PWM可逆直流调速系统matlab仿真实习
直流电机调速matlab仿真报告

直流电机调速matlab仿真报告以直流电机调速Matlab仿真报告为标题引言:直流电机是一种常见的电动机,广泛应用于工业、交通、家电等领域。
在实际应用中,电机的调速控制是一项关键技术,可以使电机在不同工况下实现恒定转速或变速运行。
本文将利用Matlab软件进行直流电机调速的仿真实验,旨在通过仿真结果分析不同调速控制策略的优劣,并提供一种基于Matlab的直流电机调速方法。
一、直流电机调速原理直流电机的调速原理基于电压与转速之间的关系。
电机的转速与输入电压成正比,即在给定电压下,电机转速可以通过调整电压大小来实现调速。
常用的直流电机调速方法有电压调速、电流调速和PWM调速等。
二、Matlab仿真实验设置本次仿真实验将以直流电机调速为目标,基于Matlab软件进行实验设置。
首先,需要建立电机的数学模型,包括电机的转速、电流和电压等参数。
其次,选择合适的调速控制策略,如PID控制、模糊控制或神经网络控制等。
最后,通过调节电压输入,观察电机的转速响应和稳定性。
三、PID控制调速实验1. 实验目的本实验旨在通过PID控制器对直流电机进行调速控制,并分析不同PID参数对控制效果的影响。
2. 实验步骤(1) 建立直流电机的数学模型;(2) 设计PID控制器,包括比例系数Kp、积分系数Ki和微分系数Kd;(3) 利用Matlab软件进行仿真,设定电机的目标转速和初始转速;(4) 通过调节PID参数,观察电机的转速响应和稳定性。
3. 实验结果与分析根据实验设置,我们分别对比了不同PID参数值下的电机转速响应曲线。
结果显示,在合适的PID参数设置下,电机能够实现快速响应和稳定控制。
但是,过大或过小的PID参数值都会导致转速超调或调速不稳定的问题。
四、模糊控制调速实验1. 实验目的本实验旨在通过模糊控制器对直流电机进行调速控制,并分析不同模糊规则和输入输出的影响。
2. 实验步骤(1) 建立直流电机的数学模型;(2) 设计模糊控制器,包括模糊规则、输入变量和输出变量;(3) 利用Matlab软件进行仿真,设定电机的目标转速和初始转速;(4) 通过调节模糊规则和输入输出变量,观察电机的转速响应和稳定性。
PWM脉宽直流调速系统设计及matlab仿真验证

PWM脉宽直流调速系统设计及matlab仿真验证1设计任务1.1双闭环调速系统结构图图1输出功率、电流反馈控制直流变频系统原理图为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套链接,如图1所示。
把转速调节器的输出当做电流调节器的输入,再用电流调节器的输出去控制电力电子变换器upe。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流反馈控制直流调速系统。
1.2双闭环直流变频系统的稳态结构图1图2双闭环直流变频系统的稳态结构图双闭环直流调速系统的稳态结构图如图2所示,两个调节器均采用带限幅作用的pi调节器。
转速调节器asr的输出限幅电压电流调节器acr的输出限幅电压udmucm?uim同意了电流取值的最大值,限制了电力电子变换器的最大输出电压。
当调节器饱和状态时,输入踢至限幅值,输入量的变化不再影响输入,除非存有反向的输入信号使调节器退出饱和。
当调节器不饱和时,pi调节器工作在线性调节状态,其作用是使输入偏差电压?u在稳态时为零。
为了同时实现电流的实时控制和快速追随,期望电流调节器不要步入饱和状态,因此对于静特性来说,只有输出功率调节器饱和状态与不饱和两种情况。
1.3双闭环直流调速系统的动态结构图图3双闭环直流变频系统的动态结构图双闭环直流调速系统的动态结构图如图3所示,图中表示转速调节和电流调节器的传递函数。
2wasr(s)和wacr(s)分别双闭环直流调速系统起动过程的转速和电流波形如图所示:图4双闭环直流调速系统起动过程的转速和电流波形例如图4右图,电机的再生制动过程中输出功率调节器asr经历了不饱和、饱和状态、脱饱和状态三种情况:第ⅰ阶段(0-t1)是电流上升阶段;第ⅱ阶段(t1-t2)是恒流升速阶段;第ⅲ阶段(t2以后)是转速调节阶段。
双闭环直流变频系统的再生制动过程存有以下三个特点:1)饱和状态非线性掌控2)输出功率市场汇率3)科东俄时间最优控制1.4系统参数选取1.4.1整流电路平均值失控时间常数ts设定pwm的开关频率为1khz,故h型双极式pwm整流的调制周期为:t=1/f=0.001s1.4.2电流滤波时间常数和输出功率滤波常数h桥式电路每个波头的时间为0.5ms,为了基本滤平波头,应有3(1~2)toi?0.5ms,因此取toi?0.0004s。
PWM脉宽直流调速系统设计及matlab仿真验证

PWM脉宽直流调速系统设计及matlab仿真验证————————————————————————————————作者:————————————————————————————————日期:目录1.MATLAB简介 (3)3系统设计及参数计算 (5)3.1系统总体设计 (5)3.1.1 H型双极式PWM原理 (5)3.1。
2双闭环调速系统结构图 (7)3.1。
3双闭环调速系统启动过程分析 (8)3。
2电流调节器设计及参数计算 (9)3。
3转速调节器设计及参数计算 (11)4 MATLAB仿真验证 (14)4.1稳定运行时电流环突然断线仿真分析 (14)参考文献 (19)PWM脉宽直流调速系统设计及matlab仿真验证1.MATLAB简介MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言的编辑模式,代表了当今国际科学计算软件的先进水平。
[MATLAB和MATHEMATICA、MAPLE并称为三大数学软件。
它在数学类科技应用软件中在数值计算方面首屈一指。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像MAPLE等软件的优点,使MATLAB成为一个强大的数学软件。
2 设计分析直流双闭环调速系统调节器包括转速调节器(ASR)和电流调节器(ACR),从而分别引入了转速负反馈和电流负反馈以调节转速和电流,二者之间实行串级连接.把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
基于Matlab的V-M双闭环直流调速系统设计及仿真报告(1)

基于Matlab的双闭环调速系统设计报告目录一、摘要 (2)二、总体方案设计 (3)1、控制原理2、控制结构图三、参数计算 (5)1、静态参数设计计算2、动态参数设计计算四、稳定性分析 (8)1、基于经典自控理论得分析2、利用MATLAB辅助分析A、利用根轨迹分析B、在频域内分析奈氏曲线:bode图利用单输入单输出仿真工具箱分析用Simulink仿真五、系统校正 (14)1、系统校正的工具2、调节器的选择3、校正环节的设计4、限流装置的选择六、系统验证 (15)1、分析系统的各项指标2、单位阶跃响应3、Simulink仿真系统验证系统运行情况七、心得体会 (20)八、参考文献 (20)一、摘要运动控制课是后续于自动控制原理课的课程,是更加接近本专业实现应用的一门课程。
直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。
另外,设计过程中还要以matlab为工具,以求简明直观而方便快捷的设计过程。
二、总体方案设计1、控制原理根据设计要求,所设计的系统应为单闭环直流调速系统,选定转速为反馈量,采用变电压调节方式,实现对直流电机的无极平滑调速。
所以,设计如下的原理图:图1、单闭环直流调速系统原理图转速用与电动机同轴相连的测速电机产生的正比于转速的电压信号反馈到输入端,再与给定值比较,经放大环节产生控制电压,再通过电力电子变换器来调节电机回路电流,达到控制电机转速的目的。
这里,电压放大环节采用集成电路运算放大器实现,主电路用晶闸管可控整流器调节对电机的电源供给。
所以,更具体的原理图如下:图2、单闭环直流调速系统具体原理图2、控制结构图有了原理图之后,把各环节的静态参数用自控原理中的结构图表示,就得到了系统的稳态结构框图。
基于MATLAB的直流调压调速控制系统的仿真

基于MATLAB的直流调压调速控制系统的仿真本文将介绍基于MATLAB的直流调压调速控制系统的仿真实验。
直流调压调速系统是一种常见的电力控制系统,广泛应用于工业生产和家用电器中。
该系统通过对电机供电电压和电流的控制,可以实现电机的转速、转矩等特性的调整。
本文主要涉及直流电机的调速控制,介绍PID控制算法在直流调速系统中的应用,并通过MATLAB仿真实验验证控制系统的性能。
直流调速控制系统由电机、电源、测量元件、控制器和执行元件等组成。
其中,电源提供电机运行所需的电源,测量元件用于实时测量电机运行状态,控制器根据测量结果和设定值进行控制,执行元件则根据控制信号驱动电机转速和转矩。
在直流调速控制系统中,PID控制器是最常用的一种控制算法,其主要通过比较设定值和实际值之间的误差,进行控制输出,从而调整电机的运行状态。
MATLAB软件是一种用于科学计算、数据可视化和算法开发的高级语言和交互式环境。
在直流调速控制系统仿真实验中,MATLAB提供了丰富的工具箱和函数库,可用于模拟电机运行状态、控制器设计和仿真实验模拟等方面。
接着,需要设计PID控制器参数。
PID控制器的参数包括比例系数Kp、积分系数Ki和微分系数Kd。
这些参数的设置对控制器的性能有重要影响,需要根据具体的需求进行调整。
在实验中,采用试控法设计PID控制器,即根据试验结果逐步调整控制器参数,使得系统的运行状态达到最佳效果。
最后,进行控制系统仿真实验。
在仿真实验中,需要设置适当的工作条件和控制器参数,观察电机的运行状态和控制器输出,评估控制系统的性能。
实验结果表明,PID控制器可以实现电机的精确调速和稳定控制,在实际应用中有较广泛的应用前景。
综上所述,基于MATLAB的直流调压调速控制系统的仿真实验可以有效地模拟电机运行状态、控制器设计和控制系统的性能评估。
通过该实验可以更深入地了解直流调速控制系统的工作原理和控制算法,并为实际应用提供有益的参考。
双闭环可逆直流脉宽PWM调速系统设计及MATLAB仿真验证

双闭环可逆直流脉宽PWM调速系统设计及MATLAB仿真验证双闭环可逆直流脉宽调制(PWM)调速系统是一种常见的电机调速控制方案。
该系统通过两个闭环来实现电机的速度控制和电流控制,从而实现精准的调速效果。
本文将介绍双闭环可逆直流脉宽PWM调速系统的设计原理,并使用MATLAB进行仿真验证。
设计原理:该系统由以下几个主要部分组成:1.输入信号:输入信号一般是一个速度设定值,表示期望电机的转速。
该信号可以通过人机界面或其他控制系统输入。
2.速度控制环:速度控制环根据输入信号和反馈信号之间的差异来控制电机的转速。
常见的速度控制算法有比例控制、积分控制和微分控制。
3.脉宽调制器:脉宽调制器根据速度控制环输出的控制信号来生成PWM信号,控制电机的转速。
通常使用的脉宽调制算法有定时器计数法和比较器法。
4.电流控制环:电流控制环根据PWM信号和反馈信号之间的差异来控制电机的电流。
常见的电流控制算法有比例控制、积分控制和微分控制。
5.电机驱动器:电机驱动器将电流控制环输出的控制信号转换为电机驱动信号,驱动电机正常运转。
MATLAB仿真验证:为了验证双闭环可逆直流脉宽PWM调速系统的性能,可以使用MATLAB进行仿真。
以下是一种基本的MATLAB仿真流程:1.定义电机模型:根据电机的参数和特性,定义一个数学模型来表示电机的动态响应,例如通过电机的转矩-转速曲线或电机的方程。
2.设计速度控制器:根据系统要求和电机模型,设计一个适当的速度控制器。
可以使用PID控制器或其他控制算法。
3.设计PWM调制器:根据速度控制器输出的控制信号,设计一个PWM调制器来生成PWM信号。
根据电机模型和控制要求,选择合适的PWM调制算法。
4.设计电流控制器:根据PWM信号和电机模型,设计一个电流控制器。
可以使用PID控制器或其他控制算法。
5. 仿真验证:将以上设计参数输入到MATLAB仿真模型中,并进行仿真验证。
可以使用Simulink工具箱来搭建仿真模型,并通过逐步增加负载或改变速度设定值等方式来验证系统的性能。
基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析

基于Matlab/SIMULINK的桥式直流PWM变换电路实验仿真分析本文以MATLAB软件的SIMULINK仿真软件包为平台,对桥式直流PWM 变换电路进行仿真分析文章对每个电路首先进行原理分析,进而建立相应的仿真模型,经过详细计算确定并设置仿真参数进行仿真,对于每次仿真结果均采用可视化波形图的方式直接输出。
在对仿真结果分析的基础上,不断优化仿真参数,使其最大化再现实际物理过程,并根据各个电路的性能进行参数改变从而观察结果的异同。
标签:SIMULINK;PWM;电路仿真1 桥式直流PWM变换电路简介桥式直流PWM变流器仿真实验是对全控型器件的应用。
实验电路中,前端为不可控整流、后端为开关型逆变器,此结构形式应用最为广泛。
逆变器的控制采用PWM方式。
对这个实验有所掌握的话,对后续课程设计直流调速系统也会有很大启发。
因为直流PWM-M调速系统近年来发展很快,直流PWM-M调速系统采用全控型电力电子器件,调制频率高,与晶闸管直流调速系统相比动态响应速度快,电动机转矩平稳脉动小,有很大优越性,因此在小功率调速系统和伺服系统中的应用越来越广泛。
2 桥式直流PWM变换电路的工作原理本实验系统的主电路采用双极性PWM控制方式,其中主电路由四个MOSFET(VT1~VT4)构成H桥。
Ub1~Ub4分别由PWM调制电路产生后经过驱动电路放大,再送到MOSFET相应的栅极,用以控制MOSFET的通断。
在双极性的控制方式中,VT1和VT4的栅极由一路信号驱动,VT2和VT3的栅极由另一路信号驱动,它们成对导通。
控制开关器件的通断时间可以调节输出电压的大小,若VT1和VT4的导通时间大于VT2和VT3的导通时问,输出电压的平均值为正,VT2和VT3的导通时间大于VT1和VT4的导通时间,则输出电压的平均值为负,所以可以用于直流电动机的可逆运行。
3 计算机仿真实验(1)桥式直流PWM变换电路仿真模型的建立。
根据所要仿真的电路,在SIMULINK窗口的仿真平台上构建仿真模型。
直流调速系统的MATLAB仿真(报告)

直流调速系统的MATLAB 仿真一、开环直流速系统的仿真开环直流调速系统的电气原理如图1所示。
直流电动机的电枢由三相晶闸管整流电路经平波电抗器L 供电,通过改变触发器移相控制信号c U 调节晶闸管的控制角α,从而改变整流器的输出电压,实现直流电动机的调速。
该系统的仿真模型如图2所示。
图1 开环直流调速系统电气原理图图2 直流开环调速系统的仿真模型为了减小整流器谐波对同步信号的影响,宜设三相交流电源电感s 0L =,直流电动机励磁由直流电源直接供电。
触发器(6-Pulse )的控制角(alpha_deg )由移相控制信号c U 决定,移相特性的数学表达式为minc cmax9090U U αα︒-=︒-在本模型中取min 30α=︒,cmax 10V U =,所以c 906U α=-。
在直流电动机的负载转矩输入端L T 用Step 模块设定加载时刻和加载转矩。
仿真算例1 已知一台四极直流电动机额定参数为N 220V U =,N 136A I =,N 1460r /min n =,a 0.2R =Ω,2222.5N m GD =⋅。
励磁电压f 220V U =,励磁电流f 1.5A I =。
采用三相桥式整流电路,设整流器内阻rec 0.3R =Ω。
平波电抗器d 20mH L =。
仿真该晶闸管-直流电动机开环调速系统,观察电动机在全压起动和起动后加额定负载时的电机转速n 、电磁转矩e T 、电枢电流d i 及电枢电压d u 的变化情况。
仿真步骤:1)绘制系统的仿真模型(图2)。
2)设置模块参数(表1) ① 供电电源电压N rec N 2min 2200.3136130(V)2.34cos 2.34cos30U R I U α++⨯==≈⨯︒② 电动机参数 励磁电阻:f f f 220146.7()1.5U R I ===Ω 励磁电感在恒定磁场控制时可取“0”。
电枢电阻:a 0.2R =Ω电枢电感由下式估算:N a N N 0.422019.119.10.0021(H)2221460136CU L pn I ⨯==⨯≈⨯⨯⨯电枢绕组和励磁绕组间的互感af L :N a N e N 2200.21360.132(V min/r)1460U R I K n --⨯==≈⋅ T e 60600.132 1.262π2πK K ==⨯≈T af f 1.260.84(H)1.5K L I === 电机转动惯量2222.50.57(kg m )449.81GD J g ==≈⋅⨯③ 额定负载转矩L T N 1.26136171.4(N m)T K I ==⨯≈⋅表1 开环直流调速系统主要模型参数3)设置仿真参数:仿真算法odel5s ,仿真时间5.0s ,直流电动机空载起动,起动2.5s 后加额定负载L 171.4N m T =⋅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PWM可逆直流调速系统matlab 仿真实习《运动控制系统仿真》课程设计——PWM直流调速系统的动态建模与仿真学院:电气与控制工程学院班级:自动化1104班姓名:***学号:**********日期: 2014年6月27日一、课程设计的目的及任务《运动控制系统》是自动化专业的一门主干专业课程,在该课程学习结束后单独安排了1周的控制系统仿真课程设计。
其目的是要求学生针对某个电机控制系统功能模块或整个控制系统进行设计与实现,使学生能进一步加深对课堂教学内容的理解,了解典型的电机控制系统基本控制原理和结构,掌握基本的调试方法,提高综合应用知识的能力、分析解决问题的能力和工程实践能力,并初步培养实事求是的工作作风和撰写科研总结报告的能力。
二、课程设计的基本要求《运动控制系统》被控对象是交、直流电动机,能量转换是由电力电子器件构成的变换器,微机构成控制器。
因此控制系统仿真课程设计学生应掌握以下基本内容:(1)交、直流电动机;(2)电力电子变换器;(3)微机控制器;(4)转速、电流等检测电路;(5)输入输出转换电路、调理电路和功放电路等。
三.课程设计的内容及基本要求1.设计题目1) 开环直流调速系统的动态建模与仿真2) 单闭环有静差转速负反馈调速系统的动态建模与仿真3) 单闭环无静差转速负反馈调速系统的动态建模与仿真4) 带电流截止转速负反馈的单闭环调速系统的动态建模与仿真5) 单闭环电压负反馈调速系统的动态建模与仿真6) 双闭环直流调速系统的动态建模与仿真α=有环流可逆直流调速系统的动态建模与仿真7) β8) 逻辑无环流可逆直流调速系统的动态建模与仿真9)三相异步电动机数学模型的建立10) PWM直流调速系统的动态建模与仿真本文所选题目为:10) PWM直流调速系统的动态建模与仿真。
2.设计内容(1)设计系统各单元电路和主控电路;(2)分析并测定系统各环节的输入输出特性及其参数,调试各单元电路;(3)系统性能分析与程序设计;(4)系统校正,修正系统静、动态性能。
3.设计要求(1)初步掌握控制系统的分析和设计的基本方法。
包括设计任务,进行设计题目的方案论证。
通过调查研究、设计计算,确定方案,写出总结报告。
(2)培养一定的自学能力和独立分析问题、解决问题的能力。
包括学会自己分析解决问题的方法,对设计中遇到的问题,能通过独立思考、查阅工具书、参考文献,寻找答案。
(3)通过严格的科学训练和工程设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并培养学生在实际工作中应具有的生产观点,经济观点和全局观点。
4. 控制对象参数直流调速系统的基本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统,直流电动机:220V,136A,1460r/min,电枢电阻Ra=0.2Ω,允许过载倍数λ=1.5;电枢回路总电阻:R=0.5Ω,电枢回路总电感:L= 15mH,电动机轴上的总飞轮力矩:GD2= 22.5N ·m2,晶闸管装置:放大系数Ks=40,电流反馈系数:β=0.05V/A,转速反馈系数:α=0.007Vmin/r,滤波时间常数:Toi=0.002s ,Ton=0.01s 。
四.PWM 直流调速系统简介1.PWM 调速原理可逆PWM 变换器主电路有多种形式,最常用的是桥式(亦称H 形)电路,如图1所示,电动机M 两端电压AB U 的极性随全控型电力电子器件的开关状态而改变。
双极式控制可逆PWM 变换器的四个驱动电压的关系是:1423g g g g U U U U ==-=-。
在一个开关周期内,当0≤t<on t 时,AB S U U =,电枢电流id 沿回路1流通;当on t ≤t<T 时,驱动电压反号,id 沿回路2经二极管续流,AB S U U =-。
因此,AB U 在一个周期内具有正负相间的脉冲波形,这是双极式名称的由来。
图1.双极式控制可逆PWM 变换器2 PWM 发生器的matlab 建模直流脉宽调速系统仿真的关键是PWM 发生器的建模。
从双闭环调速系统的动态结构框图可知, 电流调节器ACR 输出最大限幅时,H 桥的占空比为1。
对于PWM 发生器, 采用两个Discrete PWM Generator 模块。
由于此模块中自带三角波,其幅值为1,且输入信号应在-1 与1 之间,将输入信号同三角波信号相比较, 当比较结果大于0时, 占空比大于50 %,PWM 波表现为上宽下窄,电机正转;当比较结果小于0 而大于-1 时,占空比小于50 %,PWM 波表现为上窄下宽, 电机反转。
Discrete PWM Generator 模块的参数设置为:调制波为外设,载波频率根据电力电子开关频率确定。
其次,由于电机运转时,H 桥应与对角两管触发信号一致,为此采用Selector 模块(路径为:Simulink/Signal Routing/Selector ),其参数设置为:Input Type 为Vector ,Elements 为[1 2 4 3], 使得PWM 发生器信号同H 桥对角两管触发信号相对应。
PWM 发生器模型及封装后子系统如图2所示:图2.PWM 发生器模型及封装后子系统由于ACR 输出的数值在-10~10 之间,为使ACR 输出的数值同PWM 发生器输入信号相对应,在ASR 输出端加了一个Gain 模块,参数为0.1。
这样,当ASR 输出限幅10 时,PWM 输入端为1,占空比为1;当ASR 输出限幅为-10 时,PWM 输入端为-1,占空比为0。
五.Matlab仿真设计1.开环PWM可逆直流调速系统仿真模型1.1 开环PWM可逆直流调速系统仿真模型如图3所示。
图3.开环PWM可逆直流调速系统仿真模型1.2开环PWM可逆直流调速系统仿真结果(1)当给定值为5时,PWM发生器波形、桥式电路输出电压波形、以及直流电机转速、电枢电流、励磁电流和电磁转矩波形分别如下:图4.PWM发生器波形图5.桥式电路输出电压波形图6.直流电机转速、电枢电流、励磁电流和电磁转矩波形(2)当给定值为0时,PWM发生器波形、桥式电路输出电压波形、以及直流电机转速、电枢电流、励磁电流和电磁转矩波形分别如下:图7.PWM发生器波形图8.桥式电路输出电压波形图9.直流电机转速、电枢电流、励磁电流和电磁转矩波形1.3 仿真结果分析PWM发生器产生脉冲宽度可调、频率一定的方波。
其中波1、4相同,2、3相同,切两种波形互补,从而驱动H桥式可逆PWM电路。
在PWM波驱动下桥式电路产生脉冲电压,从而给直流电机供电。
当给定为5时,PWM发生器输出占空比为0.75和0.25的两路信号分别作用于桥式H电路,PWM变换器输出占空比为0.75,平均电压为110V,电机转速应为额定空载转速的一半。
当给定为0时,PWM发生器输出占空比都为0.5,PWM变换器输出占空比为0.5此时桥式H型电路输出平均电压为0V,电机稳态转速为0。
当给定为负时,PWM发生器输出占空比为0-0.5和0.5-1,PWM变换器输出占空比0-0.5,平均电压小于0V,电机反转。
图6、9为直流电机在空载时的启动响应曲线。
需要说明的是由于想使PWM 观察更明显,故将PWM频率设置较小,仅为200Hz,所以转速、电枢电流、电磁转矩的脉动比较大,但并不失仿真的一般性,而且原理更为清楚。
2.单闭环PWM可逆直流调速系统仿真模型2.1单闭环PWM可逆直流调速系统仿真模型如图7所示:图10.单闭环PWM可逆直流调速系统仿真模型2.2单闭环环PWM可逆直流调速系统仿真结果当给定值为7时,PWM发生器波形、桥式电路输出电压波形、以及直流电机转速、电枢电流、励磁电流和电磁转矩波形分别如下:图11.PWM发生器波形输出波形图12.桥式电路输出电压波形图13.直流电机转速、电枢电流、励磁电流和电磁转矩波形2.3仿真结果分析上图为直流电机空载时电机的输出响应从PWM发生器输出波形可知,闭环直流调速系统能根据给定于反馈的误差自动调节输出脉冲宽度,调节占空比,从而改变桥式可逆PWM变换器输出的平均电压,从而控制转速。
由于比例调节系统是基于当前误差的调节,与历史值无关,是有差调节,故稳态转速下降。
其余特性和开环特性一样。
六.实习心得《运动控制系统》是自动化专业的一门主干专业课程,经过一周的控制系统仿真课程设计的学习和实践,我基本掌握了针对某个电机控制系统功能模块或整个控制系统进行设计与实现,使我能进一步加深对课堂教学内容的理解,了解典型的电机控制系统基本控制原理和结构,掌握基本的调试方法,提高综合应用知识的能力、分析解决问题的能力和工程实践能力,并初步培养了实事求是的工作作风和撰写科研总结报告的能力。
在仿真的过程中,我遇到了各种各样的问题,比如模块的寻找,参数如何设置等。
经过我不懈的努力,通过咨询老师、查询资料、询问同学等各种途径,逐步解决了仿真课程设计中遇到的问题,并按时完成了学习任务。
经过此次实习后,我对matlab软件有了更深的了解,熟悉matlab在控制领域的应用,会用matlab中的各个模块对系统进行仿真,从而加深了自己对所学知识的理解与应用。
七.参考文献[1]院毅陈伯时.电力拖动自动控制系统.机械工业出版社,2009[2]邹伯敏自动控制理论.北京:清华大学出版社,2009[3]胡寿松自动控制理论第五版.北京:科学出版社[4]孙树朴李明王旭光伍小杰王勉华郑征.电力电子技术.中国矿业大学出版社。