数字化PWM可逆直流调速系统的课程设计
pwm直流电机调速课程设计
一、课程设计的主要目标任务直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以与少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。
随着单片机技术的日新月异,使得许多控制功能与算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能[2]。
采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。
传统的控制系统采用模拟元件,虽在一定程度上满足了生产要求,但是因为元件容易老化和在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受到器件性能、温度等因素的影响,故系统的运行可靠性与准确性得不到保证,甚至出现事故。
目前,直流电动机调速系统数字化已经走向实用化,伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。
二、课程设计系统方案选取1. 直流电动机运行原理脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需3 要的波形。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
直流电动机的转速n和其他参量的关系可表示为图1:直流电机原理图式中Ua——电枢供电电压(V);Ia ——电枢电流(A);Ф——励磁磁通(Wb);Ra——电枢回路总电阻(Ω);CE ——电势系数,,p为电磁对数,a为电枢并联支路数,N为导体数。
数字式PWM可逆直流调速完整系统
一、设计要求:1、调速范围D=20,静差率S≤5%。
再整个调速范围内要求转速无极、平滑可调;2、动态性能指标:电流环超调量δ≤5%:空载启动到额定转速时转速超量δ≤10%直流电动机的参数:其它参数:二、任务分析2.1控制系统的整体设计直流双闭环调速系统的结构图如图1所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。
其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。
总体方案简化图如图1所示。
L2.2桥式可逆PWM变换器的工作原理脉宽调制器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定宽度可变的脉冲电压序列,从而平均输出电压的大小,以调节电机转速。
桥式可逆PWM 变换器电路如图2所示。
这是电动机M两端电压的极性随开关器件驱动电压的极性变化而变化。
图2 桥式可逆PWM变换器电路双极式控制可逆PWM 变换器的四个驱动电压波形如图3所示。
OOOOU g1U g2U-Usi d图3 PWM 变换器的驱动电压波形他们的关系是:1423g g g g U U U U ==-=-。
在一个开关周期内,当0on t t ≤<时,晶体管1VT 、4VT 饱和导通而3VT 、2VT 截止,这时AB s U U =。
当on t t T ≤<时,1VT 、4VT 截止,但3VT 、2VT 不能立即导通,电枢电流d i 经2VD 、3VD 续流,这时AB s U U =-。
AB U 在一个周期内正负相间,这是双极式PWM 变换器的特征,其电压、电流波形如图2所示。
电动机的正反转体现在驱动电压正、负脉冲的宽窄上。
当正脉冲较宽时,2on Tt >,则AB U 的平均值为正,电动机正转,当正脉冲较窄时,则反转;如果正负脉冲相等,2on Tt =,平均输出电压为零,则电动机停止。
课程设计--直流电机调速控制系统设计
课程设计--直流电机调速控制系统设计指导教师评定成绩:审定成绩:**********课程设计报告设计题目:直流电机调速控制系统设计学校:********************学生姓名:**********专业:********************班级:***********学号:**************指导教师:*****************8设计时间:2013 年12 月目录引言 (3)一、直流电动机的工作原理 (4)二、直流电动机的结构 (5)三、直流电动机的分类 (6)四、电动机的机械特性 (7)五、他励直流电动机起动 (10)六、他励直流电动机的调速方法 (11)七、PWM调制电路 (14)八、H桥驱动电路 (14)九、直流电动机调速控制系统设计 (15)十、心得体会 (22)附录参考文献 (23)课程设计任务书 (23)引言现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。
直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。
改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。
PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。
直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。
随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展,到目前为止,已经出现了多种PWM控制技术。
课程设计:直流PWM-M可逆调速系统的设计与仿真
直流PWM-M可逆调速系统的设计与仿真摘要当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。
本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。
长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。
微机技术的快速发展,在控制领域得到广泛应用。
本文对基于微机控制的双闭环可逆直流PWM 调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。
在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。
论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。
关键词:PWM调速、直流电动机、双闭环调速目录前言 (1)第1章直流PWM-M调速系统 (2)第2章UPE环节的电路波形分析 (4)第3章电流调节器的设计 (6)3.1 电流环结构框图的化简 (6)3.2 电流调节器参数计算 (7)3.3 参数校验 (8)3.3.1 检查对电源电压的抗扰性能: (8)3.3.2 晶闸管整流装置传递函数的近似条件 (9)3.3.3 忽略反电动势变化对电流环动态影响的条件 (9)3.3.4 电流环小时间常数近似处理条件 (9)3.4 计算调节器电阻和电容 (9)第4章转速调节器的设计 (11)4.1 电流环的等效闭环传递函数 (11)4.2 转速环结构的化简和转速调节器结构的选择 (11)4.3 转速调节器的参数的计算 (14)4.4 参数校验 (14)4.4.1 电流环传递函数化简条件 (15)4.4.2 转速环小时间常数近似处理条件 (15)4.5 计算调节器电阻和电容 (15)4.6 调速范围静差率的计算 (16)第5章系统仿真 (17)5.1 仿真软件Simulink介绍 (17)5.2 Simulink仿真步骤 (17)5.3 双闭环仿真模型 (17)5.4 双闭环系统仿真波形图 (18)结论 (19)参考文献 (20)前言直流PWM_M调速系统几年来发展很快,直流PWM_M调速系统采用全控型电力电子器件,调制频率高,与晶闸管直流调速系统相比动态响应速度快,电动机转矩平稳脉动小,有很大的优越性,在小功率调速系统和伺服系统中的应用越来越广泛。
最新版PWM直流调速系统设计
运动控制系统期中作业——转速电流双闭环直流调速系统专业:自动化班级:1102班姓名:鱼*学号:**********日期:2014年05月27日设计题目:转速电流双闭环直流调速系统1.已知参数:某转速电流双闭环直流调速系统采用桥式可逆pwm变换电路供电。
(1)直流电动机:U nom = 220V, I nom = 136A, n nom = 1460r/min,电枢电阻Ra=0.2Ω,允许过载倍数λ= 1.5;(2)电枢回路总电阻:R= 0.5Ω;(3)电枢回路总电感:L= 10mH;(4)电动机轴上的总飞轮力矩:GD2= 22.5N·m2;设计要求:电流超调量σi≤5%,转速无静差;空载起动到额定转速的转速超调量σn≤10%.目录一、引言 (4)二、整体设计思路 (4)三、系统构成和原理 (4)四、各电路设计模块 (5)1.PWM主电路设计--桥式可逆直流脉宽调速系统 (5)2.控制电路--基于SG3525为核心构成的控制电路的设计 (7)3.电流环的设计 (9)4.转速环的设计 (12)5.给定的设计 (15)6.直流稳压电源的设计 (15)7.电动机电源设计 (16)8.转速检测电路设计 (16)9.电流检测电路设计 (16)10.驱动电路设计 (17)11.保护电路设计 (17)五、仿真结果截屏显示 (18)六、参考文献 (21)七.电气原理图 (21)八.设计心得总结 (22)一、引言在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。
直流电机是最常见的一种电机,在各领域中得到广泛应用。
研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。
电机调速问题一直是自动化领域比较重要的问题之一。
不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。
通过对于理论知识的学习,我们已经深刻的体会到闭环控制系统要优于开环控制系统,然而更深入的学习我们又了解到电流-转速反馈控制的直流调速系统是静、动态特性优良、应用最广的直流调速系统,其性能受到各个领域的关注。
数字化PWM可逆直流调速系统的设计总体设计
摘要直流电机具有良好的启动性能和调速特性,它的特点是启动转矩大,能在宽广的范围内平滑、经济地调速,转速控制容易,调速后效率很高。
本文设计的直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LCD液晶显示器、光电编码器测速电路、霍尔电流传感器以及拨码开关组成的数字化PWM控制直流电机调速系统。
电源采用78系列和79系列芯片实现+5V、+15V、-15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机的启停、调速、转向的人工控制,LCD实现对测量数据(速度、电流)的显示。
电机转速利用光电编码器检测输出脉冲,通过51单片机对一定时间方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。
关键词:直流电机调速;H桥驱动电路;LCD显示器;51单片机ABSTRACTDC motor has a good startup performance and speed characteristics, it is characterized by starting torque, maximum torque, in a wide range of smooth, economical speed, speed, easy control, speed control after the high efficiency. This design of DC motor speed control system, mainly by the microcontroller 51, power supply, H-bridge driver circuits, LED liquid crystal display, the Hall velocity and independent key component circuits of electronic products. Power supply with 78 series chip +5 V, +15 V for motor speed control using PWM wave mode, PWM is a pulse width modulation, duty cycle by changing the MCU 51. Achieved through independent buttons start and stop the motor, speed control, turning the manual control, LED realize the measurement data (speed) of the display. Motor speed using Hall sensor output square wave, by 51 seconds to 1 microcontroller square wave pulses are counted to calculate the speed of the motor to achieve a DC motor feedback control.Keywords:DC motor speed control;H bridge driver circuit;LCD display目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 现行方案的讨论与比较 (1)1.2 选择PWM控制系统的理由 (2)1.3 采用转速电流双闭环的理由 (2)1.4 设计目的与意义 (3)2设计系统的MATLAB仿真 (4)2.1 设计系统的参数计算 (4)2.2 基于Matlab/Simulink的系统仿真建模 (11)3 主电路设计 (16)3.1 PWM信号发生电路设计 (16)3.2 功率放大驱动电路设计 (20)4 单片机控制电路的设计 (25)4.1 单片机基本系统 (25)4.2 A/D接口电路 (26)4.3 显示电路设计 (28)4.4 编码器脉冲输入接口电路 (29)4.5 开关量输入输出电路 (30)4.6 电源电路设计 (30)4.7 PWM控制输出通道及驱动电路 (31)4.8 给定输入设计 (34)4.9 串行通信接口电路的设计 (34)5 控制算法的设计 (36)5.1 主系统框图 (36)5.2 主系统算法 (37)5.3 PI调节算法 (37)5.4 电压电流采样流程图 (40)5.5 转速采样流程图 (41)6 系统的软件设计 (41)6.1系统初始化模块 (41)6.2数据采样 (41)6.3电流环和速度环的控制 (42)心得体会 (44)附录1 (45)附录2 (46)附录3 (47)1 绪论1.1 现行方案的讨论与比较直流电动机的调速方法有三种:(1)调节电枢供电电压U 。
交直流调速系统课程设计
目录交直流调速课程设计任务书 (2)前言 (4)关键词 (4)交直流调速课程设计说明书 (5)一、总体方案确实定 (5)1.1 现行方案的讨论与比拟 (5)1.2 选择PWM控制系统的优越性 (6)1.3采用转速电流双闭环的理由 (6)1.4起动过程电流和转速波形 (9)1.5 H桥双极式逆变器的工作原理 (9)1.6 PWM调速系统静特性 (11)二、双闭环直流调速系统的硬件结构 (12)2.1主电路 (13)2.2 电流调节器 (14)2.3转速调节器 (14)2.4控制电路设计 (15)2.5、控制环节电源设计 (16)2.6、限幅电路 (16)2.7转速检测电路 (17)2.8、电流检测电路 (17)2.9、泵升电压限制 (18)三、电机参数及设计要求 (19)3.1电路根本信息如下: (19)3.2计算反响关键参数 (19)四、课程设计心得体会 (23)五、系统主要硬件结构图 (24)参考文献: (25)交直流调速课程设计任务书一、题目:双闭环可逆直流PWM调速系统设计二、设计目的1、对先修课程〔电力电子学、自动控制原理等〕的进一步理解与运用2、运用?电力拖动控制系统?的理论知识设计出可行的直流调速系统,通过建模、仿真验证理论分析的正确性。
也可以制作硬件电路。
3、同时能够加强同学们对一些常用单元电路的设计、常用集成芯片的使用以及对电阻、电容等元件的选择等的工程训练。
到达综合提高学生工程设计与动手能力的目的。
三、系统方案确实定自动控制系统的设计一般要经历从“机械负载的调速性能〔动、静〕→电机参数→主电路→控制方案〞〔系统方案确实定〕→“系统设计→仿真研究→参数整定→直至理论实现要求→硬件设计→制板、焊接、调试〞等过程,其中系统方案确实定至关重要。
为了发挥同学们的主观能动作用,且防止方案及结果雷同,在选定系统方案时,规定外的其他参数由同学自已选定。
1、主电路采用二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器;2、速度调节器和电流调节器采用PI调节器;U*nm=U*i m =U cm=10V3、机械负载为对抗性恒转矩负载,系统飞轮矩〔含电机及传动机构〕GD2 =1.5Nm2;4、主电源:可以选择三相交流380V供电,变压器二次相电压为52V;5、他励直流电动机的参数:见习题集【4-19】〔p96〕n N=1000r/min,电枢回路总电阻R=2Ω,电流过载倍数λ=2;6、PWM装置的放大系数K s=11;PWM装置的延迟时间T s=0.4ms。
单片机课程设计PWM直流电动机调速控制系统方案
单片机原理及应用—— P W M直流电机调速控制系统概括直流电动机具有良好的启动性能和调速特性。
具有起动转矩大、调速平稳、经济大范围、调速容易、调速后效率高等特点。
本文设计的直流电机调速系统主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路和独立按键组成的电子产品组成。
电源采用78系列芯片,采用PWM波方式实现电机+5V、+15V调速,PWM为脉宽调制,通过51单片机改变占空比实现。
通过独立的按键实现电机的启停、调速和转向的手动控制,LED实现测量数据(速度)的显示。
电机转速采用霍尔传感器检测输出方波,通过51单片机统计1秒内方波脉冲个数,计算电机转速,实现直流电机的反馈控制。
关键词:直流电机调速; H桥驱动电路; LED显示屏; 51单片机目录摘要2摘要错误!未定义书签。
目录3第 1 章引言41.1 概述41.2 国外发展现状41.3 要求51.4 设计目的及6第 2 章项目论证与选择72.1 电机调速模块72.2 PWM调速工作模式72.3 PWM脉宽调制方式错误!未定义书签。
2.4 PWM 软件实现错误!未定义书签。
第三章系统硬件电路设计83.1 信号输入电路83.2 电机PWM驱动模块电路9第 4 章系统的软件设计104.1 单片机选型104.2 系统软件设计分析10第 5 章 MCU 系统集成调试135.1 PROTEUS 设计与仿真平台错误!未定义书签。
18传统开发流程对比错误!未定义书签。
第一章简介1.1 概述现代工业的电驱动一般要求部分或全部自动化,因此必须与各种控制元件组成的自动控制系统相联动,而电驱动可视为自动电驱动系统的简称。
在这个系统中,生产机械可以自动控制。
随着现代电力电子技术和计算机技术的发展以及现代控制理论的应用,自动电驱动正朝着计算机控制的生产过程自动化方向发展。
以实现高速、高质量、高效率的生产。
在大多数集成自动化系统中,自动化电力牵引系统仍然是不可或缺的组成部分。
单片机课程设计完整版《PWM直流电动机调速控制系统》
单片机原理及应用课程设计报告设计题目:学院:专业:班级:学号:学生姓名:指导教师:年月日目录设计题目 (3)1 设计要求及主要技术指标: (4)1.1 设计要求 (4)1.2 主要技术指标 (5)2 设计过程 (6)2.1 题目分析 (9)2.2 整体构思 (10)2.3 具体实现 (12)3 元件说明及相关计算 (14)3.1 元件说明 (14)3.2 相关计算 (15)4 调试过程 (16)4.1 调试过程 (16)4.2 遇到问题及解决措施 (20)5 心得体会 (21)参考文献 (22)附录一:电路原理图 (23)附录二:程序清单 (24)设计题目:PWM直流电机调速系统本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED液晶显示器、霍尔测速电路以及独立按键组成的电子产品。
电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。
电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。
关键词:直流电机调速;定时中断;电动机;PWM波形;LED显示器;51单片机1 设计要求及主要技术指标:基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM 调速控制装置。
1.1 设计要求(1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。
(2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。
(3)设计一个4个按键的键盘。
K1:“启动/停止”。
K2:“正转/反转”。
K3:“加速”。
K4:“减速”。
(4)手动控制。
在键盘上设置两个按键----直流电动机加速和直流电动机减速键。
在手动状态下,每按一次键,电动机的转速按照约定的速率改变。
H型双极式PWM直流调速系统的设计课程设计
控制系统课程设计设计题目:H型双极式PWM直流调速系统设计学生姓名:学号:专业班级:学部:信息科学与技术部指导教师:2008 年11 月28 日河北理工大学本科生课程设计成绩总评表学部:信息科学与技术部班级:05自动化1班注:设计总成绩=说明书评定成绩(60%)+答辩成绩(40%)设计任务书(一)性能指标要求:稳态指标:系统无静差动态指标:%5≤i σ;空载起动到额定转速时%10≤n σ。
(二)给定电机及系统参数:P N = 220W , U N = 48V , I N =3.7A ,2=λ,n N = 200r/min ,R a = 6.5Ω 电枢回路总电阻R =8Ω 电枢回路总电感L = 120mH 电机飞轮惯量GD 2 = 1.29Nm 2(三)设计步骤及说明书要求: 1 画出系统结构图,并简要说明工作原理。
2 根据给定电机参数,设计整流变压器,并计算变压器容量及副边电压值;选 择整流二极管及开关管的参数,并确定过流、过压保护元件参数。
3分析PWM 变换器,脉宽调制器(UPW )及逻辑延时(DLD )工作原理。
4 设计ACR 、ASR 并满足给定性能指标要求。
5 完成说明书,对构成系统的各环节分析时,应先画出本环节原理图,对照分析。
6打印说明书(A4),打印电气原理图(A4)。
目录一 引言...............................................1 二 系统构成和原理...................................1 三 PWM 主电路设计....................................3 四 电流调节器和转速调节器的设计.. (4)4.1 电流调节器ACR 的设计.................................4 4.2转速调节器ASR 设计....................................4 4.2.1电流环等效闭环传递函数............................7 4.2.2转速调节器结构的选择..............................8 4.2.3时间常数的确定....................................8 4.2.4转速调节器参数的选择 (8)4.2.5校验近似条件 (8)4.2.6校核转速超调量 (8)4.2.7转速调节器的实现 (9)五基于SG3525 为核心构成的控制电路 (9)5.1 SG3525芯片的内部结构及工作原理 (9)5.2逻辑延时环节 (10)六驱动电路设计 (11)七电流反馈和转速反馈电路设计 (12)7.1电流反馈电路设计 (12)7.2转速反馈电路设计 (13)八结束语 (13)九参考文献 (15)十总电路图 (16)1引言直流电动机由于有着广泛的起制动性能,宜于在广泛范围内平滑调速,且直流拖动系统在理论上和实践上都比较成熟,因而目前应用广泛。
直流脉宽PWM调速系统课程设计
双闭环可逆直流脉宽PWM 调速系统设计1. 引言转速、电流双闭环控制直流调速系统是性能好、应用最广的直流调速系统。
它具有动态响应快、抗干扰能力强等优点。
我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。
采用转速负反馈和PI 调节器的单闭环的调速系统可以再保证系统稳定的条件下实现转速无静差.本设计是以直流PWM 控制调速系统进行调速,采用转速调节器ASR 、以及电流调节器ACR 并用PI 调节器进行校正,对反馈信号进行采集,处理起到无静差效果。
用25LJPF40电力二极管进行整流,以及滤波,通过驱动电路的作用将控制电路输出的PWM 信号得到IGBT 可靠的导通和关断,并用霍尔传感器对电流取样进而反馈至电流调节器,系统同时设有过流保护,为此达到双闭环可逆调速。
2. 系统设计参数2.1 设计内容和数据资料某直流电动机拖动的机械装置系统。
主电动机技术数据为:V U N 48=,A I N 7.3=,min 200r n N =,Ω=5.6a R ,电枢回路总电阻Ω=8R ,电枢回路电磁时间常数ms T l 5=,机电时间常数ms T m 200=,电源电压V U s 60=,给定值和ASR 、ACR 的输出限幅值均为V 10,电流反馈系数A V 33.1=β,转速反馈系数r V m in 05.0•=α,电动势转速比 r V C e min 18.0•=,Ks=4.8,Ts=0。
4ms ,试对该系统进行初步设计。
2。
2 技术指标要求电动机能够实现可逆运行。
要求静态无静差。
动态过渡过程时间s T s 1.0≤,电流超调量%5%≤i σ,空载起动到额定转速时的转速超调量%10%≤n σ.3。
主电路方案和控制系统确定主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。
主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器.其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD 和PWM变换器。
直流PWM调速系统课设
(一)任务书1 性能指标稳态指标:系统无静差动态指标:σi<=5%;空载起动到额定转速时σn<=10% 。
2 给定电机及系统参数P N=220W,U N=48V,I N=3.7A,λ=2,n N=200r/min,R a=6.5欧姆电枢回路总电阻R =8欧姆电枢回路总电感L =120mH电机飞轮惯量GD2=1.29 Nm23 设计步骤及说明书要求①画出系统结构图,并简要说明工作原理②根据给定电机参数,设计整流变压器,并计算变压器容量及副边电压值;选择整流二极管及开关管的参数,并确定过流、过压保护元件参数。
③分析PWM变换器,脉宽调制器(UPW)及逻辑延时(DLD)工作原理。
④设计ACR、ASR并满足给定性能指标要求。
⑤完成说明书,对构成系统的各环节分析时,应先画出本环节原理图,对照分析。
⑥打印说明书(B5),打印电气原理图(A2)。
并交软盘(一组)一张。
目录(二) 实验设计方法及其步骤一、 概述该系统是运用H 型双极模式PWM 控制的原理,采用电流速度双闭环控制方式,设计的一个基于PWM 控制的直流电机控制系统,并设计了软启动电路和完善的保护电路,确保直流电机控制系统准确、可靠地运行。
在主电路设计上,三相交流电经整流电路整流、电容滤波,再由4个IGBT 组成的H 型双极模式转换电路进行调压控制电机速度。
在控制电路中,采用双闭环控制系统,内环是电流环,外环是速度环。
电流检测采用根据磁场补偿原理制成的新型霍尔效应电流互感器—LEM 模块[1].,电流环调节器采用PI 调节,电流调节器输出控制脉冲宽度调制电路产生PWM 波,再通过脉冲分配电路和驱动电路控制IGBT 实现功率变换。
速度检测采用直流测速发电机,其结构简单可靠,准确度高。
为使整个系统能正常安全地运行,设计了过流、过载、过压、欠压保护电路,另外还有过压吸收电路。
确保了系统可靠运行。
二、 系统结构框图及工作原理2.1 系统结构框图如下:双闭环脉宽调速系统的原理框图如图2-1所示。
采用V—M反馈的PWM直流调速系统仿真设计
成绩南京工程学院课程设计说明书题目: 采用V---M反馈的PWM直流调速系统仿真设计课程名称: Matlab与控制系统仿真设计院系:专业:班级:学生姓名:学号:设计时间: 2013.01.14--2013.01.18设计地点: 工程实训中心 C315 指导教师:2013年 01月南京目录一、课程设计目的 (2)二.课程设计对象参数及要求 (2)2.1 控制对象 (2)三、控制器设计过程和控制方案 (3)3.1根据直流电机的工作原理,电动机数学模型为 (3)3.2 系统指标 (4)四、课设设计要求 (4)五、控制器设计过程和控制方案 (5)5.1系统设计 (5)5.1.1 PI调节器设计 (6)5.1.2 PWM脉宽调节装置 (6)5.1.3 电流环的设计 (7)5.1.4 转速环的设计 (8)5.1.5 滤波环节设计 (9)六、控制系统仿真结构图 (9)七、仿真结果及指标 (10)八、收获和体会 (13)一、课程设计目的针对具体的设计对象进行数学建模,然后运用经典控制理论知识 设计控制器,并应用Matlab 进行仿真分析。
通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。
二. 课程设计对象参数及要求2.1 控制对象电动机原理图如下图,图中,R 和L 分别为电枢回路电阻和电感,ua(t)为电枢电压,n(t)为电动机转动速度,ia(t)为电枢回路电流。
通过调解电枢电压ua(t),控制电动机的转动速度n(t)。
电动机负载变化为电动机转动速度的扰动因素,用负载力矩TL(t)表示。
图2.1 直流电动机原理图直流电动机铭牌参数为: Id=13.6A Ud=220V电枢回路总电阻:Rd=6.58欧 额定转速n=1480r/min电动势常数0.131V/(r/min )转速反馈系数0.00337 V/(r/min ) 电流反馈系数0.4V/A电枢电路电磁时间常数T1=0.018s 电力拖动系统时间常数Tm=0.25s采用单相220V 供电,设计采用V —M 反馈的PWM 直流调速系统。
PWM可逆直流调速系统设计
PWM可逆直流调速系统设计本文介绍PWM可逆直流调速系统的背景和目的。
PWM可逆直流调速系统是一种常用的电力调节系统,用于控制直流电动机的转速和扭矩。
本文旨在设计和实现一个高效可靠的PWM可逆直流调速系统,以满足各种工业和实际应用的需求。
PWM(脉宽调制)技术是一种通过改变信号的脉冲宽度来控制电源输出电压的方法。
在直流电机调速系统中,通过调整PWM信号的占空比,可以控制电机的平均输出电压和电流,从而实现对电机转速和扭矩的精确控制。
本文的目的是设计一个PWM可逆直流调速系统,具有以下特点:高效性:系统应具备高效能的特点,以确保电机的高效运行。
可靠性:系统应具备良好的抗干扰和稳定性,以保证电机的正常运行。
精确性:系统应具备高精度的控制能力,以满足不同工况下的转速和扭矩需求。
灵活性:系统应具备良好的可调节性和灵活性,以适应不同的应用场景。
通过本文的研究,我们将设计一个满足上述目标的PWM可逆直流调速系统,并通过实际实验验证系统的性能和可靠性。
本文详述了PWM可逆直流调速系统的设计原理和关键组件。
本部分将描述对PWM可逆直流调速系统进行测试和验证的方法和结果。
我们使用以下测试方法对PWM可逆直流调速系统进行验证:环境测试:在正常操作环境下,测试系统的工作温度范围,以确保系统在正常工作条件下能够稳定运行。
环境测试:在正常操作环境下,测试系统的工作温度范围,以确保系统在正常工作条件下能够稳定运行。
输入输出测试:测试系统的输入和输出参数,包括电压、电流和转速等。
我们会对系统进行全面的测试,以确保输入输出的准确性和稳定性。
输入输出测试:测试系统的输入和输出参数,包括电压、电流和转速等。
我们会对系统进行全面的测试,以确保输入输出的准确性和稳定性。
输入输出测试:测试系统的输入和输出参数,包括电压、电流和转速等。
我们会对系统进行全面的测试,以确保输入输出的准确性和稳定性。
输入输出测试:测试系统的输入和输出参数,包括电压、电流和转速等。
可逆直流PWM调速系统设计
可逆直流PWM调速系统设计专业班级:电气自动化09—40(1)班学生姓名:指导教师:完成日期: 2011-6-2电气与信息工程系课程设计任务书2011/12学年学期2011年6月2日专业电气自动化班级09-40(1)班课程名称电力电子技术课程设计设计题目可逆直流PWM调速系统指导教师起止时间2011年5月30-6月2 周数1周设计地点电力电子实验室设计目的:1.了解并掌握电力电子装置的一般设计方法;2.初步掌握电力电子装置的组装和调试的基本技能;3.提高综合运用所学理论知识独立分析和解决问题的能力;4.进一步掌握电子仪器的使用方法。
设计任务或主要技术指标:1.了解直流电机工作的原理;2.学会Protel99se仿真3.掌握PWM控制及调试过程技术指标:直流电动机220V 10A;二极管1N91;三极管EF152设计进度与要求:第一天:查找相关资料第二、三、四天:进行仿真、调试PWM控制系统第五天:整理实训报告要求:了解电机工作原理熟练掌握PWM调速系统及分析各部分功能主要参考书及参考资料:《电力电子技术辅助教材》内部教材《电力电子应用技术(第三版)》莫正康主编机械工业出版社2000年《电力电子技术课程设计指导书》李久胜等编哈尔滨工业大学2006年教研室主任(签名)系(部)主任(签名)年月日课程设计评定意见设计题目:可逆直流PWM调速系统学生姓名:专业电气自动化班级09—40(1)班评定意见:评定成绩:指导教师(签名):年月日评定意见参考提纲:1.学生完成的工作量与内容是否符合任务书的要求。
2.学生的勤勉态度。
3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。
摘要本文介绍了一种基于PWM信号,采用H桥对直流电机进行调压调速的驱动电路,利用PWM调节导通时间来改变输出波形的宽度,从而达到调压调速的目的。
在这次的电力电子设计中我们小组经过商量讨论后,采用的是二极管的桥式连接和绝缘栅型三极管构成的桥式连接,来调节直流电机可逆,控制宽度调节输出波形的时间,来实现调速,方案制定后我们开始用仿真。
直流双极式可逆pwm调速系统设计课程设计
目录摘要 (1)1 概述 (2)2 设计任务及要求 (2)2.1 设计任务 (2)2.2 设计要求 (2)3 理论设计 (3)3.1 方案论证 (3)3.2 系统设计 (4)3.2.1 电流调节器 (4)3.2.1.1 电流环结构框的简化 (4)3.2.1.2 确定时间常数 (5)3.2.1.3 选择电流调节器结构 (5)3.2.1.4 计算电流调节器参数 (5)3.2.1.5 校验近似条件 (6)3.2.1.6 计算调节器电阻和电容 (6)3.2.2 转速调节器设计 (6)3.2.2.1 转速环结构框图的简化 (6)3.2.2.2 确定时间常数 (7)3.2.2.3 选择电流调节器结构 (8)3.2.2.4 计算转速调节器参数 (8)3.2.2.5 校验近似条件 (8)3.2.2.6 计算调节器电阻和电容 (8)3.2.2.7 校核转速超调量 (9)4 系统主电路设计 (9)4.1 桥式可逆PWM变换器的工作原理 (9)4.2 PWM直流脉宽调速系统的机械特性 (12)4.3 主电路设计 (12)4.4PWM信号产生电路 (13)4.5 IGBT基极驱动电路原理及设计 (14)4.6 保护电路设计 (16)5 总结与体会 (18)参考文献 (19)附录 (20)摘要在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。
直流电机是最常见的一种电机,在各领域中得到广泛应用。
研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。
电机调速问题一直是自动化领域比较重要的问题之一。
不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。
本文基于PWM的双闭环直流调速系统进行了研究,并设计出应用于直流电动机的双闭环直流调速系统。
提出了PWM调速方法的优势,指出了未来PWM调速方法的发展前景,点出了研究PWM调速方法的意义。
应用于直流电机的调速方式很多,其中以PWM变频调速方式应用最为广泛,而PWM变频器中,H型PWM变频器性能尤为突出,作为本次设计的基础理论,本文将对PWM的理论进行详细论述。