最新-2018年七年级下册数学竞赛试题及答案 精品

合集下载

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)

2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。

第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。

如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。

第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。

(C) $-\frac{1}{3}$。

(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。

注:本题也可用特殊值法来判断。

2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。

(B) $1$。

(C) $0$。

(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。

2018全国初中数学竞赛试题及参考答案

2018全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题<共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)qfRgF4dw271.设1a =,则代数式32312612a a a +--的值为( >.<A )24 <B )25 <C )10 <D )122.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:<a b ,)△<c d ,)=<ac bd ad bc ++,).如果对于任意实数u v ,, 都有<u v ,)△<x y ,)=<u v ,),那么<x y ,)为( >.qfRgF4dw27<A )<0,1) <B )<1,0) <C )<﹣1,0) <D )<0,-1)3.若1x >,0y >,且满足3y y x xy x x y==,,则x y +的值为( >.<A )1 <B )2 <C )92<D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( >.<A )1324S S S S < <B )1324S S S S = <C )1324S S S S > <D )不能确定5.设3333111112399S =++++,则4S 的整数部分等于( >. <A )4 <B )5 <C )6 <D )7 二、填空题<共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .NW2GT2oy018.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=<x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .NW2GT2oy019.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .NW2GT2oy01三、解答题<共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线<第8题)<第10题)<第12题)223y x =于P ,Q 两点. <1)求证:∠ABP =∠ABQ ;<2)若点A 的坐标为<0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解读式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案 一、选择题1.A解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得<x y ,)=<1,0).3.C<第13题)<第14题)解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEF S S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即 ()2121242x x x x +-<,164m ∆=-≥0,所以1642m -<, 164m ∆=-≥0,<第4题)解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:<1,4),<2,3),<2,3),<4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=.NW2GT2oy01 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又因为2BD AC =,于是 22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+. 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故22b =. 所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则<第8题)22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AF CB AC =,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(), 解得a +b =49<另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. <第10题)因为AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:<1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , .设点A 的坐标为<0,t ),则点B 的坐标为<0,-t ).设直线PQ 的函数解读式为y kx t =+,并设P Q,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是 222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P QQ P Q Q Q P x x x x x x x x x x x x x x --===--- 又因为PQx PCQD x =-,所以BC PC BDQD=.因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .<第12题)<第13题)<2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由<1)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以AC 2-,AD =2.因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PCACDQAD =,即a b =,所以a b +=.由<1)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=, 于是可求得2a b =将2b =代入223y x =,得到点Q 的坐标,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解读式为1y x =+.根据对称性知,所求直线PQ 的函数解读式为1y x =+,或1y +. 解法二 设直线PQ 的函数解读式为y kx t =+,其中1t =. 由<1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x = 将223Q Q y x =代入上式,平方并整理得4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1>得3322P Q x x t =-=-,32P Q x x k +=.若32Q x =,代入上式得 3P x =-, 从而 23()33P Q k x x =+=-.同理,若3Q x =, 可得32P x =-, 从而 23()33P Q k x x =+=.所以,直线PQ 的函数解读式为313y x =-+,或313y x =+. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP . 由于2AB AC =,所以相似比为2. 于是22324AQ AP BQ CP ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ .故 213673sin 60282ABC S AB AC AB ∆+=⋅︒==. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

(名师整理)数学七年级竞赛试题及答案解析

(名师整理)数学七年级竞赛试题及答案解析

七年级下学期数学竞赛试卷(满分150,时间90分钟)一、单选题。

1.在方程中,二元一次方程有()A.1个B.2个C.3个D.4个2.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为( )A.20元B.42元C.44元D.46元3.不等式组的解集为( )A.2≤x<3 B.2<x<3 C.x<3 D.x≥24.关于x的不等式组只有3个整数解,则a的取值范围是()A .B .C .D .5.在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()1A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=746.不等式的解集为()A .B .C .D .7.若则下列不等式不正确的是A .B .C .D .8.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A .B .C .D .9.已知是二元一次方程组的解,那么的值是( )A.0 B.5 C.-1 D.110.下列方程组不是二元一次方程组的是( )A .B .C .D .11.某校开展丰富多彩的社团活动,每位同学可报名参加1~2个社团,现有25位同学报名参加了书法社或摄影社,已知参加摄影社的2人数比参加书法社的人数多5人,两个社团都参加的同学有12人.设参加书法社的同学有x人,则()A.x+(x﹣5)=25 B.x+(x+5)+12=25C.x+(x+5)﹣12=25 D.x+(x+5)﹣24=2512.一元二次方程x2+2x=0的根是()A.2 B.0 C.0或2 D.0或﹣2 13.不等式x﹣1<2的解集在数轴上表示正确的是()A .B .C .D .14.已知方程组和有相同的解,则a-2b 的值为()A.15 B.14 C.12 D.1015.下列不等式中一定成立的是()A.3a>2a B.a>-2a C.a+2<a+3 D .<二、填空题。

最新-2018年全国初中数学竞赛(浙江赛区)复赛试题及参考答案02018 精品

最新-2018年全国初中数学竞赛(浙江赛区)复赛试题及参考答案02018 精品

2018年全国初中数学竞赛(浙江赛区)复赛试题(2018年4月1月 下午1∶00-3∶00)班级__________学号__________姓名______________得分______________一、选择题(共6小题,每小题5分,满分30分) 1.若x 3+x 2+x +1=0,则x -27+x-26+…+x -1+1+x +…+x 26+x 27的值是( )(A )1(B )0 (C )-1(D )22.定义:定点A 与⊙O 上的任意一点之间的距离的最小值称为点A 与⊙O 之间的距离.现有一矩形ABCD 如图,AB =14cm ,BC =12cm ,⊙K 与矩形的边AB 、BC 、CD 分别相切于点E 、F 、G ,则点A 与⊙K 的距离为 ( )(A )4cm(B )8cm(C )10cm(D )12cm3.某班选举班干部,全班有50名同学都有选举权和被选举权,他们的编号分别为1,2,…,50.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.如果令a i ,j =⎩⎨⎧1,第i 号同学同意第j 号同学当选,2,第i 号同学不同意第j 号同学当选.其中i =1,2,…,50;j =1,2,…,50.则同时同意第1号和第50号同学当选的人数可表示为 ( )(A )a 1,1+a 1,2+…+a 1,50+a 50,1+a 50,2+…+a 50,50 (B )a 1,1+a 2,1+…+a 50,1+a 1,50+a 2,50+…+a 50,50 (C )a 1,1a 1,50+a 2,1a 2,50+…+a 50,1a 50,50 (D )a 1,1a 50,1+a 1,2a 50,2+…+a 1,50a 50,504.若a b +c =b c +a =ca +b =t ,则一次函数y =tx +t 2的图象必定经过的象限是( )(A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限(D )第三、四象限5.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A )1个 (B )2个 (C )3个 (D )无穷多个 6.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =62,那么AC 的长等于( )(A )12 (B )16 (C )43 (D )8 2 二、填空题(共6小题,每小题6分,共满分36分)7.函数y =|x +1|+|x +2|+|x +3|,当x =___________时,y 有最小值,最小值等于___________.AFA8.以立方体的8个顶点中的任意3个顶点为顶点的三角形中,正三角形的个数为__________.9.如图,△ABC中,∠A的平分线交BC于D,若AB=6cm,AC=4cm,∠A=60º,则AD 的长为___________cm.10.设x1,x2,x3,...,x2018为实数,且满足x1x2x3...x2018=x1-x2x3...x2018=x1x2-x3 (x2018)=…=x1x2x3…x2018-x2018=1,则x2000的值是__________.11.正六边形轨道ABCDEF的周长为7.2米,甲、乙两只机器鼠分别从A,C两点同时出发,均按A→B→C→D→E→F→A→…方向沿轨道奔跑,甲的速度为9.2厘米/秒,乙的速度为8厘米/秒,那么出发后经过___________秒钟时,甲、乙两只机器鼠第一次出现在同一条边上.12.正整数M的个位上的数字与数20132015的个位上的数字相同,把M的个位上的数字移到它的左边第一位数字之前就形成一个新的数N.若N是M的4倍,T是M的最小值,则T的各位数字之和等于___________.三、解答题(共4小题,满分54分)13.(本题满分12分)已知二次函数y=ax2+bx+c的图象G和x轴有且只有一个交点A,与y轴的交点为B(0,4),且ac=b.(1)求该二次函数的解析表达式;(2)将一次函数y=-3x的图象作适当平移,使它经过点A,记所得的图象为L,图象L与G的另一个交点为C,求△ABC的面积.14.(本题满分12分)如图,AB ∥CD 、AD ∥CE ,F 、G 分别是AC 和FD 的中点,过G 的直线依次交AB 、AD 、CD 、CE 于点M 、N 、P 、Q ,求证:MN +PQ =2PN .15.(本题满分14分)2018个质点均匀分布在半径为R 的圆周上,依次记为P 1,P 2,P 3,…,P 2018.小明用红色按如下规则去涂这些点:设某次涂第i 个质点,则下次就涂第i 个质点后面的第i 个质点.按此规则,小明能否将所有的质点均涂成红色?若能,请给出一种涂点方案;若不能,请说明理由.A B CD E F G P Q M N16.(本题满分16分)从连续自然数1,2,3,…,2018中任意取n个不同的数.(1)求证:当n=1018时,无论怎样选取这n个数,总存在其中的4个数的和等于4017;(2)当n≤1018(n是正整数)时,上述结论成立否?请说明理由.2018年全国初中数学竞赛(浙江赛区)复赛试题参考答案一、选择题(共6小题,每小题5分,满分30分) 1.答案:C解:由3210x x x +++=,得1x =-,所以2627--+x x + … +x x ++-11+ … +2726x x +=-1.2.答案:A解:连结AK 、EK ,设AK 与⊙O 的交点为H ,则AH 即为所求, 因为AK =22AE EK +=10,所以AH = 4. 3.答案:C解:由题意得C 正确. 4.答案:A解:由已知可得t c b a c b a )(2++=++,当0a b c ++≠时,12t =,1124y x =+,直线过第一、二、三象限; 当0a b c ++=时,1t =-,1y x =-+,直线过第一、二、四象限.综合上可得,直线必定经过的象限是第一、二象限.5.答案:C解:设直角三角形的两条直角边长为,a b (a b ≤),则12a b k ab ++=⋅(a ,b ,k 均为正整数),化简,得(4)(4)8ka kb --=,所以4148ka kb -=⎧⎨-=⎩或4244ka kb -=⎧⎨-=⎩.解得1512k a b =⎧⎪=⎨⎪=⎩或234k a b =⎧⎪=⎨⎪=⎩或⎪⎩⎪⎨⎧===.8,6,1b a k 即有3组解.6.答案:B解:在AC 上取一点G ,使CG =AB =4,连接OG ,则△OG C ≌△OAB ,所以OG =OA =26, ∠AOG =90°,所以△AOG 是等腰直角三角形,AG =12,所以AC =16.二、填空题(共6小题,每小题6分,满分36分)7.答案:-2,2解:当x ≤-3时,y = -3x -6;当-3<x ≤-2时,y = -x ; 当-2<x ≤-1时,y =x +4;AD(第2题)AB CEFO G(第6题)当x >-1时,y =3x +6.;所以当x =-2时,y 的值最小,最小值为2. 8.答案:8个解:正三角形的各边必为立方体各面的对角线,共有8个正三角形. 9.答案:5312 解:由S △ABC =S △ABD + S △ADC ,得︒⋅⋅60sin 21AC AB =︒⋅⋅+︒⋅⋅30sin 2130sin 21AC AD AD AB . 解得AD =5312.10.答案:1,或253±-解:由已知,321x x x ...200032120001x x x x x -=1,321x x x (1999)32119991x x x x x -=1,解得123200012319991515,22x x x x x x x x±±==. 所以12000=x ,或200032x ±=-. 11.答案:238104解:设甲跑完x 条边时,甲、乙两老鼠第一次出现在同一条边上,此时甲走了120x 厘米,乙走了2.91208x ⨯厘米,于是⎪⎪⎩⎪⎪⎨⎧≤-+⨯>--+-⨯.,1201202402.91208120)1(1202402.9)1(1208x x x x解得328327<≤x .因x 是整数,所以x =8,即经过2.98120⨯=232400=238104秒时,甲、乙两只机器鼠第一次出现在同一条边上.12.答案:36 解:20152013的个位数字是7,所以可设710+=k M ,其中k 是m 位正整数,则k N m+⨯=107.由条件N =4M ,得k m+⨯107=)710(4+k ,即39)410(7-=m k .当m =5时,k 取得最小值17948.所以T =179487,它的各位数字之和为36. 三、解答题(共4题,满分54分) 13.(12分)解:(1)由B (0,4)得,c =4.G 与x 轴的交点A (2ba-,0),由条件ac b =,得b c a =,所以2b a -=22c -=-,即A (2-,0).所以4,4240.b a a b =⎧⎨-+=⎩解得1,4.a b =⎧⎨=⎩所求二次函数的解析式为244y x x =++.(2)设图象L 的函数解析式为y =3-x +b ,因图象L 过点A (2-,0),所以6b =-,即平移后所得一次函数的解析式为y =36x --.令36x --=244x x ++, 解得12x =-,25x =-.将它们分别代入y =36x --, 得10y =,29y =.所以图象L 与G 的另一个交点为C (5-,9). 如图,过C 作CD ⊥x 轴于D ,则 S △ABC =S 梯形BCDO -S △ACD -S △ABO =111(49)53924222+⨯-⨯⨯-⨯⨯=15.(第13题)14.(12分)证明:延长BA 、EC ,设交点为O ,则四边形OADC 为平行四边形. ∵ F 是AC 的中点, ∴ DF 的延长线必过O 点,且31=OG DG . ∵ AB ∥CD , ∴DNANPN MN =. ∵ AD ∥CE ,∴DNCQPN PQ =. ∴ +PN MN =PN PQ DN AN DNCQ+ =DNCQ AN +.又=OQ DN 31=OG DG , ∴ OQ =3DN .∴ CQ =OQ -OC =3DN -OC =3DN -AD ,AN =AD -DN , 于是,AN +CQ =2DN , ∴+PN MN =PNPQ DN CQAN +=2,即 MN +PQ =2PN .15.(14分)解:不能.理由:设继i P 点涂成红色后被涂到的点是第j 号,则j =2,22007,22007,22007.i i i i ≤⎧⎨->⎩若i =2018,则j =2018,即除2007P 点涂成红色外,其余均没有涂到. 若i ≠2018,则2i ≠2018,且2i ≠4014,即2i -2018≠2018, 表明2007P 点永远涂不到红色.16.(16分)解:(1)设123x x x ,,,…,1007x 是1,2,3,…,2018中任意取出的1018个数.首先,将1,2,3,…,2018分成1004对,每对数的和为2018,BACMN P E FQDG O每对数记作(m ,2018-m ) ,其中m =1,2,3, (1004)因为2018个数取出1018个数后还余1001个数,所以至少有一个数是1001个数之一的数对至多为1001对,因此至少有3对数,不妨记为112233(2009)(2009)(2009)m m m m m m ---,,,,, (123m m m ,,互不相等)均为123x x x ,,,…,1007x 中的6个数.其次,将这2018个数中的2018个数(除1004、2018 外)分成1003对,每对数的和为2018,每对数记作(k ,2018-k ) ,其中k =1,2, (1003)2018个数中至少有1018个数被取出,因此2018个数中除去取出的数以外最多有1001个数,这1003对数中,至少有2对数是123x x x ,,,…,1007x 中的4个数,不妨记其中的一对为11(2008)k k -,.又在三对数112233(2009)(2009)(2009)m m m m m m ---,,,,,,(123m m m ,,互不相等)中至少存在1对数中的两个数与11(2008)k k -,中的两个数互不相同,不妨设该对数为11(2009)m m -,,于是1111200920084017m m k k +-++-=. (2)不成立.当1006n =时,不妨从1,2,…,2018中取出后面的1018个数:1003 ,1004, (2018)则其中任何四个不同的数之和不小于1003+1004+1018+1018=4018>4017; 当1006n <时,同样从1,2,…,2018中取出后面的n 个数,其中任何4数之和大于1003+1004+1018+1018=4018>4017. 所以1006n ≤时都不成立.。

2018年初中数学联赛试题及参考答案_一_

2018年初中数学联赛试题及参考答案_一_

则使得(x@y)@z+(y@z)@x+(z@x)@y=0 的 整
数 组 )(x,y,z)的 个 数 为 ( ).
(A)1 (B)2 (C)3 (D)4
答 (D).
(x@y)@z= (x+y-xy)@z= (x+y-xy)+z
- (x+y-xy)z=x+y+z-xy-yz-zx+xyz,
由 对 称 性 ,同 样 可 得
+3ab]=0,
又a-b=2,所 以 2-2[4+4ab]+2[4+3ab]=
0,解得ab=1.所 以a2+b2= (a-b)2 +2ab=6,a3 -
b3=(a-b)[(a-b)2+3ab]=14,a5 -b5 = (a2 +b2)
(a3-b3)-a2b2(a-b)=82.
5.对任意的 整 数 x,y,定 义 x@y=x+y-xy,
(y@z)@x=x+y+z-xy-yz-zx+xyz,(z
@x)@y=x+y+z-xy-yz-zx+xyz.
所以,由已知可得 x+y+z-xy-yz-zx+xyz
=0,即 (x-1)(y-1)(z-1)= -1.
所以,x,y,z 为整数时,只能有以下几种情况:
烄x-1=1, 烄x-1=1, 烅y-1=1, 或烅y-1=-1, 烆z-1=-1, 烆z-1=1,
2018 5 > 33 =6133.
又 M = (20118+20119+ … +20130)+ (20131+
1 2032+

+20150)>20130×13+20150×20=813324350,
所以
1 M
<813324350=6111138455,故
1 M
的填空题 (本题满分28分,每小题7分)
4.若实数a,b 满 足a-b=2,(1-a)2 - (1+b)2

2018年七年级数学竞赛

2018年七年级数学竞赛

七年级“希望杯”竞赛试卷(考试时间90分钟,满分100分)一、选择题(每小题只有一个正确选项,每小题3分,共10题,总共30分)1.x 是任意有理数,则2x x + 的值( ).A .大于零B . 不大于零C .小于零D .不小于零 2.某超市为了促销,先将彩电按原价提高了40%,然后在广告中写上“××节大酬宾,八折优惠”,结果每台彩电比原价多赚了270元,那么每台彩电的原价为( )A. 2150元 元 元 D. 2300元 3.设0a b c ++=,abc >0,则b c c a a ba b c+++++的值是( ) A . 3- B. 1 C. 31-或D. 31-或4.把14个棱长为1的正方体,在地面上堆叠成如图(1)所示的立方体,然后将露出的表面部分染成红色.那么红色部分的面积为 ( ). A .215.某动物园有老虎和狮子,老虎的数量是狮子的2倍。

如果每只老虎每天吃肉千克,每只狮子每天吃肉千克,那么该动物园的虎、狮平均每天吃肉 ( ) A. 625千克 B. 725千克 C.825千克 D.925千克6.假设有2016名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1…… —的规律报数,那么第2010名学生所报的数是 ( )7.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( )A 、-1B 、0C 、1D 、不存在8. 适合81272=-++a a 的整数a 的值的个数有 ………………( ) A .5 B .4 C .3 D .29. 碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为纳米的碳纳米管,1纳米=米=10-9米,则纳米用科学记数法表示为( )A 、×10-9米B 、5×10-8米C 、5×10-9米D 、5×10-10米}10、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 3个B 4个C 5个D 无数个二、填空题(每题4分,共24分) 11. 计算:201620151431321211⨯++⨯+⨯+⨯ = 。

2018年七年级数学竞赛入围试卷(含答案)

2018年七年级数学竞赛入围试卷(含答案)

2018年七年级数学竞赛入围试卷(满分:120分,时间:80分钟)一、选择题(每小题5分,共30分):1、已知数轴上三点A 、B 、C 分别表示有理数a 、1、-1,那么1+a 表示( ) (A )A 、B 两点的距离 (B )A 、C 两点的距离(C )A 、B 两点到原点的距离之和 (D )A 、C 两点到原点的距离之和 2、王老伯在集市上先买回5只羊,平均每只a 元,稍后又买回3只羊,平均每只b 元,后来他以每只2ba +的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是( ) (A )b a > (B )b a < (C )b a = (D )与a 、b 的大小无关 3、两个正数的和是60,它们的最小公倍数是273,则它们的乘积是( ) (A )273 (B )819 (C )1199 (D )19114、某班级共48人,春游时到杭州西湖划船,每只小船坐3人,租金16元,每只大船坐5人,租金24元,则该班至少要花租金( )(A )188元 (B )192元 (C )232元 (D )240元 5、若a 与它的绝对值的和为零,则a a 2-=( )(A )a (B )-a (C )-3a 元 (D )3a6、两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的容积之比为m :1,另一个瓶子中酒精与水的容积之比是n :1,把两瓶溶液混在一起,混合液中酒精与水的容积之比是 ( )(A )2n m + (B ))(3)(222n m n mn m +++(C )nm n m ++22 (D )22++++n m mn n m二、填空题(每小题5分,共40分):7、拉林贾伊蒂斯是希腊的一位雄辩家,他生于公元前30年7月4日,死于公元30年7月4日,他活了 岁。

8、已知1=a ,2=b ,3=c ,且a >b >c , 则c b a +-= ;9、已知如图,半圆的直径长为D ,则图中阴影部分面积为 ; 10、将正奇数按下表排列成5列:根据表中的规律,偶数2005应排在第 行,第 列;11、甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是 米;12、有人问杨老师:“你班里有多少学生?”,杨老师说:“我班现在有一半学生在参加数学竞赛,四分之一的学生在参加音乐兴趣小组,七分之一的学生在阅览室,还剩三个女同学在看电视”。

2018年初中数学联赛试题及答案

2018年初中数学联赛试题及答案

2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。

2018年七年级数学竞赛

2018年七年级数学竞赛

12018年七年级数学竞赛考试时间:120分钟,满分:150分一、选择题(每小题5分,共50分).1.在(-1)2017,3-1, -(-1)2018,-(-2018)这四个有理数中,负数共有( )A.1个B.2个C.3个D.4个2.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为( )A .5.5×106千米 B .5.5×107千米 C .55×106千米 D .0.55×108千米3.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n +q =0,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( A ) A .p B .q C .m D .n4.当代数式x 2+3x +5的值等于7时,代数式3x 2+9x -2的值等于( )A .4 B.0 C.-2 D .-45.若a<0 , ab<0 , 那么51---+-b a a b 等于( ) A . 4 B .-4 C . -2a+2b+6 D.66. 如图,宽为50 cm 的长方形图案由10个全等的小长方形拼成, 其小长方形的面积( )A .400 cm 2B .500 cm 2C .600 cm 2D .4000 cm 27.某商店出售某种商品每件可获利m 元,利润率为20%。

若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润为( ) A.25% B.20% C.16% D.12.5%8.对任意四个有理数a ,b ,c ,d 定义新运算:a b c d=ad-bc ,已知241x x-=18,则x=( )A.-1B.2C.3D.4 9.如图,若AB ∥DE,则∠B ,∠C ,∠D 三者之间的关系是( )A 、∠B+∠C+∠D=180°B 、 ∠B+∠C-∠D=180°C 、∠B+∠D-∠C=180°D 、 ∠C+∠D-∠B=180°10.若a b c d 、、、四个数满足20191201812017120161+=-=+=-d c b a ,则a b c d 、、、四个数的大小关系为( )A 、a c b d >>>B 、b d a c >>>C 、d b a c >>>D 、c a b d >>> 二.填空题(每小题5分,共30分)11.如果2017m -与(n-2018)2互为相反数,那么(m-n)2019= 。

2018年全国初中数学竞赛(初一组)初赛试题参考答案

2018年全国初中数学竞赛(初一组)初赛试题参考答案

第1页(共1页)一、1.A 2.C 3.B 4.D 5.B 6.D二、7.-18.30°9.3或-110.221三、11.(1)19×11=12×æèöø19-111;………………………………………………………………………………5分(2)1()2n -1()2n +1;12×æèöø12n -1-12n +1;…………………………………………………………………………………………………………10分(3)a 1+a 2+a 3+…+a 100=12×æèöø1-13+12×æèöø13-15+12×æèöø15-17+12×æèöø17-19+⋯+12×æèöø1199-1201=12×æèöø1-13+13-15+15-17+17-19+⋯+1199-1201……………………………………………15分=12×æèöø1-1201=12×200201=100201.…………………………………………………………………………………………………20分四、12.(1)130°.…………………………………………………………………………………………………5分(2)∠APC =∠α+∠β.理由:过点P 作PE ∥AB ,交AC 于点E .……………………………………………………………10分因为AB ∥CD ,所以AB ∥PE ∥CD .所以∠α=∠APE ,∠β=∠CPE .所以∠APC =∠APE +∠CPE =∠α+∠β.…………………………………………………………15分(3)当点P 在BD 延长线上时,∠APC =∠α-∠β;……………………………………………………20分当点P 在DB 延长线上时,∠APC =∠β-∠α.……………………………………………………25分五、13.(1)根据题意,得t =æèöø120-12050×550+5×2+12050≈6.3()h .答:三人都到达B 地所需时间约为6.3h.………………………………………………………………5分(2)有,设甲从A 地出发将乙载到点D 行驶x 千米,放下乙后骑摩托车返回,此时丙已经从A 地出发步行至点E ,继续前行后与甲在点F 处相遇,甲骑摩托车带丙径直驶向B,恰好与乙同时到达.…………………………………………………………………………………………………………10分根据题意,得2∙x -x 50∙550+5+120-x 50=120-x 5.…………………………………………………………15分解得x ≈101.5.…………………………………………………………………………………………20分则所用总时间为t =101.550+120-101.55≈5.7()h .答:有,方案如下:甲从A 地出发载乙,同时丙步行前往B 地,甲载乙行驶101.5千米后放下乙,乙步行前往B 地,并甲骑摩托车返回,与一直步行的丙相遇.随后甲骑摩托车载丙径直驶向B 地,恰好与步行的乙同时到达,所需时间为5.7h.………………………………………………………………………25分。

七年级下册数学竞赛题(含答案)

七年级下册数学竞赛题(含答案)

O MN C BA 宜黄二中2018年七年级下册数学竞赛题(考试范围:至七下第四章第一节;时间:120分钟;总分:120分)一、选择题:(每小题3分,共24分) 1.(-1)2000的值是( )A 、2000B 、1C 、-1D 、-20002.如果a 是有理数,则112000a +的值不能是( )A 、1B 、-1C 、0D 、-20003.某种商品若按标价的八折出售,可获利20%,若按原价出售,则可获利( ) A 、25% B 、40% C 、50% D 、66.7%4.一条直线上距离相等地立有10根标杆,一名学生匀速地从第1杆向第10杆行走,当他走到第6杆时用了6.6秒,则当他走到第10杆时所用时间是( ) A 、11秒 B 、13.2秒 C 、11.8秒 D 、9.9秒5.王老伯在集市上先买回5只羊,平均每只a 元,稍后又买回3只羊,平均每只b 元,后来他以每只2ba +的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是( )A 、b a >B 、b a <C 、b a =D 、与a 、b 的大小无关 6.如图:O 为直线AB 上的一点,OM 平分∠AOC ,ON 平分∠BOC ,则图中互余的角有( )A 、1对B 、2对C 、3对D 、4对 7.某班同学在探究弹簧的长度跟外力之间的变化关系时,实验记录得到的相应数据如下表:砝码质量x(克) 0 50 100 150 200 250 300 400 500 指针位置y(厘米) 2 3 4 5 6 7 7.5 7.5 7.5 则y 关于x 的函数图象是图中的( )8. 已知3=+b a ,ab =5,求22b a +的值为( ) A 、1 B 、-1 C 、9 D 、无解二、填空题:(每题3分,共30分)1.有理数a 、b 、c 在数轴上的位置如图所示:若m=│a+b │-│b-1│-│a-c │-│1-c │,则1000m=_________。

2018年初中数学联赛试题及答案

2018年初中数学联赛试题及答案

2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。

凤湖中学2018学年度初一下学期数学竞赛试卷(含答案)

凤湖中学2018学年度初一下学期数学竞赛试卷(含答案)

(第5题) 2018年慈溪市凤湖中学初一(七年级)数学应用与创新竞赛试题(时间:2018年5月5日下午3:00——4:40,满分:100分)一、填空题(每小题4分,共32分)1.小明骑自行车从家里到学校,去时每小时行6千米,回来时每小时行4千米,则来回平均速度为每小时 千米。

2.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值为3.如图,要把角钢(1)弯成120°的钢架(2),则在角钢(1)上截去的缺口是 度。

4.如下图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G = 度。

5.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形,那么在由4×5个小方格组成的方格纸上可以画出不同位置的L 形图案个数是 6.一辆自行车,前胎行驶5000km 就不能继续使用,后胎行驶3000km 就不能继续使用,若在行驶中合理交换前后胎,则最多可以行驶__________km.7.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积为 .8.请把1~9的九个自然数分别填入上图中的九个小圆里,使三个“正方形”及一个“大圆”(图中由虚线围成)上四个数字之和分别都等于19。

(注:一种填法即可,不必考虑所有填法)ABC DE FG (第4题图)(第3题图) (第7题图) (第8题)B59二、选择题(每小题4分,共32分)9.已知x 为质数,y 为奇数,且满足:22005x y +=,则x y +=( )A .2002B .2003C .2004D .200510.某人从A 点出发,沿着六边形的公园逆时针转了一圈又回到了A 处(如图)。

如果他在B 、C 、D 、E 、F 五个转角处都转了59,那么他在A 处转过多少度角才能仍面向A B 所指的方向。

2018年全国初中数学联合竞赛试题参考答案及评分标准【直接打印】精品

2018年全国初中数学联合竞赛试题参考答案及评分标准【直接打印】精品

2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分)1.已知21a ,32b,62c ,那么,,a b c 的大小关系是()A.ab cB.ac b C.bacD.b ca【答】C. 因为121a,132b,所以110ab,故ba .又(62)(21)6ca(21),而22(6)(21)3220,所以621,故ca .因此ba c .2.方程222334x xy y的整数解(,)x y 的组数为()A .3.B .4.C .5.D .6.【答】B. 方程即22()234xy y,显然x y 必须是偶数,所以可设2x y t ,则原方程变为22217ty,它的整数解为2,3,t y从而可求得原方程的整数解为(,)x y =(7,3),(1,3),(7,3),(1,3),共4组.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为()A .63B .53C .263D .253【答】D.过点C 作CP//BG ,交DE 于点P.因为BC =CE =1,所以CP 是△BEG 的中位线,所以P 为EG 的中点.又因为AD =CE =1,AD//CE ,所以△ADF ≌△ECF ,所以CF =DF ,又CP//FG ,所以FG 是△DCP 的中位线,所以G 为DP 的中点.因此DG =GP =PE =13DE =23.连接BD ,易知∠BDC =∠EDC =45°,所以∠BDE =90°. 又BD =2,所以BG =22225BDDG293.4.已知实数,a b 满足221a b ,则44a ab b 的最小值为()PGFEBCADA .18. B .0. C .1. D .98.【答】B.442222222219()2122()48aabbab a bab a b ab ab .因为222||1ab a b ,所以1122ab ,从而311444ab,故2190()416ab,因此219902()488ab,即44908aabb.因此44a abb 的最小值为0,当22,22a b或22,22ab时取得.5.若方程22320x pxp 的两个不相等的实数根12,x x 满足232311224()xxxx ,则实数p的所有可能的值之和为()A .0.B .34. C .1.D .54.【答】 B.由一元二次方程的根与系数的关系可得122x x p ,1232x x p ,所以2222121212()2464x x x x x x p p,332212121212()[()3]2(496)xxx x x x x x p pp.又由232311224()x x x x 得223312124()x x x x ,所以2246442(496)p p p pp ,所以(43)(1)0p pp ,所以12330,,14p p p .代入检验可知:1230,4p p 均满足题意,31p 不满足题意. 因此,实数p 的所有可能的值之和为12330()44p p .6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a cb d .这样的四位数共有()A .36个.B .40个.C .44个.D .48个.【答】C.根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个.二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111abct b c a,则t_________.【答】1.由1a t b 得1bt a,代入1bt c得11t tac ,整理得2(1)()0ct ac ta c ①又由1c t a 可得1ac at ,代入①式得22()0ctatac ,即2()(1)0c a t,又c a ,所以210t,所以1t.验证可知:11,1a b caa时1t;11,1a bcaa时1t .因此,1t .2.使得521m是完全平方数的整数m 的个数为.【答】1.设2521mn (其中n 为正整数),则2521(1)(1)mnn n ,显然n 为奇数,设21n k (其中k 是正整数),则524(1)mk k ,即252(1)m k k .显然1k,此时k 和1k 互质,所以252,11,m k k 或25,12,m k k 或22,15,m k k 解得5,4k m .因此,满足要求的整数m 只有1个.3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BC AP=.【答】3.设D 为BC 的中点,在△ABC 外作∠CAE =20°,则∠BAE =60°. 作CE ⊥AE ,PF ⊥AE ,则易证△ACE ≌△ACD ,所以CE =CD =12BC.又PF =PA sin ∠BAE =PA sin 60°=32AP ,PF =CE ,所以32AP =12BC ,因此BC AP=3.4.已知实数,,a b c 满足1abc,4a b c ,22243131319a b c aa bb cc ,则222abc =.【答】332.因为22313(3)(1)(1)(1)aa aa abc a bc a a bcbc a b c ,所以FEDBCAP2131(1)(1)a aa b c .同理可得2131(1)(1)b b b a c ,2131(1)(1)c cc a b .结合22243131319ab c aa bb cc 可得1114(1)(1)(1)(1)(1)(1)9b c a c a b ,所以4(1)(1)(1)(1)(1)(1)9a b c a b c .结合1abc,4a b c,可得14ab bc ac. 因此,222233()2()2a bca bc ab bc ac .实际上,满足条件的,,a b c 可以分别为11,,422.第二试(A)一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.解设直角三角形的三边长分别为,,a b c (a b c ),则30a b c .显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c 及30a b c 得303a b c c ,所以10c . 由a b c 及30a b c 得302a b c c ,所以15c . 又因为c 为整数,所以1114c .……………………5分根据勾股定理可得222abc ,把30ca b 代入,化简得30()4500ab a b ,所以22(30)(30)450235a b ,……………………10分因为,a b 均为整数且a b ,所以只可能是22305,3023,ab解得5,12.a b ……………………15分所以,直角三角形的斜边长13c ,三角形的外接圆的面积为1694.……………………20分二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2ADBD CD .DPOABC2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共4页)证明:连接OA ,OB ,OC.∵OA ⊥AP ,A D ⊥OP ,∴由射影定理可得2PAPD PO ,2ADPD OD . ……………………5分又由切割线定理可得2PAPB PC ,∴PB PC PD PO ,∴D 、B 、C 、O 四点共圆,……………………10分∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,……………………20分∴PD BD CD OD,∴2AD PD OD BD CD .……………………25分三.(本题满分25分)已知抛物线216yxbx c 的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x )两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2,若AM//BC ,求抛物线的解析式.解易求得点P 23(3,)2b bc ,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x bx c的两根,所以21396x b bc ,22396x bbc ,又AB 的中点E 的坐标为(3,0)b ,所以AE =296b c .……………………5分因为PA 为⊙D 的切线,所以PA ⊥AD ,又A E ⊥PD ,所以由射影定理可得2AEPE DE ,即2223(96)()||2bc b c m ,又易知0m,所以可得6m. ……………………10分又由DA =DC 得22DA DC ,即22222(96)(30)()bc mb mc ,把6m代入后可解得6c (另一解0c 舍去).……………………15分又因为AM//BC ,所以OA OM OBOC,即223||3962|6|396b b c bbc.……………………20分把6c 代入解得52b (另一解52b舍去). 因此,抛物线的解析式为215662y xx . ……………………25分2018年全国初中数学联合竞赛试题参考答案及评分标准第1页(共5页)精品文档强烈推荐2018年全国初中数学联合竞赛试题参考答案及评分标准第4页(共7页)精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有。

2018年全国初中数学竞赛试题及答案

2018年全国初中数学竞赛试题及答案

若关于 m 的方程有正整数解,则
9 4n(n 1) 8 (2 n 1)2 l 2 ( l 为正整数),
即 l 2 (2n 1)2 8,[ l (2n 1)][( l (2 n 1)] 8

l (2n 1) 8 l (2n 1) 4
所以
,或

l (2n 1) 1 l (2n 1) 2
解得: n
5 4
所以 PQ= yp
yQ
( a2
3a
4)
(a2
3a
4) =
2
2a
8
即当 a= 0(属于 -2≤ a≤2)时, PQ 的最大值为 8。
12.已知 a , b 都是正整数,试问关于 x 的方程 x 2 abx 1 ( a b) 2
把它们求出来;如果没有,请给出证明.
-4
Q
-6
B
-8
-10
0 是否有两个整数解?如果有,请
但不多于 8 个,红球不少于 2 个,黑球不多于 3 个,那么上述取法的种数是(

( A )14
( B) 16
(C) 18
(D )20
解:选( B )。只用考虑红球与黑球各有 4 种选择:红球( 2,3,4,5 ),黑球( 0,1,2,3 )共 4× 4= 16 种
3.已知 a 、 b 、 c 是三个互不相等的实数,且三个关于 x 的一元二次方程 ax 2 bx c 0 ,
综上,存在正整数 a= 1, b=3 或 a=3, b=1,使得
方程 x 2 abx 1 (a b) 0 有两个整数解为 x1 1, x2 2 。 2
DE
13.如图,点 E, F 分别在四边形 ABCD 的边 AD , BC 的延长线上,且满足

初中数学竞赛“《数学周报》杯”2018年全国初中数学竞赛试题(含答案)

初中数学竞赛“《数学周报》杯”2018年全国初中数学竞赛试题(含答案)

初中数学竞赛“《数学周报》杯”2018年全国初中数学竞赛试题(含答案)中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案答题时注意:1.⽤圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.⼀、选择题(共5⼩题,每⼩题6分,满分30分. 以下每道⼩题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有⼀个选项是正确的. 请将正确选项的代号填⼊题后的括号⾥. 不填、多填或错填都得0分)1.已知实数x y ,满⾜ 42424233y y x x -=+=,,则444y x+的值为().(A )7 (B )(C )(D )5 【答】(A )解:因为20x >,2y ≥0,由已知条件得212184x +==, 21122y --+==,所以444y x +=22233y x++- 2226y x=-+=7. 2.把⼀枚六个⾯编号分别为1,2,3,4,5,6的质地均匀的正⽅体骰⼦先后投掷2次,若两个正⾯朝上的编号分别为m ,n ,则⼆次函数2y x mx n =++的图象与x 轴有两个不同交点的概率是().(A )512 (B )49 (C )1736 (D )12(第3题)【答】(C )解:基本事件总数有6×6=36,即可以得到36个⼆次函数. 由题意知=24m n ->0,即2m >4n .通过枚举知,满⾜条件的m n ,有17对. 故1736P =.3.有两个同⼼圆,⼤圆周上有4个不同的点,⼩圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( ).(A )6条(B ) 8条(C )10条(D )12条【答】(B )解:如图,⼤圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;⼩圆周上的两个点E ,F 中,⾄少有⼀个不是四边形ABCD 的对⾓线AC 与BD 的交点,则它与A ,B ,C ,D 的连线中,⾄少有两条不同于A ,B ,C ,D 的两两连线.从⽽这6个点可以确定的直线不少于8条.当这6个点如图所⽰放置时,恰好可以确定8条直线.所以,满⾜条件的6个点可以确定的直线最少有8条.4.已知AB 是半径为1的圆O 的⼀条弦,且1AB a =<.以AB 为⼀边在圆O 内作正△ABC ,点D 为圆O 上不同于点A 的⼀点,且DB AB a ==,DC 的延长线交圆O 于点E ,则AE 的长为().(A(B )1 (C(D )a 【答】(B )解:如图,连接OE ,OA ,OB .设D α∠=,则120ECA EAC α∠=?-=∠.⼜因为()1160180222ABO ABD α∠=∠=?+?- 120α=?-,所以ACE △≌ABO △,于是1AE OA ==.(第4题)5.将1,2,3,4,5这五个数字排成⼀排,最后⼀个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第⼀个数整除,那么满⾜要求的排法有().(A )2种(B )3种(C )4种(D )5种【答】(D )解:设12345a a a a a ,,,,是1,2,3,4,5的⼀个满⾜要求的排列.⾸先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件⽭盾.⼜如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明⼀个偶数后⾯⼀定要接两个或两个以上的奇数,除⾮接的这个奇数是最后⼀个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满⾜条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1.⼆、填空题(共5⼩题,每⼩题6分,满分30分)6.对于实数u ,v ,定义⼀种运算“*”为:u v uv v *=+.若关于x 的⽅程1()4x a x **=-有两个不同的实数根,则满⾜条件的实数a 的取值范围是.【答】0a >,或1a <-.解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=,依题意有 210(1)(1)0a a a +≠=+-+>?,,解得,0a >,或1a <-.7.⼩王沿街匀速⾏⾛,发现每隔6分钟从背后驶过⼀辆18路公交车,每隔3分钟从迎⾯驶来⼀辆18路公交车.假设每辆18路公交车⾏驶速度相同,⽽且18路公交车总站每隔固定时间发⼀辆车,那么发车间隔的时间是分钟.【答】4.解:设18路公交车的速度是x ⽶/分,⼩王⾏⾛的速度是y ⽶/分,同向⾏驶的相邻两车的间距为s ⽶.每隔6分钟从背后开过⼀辆18路公交车,则s y x =-66.①每隔3分钟从迎⾯驶来⼀辆18路公交车,则s y x =+33.②由①,②可得 x s 4=,所以4=xs.即18路公交车总站发车间隔的时间是4分钟.8.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为.【答】9.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB .⼜//MF AD ,所以 FMN BAD DAC MFN ∠=∠=∠=∠,所以 12FN MN AB ==.因此 1122FC FN NC AB AC =+=+=9.9.△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆⼼I 作DE ∥BC ,分别与AB ,AC 相交于点D ,E ,则DE 的长为.【答】163.解:如图,设△ABC 的三边长为a ,b ,c ,内切圆I 的半径为r ,BC 边上的(第8题)(第8题答案)⾼为a h ,则11()22a ABC ah S abc r ==++△,所以a r ah a b c=++.因为△ADE ∽△ABC ,所以它们对应线段成⽐例,因此a a h r DEh BC-=,所以 (1)(1)a a a h r r aDE a a a h h a b c-=?=-=-++ ()a b c a b c +=++,故 879168793DE ?+==++().10.关于x ,y 的⽅程22208()x y x y +=-的所有正整数解为.【答】481603232.x x y y ====??,,,解:因为208是4的倍数,偶数的平⽅数除以4所得的余数为0,奇数的平⽅数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213?,(第9题答案)其中s ,t 都是偶数.所以222(13)213(13)s t -=?-+≤2222131511?-<.所以13s -可能为1,3,5,7,9,进⽽2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从⽽13s -=7.于是62044s s t t ====??,,;,因此 481603232.x x y y ====??,,,三、解答题(共4题,每题15分,满分60分)11.在直⾓坐标系xOy 中,⼀次函数b kx y +=0k ≠()的图象与x 轴、y 轴的正半轴分别交于A ,B 两点,且使得△OAB 的⾯积值等于3OA OB ++.(1)⽤b 表⽰k ;(2)求△OAB ⾯积的最⼩值.解:(1)令0=x ,得0y b b =>,;令0=y ,得00bx k k=-><,.所以A ,B 两点的坐标分别为0)(0)b AB b k -(,,,,于是,△OAB 的⾯积为 )(21kbb S -?=.由题意,有3)(21++-=-?b kbk b b ,解得 )3(222+-=b b b k ,2b >.……………… 5分(2)由(1)知21(3)(2)7(2)10()222b b b b b S b k b b +-+-+=?-==--21027)72b b =-++=++-≥1027+,当且仅当1022b b -=-时,有S =102+=b ,1-=k 时,不等式中的等号成⽴.所以,△OAB ⾯积的最⼩值为1027+. ……………… 15分12.是否存在质数p ,q ,使得关于x 的⼀元⼆次⽅程20px qx p -+=有有理数根?解:设⽅程有有理数根,则判别式为平⽅数.令2224q p n ?=-=,其中n 是⼀个⾮负整数.则2()()4q n q n p -+=.……………… 5分由于1≤q n -≤q +n ,且q n -与q n +同奇偶,故同为偶数.因此,有如下⼏种可能情形:222q n q n p -=??+=?,, 24q n q n p -=??+=?,, 4q n p q n p -=??+=?,, 22q n p q n p -=??+=?,, 24.q n p q n ?-=?+=?,消去n ,解得22251222222p p p q p q q q p q =+=+===+,,,,.……………… 10分对于第1,3种情形,2p =,从⽽q =5;对于第2,5种情形,2p =,从⽽q =4(不合题意,舍去);对于第4种情形,q 是合数(不合题意,舍去).⼜当2p =,q =5时,⽅程为22520x x -+=,它的根为12122x x ==,,它们都是有理数.综上所述,存在满⾜题设的质数. ……………… 15分13.如图,△ABC 的三边长B C aC Ab A ===,,,a b c ,,都是整数,且a b ,的最⼤公约数为2.点G 和点I 分别为△ABC 的重⼼和内⼼,且90GIC ∠=?.求△ABC 的周长.解:如图,延长GI ,与边BC CA ,分别交于点P Q ,.设重⼼G 在边BC CA ,上的投影分别为E F ,,△ABC 的内切圆的半径为r ,BC CA ,边上的⾼的长分别为a b h h ,,易知CP =CQ ,由PQC GPC GQC S S S =+△△△,可得 ()123a b r GE GF h h =+=+,即 222123A B C A B C A B CS S Sa b c a b=?+ ?++??△△△,从⽽可得 6aba b c a b++=+. ……………… 10分因为△ABC 的重⼼G 和内⼼I 不重合,所以,△ABC 不是正三⾓形,且b a ≠,否则,2a b ==,可得2c =,⽭盾.不妨假设a b >,由于()2a b =,,设()1111221a a b b a b ===,,,,于是有1111126a b ab a b a b =++为整数,所以有11()12a b +,即()24a b +.于是只有1410a b ==,时,可得11c =,满⾜条件.因此有35a b c ++=.所以,△ABC 的周长为35.……………… 15分(第13题)(第13题答案)。

2018年七年级数学竞赛

2018年七年级数学竞赛

七年级“希望杯”竞赛试卷(考试时间90分钟,满分100分)一、选择题(每小题只有一个正确选项,每小题3分,共10题,总共30分)1.x 是任意有理数,则2x x + 的值( ).A .大于零B . 不大于零C .小于零D .不小于零2.某超市为了促销,先将彩电按原价提高了40%,然后在广告中写上“××节大酬宾,八折优惠”,结果每台彩电比原价多赚了270元,那么每台彩电的原价为( )A. 2150元B.2200元C.2250元D. 2300元 3.设0a b c ++=,abc >0,则b c c a a ba b c+++++的值是( ) A . 3- B. 1 C. 31-或D. 31-或4.把14个棱长为1的正方体,在地面上堆叠成如图(1)所示的立方体,然后将露出的表面部分染成红色.那么红色部分的面积为 ( ). A .21 B.24 C.33 D.375.某动物园有老虎和狮子,老虎的数量是狮子的2倍。

如果每只老虎每天吃肉 4.5千克,每只狮子每天吃肉3.5千克,那么该动物园的虎、狮平均每天吃肉 ( ) A. 625千克 B. 725千克 C.825千克 D.925千克6.假设有2016名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1…… 的规律报数,那么第2010名学生所报的数是 ( ) A.1 B.2 C.3 D.47.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( )A 、-1B 、0C 、1D 、不存在8. 适合81272=-++a a 的整数a 的值的个数有 ………………( ) A .5 B .4 C .3 D .29. 碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米=10-9米,则0.5纳米用科学记数法表示为( )A 、0.5×10-9米B 、5×10-8米C 、5×10-9米D 、5×10-10米10、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 3个B 4个C 5个D 无数个二、填空题(每题4分,共24分) 11. 计算:201620151431321211⨯++⨯+⨯+⨯K = 。

2018年全国初中数学联赛试题参考答案和评分标准 精品

2018年全国初中数学联赛试题参考答案和评分标准 精品

2018年全国初中数学联赛试题参考答案和评分标准精品2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。

第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分。

如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。

第一试一、选择题:(本题满分42分,每小题7分)1.已知$a=1+\frac{1}{2+1}$,$b=3-2$,$c=6-2$,那么$a,b,c$的大小关系是()A。

$a<b<c$B。

$a<c<b$XXX<a<c$D。

$b<c<a$答】C.因为 $\frac{1}{2+1}=\frac{1}{3}$,所以$a=1+\frac{1}{3}=\frac{4}{3}$,$b=1$,$c=4$。

因为 $\frac{1}{3}<1$,所以$a<\frac{4}{3}+1=\frac{7}{3}<c$,所以 $b<a<c$。

2.方程$x^2+2xy+3y^2=34$的整数解$(x,y)$的组数为()A。

3B。

4C。

5D。

6答】B.方程即$(x+y)^2+2y^2=34$,显然$x+y$必须是偶数,所以可设$x+y=2t$,则原方程变为$2t^2+y^2=17$。

因为$2t^2\leq 16$,所以$t=\pm 2$,从而可求得原方程的整数解为$(x,y)=(-7,3),(1,3),(7,-3),(-1,-3)$,共4组。

3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,$CE=1$,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A。

$\frac{65}{26}$B。

$\frac{3}{3}$C。

$\frac{2}{5}$D。

$\frac{9}{4}$答】D.过点C作$CP\parallel BG$,交DE于点P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年七年级下学期数学竞赛试题
(含参考答案)
一. 选择题(每小题4分,共32分)
1.若a<0 , ab<0 , 那么51---+-b a a b 等于( )
A . 4
B .-4
C . -2a+2b+6 D. 1996
2.数轴上坐标是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2018厘米的线段AB,则线段AB 盖住的整点的个数是( ) A.2018 或2018 B . 2018或 2018 C . 2018 或2018 D . 2018 或2018
3.已知{
a
x b y ==是方程组
{
527
2=+=+y x y x 的解, 则a-b 的值为( )
A . 2
B . 1 C. 0 D. -1 4.两个10次多项式的和是( )
A. 20次多项式
B. 10次多项式
C. 100次多项式
D. 不高于10次的多项式 5.若a<3 , 则不等式(a-3)x<a-3的解集是( ) A. x>1 B .x<1 C . x>-1 D . x<-1 6.方程2x+y=7的正整数解有( ) A. 一组 B .二组 C .三组 D . 四组 7.不等式组
{
5335+<-<x x a
x 的解集为x<4, 则a 满足的条件是( )
A. a<4 B .a=4 C .a ≤4 D .a ≥4
8.如图,,AB ∥CD,AC ⊥BC ,图中与∠CAB 互余的角有( ) A. 1个 B .2个 C.3个 D.4个
二.填空题(每小题4分,共32分) 1.不等式组{4
252>+<-a x b x 的解集是0<x<2, 则a+b 的值等于_______
2.已知5
43
z
y x ==
, 且10254=+-z y x , 则z y x +-52的值等于________
3.如图,已知AE ∥DF,则∠A+∠B+∠C+∠D=_________
4.计算2009
20081
4
313212
11⨯+
⋅⋅⋅+⨯+⨯+⨯ = _________
5.若))(3(152n x x mx x ++=-+, 则m 的值为________
6.已知:7,2522=+=+b a b a ,且a>b, 则a-b 的值等于________
7.一个角的补角的3
1等于它的余角, 则这个角等于_____度.
8.计算: 1-25.0-42008
2009)(⨯=______
D
C B
A
F
E
D
C
B
A
三.解答题:(每小题12分,共36分)
1.已知: 0634=--z y x ,072=-+z y x ()0≠xyz ,
求代数式2
222
22103225z
y x z y x ---+的值
2.如图,已知CD ⊥AB ,DE ∥BC,∠1=∠2
求证:FG ⊥AB
3.某学校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李, 乙种汽车每辆最多能载30人和20件行李,
⑴设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案; ⑵如果甲乙两种汽车每辆的租车费用分别为2018元、1800元,请你选择最省钱的一种租车方案.
2
1
G
F E
D C B A
参考答案:
一. BCAD ACDC
二. .1 ; -45 ;540 ° ;2009
2008 -2 ; 1 ; 45 ; 3 三. 1. 解{
z
y x z
y x 63472=-=+得{
z x z
y 32== 代入原式得, 原式 = -13
2. 证∵DE ∥BC , ∴ ∠1=∠BCD , 又∠1=∠2 ∴ ∠2=∠BCD ∴FG ∥CD 又CD ⊥AB ∴FG ⊥AB
3.解⑴:由题意得
{
290)8(3040100
)8(2010≥-+≥-+x x x x
解得: 5≤x ≤6
即共有两种租车方案:
第一种是租用甲种汽车5辆, 乙种汽车3辆 第二种是租用甲种汽车6辆, 乙种汽车2辆
⑵第一种租车方案的费用为:5×2018+3×1800=15400 第二种租车方案的费用为:6×2018+2×1800=15600 所以第一种租车方案更省钱.。

相关文档
最新文档