H桥可逆直流调速系统设计与实验(1)
实验四 双闭环控制可逆直流脉宽调速系统

实验四双闭环控制可逆直流脉宽调速系统(H 桥)一、实验目的(1)了解转速、电流双闭环可逆直流PWM调速系统的组成、工作原理及各单元的工作原理。
(2)掌握双闭环可逆直流PWM 调速系统的调试步骤、方法及参数的整定。
(3)测定双闭环直流调速系统的静态和动态性能指标。
二、实验原理图4-1 双闭环H 桥DC/DC 变换直流调速系统原理框图速度给定信号G,速度调节器ASR,电流调节器ACR,控制PWM信号产生装置UPM,DLD单元把一组PWM波形分成两组相差180°的PWM 波,并产生一定的死区,用于控制两组臂;GD的作用是形成四组隔离的PWM驱动脉冲;PWM 为功率放大电路,直接给电动机M供电;DZS是零速封锁单元;FA限制主电路瞬时电流,过流时封锁DLD单元输出;电流反馈调节单元CFR;速度反馈调节SFR。
三、实验所需挂件及附件四、实验内容与步骤(1)系统单元调试①速度调节器(ASR)和电流调节器(ACR)的调零把调节器的输入端1、2、3 全部接地,4、5 之间接50K电阻,调节电位器RP3,使输出端7绝对值小于1mv。
②速度调节器(ASR)和电流调节器(ACR)的输出限幅值的整定在调节器的3个输入中的其中任一个输入接给定,在4、5之间接50K电阻、1uF 电容,调节给定电位器,使调节器的输入为-1V,调节电位器RP1,使调节器的输出7为+4V(输出正限幅值);同样把给定调节为+1V,调节RP2,把负限幅值调节为-4V。
③零速度封锁器(DZS)观测首先把零速封锁器的输入悬空,开关S1拨至“封锁”状态,输出接速度或者电流调节器的零速封锁端6,无论调节器的输入如何调节,输出7始终为零。
把面板上的给定输出接至零速封锁单元其中一路,另一路悬空,增大给定,测量零速封锁单元输出端3:给定的绝对值大于0.26V左右时,封锁端3输出-15V;减小给定,给定的绝对值小于0.17V左右时,封锁端3输出+15V。
直流电动机可逆调速系统设计

摘要本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。
直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。
本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。
关键词:双闭环,可逆调速,参数计算,调速器。
目录1. 设计概述 01.1 设计意义及要求 01.2 方案分析 01.2.1 可逆调速方案 01.2.2 控制方案的选择 (1)2.系统组成及原理 (3)3.1设计主电路图 (6)3.2系统主电路设计 (7)3.3 保护电路设计 (7)3.3.1 过电压保护设计 (7)3.3.2 过电流保护设计 (8)3.4 转速、电流调节器的设计 (8)3.4.1电流调节器 (9)3.4.2 转速调节器 (9)3.5 检测电路设计 (10)3.5.1 电流检测电路 (10)3.5.2 转速检测电路 (10)3.6 触发电路设计 (11)4. 主要参数计算 (13)4.1 变压器参数计算 (13)4.2 电抗器参数计算 (13)4.3 晶闸管参数 (13)5设计心得 (14)6参考文献 (15)直流电动机可逆调速系统设计1.设计概述1.1设计意义及要求直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。
本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。
1.2 方案分析1.2.1 可逆调速方案使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。
(完整版)直流调速系统设计实训报告

1.2控制电路设计
1.2.1 LM331芯片工作原理
图1.7光电编码器接线图
1.2.4无静差调速
要实现无静差调速直流调速系统应该是比例积分(PI)调节器。
采用积分调节器,则控制电压是转速偏差电压的积分,。当是阶跃函数时,按线性规律增长,每一时刻的大小和与横轴所包围的面积成正比。对于闭环系统中的积分调节器,不是阶跃函数,而是随转速不断变化的。当电动机起动后,随着转速的升高,不断减小,但积分作用使仍继续增长,只不过的增长不再是线性的了,每一时刻的大小仍和与横轴所包围的面积成正比。在动态过程中,当变化时,只要其极性不变,即只要仍是,积分调节器的输出便一直增长;只有达到,=0,才停止上升,而达到其终值。
图1.6 LM324引脚图
1.2.3光电编码器
光电编码器E6B2_C
光电编码器是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90º的两路脉冲信号。接线如图1.7
LM331器件管脚图及管脚功能
图1.5LM331器件管脚图
双闭环控制的直流脉宽调速系统(H桥)实验报告(2014)

正转时,闭环控制特性 n = f(Ug)
n(rpm)
1172 1100 1000 902 791 692 594
Ug(V)
4.06 3.78 3.41 3.07 2.69 2.35 2.02
反转时,闭环控制特性 n = f(Ug)
n(rpm)
1168 1096 997
Ug(V)
4.02 3.77 3.43
实验名称:双闭环控制的直流脉宽调速系统(H 桥)
实验目的:
1. 了解 PMW 全桥直流调速系统的工作原理。 2. 分析电流环与速度环在直流调速系统中的作用。
实验仪器设备:
1.DJK01 电源控制屏; 2.DJK08 可调电阻、电容箱; 3.DJK09 单相调压与可调负载; 4.DJK17 双闭环 H 桥 DC/DC 变换直流调速系统; 5.DD03-2 电机导轨、测速发电机及转速表; 6.DJ13-1 直流发电机; 7.DJ15 直流并励发电机; 8.D42 三相可调电阻; 9.慢扫描示波器; 10.万用表。
实验数据及结果:
系统的开环特性 n =f(Id)
n(rpm)
1130
Id(A)
0.9
1160 0.8
1190 0.7
1225 0.58
1265 0.45
1288 0.4
1300 0.37
电动机转速接近 n=l200rpm,闭环机械特性 n =f(Id)
n(rpm)
1168 1146 1116 1101
Ug 不变,改变 RG 使 Id 逐渐下降,测出相应的转速 n 及电流平均值 Id。 2.系统闭环特性的测定:将电流反馈量调节电位器调到最高端。 转向选择开关拨至“正向”,Ug >0,电动机启动后,测量测速发电机输出电压,将高电 位端接入速度反馈的 T1 端,低电位端接入 T2 端,以保证速度反馈为负值。 闭环机械特性的测定: 1) 调节给定 Ug 、转速反馈和电流反馈调节电位器使电机转速 n=1200rpm,这时 Un
H桥可逆直流调速系统设计与实验(1)

H桥可逆直流调速系统设计与实验(1)燕山大学CDIO课程项目研究报告项目名称: H桥可逆直流调速系统设计与实验学院(系):电气工程学院年级专业:学号:学生姓名:指导教师:日期: 2014年6月3日目录前言 (1)摘要 (2)第一章调速系统总体方案设计 (3)1.1 转速、电流双闭环调速系统的组成 (3)1.2.稳态结构图和静特 (4)1.2.1各变量的稳态工作点和稳态参数计算 (6)3.2速度环的设计 (15)第四章 Matlab/Simulink仿真 (17)第五章实物制作 (20)第六章性能测试 (22)6.1 SG3525性能测试 (22)6.2 开环系统调试 (23)总结 (26)参考文献 (26)前言随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。
但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。
采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。
但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。
这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。
在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。
实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。
实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。
H桥直流可逆斩波器设计与实验

《电力电子技术》课程三级项目项目名称:H桥直流可逆斩波器设计与实验指导教师:班级、组次:课题组成员:2019年12月项目分工及组内评分表填表要求:如实填写项目的组内分工(每人完成的百分比或者每人负责的内容),并按ABCD四档评分,A档不能超过两个,每一档都必须H桥可逆斩波器设计(燕山大学电气工程学院)摘要:设计H桥可逆斩波电路的控制电路及驱动电路,通过驱动电路控制主电路晶闸管的开通与关断,通过控制电路输出不同的方波,来控制电压占空比和电流的方向及电机的转速与转向,此外,对主电路的直流电压的参数,晶闸管的型号进行选取来完成直流电机的驱动。
1 前言基于H桥可逆斩波电路,设计相应的控制电路及驱动电路来控制H桥可逆斩波电路的晶闸管的开通与关断,进而控制电机的正转与反转,实现直流电机的四象限运行。
在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。
无论是在工农业生产、交通运输、国防、航空航天、医疗卫生、商务与办公设备中,还是在日常生活的家用电器中,都大量地使用着各种各样的电动机。
随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。
但直流电动机调速系统以其优良的调速性能仍有广阔的市场。
直流电机是广泛应用于电动汽车、数控机床和家电等领域的重要器件。
采用MOS管和专用栅极驱动芯片搭建H桥式驱动电路, 主控电路基于ARM 微处理器, 利用PWM方波通过控制电枢电压的大小占空比从而调节电机速度, 以及利用霍尔电流传感器检测电机电流大小监测电机运行情况, 从而达到稳定、精细、准确地控制无刷直流电机的正常运行。
H桥式电路可以实现无刷直流电机正反运转, 并且工作稳定、功耗小、效率高, 实现了无刷直流电机稳定可靠软启动和平稳精细调速控制。
直流电动机制动性能与起动性能都较为理想, 而且能够实现大范围的平滑调速, 因而在电力拖动领域中的应用十分常见。
以控制角度分析, 直流电机调速也成为交流拖动系统的重要基础。
h桥控制直流电机可逆实验结论

h桥控制直流电机可逆实验结论
在电气工程领域,H桥是一种常用的电路结构,用于控制直流电机的方向和速度。
H桥电路由四个开关组成,可以控制电流的流向,从而实现电机的正反转。
本文将介绍H桥控制直流电机可逆实验的结论和相关内容。
我们需要了解H桥电路的基本原理。
H桥电路由四个开关组成,分为上下两个半桥。
当上半桥的两个开关闭合,下半桥的两个开关断开时,电流从电源正极经过上半桥到达电机,使电机正转;当下半桥的两个开关闭合,上半桥的两个开关断开时,电流从电机经过下半桥返回电源负极,使电机反转。
在实验中,我们通过控制H桥电路中的开关状态来控制直流电机的转向。
实验结果表明,当上半桥的两个开关闭合,下半桥的两个开关断开时,电机正转;当下半桥的两个开关闭合,上半桥的两个开关断开时,电机反转。
这验证了H桥电路可以实现直流电机的正反转控制。
通过改变开关的工作频率和占空比,我们还可以控制直流电机的转速。
实验结果显示,随着工作频率的增加,电机的转速也随之增加;而随着占空比的增加,电机的平均电压也随之增加,从而影响电机的转速。
这说明H桥电路不仅可以实现直流电机的正反转控制,还可以实现对电机转速的精确调节。
总的来说,H桥电路是一种有效的直流电机控制方法,可以实现电机的正反转和速度控制。
通过实验验证,我们可以得出结论:H桥控制直流电机可逆,能够实现电机的正反转,并且可以通过调节工作频率和占空比来控制电机的转速。
这为电气工程领域的电机控制提供了重要的参考和指导。
希望本文能够帮助读者更好地理解H桥控制直流电机可逆实验的结论和相关内容。
全桥(H桥)DCDC变换电路实验

实验3 全桥(H桥)DC/DC变换电路实验一.实验目的1.掌握开环直流脉宽调速系统的组成、原理及各主要单元部件的工作原理。
2.熟悉直流PWM专用集成电路SG3525的组成、功能与工作原理。
3.熟悉H型PWM变换器的各种控制方式的原理与特点。
二.实验内容1.PWM控制器SG3525性能测试。
2.控制单元测试。
3.H型PWM变换器性能测试。
三.实验系统的组成和工作原理在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。
PWM变换器主电路系采用H型结构形式,UPW为脉宽调制器,DLD为逻辑延时环节。
脉宽调制器UPW采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM控制器。
由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。
四.实验设备及仪器1.MCL系列教学实验台主控制屏。
2.NMCL-22实验箱。
3.直流电动机M03及测速发电机4.双踪示波器、万用表。
五.实验方法采用NMCL—22挂箱1.UPW模块的SG3525性能测试(1)用示波器观察UPW的“1”端的电压波形,记录波形的周期,幅度(最大值、最小值);(2)调节RP电位器,记录2端输出波形的最大占空比和最小占空比。
2.控制电路的测试——逻辑延时时间的测试将UPW的“2”端与DLD(逻辑延迟环节)的”1”相连接。
用示波器同时观察DLD的“2”端和“3”端。
记录延迟时间t d3.DC/DC带电阻(灯箱)负载。
1)将H桥的U、V、W分别与电源的U、V、W相连。
H桥的1、3相连。
2)将电阻负载(灯箱)以串联的方式接入“6”端和“7”端。
3)确认灯箱的所有灯泡处于断开位置。
3)调整RP电位器,将占空比调整为50%。
合上主电源,将一组串联的灯泡打向通的位置。
观察并记录负载两端的电压波形,并用万用表直流档记录负载电压的数值(参考方向为6->7),同时观察灯泡的亮度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燕山大学CDIO课程项目研究报告项目名称: H桥可逆直流调速系统设计与实验学院(系):电气工程学院年级专业:学号:学生姓名:指导教师:日期: 2014年6月3日目录前言 (1)摘要 (2)第一章调速系统总体方案设计 (3)1.1 转速、电流双闭环调速系统的组成 (3)1.2.稳态结构图和静特 (4)1.2.1各变量的稳态工作点和稳态参数计算 (6)1.3双闭环脉宽调速系统的动态性能 (7)1.3.1动态数学模型 (7)1.3.2起动过程分析 (7)1.3.3 动态性能和两个调节器的作用 (8)第二章 H桥可逆直流调速电源及保护系统设计 (11)第三章调节器的选型及参数设计 (13)3.1电流环的设计 (13)3.2速度环的设计 (15)第四章Matlab/Simulink仿真 (17)第五章实物制作 (20)第六章性能测试 (22)6.1 SG3525性能测试 (22)6.2 开环系统调试 (23)总结 (26)参考文献 (26)前言随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。
但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。
采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。
但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。
这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。
在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。
实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。
实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。
问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。
这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。
项目预期成果:设计一个双闭环可逆直流调速系统,实现电流超调量小于等于5%;转速超调量小于等于5%;过渡过程时间小于等于0.1s的无静差调速系统。
项目分工:参数计算:仿真:电路设计:电路焊接:PPT答辩:摘要本设计的题目是基于SG3525的双闭环直流电机调速系统的设计。
SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。
在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环和电流环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。
如果对系统的动态性能要求较高,则单闭环系统就难以满足需要。
而转速、电流双闭环直流调节系统采用PI调节器可以获得无静差;构成的滞后校正,可以保证稳态精度;虽快速性的限制来换取系统稳定的,但是电路较简单。
所以双闭环直流调速是性能很好、应用最广的直流调速系统。
本设计选用了转速、电流双闭环调速控制电路,本课题内容重点包括调速控制器的原理,并且根据原理对转速调节器和电流调节器进行了详细地设计。
概括了整个电路的动静态性能,最后将整个控制器的电路图设计完成,并且进行仿真。
关键词:双闭环直流可逆调速系统、H桥驱动电路、SG3525信号产生电路、PI调节器、MATLAB仿真第一章调速系统总体方案设计1.1转速单闭环调速系统的组成图1.带电流截止反馈的转速单闭环直流调速系统1.2稳态结构框图和静特性为了分析单闭环调速系统的静特性,先绘出了它的电流截止负反馈环节的输人一输出特性如图2所示。
UPE图2.电流截止负反馈环节的输人一输出特性的闭环直流调速系统稳态结构图,如图3所示。
图3带电流截止反馈的闭环直流稳态结构框图3上式对应带电流截止反馈闭环调速系统的静特性如图4 41.3双闭环脉宽调速系统的动态性能1.3.1动态数学模型考虑到单闭环控制的结构可绘出单闭环调速系统的动态结构图,如图5所示。
图中W表示转速调节器的传递函数。
为了引出电流反馈,电机的动态结构图中必须()ASR S把电流I显露出来。
d图5单闭环直流调速系统的动态结构框图1.3.2起动过程分析设置单闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析单闭环调速系统的动态性能时,有必要首先探讨它的起动过程。
(a)带电流截止负反馈的单闭环调速系统起动过程 (b)理想快速起动过程图6 调速系统起动过程的电流和转速波形1.3.3 动态性能和调节器的作用1)动态抗扰性能1.抗负载扰动由图5动态结构图中可以看出,负载扰动作用在电流环之后,只能靠转速调节器来产生抗扰作用。
因此,在突加(减)负载时,必然会引起动态速降(升)。
为了减少动I dLnI d I dm I dL n I dO I dm I dcr n n (a) (b)态速降(升),必须在设计ASR时,要求系统具有较好的抗扰性能指标。
2.抗电网电压扰动图7单闭环脉宽调速系统的动态抗扰性能2)转速调节器的作用(1)使转速n跟随给定电压*mU变化,稳态无静差。
(2)对负载变化起抗扰作用。
(3)其输出限幅值决定允许的最大电流。
5 7第二章H桥可逆直流调速电源及保护系统设计直流调速用的可控直流电源直流驱动系统电压控制的方式来调节电枢电压需要一个特殊的可控直流电源。
比较常用的可以控制直流电源有以下三个:1、静态控制整流器使用静态可控整流得到一个可调的直流电压。
2、直流斩波器或脉宽调制转换器:用不变的直流电源或者不可以控制的整流电源提供电能,使用电力电子开关器件斩波器或脉宽调制,从而产生可以变化的直流电压。
3、旋转变流机组由交流电机和直流发电机组成单位,获得可调的直流电压。
旋转变流机组需要的设备多,体积大,费用高,效率低,安装复杂,运行有噪声,维护不方便。
静止式可控整流器虽然克服了旋转变流机组的许多缺点,而且还大大缩短了响应时间,但闸流管容量小,汞弧整流器造价较高,体积仍然很大,维护麻烦,万一水银泄漏,将会污染环境,危害身体健康。
目前,采用晶闸管整流供电的直流电动机调速系统,由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。
同时,其对过电压、过电流都十分敏感,容易损坏器件。
由于以上种种原因,所以选择了脉宽调制变换器进行改变电枢电压的直流调速系统。
直流220V的电源可通过单相桥式整流电路产生,但是由于整流电路的输出电压具有较大的交流部分,不能适合大多数电子电路及设备的要求。
因此,一般在整流后,还需要利用滤波电路将脉动的直流电压变为平滑的直流电压。
电源电路如图所示,与用于信号处理的滤波电路相比,直流电源中滤波电路的显著特点是:均采用无源电路;理想情况下,滤去所有交流成分,只保留直流成分;能够输出较大电流。
系统的保护包括过压,过流和短路保护。
该模块用于电枢电流的检测与过流保护,至于电枢回路和直流母线侧。
限流电阻:为了避免大电容C在通电瞬间产生过大的充电电流,在整流器和滤波电容间的直流回路上串入限流电阻(或电抗),通上电源时,先限制充电电流,再延时用开关K将短路,以免长期接入时影响整流电路的正常工作,并产生附加损耗。
泵升限制电路:当脉宽调速系统的电动机转速由高变低时(减速或者停车),储存在电动机和负载转动部分的动能将会变成电能,并通过双极式可逆PWM 变换器回送给直流电源。
由于直流电源靠二极管整流器供电,不可能回送电能,电机制动时只好给滤波电容充电,从而使电容两端电压升高,称作“泵升电压”。
过高的泵升电压会损坏元器件,所以必须采取预防措施,防止过高的泵升电压出现。
可以采用由分流电阻R和开关元件(电力电子器件)VT组成的泵升电压限制电路。
当滤波电容器C两端的电压超过规定的泵升电压允许数值时,VT导通,将回馈能量的一部分消耗在分流电阻R上。
第三章调节器的选型及参数设计①设计要求:电流超调量5%转速超调量错误!未找到引用源。
过渡时间错误!未找到引用源。
②本报告设计为H 桥可逆直流双闭环调速系统,分为内环电流环ACR 与外环转速环ASR 两部分,现将参数整定如下: 设计已知基本参数为:直流电动机额定电压: U N =54V额定电流: I N =3.24A 额定转速: n N =1450r/min 电枢电阻: R a =1.5Ω 电枢回路总电阻: R=4Ω 电枢电感: L = 2mH转动惯量: J=0.76错误!未找到引用源。
g.错误!未找到引用源。
-触发整流环节的允许过载倍数:λ=1.5 3.1电流环的设计 3.1电流环的设计根据设计要求电流超调量错误!未找到引用源。
,并保证稳态电流无差,可按典型I 型系统设计电流调节器。
电流控制。
电流环控制对象是双惯性型的,所以把电流调节器设计成PI 型的,其传递函数为1()i ACR ii s W s K sττ+= 式中 i K ——电流调节器的比例系数;i τ——电流调节器的超前时间常数 a . 计算电流调节器参数电流环小时间之和按小时间常数近似处理:i s oi 0.0000250.000030.000055T T T ∑=+=+=(s T 和oi T 一般都比l T 小得多,可以当作小惯性群近似地看作是一个惯性环节)。
ACR 超前时间常数i l 0.0005s T τ==;电流环开环时间增益:要求5%i σ≤,故应取i 0.5I K T =∑,因此 10.50.59090.9090.000055I i K s T -∑===于是,ACR 的比例系数为:0.000549090.9090.8172.0610.8i i Is R K K K τβ⨯==⨯=⨯b . 校验近似条件 电流环截止频率19090.909ci I K s ω-==晶闸管装置传递函数近似条件:sT 31i c ≤ω 即11113333.33330.000025ci s s T ω-==⨯>满足近似条件;忽略反电动势对电流环影响的条件:,13lm ci T T ≥ω即1787.43cis ω-==<满足近似条件;小时间常数近似处理条件:ois ci T T 131≤ω即112171.6cis ω-==>满足近似条件。