (3)一、幂函数 (3)二、指数函数 (3)三、对数 (3)四、反函数 (4)五、对数函数 (4)六、指数方程和对数方程 (4)第五章三角比 (5)一、任意角的三角比 (5)二、三角恒等式 (5)三、解歪三角形 (7)第六章三角函数的图像与性质 (8)一、周期性 (8)第七章数列与数学归纳法 (9)一、数列 (9)二、数学归纳法 (10)第八章平面向量的坐标表示 (12)第九章矩阵和行列式初步 (14)一、矩阵 (14)二、行列式 (14)第十章算法初步 (16)第十一章坐标平面上的直线 (17)第十二章圆锥曲线 (19)第十三章复数 (21)第一章集合与命题一、集合1.1 集合及其表示办法集合的概念1、把可以确切指定的一些对象组成的整体叫做集合简称集2、集合中的各个对象叫做那个集合的元素3、假如a是集合A的元素,就记做a∈A,读作“a属于A”4、假如a别是集合A的元素,就记做a ? A,读作“a别属于A”5、数的集合简称数集:全体自然数组成的集合,即自然数集,记作N别包括零的自然数组成的集合,记作N*全体整数组成的集合,即整数集,记作Z全体有理数组成的集合,即有理数集,记作Q全体实数组成的集合,即实数集,记作R我们把正整数集、负整数集、正有理数、负有理数、正实数集、负实数集表示为Z+、Z-、Q+、Q-、R+、R-6、把含有有限个数的集合叫做有限集、含有无限个数的集合叫做无限极7、空集是指别用含有任何元素的集合,记作?集合的表示办法1、在大括号内先写出那个集合的元素的普通形式,再画一条竖线,在竖线之后写上集合中元素所共同具有的特性,这种集合的表示办法叫做描述法1.2 集合之间的关系子集1、关于两个集合A和B,假如集合A中任何一具元素都属于集合B,这么集合A叫做集合B 的子集,记做A?B或B?A,读作“A包含于B”或“B包含A”2、空集包含于任何一具集合,空集是任何集合的子集3、用平面区域来表示集合之间关系的办法叫做集合的图示法,所用图叫做文氏图相等的集合1、关于两个集合A和B,假如A?B,且B?A,这么叫做集合A与集合B相等,记作“A=B”,读作“集合A等于集合B”,假如两个集合所含元素彻底相同,这么这两个集合相等1.3 集合的运算交集1、由交集A和交集B的所有公共元素的集合叫做A与B的交集,记作A∩B,读作A交B并集1、由所有属于集合A或者属于集合B的元素组成的集合叫做集合A、B 的并集,记作A∪B,读作A并B补集1、在研究集合与集合之间的关系时,这些集合往往是某个给定集合的子集,那个确定的集合叫做全集2、U是全集,A是U的子集。

高二数学各章知识点归纳总结

高二数学各章知识点归纳总结

高二数学各章知识点归纳总结高二数学是学生在数学学科中的重要阶段,它涵盖了各种基础概念和重要知识点。

为了帮助同学们更好地理解和掌握这些知识点,下面将对高二数学各章的知识进行归纳总结。

一、函数与方程1. 函数的基本概念函数是一种特殊的关系,它将一个集合中的每一个元素映射到另一个集合中的唯一元素。

函数可以用公式、图像和表格等形式来表示。

2. 一次函数与二次函数一次函数的形式为y=ax+b,其中a为斜率,b为截距。

二次函数的形式为y=ax²+bx+c,其中a、b、c为常数。

3. 指数与对数函数指数函数的形式为y=a^x,其中a为底数,x为指数。

对数函数是指数函数的逆运算,形式为y=logₐx,其中a为底数,x为真数。

4. 三角函数正弦函数、余弦函数和正切函数是最常见的三角函数。

它们分别表示一个角的正弦值、余弦值和正切值。

5. 方程的求解线性方程、二次方程、指数方程、对数方程和三角方程等的求解方法需要根据具体情况选择合适的方法,并注意正确运用等式性质和变形法则。

二、数列与数学归纳法1. 数列的基本概念数列是按一定规律排列的一组数,其中每个数称为数列的项。

数列可以是等差数列、等比数列或其他特殊数列。

2. 等差数列与等差数列求和公式等差数列的通项公式为an=a₁+(n-1)d,其中a₁为首项,d为公差。

等差数列的前n项和公式为Sn=(2a₁+(n-1)d)n/2。

3. 等比数列与等比数列求和公式等比数列的通项公式为an=a₁q^(n-1),其中a₁为首项,q为公比。

等比数列的前n项和公式为Sn=a₁(1-q^n)/(1-q)。

4. 数学归纳法数学归纳法是一种证明方法,它分为基础步骤和归纳步骤。

基础步骤是验证当n=1时命题成立,归纳步骤是假设当n=k时命题成立,证明当n=k+1时命题也成立。

三、平面向量1. 向量的基本概念与表示向量是具有大小和方向的量,可以用有向线段来表示。

向量的表示方法有坐标表示、数量表达和单位向量表示等。

高二数学上册知识点总结

高二数学上册知识点总结

高二数学上册知识点总结在高二数学上册的学习中,我们接触到了许多重要的数学知识点。

下面将对这些知识点进行总结和归纳,以帮助大家更好地理解和记忆这些内容。

一、函数与方程1. 函数的定义与性质:函数的定义、定义域、值域、单调性、奇偶性等。

2. 一次函数:函数的形式、斜率、截距、函数与方程的相互转化等。

3. 二次函数:函数的标准形式、顶点形式、根的性质、判别式等。

4. 指数函数与对数函数:指数函数的性质、对数函数的性质、换底公式等。

5. 三角函数:正弦函数、余弦函数、正切函数以及其性质、图像等。

二、数列与数列的极限1. 数列的概念与表示:数列的定义、通项公式、递推公式等。

2. 数列的性质:有界数列、单调数列、等差数列、等比数列等。

3. 数列的极限:数列极限的定义、数列趋向于正无穷或负无穷的情况、夹逼准则等。

4. 利用数列的极限解决问题:数列极限的应用、极限运算规则等。

三、平面向量1. 向量的表示与运算:向量的定义、向量在直角坐标系中的表示、向量的加减法、数量积与向量积等。

2. 向量的性质与判定:共线、垂直、平行等性质与判定方法。

3. 空间向量与平面向量的关系:平面向量的法向量、向量共面的充分必要条件等。

四、解三角形1. 三角函数的进一步性质:三角函数的周期性、区间上的单调性、反函数等。

2. 三角函数的和差化积:两角和与差的三角函数表达式、倍角与半角的三角函数表达式等。

3. 解三角形的基本原理:解直角三角形的基本关系、解任意三角形的三边或两角一边关系等。

4. 解三角形的辅助线方法:角平分线定理、高线定理等。

五、概率与统计1. 概率的基本概念:概率的定义、基本性质、计算方法等。

2. 排列与组合:排列、组合的概念与计算方法、排列组合与概率的关系等。

3. 随机变量与概率分布:随机变量的概念、离散型和连续型随机变量的概率分布等。

4. 统计与抽样:总体与样本的概念、统计量的计算、抽样与抽样误差等。

六、解析几何1. 平面与直线的位置关系:平面与直线的平行、垂直、相交等关系。

高二数学上学期知识点

高二数学上学期知识点

高二数学上学期知识点 第一部分:三角恒等变换 1.两角和与差正弦、余弦、正切公式:=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1 注意正用、逆用、变形用.例如:tanA+tanB=tan<A+B><1-tanAtanB>2.二倍角公式:sin2α=ααcos sin 2⋅,cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tan 2α=αα2tan 1tan 2-.3.升幂公式是:2cos 2cos 12αα=+2sin2cos 12αα=-.4.降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=.5.万能公式:sin α=2tan 12tan22αα+cos α=2tan 12tan 122αα+-tan α=2tan 12tan22αα-6.三角函数恒等变形的基本策略:〔1〕常值代换:特别是用"1〞的代换,如1=cos2θ+sin2θ〔2〕项的分拆与角的配凑.如分拆项:sin2x+2cos2x=<sin2x+cos2x>+cos2x=1+cos2x ;配凑角:α=〔α+β〕-β,β=2βα+-2βα-等.〔3〕降次与升次.2sin2cos 12αα=-,22cos 2sin sin 1⎪⎭⎫ ⎝⎛+=+ααα,sin α ,cos α可凑倍角公式;22cos 2sin sin 1⎪⎭⎫ ⎝⎛-=-ααα等.〔4〕化弦〔切〕法.将三角函数利用同角三角函数基本关系化成弦〔切〕.注意函数关系,尽量异名化同名、异角化同角.〔5〕引入辅助角.asin θ+bcos θ=22b a +sin<θ+ϕ>,ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=a b确定.7.注意点:三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值. 第二部分:解三角形1.边角关系的转化:〔ⅰ〕正弦定理:A a sin =B b sin =C csin =2R<R 为外接圆的半径>;注:〔1〕a=2RsinA;b=2RsinB;c=2RsinC;〔2〕a:b:c=sinA:sinB:sinC;<3>三角形面积公式S=12absinC=12bcsinA=12acsinB;〔ⅱ〕余弦定理:a 2=b 2+c 2-2bc A cos ,bc a c b A 2cos 222-+=2.应用:〔1〕判断三角形解的个数;〔2〕判断三角形的形状;<3>求三角形中的边或角;〔4〕求三角形面积S ;注:三角形中 ①a>b ⇔A>B ⇔sinA>sinB ;②内角和为180︒;③两边之和大于第三边;④在△ABC 中有-tanC B)+tan(A -cosC B)+cos(A sinC=B)+sin(A ==,2cos 2sinC B A =+,2sin 2cos CB A =+在解三角形中的应用.3.解斜三角形的常规思维方法是:〔1〕已知两角和一边〔如A 、B 、c 〕,由A+B+C = π求C,由正弦定理求a 、b .〔2〕已知两边和夹角〔如a 、b 、C 〕,应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A+B+C= π,求另一角.〔3〕已知两边和其中一边的对角〔如a 、b 、A 〕,应用正弦定理求B,由A+B+C = π求C,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况.〔4〕已知三边a 、b 、c,应用余弦定理求A 、B,再由A+B+C = π,求角C .〔5〕术语:坡度、仰角、俯角、方位角〔以特定基准方向为起点〔一般为北方〕,依顺时针方式旋转至指示方向所在位置,其间所夹的角度称之.方位角α的取值X 围是:0°≤α<360. 第三部分:数列 证明数列{}n a 是等差〔比〕数列〔1〕等差数列:①定义法:对于数列{}n a ,若da a nn =-+1<常数>,则数列{}n a 是等差数列. ②等差中项法:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列.注:后两种方法仅适用于选择、填空:③n a pn q =+〔形如一次函数〕④2n S An Bn=+〔常数项为0的二次〕〔2〕等比数列:①定义法:对于数列{}n a ,若)0(1≠=+q q a a n n ,则数列{}n a 是等比数列.②等比中项法:对于数列{}n a ,若212++=n n n a a a )0(≠n a ,则数列{}n a 是等比数列2.求数列通项公式na 方法 <1>公式法:等差数列中an=a1+<n-1>d 等比数列中an= a1qn-1; (0)q ≠<2>⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n 〔 注意 :验证a1是否包含在an 的公式中〕 〔3〕递推式为1n a +=n a +f<n> <采用累加法>;1n a +=n a ×f<n> <采用累积法>;例已知数列{}n a 满足11a =,n n a a n n ++=--111(2)n ≥,则n a =________〔答:1n a =〕〔4〕构造法;形如n n a pa q =+,1nn n a ka b -=+〔,k b p,q 为常数且p ≠q 〕的递推数列,可构造等比数列{}na x +,例 ①已知111,32n n a a a -==+,求na 〔答:1231n n a -=-〕; 〔5〕涉与递推公式的问题,常借助于"迭代法〞解决:an =〔an -an-1〕+<an-1-an-2>+……+〔a2-a1〕+a1 ; an =1122n 1n 1n n a a a a a a a ---⋅〔6〕倒数法形如11n n n a a ka b --=+的递推数列如①已知1111,31n n n a a a a --==+,求n a 〔答:132n a n =-〕;3.求数列前n 项和n S .常见方法:公式、分组、裂项相消、错位相减、倒序相加.关键找通项结构.〔1〕公式法:等差数列中Sn=dn n na 2)1(1-+=2)(1n a a n + ;等比数列中 当q=1,Sn=na1 当q≠1,Sn=q q a n --1)1(1=q q a a n --11〔注:讨论q 是否等于1〕. 〔2〕分组法求数列的和:如an=2n+3n ; 〔3〕错位相减法:nn n c b a ⋅=,{}{}成等比数列成等差数列,n n c b ,如an=<2n-1>2n ;〔注1q ≠〕〔4〕倒序相加法求和:如①在等差数列{}n a 中,前4项的和为40,最后4项的和为80,所有各项的和为720,则这个数列的项数n=______;<答:48>;②已知22()1x f x x =+,则111(1)(2)(3)(4)((()234f f f f f f f ++++++=___〔答:72〕〔5〕裂项法求和:)11(1))((1CAn B An B C C An B An a n +-+-=++=,如求和:1111122334(1)n n ++++⨯⨯⨯+=_________〔答: 1n n +〕〔6〕在求含绝对值的数列前n 项和nS 问题时,注意分类讨论与转化思想的应用,总结时写成分段数列.4.nS 的最值问题方法〔1〕在等差数列{}n a 中,有关Sn 的最值问题——从项的角度求解:①当01>a ,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得取最大值.②当01>a ,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得取最小值.〔2〕转化成二次函数配方求最值〔注:n 是正整数,若n 不是正整数,可观察其两侧的两个整数是否满足要求〕.如①等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值.〔答:前13项和最大,最大值为169〕;②若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是___ 〔答:4006〕5.求数列{an}的最大、最小项的方法〔函数思想〕:①an+1-an=……⎪⎩⎪⎨⎧<=>000如an= -2n2+29n-3②⎪⎩⎪⎨⎧<=>=+1111 n n a a <an>0> ,如an=n n n 10)1(9+③ an=f<n> 研究函数f<n>的增减性 如an=1562+n n6.常用性质:〔1〕等差数列的性质:对于等差数列{}n a ①.dm n a a m n)(-+=〔n m ≤〕②.若q p m n +=+,则q p m n a a a a +=+.③.若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,kk S S 23-成等差数列.④.设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:<i>奇数项da a a 2,,,531成等差数列,公差为⋯<ii>偶数项da a a 2,,,642成等差数列,公差为⋯⑤.若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为21n T -,则2121n n n n a S b T --=.〔应用于选择、填空,要会推导,正用、逆用〕 〔2〕等比数列性质:在等比数列{}n a 中①.mn m n q a a -=〔n m ≤〕;②.若m+n=p+q,则aman=apaq ;如〔1〕在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___〔答:512〕;〔2〕各项均为正数的等比数列{}n a 中,若569a a ⋅=,则3132310log log log a a a +++=〔答:10〕.③.若数列{}n a 是等比数列且q≠-1,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列.如:公比为-1时,4S 、8S -4S 、12S -8S、…不成等比数列7.常见结论:〔1〕三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d ;〔2〕三个数成等比的设法:a/q,a,aq ; 〔3〕若{an}、{bn}成等差,则{kan+tbn}成等差;〔4〕若{an}、{bn}成等比,则{kan}<k≠0>、⎭⎬⎫⎩⎨⎧n b 1、{anbn}、⎭⎬⎫⎩⎨⎧n n ba 成等比;〔5〕{an}成等差,则 <{}na c c>0>成等比. 〔6〕{bn}<bn>0>成等比,则{logcbn}<c>0且c ≠1>成等差.第四部分 不等式1.两个实数a 与b 之间的大小关系—作差法或作商法2.不等式的证明方法〔1〕比较法〔2〕综合法.〔3〕分析法注:一般地常用分析法探索证题途径,然后用综合法3. 解不等式〔1〕一元一次不等式)0(≠>a b ax 的解法①⎭⎬⎫⎩⎨⎧>>a b x x a ,0②⎭⎬⎫⎩⎨⎧<<a b x x a ,0〔2〕一元二次不等式)0(,02>>++a c bx ax 的解法〔三个二次关系〕 判别式ac b 42-=∆0>∆0=∆0<∆二次函数c bx ax y ++=2的图象一元二次方程 相异实根相等实根没有实根21x x <a b x x 221-==02=++c bx ax 的根02>++c bx ax 解集{}12x x x x x <>或⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 02<++c bx ax 解集{}21x x x x <<φφ注:)(02≥>++c bx ax 解集为R,〔02>++c bx ax 对R x ∈恒成立〕 则〔Ⅰ〕⎪⎩⎪⎨⎧≤∆<∆>)0(00a 〔Ⅱ〕若二次函数系数含参数且未指明不为零时,需验证0=a若02<++c bx ax 解集为R 呢?如:关于x 的不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,则a 的取值X 围.略解〔Ⅰ〕成立时,042<-=a 〔Ⅱ〕 ⎩⎨⎧<=∆<-002a 〔3〕绝对值不等式 如果a >0,那么|x|a x a a x a 22<<-<<;⇔⇔ 〔4〕分式不等式若系数含参数时,须判断或讨论系数00<=>,化负为正,写出解集.主要应用:1.解一元二次不等式;2.解分式不等式;3.解含参的一元二次不等式〔先因式分解,分类讨论,比较两根的大小〕;4恒成立问题〔注:①讨论二次项系数是否为0;②开口方向与判别式〕;5.已知12x y -≤-≤,3235x y ≤-≤,求45x y -的取值X 围;〔①换元法;②线性规划法〕.4.简单的线性规划问题应用:〔1〕会画可行域,求目标函数的最值与取得最值时的最优解〔注:可行域边界的虚实〕;〔2〕求可行域内整数点的个数;〔3〕求可行域的面积;〔4〕根据目标函数取得最值时最优解〔个数〕求参数的值〔参数可在线性约束条件中,也可在目标函数中〕;〔5〕实际问题中注意调整最优解〔反代法〕.原命题若p 则q 逆命题若q 则p互逆互否5.常用的基本不等式和重要的不等式〔1〕ab b a R b a 2,,22≥+∈则〔2〕+∈R b a ,,则ab b a 2≥+;注:几何平均数算术平均数,----+ab ba 2〔3〕),()2(222R b a b a b a ∈+≥+〔4〕),(22222+∈+≤+≤≤+R b a b a b a ab b a ab ;6.均值不等式的应用——求最值〔可能出现在实际应用题〕设,0x y >,则2x y xy +≥〔1〕若积P y x P xy 2(有最小值定值),则和+=〔2〕若和22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大. 注:运用均值定理求最值的三要素:"一正、二定、三相等〞技巧:①凑项,例122y x x =+-〔x>2〕②凑系数 ,例 当时,求的最大值;〔答:8〕③添负号,例12(2)2(2)y x x x =-+>-;④拆项,例 求2710(1)1x x y x x ++=>-+的最小值〔答:9 〕⑤构造法,例 求22()(0)1xf x x x =>+21x x =+的最大值〔答:1〕.⑥"1〞的灵活代换,若0,0x y >>且191x y +=,则x y +的最小值是________<答:16>〔3〕若用均值不等式求最值,等号取不到时,需用定义法先证明单调性,后根据单调性求最值,例 求2211y x x =++.第五部分 简易逻辑逻辑联结词,命题的形式:p 或q<记作"p ∨q 〞 >;p 且q<记作"p ∧q 〞 >;非p<记作"┑q 〞 > . 2、"或〞、 "且〞、 "非〞的真值判断〔1〕"非p 〞形式复合命题的真假与F 的真假相反;〔2〕"p 且q 〞形式复合命题当P 与q 同为真时为真,其他情况时为假;〔3〕"p 或q 〞形式复合命题当p 与q 同为假时为假,其他情况时为真.4常见结论的否定形式原结论 否定词 原结论 否定词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于不大于至少有n 个至多有〔1n -〕个小于不小于至多有n 个至少有〔1n +〕个对所有x ,成立存在某x ,不成立p 或q p ⌝且q ⌝ 对任何x ,不成立 存在某x ,成立p 且qp ⌝或q ⌝5、四种命题:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p.6、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下关系:<原命题⇔逆否命题> ①、原命题为真,它的逆命题不一定为真.②、原命题为真,它的否命题不一定为真.③、原命题为真,它的逆否命题一定为真.7、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件. 若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q. 8.命题的否定只否定结论;否命题是条件和结论都否定.9、反证法:从命题结论的反面出发〔假设〕,引出<与已知、公理、定理…>矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法.第六部分 圆锥曲线定义、标准方程与性质 〔一〕椭圆 1.定义:若F1,F2是两定点,P 为动点,且21212F F a PF PF >=+ 〔a 为常数〕则P 点的轨迹是椭圆.注:〔1〕若2a 小于|1F 2F |,则这样的点不存在;〔2〕若2a 等于|1F 2F |,则动点的轨迹是线段1F 2F .<3>21F PF ∆中经常利用余弦定理、三角形面积公式将有关线段1PF 、2PF 、2c,有关角21PF F ∠结合起来,建立1PF +2PF 、1PF •2PF 等关系求出1PF 、2PF 的值.注意题目中椭圆的焦点在x 轴上还是在y 轴上.2.椭圆的标准方程:12222=+b y a x 〔a >b >0〕,12222=+b x a y 〔a >b >0〕<注:222a b c =+>.〔1〕.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.〔2〕.求椭圆的标准方程的方法:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a 、b.3.椭圆的几何性质:线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.离心率:椭圆的焦距与长轴长的比a ce =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆.4.点与椭圆的位置关系〔1〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. 〔2〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b ⇔+>〔二〕双曲线 1.定义:若F1,F2是两定点,21212F F a PF PF <=-〔a 为非零常数〕,则动点P 的轨迹是双曲线.注:〔1〕若2a=|1F 2F |,则动点的轨迹是两条射线;〔2〕若2a >|1F 2F |,则无轨迹.〔3〕若去掉绝对值号,动点M 的轨迹仅为双曲线的一个分支.2.双曲线的标准方程:12222=-b y a x 和12222=-b x a y 〔a >0,b >0〕注:〔1〕222c a b =+〔与椭圆比较〕〔2〕双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.〔3〕求双曲线的标准方程,应注意两个问题:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a,b.3.双曲线的简单几何性质双曲线12222=-b y a x 为例 实轴长为2a,虚轴长为2b,离心率a c e =>1,离心率e 越大,双曲线的开口越大.双曲线的方程与渐近线方程的关系〔1〕若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x a b y ±= 〔2〕若渐近线方程为x a by ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x 〔0λ≠〕〔3〕若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222b y a x 〔0λ≠,若0>λ,焦点在x 轴上,若0<λ,焦点在y轴上〕.特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x 〔0λ≠〕.〔4〕方程221x y m n -=(0,0)m n ≠≠表示双曲线的充要条件是0mn >.〔5〕注意21F PF ∆中结合定义aPF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来.〔三〕抛物线 1.定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线.定点F 叫抛物线的焦点,定直线l 叫抛物线的准线.注:〔1〕点F 在直线l 外,〔2〕点F 在直线l 上,其轨迹是过点F 且与l 垂直的直线,而不是抛物线.2.抛物线的标准方程有四种类型:px y 22=、px y 22-=、py x 22=、py x 22-=.注:〔1〕方程中的一次项变元决定对称轴和焦点位置;〔2〕一次项前面的正负号决定曲线的开口方向;3.抛物线的几何性质,以标准方程22y px =(0)p >为例:p :焦准距〔焦点到准线的距离〕;焦点: )0,2(p 准线: 2p x -=通径p AB 2= 焦半径:,2px CF += 过焦点弦长p x x p x p x CD ++=+++=212122 y1y2=-p2,x1x2=42p ;注:只适合求过焦点的弦长,对于其它的弦,只能用"弦长公式〞来求.4.直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x 2+bx+c=0,当△≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果直线和抛物线只有一个公共点,除相切外,还有直线是抛物线的对称轴或是和对称轴平行,此时,不能仅考虑△=0. 注意:>抛物线px y 22=上的动点可设为P ),2(2y p y 或或)2,2(2pt pt P P px y y x 2),(2=其中5.求轨迹的常用方法:〔1〕直接法:直接通过建立x 、y 之间的关系,构成F<x,y>=0,是求轨迹的最基本的方法;〔2〕待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;〔3〕代入法〔相关点法或转移法〕:若动点P<x,y>依赖于另一动点Q<x1,y1>的变化而变化,并且Q<x1,y1>又在某已知曲线上,则可先用x 、y 的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;〔4〕定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; 〔5〕点差法,处理圆锥曲线弦中点问题常用代点相减法,主要用于求斜率.〔注意:验证判别式大于零.〕〔6〕参数法:当动点P 〔x,y 〕坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量〔参数〕表示,得参数方程,再消去参数得普通方程.注:①轨迹方程与轨迹的区别,②限制X 围,③根据曲线方程研究曲线类型时注意椭圆与圆的区别,注意次数和符号,④.涉与圆锥曲线的问题勿忘用定义解题. 〔四〕解析几何中的基本公式1.两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴, 则=AB |x2-x1| . y //AB 轴, 则=AB |y2-y1| .2.平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221B A C C d +-=注意点:①x,y 对应项系数应相等,②方程化成一般式.3.点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:22B A CBy Ax d +++=4.直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F b kx y 消y :02=++c bx ax 〔务必注意0∆>,k 为直线的斜率.〕.若l 与曲线交于A ),(),,(2211y xB y x 则:2122))(1(x x k AB -+==或AB12||y y =-="设而不求〞的解题思想;〕特殊的直线方程: ①垂直于x 轴且截距为a 的直线方程是x=a,y 轴的方程是x=0.②垂直于y 轴且截距为b 的直线方程是y=b,x 轴的方程是y=0.注:判断直线与圆锥曲线的位置关系时,优先讨论二次项系数是否为零,然后再考虑判别式与韦达定理. 第七部分 能力要求能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力,以与应用意识和创新意识. 1.运算求解能力:能够根据法则和公式进行正确运算、变形;能够根据问题的条件,寻找并设计合理、简捷的运算方法;能够根据要求对数据进行估计和近似计算.2.数据处理能力:能够收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确判断;能够根据所学知识对数据进行进一步的整理和分析,解决所给问题.3.空间想象能力:能够根据条件作出正确的图形,根据图形想象出直观形象;能够准确地理解和解释图形中的基本元素与其相互关系;能够对图形进行分解、组合;能够运用图形与图表等手段形象地揭示问题的本质和规律.4.抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.5.推理论证能力:能够根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性.6.应用意识:能够综合运用所学知识对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学思想和方法解决问题,并能用数学语言正确地表述和解释.7.创新意识:能够独立思考,灵活和综合地运用所学的数学知识、思想和方法,创造性地提出问题、分析问题和解决问题.。

高二数学上期全部知识点

高二数学上期全部知识点

单元知识总结一、坐标法 1.点和坐标建立了平面直角坐标系后;坐标平面上的点和一对有序实数x;y 建立了一一对应的关系. 2.两点间的距离公式设两点的坐标为P 1x 1;y 1;P 2x 2;y 2;则两点间的距离 特殊位置的两点间的距离;可用坐标差的绝对值表示: 1当x 1=x 2时两点在y 轴上或两点连线平行于y 轴;则 |P 1P 2|=|y 2-y 1|2当y 1=y 2时两点在x 轴上或两点连线平行于x 轴;则 |P 1P 2|=|x 2-x 1|3.线段的定比分点2公式:分P 1x 1;y 2和P 2x 2;y 2连线所成的比为λ的分点坐标是 公式 二、直线1.直线的倾斜角和斜率1当直线和x 轴相交时;把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角;叫做这条直线的倾斜角.当直线和x 轴平行线重合时;规定直线的倾斜角为0. 所以直线的倾斜角α∈0;π.2倾斜角不是90°的直线;它的倾斜角的正切叫做这条直线的斜∴当k ≥0时;α=arctank .锐角 当k <0时;α=π-arctank .钝角3斜率公式:经过两点P 1x 1;y 1、P 2x 2;y 2的直线的斜率为2.直线的方程1点斜式 已知直线过点x 0;y 0;斜率为k;则其方程为:y -y 0=kx -x 02斜截式 已知直线在y 轴上的截距为b;斜率为k;则其方程为:y=kx +b3两点式 已知直线过两点x 1;y 1和x 2;y 2;则其方程为:4截距式 已知直线在x;y 轴上截距分别为a 、b;则其方程为: 5参数式 已知直线过点Px 0;y 0;它的一个方向向量是a;b; vcos α;sin αα为倾斜角时;则其参数式方程为6一般式 Ax +By +C=0 A 、B 不同时为0. 7特殊的直线方程①垂直于x 轴且截距为a 的直线方程是x=a;y 轴的方程是x=0. ②垂直于y 轴且截距为b 的直线方程是y=b;x 轴的方程是y=0.3.两条直线的位置关系1平行:当直线l 1和l 2有斜截式方程时;k 1=k 2且b 1≠b 2. 2重合:当l 1和l 2有斜截式方程时;k 1=k 2且b 1=b 2;当l 1和l 2是 3相交:当l 1;l 2是斜截式方程时;k 1≠k 24.点Px 0;y 0与直线l :Ax +By +C=0的位置关系: 5.两条平行直线l 1∶Ax +By +C 1=0;l 2∶Ax +By +C 2=0间 6.直线系方程具有某一共同属性的一类直线的集合称为直线系;它的方程的特点是除含坐标变量x;y 以外;还含有特定的系数也称参变量.确定一条直线需要两个独立的条件;在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程;然后再根据另一个条件来确定其中的参变量.1共点直线系方程:经过两直线l 1∶A 1x +B 1y +C 1=0;l 2∶A 2x +B 2y +C 2=0的交点的直线系方程为:A 1x +B 1y +C 1+λA 2x +B 2y +C 2=0;其中λ是待定的系数.在这个方程中;无论λ取什么实数;都得不到A 2x +B 2y +C 2=0;因此它不表示l 2.当λ=0时;即得A 1x +B 1y +C 1=0;此时表示l 1.2平行直线系方程:直线y=kx +b 中当斜率k 一定而b 变动时;表示平行直线系方程.与直线Ax +By +C=0平行的直线系方程是Ax +By +λ=0λ≠C;λ是参变量.3垂直直线系方程:与直线Ax +By +C=0A ≠0;B ≠0垂直的直线系方程是:Bx -Ay +λ=0.如果在求直线方程的问题中;有一个已知条件;另一个条件待定时;可选用直线系方程来求解.②垂直 当 和 有斜截式方程时; - 当 和 是一般式方程时; + l l l l 1 2 1 2 1 2 1 2 1 2k k = 1 A A B B = 07.简单的线性规划1二元一次不等式Ax+By+C>0或<0表示直线Ax+By+C=0某一侧所有点组成的平面区域.二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集;即各个不等式所表示的平面区域的公共部分.2线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题;称为线性规划问题;例如;z=ax+by;其中x;y满足下列条件:求z的最大值和最小值;这就是线性规划问题;不等式组是一组对变量x、y的线性约束条件;z=ax+by叫做线性目标函数.满足线性约束条件的解x;y叫做可行解;由所有可行解组成的集合叫做可行域;使线性目标函数取得最大值和最小值的可行解叫做最优解.三、曲线和方程1.定义在选定的直角坐标系下;如果某曲线C上的点与一个二元方程fx;y=0的实数解建立了如下关系:1曲线C上的点的坐标都是方程fx;y=0的解一点不杂;2以方程fx;y=0的解为坐标的点都是曲线C上的点一点不漏.这时称方程fx;y=0为曲线C的方程;曲线C为方程fx;y=0的曲线图形.设P={具有某种性质或适合某种条件的点};Q={x;y|fx;y=0};若设点M的坐标为x0;y;则用集合的观点;上述定义中的两条可以表述为:以上两条还可以转化为它们的等价命题逆否命题:为曲线C的方程;曲线C为方程fx;y=0的曲线图形.2.曲线方程的两个基本问题1由曲线图形求方程的步骤:①建系;设点:建立适当的坐标系;用变数对x;y表示曲线上任意一点M的坐标;②立式:写出适合条件p的点M的集合p={M|pM};③代换:用坐标表示条件pM;列出方程fx;y=0;④化简:化方程fx;y=0为最简形式;⑤证明:以方程的解为坐标的点都是曲线上的点.上述方法简称“五步法”;在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同;则步骤⑤可省略不写;因为此时所求得的最简方程就是所求曲线的方程.2由方程画曲线图形的步骤:①讨论曲线的对称性关于x轴、y轴和原点;②求截距:③讨论曲线的范围;④列表、描点、画线.3.交点求两曲线的交点;就是解这两条曲线方程组成的方程组.4.曲线系方程过两曲线f1x;y=0和f2x;y=0的交点的曲线系方程是f1x;y+λf2x;y=0λ∈R.四、圆1.圆的定义平面内与定点距离等于定长的点的集合轨迹叫圆.2.圆的方程1标准方程x-a2+y-b2=r2.a;b为圆心;r为半径.特别地:当圆心为0;0时;方程为x2+y2=r22一般方程x2+y2+Dx+Ey+F=0当D2+E2-4F<0时;方程无实数解;无轨迹.3参数方程以a;b为圆心;以r为半径的圆的参数方程为特别地;以0;0为圆心;以r为半径的圆的参数方程为3.点与圆的位置关系设点到圆心的距离为d;圆的半径为r.4.直线与圆的位置关系设直线l:Ax+By+C=0和圆C:x-a2+y-b2=r2;则5.求圆的切线方法1已知圆x2+y2+Dx+Ey+F=0.①若已知切点x0;y在圆上;则切线只有一条;其方程是过两个切点的切点弦方程.②若已知切线过圆外一点x0;y;则设切线方程为y-y=kx-x;再利x x y y D x x E y yF0000220.用相切条件求k;这时必有两条切线;注意不要漏掉平行于y 轴的切线.③若已知切线斜率为k;则设切线方程为y=kx +b;再利用相切条件求b;这时必有两条切线.2已知圆x 2+y 2=r 2.①若已知切点P 0x 0;y 0在圆上;则该圆过P 0点的切线方程为x 0x +y 0y=r 2.6.圆与圆的位置关系已知两圆圆心分别为O 1、O 2;半径分别为r 1、r 2;则单元知识总结一、圆锥曲线 1.椭圆1定义定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数大于|F 1F 2|;这个动点的轨迹叫椭圆这两个定点叫焦点.定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 2图形和标准方程 3几何性质2.双曲线1定义定义1:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数小于|F 1F 2|的点的轨迹叫做双曲线这两个定点叫双曲线的焦点.定义2:动点到一定点的距离与它到一条定直线的距离之比是常数ee >1时;这个动点的轨迹是双曲线这定点叫做双曲线的焦点.2图形和标准方程 图8-3的标准方程为: 图8-4的标准方程为: 3几何性质3.抛物线1定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线;定点F 叫做抛物线的焦点;定直线l 叫做抛物线的准线.2抛物线的标准方程;类型及几何性质;见下表:①抛物线的标准方程有以下特点:都以原点为顶点;以一条坐标轴为对称轴;方程不同;开口方向不同;焦点在对称轴上;顶点到焦点的距离等于顶点到准线距离.②p 的几何意义:焦点F 到准线l 的距离. 焦点弦长公式:|AB|=p +x 1+x 24.圆锥曲线椭圆、双曲线、抛物线统称圆锥曲线的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线;定点叫做焦点;定直线叫做准线、常数叫做离心率;用e 表示;当0<e <1时;是椭圆;当e >1时;是双曲线;当e =1时;是抛物线. 二、利用平移化简二元二次方程 1.定义缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0A 、C 不同时为0※;通过配方和平移;化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程;称为利用平移化简二元二次方程.A=C是方程※为圆的方程的必要条件.A与C同号是方程※为椭圆的方程的必要条件.A与C异号是方程※为双曲线的方程的必要条件.A与C中仅有一个为0是方程※为抛物线方程的必要条件.2.对于缺xy项的二元二次方程:Ax2+Cy2+Dx+Ey+F=0A;C不同时为0利用平移变换;可把圆锥曲线的一般方程化为标准方程;其方法有:①待定系数法;②配方法.中心O′h;k中心O′h;k抛物线:对称轴平行于x轴的抛物线方程为y-k2=2px-h或y-k2=-2px-h;顶点O′h;k.对称轴平行于y轴的抛物线方程为:x-h2=2py-k或x-h2=-2py -k顶点O′h;k.以上方程对应的曲线按向量a=-h;-k平移;就可将其方程化为圆锥曲线的标准方程的形式.。

高二的第一学期数学知识点

高二的第一学期数学知识点

高二的第一学期数学知识点高二的第一学期数学内容较为广泛,包括了一系列重要的数学知识和技能。

下面将按照不同的章节和知识点进行介绍。

1. 函数与方程高二数学的第一个重点是函数与方程。

这部分内容主要包括函数的概念、性质及图像表示,以及一元一次方程、一元二次方程等各种类型的方程的解法和应用。

2. 三角函数与解三角形三角函数与解三角形是高二数学的第二个重点。

这部分内容主要包括三角函数的定义、性质和图像表示,以及求解各种类型的三角形的面积和角度等问题。

3. 平面向量平面向量是高二数学的第三个重点。

这部分内容主要包括向量的概念、性质和运算,以及向量在几何和物理问题中的应用。

4. 数列与数学归纳法数列与数学归纳法是高二数学的第四个重点。

这部分内容主要涉及数列的概念、性质和求解方法,以及利用数学归纳法证明各种数学命题。

5. 解析几何解析几何是高二数学的第五个重点。

这部分内容主要包括平面直角坐标系与直线、圆的方程,以及利用解析几何解决几何问题。

6. 概率与统计概率与统计是高二数学的第六个重点。

这部分内容主要包括事件与概率、随机变量及其分布、统计图与统计分析等内容,以及概率和统计在实际问题中的应用。

以上是高二第一学期数学的主要知识点,每个知识点都有其特定的概念、性质和解题方法。

在学习过程中,要注重理论与实际问题的结合,通过大量的练习来巩固所学知识。

此外,培养数学思维和解决问题的能力也是数学学习的重要目标。

通过系统学习和不断的实践,相信同学们能够掌握高二数学的知识点,为接下来的学习打下坚实的基础。

希望同学们能够在数学学习中保持积极的态度和良好的学习习惯,不断提高数学素养和解题能力。

加油!。

高二数学上册各章节知识点 总结(大纲版)

高二数学上册各章节知识点    总结(大纲版)

不等式单元知识总结一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质(4) (乘法单调性)3.绝对值不等式的性质(2)如果a>0,那么(3)|a·b|=|a|·|b|.(5)|a|-|b|≤|a±b|≤|a|+|b|.(6)|a1+a2+……+a n|≤|a1|+|a2|+……+|a n|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2.不等式的证明方法(1)比较法:要证明a>b(a<b),只要证明a-b>0(a-b<0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(9)当a>1时,a f(x)>a g(x)与f(x)>g(x)同解,当0<a<1时,a f(x)>a g(x)与f(x)<g(x)同解.单元知识总结一、坐标法1.点和坐标建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x,y)建立了一一对应的关系.2.两点间的距离公式设两点的坐标为P1(x1,y1),P2(x2,y2),则两点间的距离特殊位置的两点间的距离,可用坐标差的绝对值表示:(1)当x1=x2时(两点在y轴上或两点连线平行于y轴),则|P1P2|=|y2-y1|(2)当y1=y2时(两点在x轴上或两点连线平行于x轴),则|P1P2|=|x2-x1|3.线段的定比分点(2)公式:分P1(x1,y2)和P2(x2,y2)连线所成的比为λ的分点坐标是公式二、直线1.直线的倾斜角和斜率(1)当直线和x轴相交时,把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角.当直线和x轴平行线重合时,规定直线的倾斜角为0.所以直线的倾斜角α∈[0,π).(2)倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜∴当k≥0时,α=arctank.(锐角)当k<0时,α=π-arctank.(钝角)(3)斜率公式:经过两点P1(x1,y1)、P2(x2,y2)的直线的斜率为2.直线的方程(1)点斜式已知直线过点(x0,y0),斜率为k,则其方程为:y-y0=k(x-x0)(2)斜截式已知直线在y轴上的截距为b,斜率为k,则其方程为:y=kx+b(3)两点式已知直线过两点(x1,y1)和(x2,y2),则其方程为:(4)截距式已知直线在x,y轴上截距分别为a、b,则其方程为:(5)参数式已知直线过点P(x0,y0),它的一个方向向量是(a,b),v(cosα,sinα)(α为倾斜角)时,则其参数式方程为(6)一般式 Ax+By+C=0 (A、B不同时为0).(7)特殊的直线方程①垂直于x轴且截距为a的直线方程是x=a,y轴的方程是x=0.②垂直于y轴且截距为b的直线方程是y=b,x轴的方程是y=0.3.两条直线的位置关系(1)平行:当直线l1和l2有斜截式方程时,k1=k2且b1≠b2.(2)重合:当l1和l2有斜截式方程时,k1=k2且b1=b2,当l1和l2是(3)相交:当l1,l2是斜截式方程时,k1≠k24.点P(x0,y0)与直线l:Ax+By+C=0的位置关系:5.两条平行直线l1∶Ax+By+C1=0,l2∶Ax+By+C2=0间6.直线系方程具有某一共同属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x,y以外,还含有特定的系数(也称参变量).确定一条直线需要两个独立的条件,在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程,然后再根据另一个条件来确定其中的参变量.(1)共点直线系方程:经过两直线l1∶A1x+B1y+C1=0,l2∶A2x+B2y+C2=0的交点的直线系方程为:A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中λ是待定的系数.在这个方程中,无论λ取什么实数,都得不到A2x+B2y+C2=0,因此它不表示l2.当λ=0时,即得A1x+B1y+C1=0,此时表示l1.(2)平行直线系方程:直线y=kx+b中当斜率k一定而b变动时,表示平行直线系方程.与直线Ax+By+C=0平行的直线系方程是Ax+By+λ=0(λ≠C),λ是参变量.(3)垂直直线系方程:与直线Ax+By+C=0(A≠0,B≠0)垂直的直线系方程是:Bx-Ay+λ=0.如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.7.简单的线性规划(1)二元一次不等式Ax+By+C>0(或<0)表示直线Ax+By+C=0某一侧所有点组成的平面区域.二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.(2)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题,例如,z=ax+by,其中x,y满足下列条件:求z的最大值和最小值,这就是线性规划问题,不等式组(*)是一组对变量x、y的线性约束条件,z=ax+by叫做线性目标函数.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.三、曲线和方程1.定义在选定的直角坐标系下,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:(1)曲线C上的点的坐标都是方程f(x,y)=0的解(一点不杂);(2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点(一点不漏).这时称方程f(x,y)=0为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形).设P={具有某种性质(或适合某种条件)的点},Q={(x,y)|f(x,y)=0},若设点M的坐标为(x0,y0),则用集合的观点,上述定义中的两条可以表述为:以上两条还可以转化为它们的等价命题(逆否命题):为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形).2.曲线方程的两个基本问题(1)由曲线(图形)求方程的步骤:①建系,设点:建立适当的坐标系,用变数对(x,y)表示曲线上任意一点M的坐标;②立式:写出适合条件p的点M的集合p={M|p(M)};③代换:用坐标表示条件p(M),列出方程f(x,y)=0;④化简:化方程f(x,y)=0为最简形式;⑤证明:以方程的解为坐标的点都是曲线上的点.上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.(2)由方程画曲线(图形)的步骤:①讨论曲线的对称性(关于x轴、y轴和原点);②求截距:③讨论曲线的范围;④列表、描点、画线.3.交点求两曲线的交点,就是解这两条曲线方程组成的方程组.4.曲线系方程过两曲线f1(x,y)=0和f2(x,y)=0的交点的曲线系方程是f1(x,y)+λf2(x,y)=0(λ∈R).四、圆1.圆的定义平面内与定点距离等于定长的点的集合(轨迹)叫圆.2.圆的方程(1)标准方程(x-a)2+(y-b)2=r2.(a,b)为圆心,r为半径.特别地:当圆心为(0,0)时,方程为x2+y2=r2(2)一般方程x2+y2+Dx+Ey+F=0当D2+E2-4F<0时,方程无实数解,无轨迹.(3)参数方程以(a,b)为圆心,以r为半径的圆的参数方程为特别地,以(0,0)为圆心,以r为半径的圆的参数方程为3.点与圆的位置关系设点到圆心的距离为d,圆的半径为r.4.直线与圆的位置关系设直线l:Ax+By+C=0和圆C:(x-a)2+(y-b)2=r2,则5.求圆的切线方法(1)已知圆x2+y2+Dx+Ey+F=0.①若已知切点(x0,y0)在圆上,则切线只有一条,其方程是过两个切点的切点弦方程.②若已知切线过圆外一点(x0,y0),则设切线方程为y-y0=k(x-x0),再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.③若已知切线斜率为k,则设切线方程为y=kx+b,再利用相切条件求b,这时必有两条切线.(2)已知圆x2+y2=r2.①若已知切点P0(x0,y0)在圆上,则该圆过P0点的切线方程为x0x+y0y=r2.6.圆与圆的位置关系已知两圆圆心分别为O1、O2,半径分别为r1、r2,则单元知识总结一、圆锥曲线1.椭圆(1)定义定义1:平面内一个动点到两个定点F1、F2的距离之和等于常数(大于|F1F2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).定义2:点M与一个定点的距离和它到一条定直线的距离的比是常(2)图形和标准方程(3)几何性质2.双曲线(1)定义定义1:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点).(2)图形和标准方程图8-3的标准方程为:图8-4的标准方程为:(3)几何性质3.抛物线(1)定义平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(2)抛物线的标准方程,类型及几何性质,见下表:①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离.②p的几何意义:焦点F到准线l的距离.焦点弦长公式:|AB|=p+x1+x24.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.二、利用平移化简二元二次方程1.定义缺xy项的二元二次方程Ax2+Cy2+Dx+Ey+F=0(A、C不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程.A=C是方程※为圆的方程的必要条件.A与C同号是方程※为椭圆的方程的必要条件.A与C异号是方程※为双曲线的方程的必要条件.A与C中仅有一个为0是方程※为抛物线方程的必要条件.2.对于缺xy项的二元二次方程:Ax2+Cy2+Dx+Ey+F=0(A,C不同时为0)利用平移变换,可把圆锥曲线的一般方程化为标准方程,其方法有:①待定系数法;②配方法.中心O′(h,k)中心O′(h,k)抛物线:对称轴平行于x轴的抛物线方程为(y-k)2=2p(x-h)或(y-k)2=-2p(x-h),顶点O′(h,k).对称轴平行于y轴的抛物线方程为:(x-h)2=2p(y-k)或(x-h)2=-2p(y-k)顶点O′(h,k).以上方程对应的曲线按向量a=(-h,-k)平移,就可将其方程化为圆锥曲线的标准方程的形式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学复习知识点归纳总结不等式单元知识总结 一、不等式的性质1.两个实数a 与b 之间的大小关系(1)a b 0a b (2)a b =0a =b (3)a b 0a b ->>;-;-<<.⇔⇔⇔⎧⎨⎪⎩⎪若、,则>>;;<<. a b R (4)ab 1a b (5)ab =1a =b (6)ab 1a b ∈⇔⇔⇔⎧⎨⎪⎪⎪⎩⎪⎪⎪+2.不等式的性质(1)a b b a()><对称性⇔\(2)a b b c a c()>>>传递性⎫⎬⎭⇒(3)a b a c b c()>+>+加法单调性⇔a b c 0 ac bc >>>⎫⎬⎭⇒(4) (乘法单调性)a b c 0 ac bc ><<⎫⎬⎭⇒(5)a b c a c b()+>>-移项法则⇒(6)a b c d a c b d()>>+>+同向不等式可加⎫⎬⎭⇒(7)a b c d a c b d()><->-异向不等式可减⎫⎬⎭⇒|(8)a b 0c d 0ac bd()>>>>>同向正数不等式可乘⎫⎬⎭⇒(9)a b 00c d b d ()>><<>异向正数不等式可除⎫⎬⎭⇒a c(10)a b 0n N a b ()n n>>>正数不等式可乘方∈⎫⎬⎭⇒(11)a b 0n N a ()n >>>正数不等式可开方∈⎫⎬⎭⇒b n(12)a b 01a ()>><正数不等式两边取倒数⇒1b3.绝对值不等式的性质(1)|a|a |a|= a (a 0)a (a 0)≥;≥,-<.⎧⎨⎩(2)如果a >0,那么 )|x|a x a a x a 22<<-<<;⇔⇔ |x|a x a x a x a 22>>>或<-.⇔⇔(3)|a ·b|=|a|·|b|.(4)|a b | (b 0)=≠.||||a b(5)|a|-|b|≤|a ±b|≤|a|+|b|.(6)|a 1+a 2+……+a n |≤|a 1|+|a 2|+……+|a n |. 二、不等式的证明 1.不等式证明的依据'(1)a b ab 0a b ab 0a b 0a b a b 0a b a b =0a =b实数的性质:、同号>;、异号<->>;-<<;-⇔⇔⇔⇔⇔(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a 2≥0;(a -b)2≥0(a 、b ∈R) ②a 2+b 2≥2ab(a 、b ∈R ,当且仅当a=b 时取“=”号)③≥、,当且仅当时取“”号a b+∈+2ab(a b R a =b =)2.不等式的证明方法 (1)比较法:要证明a >b(a <b),只要证明a -b >0(a -b <0),这种证明不等式的方法叫做比较法. 用比较法证明不等式的步骤是:作差——变形——判断符号. 《 (2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等. 三、解不等式1.解不等式问题的分类(1)解一元一次不等式. (2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式. > ①解一元高次不等式; ②解分式不等式; ③解无理不等式; ④解指数不等式; ⑤解对数不等式;⑥解带绝对值的不等式; ⑦解不等式组.2.解不等式时应特别注意下列几点::(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性. (3)注意代数式中未知数的取值范围. 3.不等式的同解性(1)f(x)g(x)0 f(x)0 g(x)0 f(x)0g(x)0·>与>>或<<同解.⎧⎨⎩⎧⎨⎩(2)f(x)g(x)0f(x)0g(x)0 f(x)0g(x)0·<与><或<>同解.⎧⎨⎩⎧⎨⎩ (3)f(x)g(x)0f(x)0g(x)0 f(x)0g(x)0(g(x)0)>与>>或<<同解.≠⎧⎨⎩⎧⎨⎩(4)f(x)g(x)0f(x)0g(x)0 f(x)0g(x)0(g(x)0)<与><或<>同解.≠⎧⎨⎩⎧⎨⎩~(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(7)f(x)g(x) f(x)[g(x)]f(x)0g(x)0f(x)0g(x)02>与>≥≥或≥<同解.⎧⎨⎪⎩⎪⎧⎨⎩(8)f(x)g(x)f(x)[g(x)]f(x)02<与<≥同解.⎧⎨⎩(9)当a >1时,a f(x)>a g(x)与f(x)>g(x)同解,当0<a <1时,a f(x)>a g(x)与f(x)<g(x)同解.(10)a 1log f(x)log g(x)f(x)g(x)f(x)0a a 当>时,>与>>同解.⎧⎨⎩当<<时,>与<>>同解.0a 1log f(x)log g(x)f(x)g(x) f(x)0g(x)0a a ⎧⎨⎪⎩⎪…直线和圆的方程单元知识总结一、坐标法 1.点和坐标建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x ,y)建立了一一对应的关系. 2.两点间的距离公式设两点的坐标为P 1(x 1,y 1),P 2(x 2,y 2),则两点间的距离|P P |=12()()x x y y 212212-+-【特殊位置的两点间的距离,可用坐标差的绝对值表示: (1)当x 1=x 2时(两点在y 轴上或两点连线平行于y 轴),则 |P 1P 2|=|y 2-y 1|(2)当y 1=y 2时(两点在x 轴上或两点连线平行于x 轴),则 |P 1P 2|=|x 2-x 1| 3.线段的定比分点(1)P P P P P PP P P PP P P P =P P P P 12121212112定义:设点把有向线段分成和两部分,那么有向线段和的数量的比,就是点分所成的比,通常用λ表示,即λ,点叫做分线段为定比λ的定比分点.PPP 2当点内分时,λ>;当点外分时,λ<.P P P 0P P P 01212】(2)公式:分P 1(x 1,y 2)和P 2(x 2,y 2)连线所成的比为λ的分点坐标是x x x y y y =++=++⎧⎨⎪⎪⎩⎪⎪-1212111λλλλλ≠()特殊情况,当是的中点时,λ,得线段的中点坐标P P P =1P P 1212公式x x x y y y =+=+⎧⎨⎪⎪⎩⎪⎪121222二、直线1.直线的倾斜角和斜率(1)当直线和x 轴相交时,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角.(当直线和x 轴平行线重合时,规定直线的倾斜角为0. 所以直线的倾斜角α∈[0,π).(2)倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,直线的斜率常用表示,即αα≠π.k k =tan ()2∴当k ≥0时,α=arctank .(锐角) 当k <0时,α=π-arctank .(钝角)(3)斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为k =y (x x )212--y x x 121≠<2.直线的方程(1)点斜式 已知直线过点(x 0,y 0),斜率为k ,则其方程为:y -y 0=k(x -x 0) (2)斜截式 已知直线在y 轴上的截距为b ,斜率为k ,则其方程为:y=kx +b (3)两点式 已知直线过两点(x 1,y 1)和(x 2,y 2),则其方程为:y y y y x x x ----121121=x (x x )12≠(4)截距式 已知直线在x ,y 轴上截距分别为a 、b ,则其方程为:x a yb +=1(5)参数式 已知直线过点P(x 0,y 0),它的一个方向向量是(a ,b),<则其参数式方程为为参数,特别地,当方向向量为x x at y y bt =+=+⎧⎨⎩00(t )v(cos α,sin α)(α为倾斜角)时,则其参数式方程为x x t y y t =+=+⎧⎨⎩00cos sin αα为参数(t )这时,的几何意义是,→→t tv =p p |t|=|p p|=|p p|000(6)一般式 Ax +By +C=0 (A 、B 不同时为0). (7)特殊的直线方程①垂直于x 轴且截距为a 的直线方程是x=a ,y 轴的方程是x=0. ②垂直于y 轴且截距为b 的直线方程是y=b ,x 轴的方程是y=0.《3.两条直线的位置关系(1)平行:当直线l 1和l 2有斜截式方程时,k 1=k 2且b 1≠b 2.当和是一般式方程时,≠l l 12A A B B CC 121212=(2)重合:当l 1和l 2有斜截式方程时,k 1=k 2且b 1=b 2,当l 1和l 2是一般方程时,A AB BC C 121212==(3)相交:当l 1,l 2是斜截式方程时,k 1≠k 2当,是一般式方程时,≠l l 12A A B B 2212①斜交交点:的解到角:到的角θ≠夹角公式:和夹角θ≠A x B y C A x B y C k k k k k k k k k k k k 11122222112121221121200110110++=++=⎧⎨⎩=-++=-++⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪l l l l 1tan ()tan ||()—②垂直当和有叙截式方程时,-当和是一般式方程时,+l l l l 1212121212k k =1A AB B =0⎧⎨⎩4.点P(x 0,y 0)与直线l :Ax +By +C=0的位置关系:Ax By C =0P ()Ax By C 0P 0000++在直线上点的坐标满足直线方程++≠在直线外.⇔⇔l l点,到直线的距离为:P(x y )d =|Ax +By +C|0000l A B 22+5.两条平行直线l 1∶Ax +By +C 1=0,l 2∶Ax +By +C 2=0间的距离为:.d =|C C |12-+A B226.直线系方程具有某一共同属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x ,y 以外,还含有特定的系数(也称参变量).: 确定一条直线需要两个独立的条件,在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程,然后再根据另一个条件来确定其中的参变量.(1)共点直线系方程:经过两直线l 1∶A 1x +B 1y +C 1=0,l 2∶A 2x +B 2y +C 2=0的交点的直线系方程为:A 1x +B 1y +C 1+λ(A 2x+B 2y +C 2)=0,其中λ是待定的系数.在这个方程中,无论λ取什么实数,都得不到A 2x +B 2y +C 2=0,因此它不表示l 2.当λ=0时,即得A 1x +B 1y +C 1=0,此时表示l 1.(2)平行直线系方程:直线y=kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C=0平行的直线系方程是Ax +By +λ=0(λ≠C),λ是参变量.(3)垂直直线系方程:与直线Ax +By +C=0(A ≠0,B ≠0)垂直的直线系方程是:Bx -Ay +λ=0. 如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解. 7.简单的线性规划| (1)二元一次不等式Ax +By +C >0(或<0)表示直线Ax +By +C=0某一侧所有点组成的平面区域. 二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.(2)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题, 例如,z=ax +by ,其中x ,y 满足下列条件:A xB yC 0(0)A x B y C 0(0)A x B x C 0(0)111222nn n ++≥或≤++≥或≤……++≥或≤⎧⎨⎪⎪⎩⎪⎪(*)求z 的最大值和最小值,这就是线性规划问题,不等式组(*)是一组对变量x 、y 的线性约束条件,z=ax +by 叫做线性目标函数.满足线性约束条件的解(x ,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解. 三、曲线和方程 1.定义…在选定的直角坐标系下,如果某曲线C 上的点与一个二元方程f(x ,y)=0的实数解建立了如下关系:(1)曲线C 上的点的坐标都是方程f(x ,y)=0的解(一点不杂);(2)以方程f(x ,y)=0的解为坐标的点都是曲线C 上的点(一点不漏).这时称方程f(x ,y)=0为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形).设P={具有某种性质(或适合某种条件)的点},Q={(x ,y)|f(x ,y)=0},若设点M 的坐标为(x 0,y 0),则用集合的观点,上述定义中的两条可以表述为:(1)M P (x y )Q P Q (2)(x y )Q M P Q P 0000∈,∈,即;,∈∈,即.⇒⊆⇒⊆以上两条还可以转化为它们的等价命题(逆否命题):(1)(x y )Q M P (2)M P (x y )Q 0000,;,.∉⇒∉∉⇒∉~显然,当且仅当且,即时,才能称方程,P Q Q P P =Q f(x y)=0⊆⊆为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形). 2.曲线方程的两个基本问题(1)由曲线(图形)求方程的步骤:①建系,设点:建立适当的坐标系,用变数对(x ,y)表示曲线上任意一点M 的坐标; ②立式:写出适合条件p 的点M 的集合p={M|p(M)}; ③代换:用坐标表示条件p(M),列出方程f(x ,y)=0; ④化简:化方程f(x ,y)=0为最简形式; ·⑤证明:以方程的解为坐标的点都是曲线上的点. 上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.(2)由方程画曲线(图形)的步骤:①讨论曲线的对称性(关于x 轴、y 轴和原点); ②求截距:方程组,的解是曲线与轴交点的坐标;f x y y ()==⎧⎨⎩00x 方程组,的解是曲线与轴交点的坐标;f x y x ()==⎧⎨⎩00y③讨论曲线的范围;、④列表、描点、画线.3.交点求两曲线的交点,就是解这两条曲线方程组成的方程组. 4.曲线系方程过两曲线f 1(x ,y)=0和f 2(x ,y)=0的交点的曲线系方程是f 1(x ,y)+λf 2(x ,y)=0(λ∈R). 四、圆1.圆的定义平面内与定点距离等于定长的点的集合(轨迹)叫圆. 、2.圆的方程(1)标准方程(x -a)2+(y -b)2=r 2.(a ,b)为圆心,r 为半径. 特别地:当圆心为(0,0)时,方程为x 2+y 2=r 2 (2)一般方程x 2+y 2+Dx +Ey +F=0配方()()x D y E D E F+++=+-22442222当+->时,方程表示以-,-为圆心,以为半径的圆;D E 4F 0()22D ED E F 2212422+-当+-时,方程表示点-,-D E 4F =0()22D E 22当D 2+E 2-4F <0时,方程无实数解,无轨迹.、(3)参数方程 以(a ,b)为圆心,以r 为半径的圆的参数方程为x a r y b r =+=+⎧⎨⎩cos sin θθθ为参数()特别地,以(0,0)为圆心,以r 为半径的圆的参数方程为x r y r ==⎧⎨⎩cos sin θθθ为参数()3.点与圆的位置关系设点到圆心的距离为d ,圆的半径为r .(1)d r (2)d =r (3)d r 点在圆外>;点在圆上;点在圆内<.⇔⇔⇔4.直线与圆的位置关系'设直线l :Ax +By +C=0和圆C :(x -a)2+(y -b)2=r 2,则d Aa Bb C A B=+++||22.(1)0d r (2)=0d =r (3)0d r 相交直线与圆的方程组成的方程组有两解,△>或<;相切直线与圆的方程组成的方程组有一组解,△或;相离直线与圆的方程组成的方程组无解,△<或>.⇔⇔⇔5.求圆的切线方法(1)已知圆x 2+y 2+Dx +Ey +F=0.①若已知切点(x 0,y 0)在圆上,则切线只有一条,其方程是x x y y D x x E y y F 0000220=+++++=()().当,在圆外时,++++表示(x y )x x y y D(x )E(y )F =0000000++x y22·过两个切点的切点弦方程.②若已知切线过圆外一点(x 0,y 0),则设切线方程为y -y 0=k(x -x 0),再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③若已知切线斜率为k ,则设切线方程为y=kx +b ,再利用相切条件求b ,这时必有两条切线. (2)已知圆x 2+y 2=r 2.①若已知切点P 0(x 0,y 0)在圆上,则该圆过P 0点的切线方程为x 0x +y 0y=r 2.②已知圆的切线的斜率为,圆的切线方程为±.k y =kx r k 2+16.圆与圆的位置关系已知两圆圆心分别为O 1、O 2,半径分别为r 1、r 2,则 `(1)|O O |=r r (2)|O O |=|r r |(3)|r r ||O O |r r 12121212121212两圆外切+;两圆内切-;两圆相交-<<+.⇔⇔⇔圆锥曲线单元知识总结一、圆锥曲线 1.椭圆(1)定义 <定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常数=<<时,这个点的轨迹是椭圆.e (0e 1)ca(2)图形和标准方程图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0)821(a b 0)x a y b x b y a 22222222(3)几何性质条件{M|MF 1|+|MF 2|=2a ,2a >|F 1F 2|}{M||MF |M l =|MF |M l =e 0e 1}1122点到的距离点到的距离,<<标准方程x a y b a b 222210+=()>>x b y a a b 222210+=()>>顶点A 1(-a ,0),A 2(a ,0)B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a)B 1(-b ,0),B 2(b ,0)轴对称轴:x 轴,y 轴.长轴长|A 1A 2|=2a ,短轴长|B 1B 2|=2b焦点F 1(-c ,0),F 2(c ,0)F 1(0,-c),F 2(0,c)焦距|F 1F 2|=2c(c >0),c 2=a 2-b 2—离心率e (0e 1)=<<ca准线方程l l 12x x :=;:=-a c a c22l l 12y y :=;:=-a c a c22焦点半径|MF 1|=a +ex 0,|MF 2|=a -ex 0|MF 1|=a +ey 0,|MF 2|=a -ey 0点和椭圆的关系>外在椭圆上<内x ay bx y 022022001+=⇔(,)(k 为切线斜率),y kx =±a k b 222+(k 为切线斜率),y kx =±b k a 222+切线方程x x a y y b 0202+=1(x 0,y 0)为切点x x b y y a 0202+=1(x 0,y 0)为切点切点弦方 程(x 0,y 0)在椭圆外x x a y yb0202+=1(x 0,y 0)在椭圆外x x b y ya0202+=1弦长公式|x x |1+k |y y |1+1k 212122-或-其中(x 1,y 1),(x 2,y 2)为割弦端点坐标,k 为割弦所在直线的斜率2.双曲线(1)定义定义1:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e >1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点).(2)图形和标准方程"图8-3的标准方程为:x a y b 2222-=>,>1(a 0b 0)图8-4的标准方程为:y a x b 2222-=>,>1(a 0b 0)(3)几何性质条件P ={M|MF 1|-|MF 2|=2a ,a >0,2a <|F 1F 2|}.P {M||MF |M l |MF |M l e e 1}1122=点到的距离=点到的距离=,>.标准方程x a y b 2222-=>,>1(a 0b 0)y a x b 2222-=>,>1(a 0b 0)顶点A 1(-a ,0),A 2(a ,0)A 1(0,-a),A 2(0,a)轴对称轴:x 轴,y 轴,实轴长|A 1A 2|=2a ,虚轴长|B 1B 2|=2b 焦点F 1(-c ,0),F 2(c ,0)F 1(0,-c),F 2(0,c)焦距|F 1F 2|=2c(c >0),c 2=a 2+b 2离心率e (e 1)=>ca准线方程l l 12x x :=-;:=a c a c22l l 12y y :=-;:=a c a c22渐近线方 程y x(0)=±或-=b a x a y b 2222y x(0)=±或-=a b y a x b 2222共渐近线的双曲线系方程x a y b2222-=≠k(k 0)y a x b 2222-=≠k(k 0)焦点半径|MF 1|=ex 0+a ,|MF 2|=ex 0-a |MF 1|=ey 0+a ,|MF 2|=ey 0-a y kx =±a k b 222-(k 为切线斜率)k k >或<-b a ba y kx =±b k a 222-(k 为切线斜率)k k >或<-a b ab x x a y yb0202-=1((x 0,y 0)为切点y y a x xb0202-=1((x 0,y 0)为切点切线方程xy a a ((x y )2200=的切线方程:=,为切点x y y x002+切点弦方 程(x 0,y 0)在双曲线外x x a y yb 0202-=1(x 0,y 0)在双曲线外y y a x xb 0202-=1弦长公式|x x |1+k |y y |1+1k 212122-或-其中(x 1,y 1),(x 2,y 2)为割弦端点坐标,k 为割弦所在直线的斜率^3.抛物线(1)定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.(2)抛物线的标准方程,类型及几何性质,见下表:①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离.②p 的几何意义:焦点F 到准线l 的距离.③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k|x x ||y y |2121-=-112+k焦点弦长公式:|AB|=p +x 1+x 24.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线.二、利用平移化简二元二次方程 1.定义缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程.A =C 是方程※为圆的方程的必要条件.A 与C 同号是方程※为椭圆的方程的必要条件.A 与C 异号是方程※为双曲线的方程的必要条件.A 与C 中仅有一个为0是方程※为抛物线方程的必要条件. 2.对于缺xy 项的二元二次方程:Ax 2+Cy 2+Dx +Ey +F =0(A ,C 不同时为0)利用平移变换,可把圆锥曲线的一般方程化为标准方程,其方法有:①待定系数法;②配方法.椭圆:+=或+=()()()()x h a y k b x h b y k a ----2222222211中心O ′(h ,k)双曲线:-=或-=()()()()x h a y k b y k a x h b ----2222222211中心O ′(h ,k)抛物线:对称轴平行于x 轴的抛物线方程为 (y -k)2=2p(x -h)或(y -k)2=-2p(x -h), 顶点O ′(h ,k).对称轴平行于y 轴的抛物线方程为:(x -h)2=2p(y -k)或(x -h)2=-2p(y -k) 顶点O ′(h ,k).以上方程对应的曲线按向量a =(-h ,-k)平移,就可将其方程化为圆锥曲线的标准方程的形式.。

相关文档
最新文档