2020最新高二数学知识点归纳总结5篇精选
2020高二数学最新复习知识点归纳5篇
2020高二数学最新复习知识点归纳5篇2020高二数学最新复习知识点归纳5篇
高中学习容量大,不但要掌握目前的知识,还要把高中的知识与初中的知识溶为一体才能学好。
在读书、听课、研习、总结这四个环节都比初中的学习有更高的要求。
下面就是给大家带来的高二数学知识点,希望对大家有所帮助!高二数学知识点1直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是
x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:。
高二数学重点知识归纳
【导语】因为⾼⼆开始努⼒,所以前⾯的知识肯定有⼀定的⽋缺,这就要求⾃⼰要制定⼀定的计划,更要⽐别⼈付出更多的努⼒,相信付出的汗⽔不会⽩⽩流淌的,收获总是⾃⼰的。
®⽆忧考⽹⾼⼆频道为你整理了《⾼⼆数学重点知识归纳》,助你⾦榜题名!【篇⼀】⾼⼆数学重点知识归纳 函数的单调性、奇偶性、周期性 单调性:定义:注意定义是相对与某个具体的区间⽽⾔。
判定⽅法有:定义法(作差⽐较和作商⽐较) 导数法(适⽤于多项式函数) 复合函数法和图像法。
应⽤:⽐较⼤⼩,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,⽐较f(x)与f(-x)的关系。
f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数; f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
判别⽅法:定义法,图像法,复合函数法 应⽤:把函数值进⾏转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满⾜:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满⾜:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应⽤:求函数值和某个区间上的函数解析式。
【篇⼆】⾼⼆数学重点知识归纳 1.数列的定义 按⼀定次序排列的⼀列数叫做数列,数列中的每⼀个数都叫做数列的项 (1)从数列定义可以看出,数列的数是按⼀定次序排列的,如果组成数列的数相同⽽排列次序不同,那么它们就不是同⼀数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列 (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同⼀数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某⼀个确定的数,是⼀个函数值,也就是相当于f(n),⽽项数是指这个数在数列中的位置序号,它是⾃变量的值,相当于f(n)中的n (5)次序对于数列来讲是⼗分重要的,有⼏个相同的数,由于它们的排列次序不同,构成的数列就不是⼀个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,⽽{2,3,4,5,6}中元素不论按怎样的次序排列都是同⼀个集合 2.数列的分类 (1)根据数列的项数多少可以对数列进⾏分类,分为有穷数列和⽆穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表⽰有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表⽰⽆穷数列. (2)按照项与项之间的⼤⼩关系或数列的增减性可以分为以下⼏类:递增数列、递减数列、摆动数列、常数列. 3.数列的通项公式 数列是按⼀定次序排列的⼀列数,其内涵的本质属性是确定这⼀列数的规律,这个规律通常是⽤式⼦f(n)来表⽰的, 这两个通项公式形式上虽然不同,但表⽰同⼀个数列,正像每个函数关系不都能⽤解析式表达出来⼀样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,⼜不⼀定是的,仅仅知道⼀个数列前⾯的有限项,⽆其他说明,数列是不能确定的,通项公式更⾮.如:数列1,2,3,4,…, 由公式写出的后续项就不⼀样了,因此,通项公式的归纳不仅要看它的前⼏项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前⼏项写出其通项公式,没有通⽤的⽅法可循. 再强调对于数列通项公式的理解注意以下⼏点: (1)数列的通项公式实际上是⼀个以正整数集N*或它的有限⼦集{1,2,…,n}为定义域的函数的表达式. (2)如果知道了数列的通项公式,那么依次⽤1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,⽤数列的通项公式也可判断某数是否是某数列中的⼀项,如果是的话,是第⼏项. (3)如所有的函数关系不⼀定都有解析式⼀样,并不是所有的数列都有通项公式. 如2的不⾜近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式. (4)有的数列的通项公式,形式上不⼀定是的,正如举例中的: (5)有些数列,只给出它的前⼏项,并没有给出它的构成规律,那么仅由前⾯⼏项归纳出的数列通项公式并不. 4.数列的图象 对于数列4,5,6,7,8,9,10每⼀项的序号与这⼀项有下⾯的对应关系: 这就是说,上⾯可以看成是⼀个序号集合到另⼀个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是⼀个定义域为正整集N*(或它的有限⼦集{1,2,3,…,n})的函数,当⾃变量从⼩到⼤依次取值时,对应的⼀列函数值.这⾥的函数是⼀种特殊的函数,它的⾃变量只能取正整数. 由于数列的项是函数值,序号是⾃变量,数列的通项公式也就是相应函数和解析式. 数列是⼀种特殊的函数,数列是可以⽤图象直观地表⽰的. 数列⽤图象来表⽰,可以以序号为横坐标,相应的项为纵坐标,描点画图来表⽰⼀个数列,在画图时,为⽅便起见,在平⾯直⾓坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表⽰可以直观地看出数列的变化情况,但不精确. 把数列与函数⽐较,数列是特殊的函数,特殊在定义域是正整数集或由以1为⾸的有限连续正整数组成的集合,其图象是⽆限个或有限个孤⽴的点.。
高二数学知识点及公式总结5篇
高二数学知识点及公式总结5篇第一篇:高二数学必备知识点及公式总结1.函数的概念及其性质函数是一种特殊的关系,它将一组自变量的值映射到另一组因变量的值上。
函数的三要素为定义域、值域和对应关系。
常见的函数有一次函数、二次函数、指数函数、对数函数等,不同的函数具有不同的性质。
常见函数的公式:一次函数:y = kx + b二次函数:y = ax^2 + bx + c指数函数:y = a^x (a > 0, a ≠ 1)对数函数:y = loga(x) (a > 0, a ≠ 1)2.三角函数及其应用三角函数是指正弦函数、余弦函数、正切函数等。
由于三角函数具有周期性、奇偶性、单调性等特点,因此在物理、工程、数学等领域中被广泛应用。
三角函数的公式:正弦函数:y = sinx余弦函数:y = cosx正切函数:y = tanx割函数:y = secx余割函数:y = cotx3.微积分基础微积分是研究函数变化的过程的一门学科,包括导数和积分两个方面。
导数表示函数在某一点的变化率,积分则表示函数在一段区间内的累积变化量。
微积分在自然科学、社会科学、工程技术等领域中均有广泛应用。
微积分的公式:导数公式:f'(x) = lim├_(∆x→0) (f(x + ∆x) - f(x))/∆x积分公式:∫_a^b f(x)dx = lim├_n→∞ □(□(□(Δx )))Σ▒f(xi)Δx第二篇:高二数学解析几何知识点及公式总结1.向量及其运算向量是数学中的一种对象,具有大小和方向两个要素。
向量的运算包括加、减、数乘、点乘等,可以用来描述物体的运动、力的作用等。
向量运算的公式:向量加法: A + B = (Ax + Bx, Ay + By)向量减法: A - B = (Ax - Bx, Ay - By)向量数乘: kA = (kAx, kAy)向量点乘:A·B = |A||B|cosθ2.平面及直线的方程平面是空间内的一种二维图形,可以通过点和法向量来确定。
高二数学知识点归纳总结5篇最新
高二数学知识点归纳总结5篇最新直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。
另一方面通过自学主动获取知识。
能否顺利实现转变,是成绩能否突破的关键。
高二数学知识点总结1直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。
画直观图时,把它画成对应轴ox、oy、使∠xoy=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.3、表(侧)面积与体积公式:⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=⑷球体:①表面积:S=;②体积:V=4、位置关系的证明(主要方法):注意立体几何证明的书写(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。
核心是线面垂直:垂直平面内的两条相交直线5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)⑴异面直线所成角的求法:平移法:平移直线,构造三角形;⑵直线与平面所成的角:直线与射影所成的角高二数学知识点总结2反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。
记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1],值域[-π/2,π/2]。
反函数求导方法若F(X),G(X)互为反函数,则:F(X)_(X)=1E.G.:y=arcsin=sinyy_=1(arcsinx)_siny)=1y=1/(siny)=1/(cosy)=1/根号(1-sin y)=1/根号(1-x )其余依此类推高二数学知识点总结31、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。
高二数学知识点总结归纳【五篇】
高二数学知识点总结归纳【五篇】高二数学是整个高中数学学科体系的重要部分,其涵盖的知识点和内容比高一数学更加广泛和深入。
在高二数学学习中,有许多重要的知识点需要我们理解和掌握,这些知识点不仅关乎我们学习数学的基础,也是我们未来竞争中必不可少的组成部分。
在本文中,我们将为大家总结归纳五篇高二数学知识点,帮助大家更好地进行数学学习。
一、高二数学知识点总结之初等函数初等函数是高中数学中的重要分支,也是理科生考试中不可缺少的重要知识点。
其中,包括常见的多项式函数、指数函数、对数函数、三角函数等等。
其中,多项式函数和三角函数经常出现在各类赛事和奥赛中,并且重要性非常高。
例如,多项式函数有如下例子:1、$y = x^2 + x + 1$,它的图像一定是一个开口向上的抛物线,其中顶点的横坐标为$x = -\frac{1}{2}$ ,纵坐标为$y =\frac{3}{4}$。
2、$y = x^3 - 3x$,它的图像对称于原点,其中$x =\sqrt[3]{3}$,$x = -\sqrt[3]{3}$,$x = 0$是它的零点,且$x$轴为其渐近线。
3、$y = \frac{x + 2}{2x^2 + x - 3}$,它的最简式是$y =\frac{1}{2(x-1)} - \frac{1}{2(x+3)}$,它的函数图像有两个渐近线:$x = 1$和$x = -\frac{3}{2}$,且$y$轴为其对称轴。
二、高二数学知识点总结之平面几何平面几何是高中数学的另一个重要方向,它主要研究平面上的图形、尺寸、位置等特性,包括平面中的各种三角形、四边形、圆与圆、平行四边形、相似三角形、几何变换等内容。
在此,我们可以举例如下:1、三角形内角和定理:一个三角形内角的和等于$180°$。
2、欧拉线定理:对于任何三角形,它的欧拉线、垂心和重心共线,并且欧拉线的长度等于重心到垂心距离的$2$倍。
3、圆的欧拉定理:对于任何圆,它的欧拉定理都成立,即圆心、外心、内心和互补的费马点四点共线。
高二数学知识点总结梳理五篇分享
高二数学知识点总结梳理五篇分享高中阶段学习难度、强度、容量加大,学习负担及压力明显加重,不能再依赖初中时期老师“填鸭式”的授课,“看管式”的自习,“命令式”的作业,要逐步培养自己主动获取知识、巩固知识的能力,制定学习计划,养成自主学习的好习惯。
高二数学知识点总结1一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,⑵斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程:.⑵圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长二、圆锥曲线方程:1、椭圆:①方程(ab0)注意还有一个;②定义:|PF1|+|PF2|=2a2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;2、双曲线:①方程(a,b0)注意还有一个;②定义:||PF1|-|PF2||=2a2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b23、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;4、直线被圆锥曲线截得的弦长公式:三、直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。
高二数学知识点归纳整理分享五篇
高二数学知识点归纳整理分享五篇高二数学是学生们在数学方面的知识升级。
在高一的抽象逻辑基础上,高二数学逐渐将抽象思维规律与实际应用相结合。
下面,我们来归纳整理高二数学的几个重要知识点。
一、函数函数是高二数学的基础,本质上是一种映射关系,它把源集合中的每一个元素映射到一个目标集合中的唯一元素。
例如,y=x²+1就是一个函数。
在高二数学中,函数的概念会进一步拓展,例如,多项式函数、指数函数、对数函数、三角函数等等。
函数还有很多与之相关的概念,例如函数的极限、导数、积分等等。
二、平面向量平面向量是高二数学中必须要学习的内容之一。
向量是有大小和方向的。
向量在数学和物理学中的应用广泛,包括运用到力学、动力学、流体力学、场论以及几何学中等等。
平面向量的一些重要概念包括向量的模长、方向角、标准形式、点乘积、叉乘积等等。
向量是一种非常重要的数学工具,可以帮助我们解决很多实际问题。
三、三角形高二数学中的三角形,包括三角函数和解三角形问题。
三角形是高中数学中非常基础的图形。
几乎每个人在小学时就已经学过三角形的基本概念,如周长、面积、等腰三角形以及直角三角形等等。
在高中数学中,三角形被进一步拓展了,例如高中数学中的三角函数、三角形面积公式的推导以及三角形内角和、余弦定理、正弦定理等等。
这是三个例子。
对于其他重要的高二数学知识点,例如概率、矩阵、数列等等,同样需要学生们进行深入细致的学习。
在学习过程中,建议学生们多通过做题、找规律、思维导图等方式来加深自己的理解。
四、概率概率是高中数学中非常重要的一部分知识,也是日常生活中广泛应用的数学工具。
概率是指某事情发生的可能性大小,它有很多应用,例如在统计、预测、科学实验和金融投资等领域。
在高二数学中,学生将进一步学习概率的基本概念、条件概率、独立性、期望和方差等等。
同时,学生也要通过模拟实验、统计数据、推理和分析等方式来进行概率问题的解决。
五、数列与数学归纳法数列是一系列有序的数值,是数学中的基本概念。
最新高二数学知识点总结归纳5篇
最新高二数学知识点总结归纳5篇最新高二数学知识点总结归纳5篇总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,通过它可以正确认识以往学习和工作中的优缺点,让我们来为自己写一份总结吧。
总结怎么写才是正确的呢?以下是小编精心整理的最新高二数学知识点总结归纳5篇,欢迎阅读,希望大家能够喜欢。
最新高二数学知识点总结归纳5篇1第一章:解三角形。
掌握正弦余弦公式及其变式和推论和三角面积公式即可。
第二章:数列。
考试必考。
等差等比数列的通项公式、前n项和及一些性质。
这一章属于学起来很容易,但做题却不会做的类型。
考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。
第三章:不等式。
这一章一般用线性规划的形式来考察。
这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。
然后再根据实际问题的限制要求求最值。
选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。
而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。
后面两到三问难打一般会很大,而且较费时间。
所以不建议做。
这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。
一般会考察用导数求最值,会用导数公式就难度不大。
最新高二数学知识点总结归纳5篇21、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
2、几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);试验的全部结果所构成的区域长度(面积或体积)3、几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等、4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。
2020最新高二数学知识点归纳总结5篇精选
2020 最新高二数学知识点概括总结 5 篇优选高中学生要依据自己的条件,以及高中阶段学科知识交错多、综合性强,以及考察的知识和思想触点广的特色,搜寻一套卓有成效的学习方法。
下边就是我给大家带来的高二数学知识点总结,希望能给大家带来帮助!高二数学知识点 ( 一)第一章:会合和函数的基本观点,错误基本都集中在空集这一观点上,而每次考试基本都会在选填题上波及这一观点,一个不当心就是五分没了。
次一级的知识点就是会合的韦恩图,会绘图,会合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单一性、增减性的观点,这些都是函数的基础并且不难理解。
在第一轮复习中必定要频频去记这些观点,的方法是写在笔录本上,每日起码看上一遍。
第二章:基本初等函数:指数、对数、幂函数三大函数的运算性质及图像。
函数的几大体素和有关考点基本都在函数图像上有所表现,单一性、增减性、极值、零点等等。
对于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。
函数图像是这一章的重难点,并且图像问题是不可以靠记忆的,一定要理解,要会娴熟的画出函数图像,定义域、值域、零点等等。
对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不一样及函数值的大小关系,这也是常考常错点。
此外指数函数和对数函数的对峙关系及其相互之间要如何转变问题也要了解清楚。
第三章:函数的应用。
主要就是函数与方程的联合。
其实就是的实根,即函数的零点,也就是函数图像与X 轴的交点。
这三者之间的转变关系是这一章的重点,要学会在这三者之间的灵巧转变,以求能最简单的解决问题。
对于证明零点的方法,直接计算加得必有零点,连续函数在 x 轴上方下方有定义则有零点等等,这是这一章的难点,这几种证明方法都要记得,多练习加强。
这二次函数的零点的鉴别法,这个倒不算难。
高二数学知识点 ( 二)第一章:三角函数。
考试必考题。
引诱公式和基本三角函数图像的一些性质只需记着会绘图就行,难度在于三角函数形函数的振幅、频次、周期、相位、初相,及依据最值计算A、B 的值和周期,及等变化时图像及性质的变化,这一知识点内容许多,需要多花时间,第一要记忆,其次要多做题加强练习,只需能踏扎实实去做,也不难掌握,毕竟不存在理解上的难度。
高二数学知识点及公式总结(通用10篇)
高二数学知识点及公式总结(通用10篇)高二数学公式总结篇一1、不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2、不等式的证明方法(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法。
用比较法证明不等式的步骤是:作差——变形——判断符号。
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法。
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法。
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等。
高二数学知识点及公式总结篇二圆与圆的位置关系1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论。
高二数学公式总结篇三1、辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法。
2、所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数。
若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数。
3、更相减损术是一种求两数公约数的方法。
其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数。
4、秦九韶算法是一种用于计算一元二次多项式的值的方法。
5、常用的排序方法是直接插入排序和冒泡排序。
高二数学重点知识点归纳梳理【5篇】
高二数学重点知识点归纳梳理【5篇】高二数学在整个高中数学中占有非常重要的地位,既是高二又是整个高中阶段的重难点,所以要保持良好的学习心态和正确的学习方法。
下面就是给大家带来的高二数学知识点总结,希望能帮助到大家!高二数学知识点总结1用样本的数字特征估计总体的数字特征1、本均值:2、样本标准差:3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。
在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍(3)一组数据中的值和最小值对标准差的影响,区间的应用;“去掉一个分,去掉一个最低分”中的科学道理两个变量的线性相关1、概念:(1)回归直线方程(2)回归系数2.最小二乘法3.直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
(3)利用回归方程进行统计控制规定Y值的变化,通过控制x 的范围来实现统计控制的目标。
如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。
4.应用直线回归的注意事项(1)做回归分析要有实际意义;(2)回归分析前,先作出散点图;(3)回归直线不要外延。
高二数学知识点总结2立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
高二数学知识点难点总结【五篇】
高二数学知识点难点总结【五篇】高二数学知识点总结1考点一:向量的概念向量的基本定理【内容解读】了解向量的实际背景,掌握向量零向量平行向量共线向量单位向量相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择填空题型出现,难度不大,考查重点为模和向量夹角的定义夹角公式向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。
由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与三角函数的综合问题【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.【命题规律】命题多以解答题为主,属中等偏难的试题。
高二会考数学必考知识点总结【五篇】
高二会考数学必考知识点总结【五篇】高二会考数学必考知识点总结【一篇】:高二数学的学习相比于初中数学来说,难度更高,知识点更加繁多,而且高二数学是高考数学的重要基础。
因此,考生在备考高考时必须充分理解各种知识点,并将它们融会贯通,才能在高考中取得好成绩。
本文将列举出高二会考数学必考知识点,希望对各位考生有所帮助。
1.直线方程的表示高考数学中相信每一位同学都了解到直线的方程是很重要的,上数学老师都会告诉我们,直线的方程有三种表示方法,它们分别是一般式、点斜式、截距式。
一般式:Ax+By+C=0点斜式:y-y1=k(x-x1) (k为斜率)截距式:y=kx+b (k为斜率,b为截矩)2.平面直角坐标系上的曲线在平面直角坐标系上,曲线有不同的类型,如函数图像、二次函数图像、指数函数图像、对数函数图像、正弦函数图像、余弦函数图像等。
而每一种曲线又各自有不同的性质和特点。
例如,二次函数图像呈现出一个“U”型,判断一个二次函数的开口方向,可通过判定它的次数和二次系数的正负来确定。
如果二次系数大于0,则曲线开口朝上;如果二次系数小于0,则曲线开口朝下。
3.三角函数三角函数是高考数学的复习重点,主要包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。
正弦函数和余弦函数幅度都在-1和1之间,它们分别表示一个标准角的正弦和余弦;正切函数和余切函数的定义分别是正弦和余弦的商,正割函数和余割函数则是余弦和正弦的商。
考生需要掌握三角函数的各种公式和性质,例如和差公式、倍角公式、半角公式和余弦定理等,同时也要能够运用三角函数解决各种实际问题。
这三个例子分别是数学中的重要知识点,对高中数学的学习以及高考数学的备考都有着极大的帮助。
学生平时应注重理解这些知识点,多加练习,有针对性地补充相应的知识点,提高自己的数学能力,来备战高考。
高二会考数学必考知识点总结【二篇】:在高二数学的学习中,有一些知识点不仅是数学考试中的必考内容,而且在高考数学中也是必考的,这些知识点要求考生扎实掌握,最好能够背诵并熟练运用,下面我们就来详细介绍一下高二数学中的必考知识点。
高二数学知识点总结
高二数学知识点总结高二数学知识点总结(15篇)总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它可以使我们更有效率,让我们抽出时间写写总结吧。
总结怎么写才是正确的呢?下面是小编帮大家整理的高二数学知识点总结,欢迎阅读,希望大家能够喜欢。
高二数学知识点总结1课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。
刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
在平时要养成良好的解题习惯。
让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。
实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。
如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。
高二会考数学知识点总结分享【五篇】
高二会考数学知识点总结分享【五篇】第一篇:高二会考数学知识点总结——函数与解析几何函数:函数是一种数学关系,将一个自变量映射到一个因变量上。
高考中常考的内容包括函数的定义,函数的图像,函数的性质,函数的值域和模型应用等。
例子:1. f(x) = x^2-2x+1 在直角坐标系内的图像是一个开口朝上的抛物线,顶点坐标为(1,0);2. 函数f(x) = cosx 在 [-π,π] 的定义域上取最大值为1,最小值为-1;3. 函数f(x) = 1/(x-2) 在定义域 (-∞,2) U (2,+∞)上具有单射性。
解析几何:解析几何是三维空间中平面与直线的研究。
高考中常考的知识点包括点、直线、平面的向量表示和相关性质,以及平面与直线之间的位置关系等。
例子:1. 直线 L1 ∶ { 3x + 4y - 5z = 0, x - y + z = 0 } 与直线 L2 ∶ { 2x + y + z = 0, 3x - y -3z = 0 } 的距离为 5/7;2. 平面α ∶ { x + y - z = 1, x - z = 0 } 与直线 L ∶ { x - y + z = 2, y - z = 1 } 的位置关系是相交;3. 向量 a = (2,4,1), b = (1,-3,2) 的点积为 -4。
第二篇:高二会考数学知识点总结——数系与函数初步数系:数系是指不同类型的数的集合。
高考中涉及到的数系包括自然数、整数、有理数、无理数、实数和复数等。
例子:1. 0.2是一个有理数;2. √2是一个无理数;3. 1+i 是一个复数。
函数初步:函数初步是指初中所学习的函数概念的拓展与进一步应用。
高考中常考的知识点包括函数的基本性质、反函数、初等函数、复合函数和二次函数等。
例子:1. 函数f(x) = x^2-2x+1 的值域为[0.25, ∞);2. 函数f(x) = 1/(x-2) 的反函数为 f^-1(x) = 1/x + 2;3. 函数f(x) = sin2x 的图像是关于y轴对称的。
高二数学知识点总结5篇
高二数学知识点总结5篇高二数学知识点总结篇一用样本的数字特征估计总体的数字特征1、本均值:2、样本标准差:3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。
在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍(3)一组数据中的值和最小值对标准差的影响,区间的应用;“去掉一个分,去掉一个最低分”中的科学道理高二数学知识点总结篇二1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。
画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半。
(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。
3、表(侧)面积与体积公式:∠柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h∠锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:∠台体①表面积:S=S侧+S上底S下底②侧面积:S侧=∠球体:①表面积:S=;②体积:V=4、位置关系的证明(主要方法):注意立体几何证明的书写(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。
核心是线面垂直:垂直平面内的两条相交直线5、求角:(步骤———————∠。
找或作角;∠。
求角)∠异面直线所成角的求法:平移法:平移直线,构造三角形;∠直线与平面所成的角:直线与射影所成的角高二数学知识点篇三函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。
高二数学知识点精选梳理分享【五篇】
高二数学知识点精选梳理分享【五篇】已经进入高二上学期的同学们,在我们顺利度过高中的适应期,积极参与学校社团活动,逐步形成了自我学习模式,初步拟定人生规划后,要将自我的精力集中到学习上,应将自己的学业做到一个高度的时候了。
高二数学知识点1总体和样本①在统计学中,把研究对象的全体叫做总体。
②把每个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,研究,我们称它为样本.其中个体的个数称为样本容量。
简单随机抽样也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随。
机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础,高三。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。
高二数学知识点2分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020最新高二数学知识点归纳总结5篇精选高中学生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。
下面就是我给大家带来的高二数学知识点总结,希望能帮助到大家!高二数学知识点(一)第一章:集合和函数的基本概念,错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。
次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。
在第一轮复习中一定要反复去记这些概念,的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数:指数、对数、幂函数三大函数的运算性质及图像。
函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。
关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。
对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考常错点。
另外指数函数和对数函数的对立关系及其相互之间要怎样转化问题也要了解清楚。
第三章:函数的应用。
主要就是函数与方程的结合。
其实就是的实根,即函数的零点,也就是函数图像与X轴的交点。
这三者之间的转化关系是这一章的重点,要学会在这三者之间的灵活转化,以求能最简单的解决问题。
关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这是这一章的难点,这几种证明方法都要记得,多练习强化。
这二次函数的零点的Δ判别法,这个倒不算难。
高二数学知识点(二)第一章:三角函数。
考试必考题。
诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。
第二章:平面向量。
个人觉得这一章难度较大,这也是我掌握最差的一章。
向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量。
向量共线和垂直的数学表达,这是计算当中经常要用的公式。
向量的共线定理、基本定理、数量积公式。
难点在于分点坐标公式,首先要准确记忆。
向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对。
有同样情况的同学建议多看有关题的图形。
第三章:三角恒等变换。
这一章公式特别多。
和差倍半角公式都是会用到的公式,所以必须要记牢。
由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看。
而且的三角函数变换都有一定的规律,记忆的时候可以结合起来去记。
除此之外,就是多练习。
要从多练习中找到变换的规律,比如一般都要化等等。
这一章也是考试必考,所以一定要重点掌握。
高二数学知识点(三)一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
当直线与轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,⑵斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程:.⑵圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长二、圆锥曲线方程:1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b23、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d 焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;4、直线被圆锥曲线截得的弦长公式:三、直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。
画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.3、表(侧)面积与体积公式:⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=⑷球体:①表面积:S=;②体积:V=4、位置关系的证明(主要方法):注意立体几何证明的书写(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。
核心是线面垂直:垂直平面内的两条相交直线5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)⑴异面直线所成角的求法:平移法:平移直线,构造三角形;⑵直线与平面所成的角:直线与射影所成的角四、导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。
4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
五、常用逻辑用语:1、四种命题:⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若p则q;⑷逆否命题:若q则p注:1、原命题与逆否命题等价;逆命题与否命题等价。
判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的否定是“且”;“且”的否定是“或”.3、逻辑联结词:⑴且(and):命题形式pq;pqpqpqp⑵或(or):命题形式pq;真真真真假⑶非(not):命题形式p.真假假真假假真假真真假假假假真“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”4、充要条件由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。
含有全体量词的命题,叫做全称命题。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。
高二数学知识点(四)(1)总体和样本①在统计学中,把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查高二数学知识点(五)等差数列对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
等比数列对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。
那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想:a2=a1_q,a3=a2_q,a4=a3_q,````````an=an-1_q,将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。