新人教版七年级下册数学竞赛试卷及答案
人教版七年级数学竞赛试题含答案

七年级数学竞赛(时间40分钟,满分100分)姓名_______班级________分数_________1、(10)已知关于x 的一元一次方程a x 20223x 20211+=+的解为x=1,那么关于y 的一元一次方程a 6y 202236y 20211++=++)()(的解为:________________. 2、(10)定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n+1;②当n 为偶数时,F (n )=n 2k [其中k 是使F (n )为奇数的正整数],两种运算交替重复进行.例如,取n =24,则:若n =13,则第2021次“F ”运算的结果是________________.3、(10)已知多项式-a 12+a 11b -a 10b 2+…+ab 11-b 12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?4、(10)请你将如图所示的两个正方形和两个长方形拼成一个较大的正方形,并列式计算所拼图形的面积.5、(15)材料阅读题阅读材料:求1+2+22+23+24+…+2100的值.解:设S=1+2+22+23+24+…+299+2100.①将等式①两边同时乘2,得2S=2+22+23+24+25+…+2100+2101.②②-①,得2S-S=2101-1,即S=2101-1.所以1+2+22+23+24+…+2100=2101-1.请你仿照此法计算:(1)1+3+32+33+34+…+32019+32020.(2)已知数列:-1,9,-92,93,-94,…. (Ⅰ)它的第100个数是多少?(Ⅰ)求这列数中前100个数的和.6、(15)数学家苏步青先生有一次在德国与另一位数学家同乘一辆电车,这位数学家出了一道题请苏先生解答.甲、乙两人同时从相距10 km的A,B两地出发,相向而行,甲每小时走6 km,乙每小时走4 km,甲带着一只狗和他同时出发,狗以每小时10 km 的速度向乙奔去,遇到乙后立即回头向甲奔去,遇到甲后又回头向乙奔去,直到甲、乙两人相遇时狗才停住.则这只狗共跑了多少千米?7、(15)已知(2x-1)5=a5x5+a4x4+…+a1x+a0,求下列各式的值:(1)a1+a2+a3+a4+a5;(2)a1-a2+a3-a4+a5;(3)a1+a3+a5.8、(15)如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且点A的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求点B的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,点C从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,点C表示的数为-10,求此时点B表示的数.参考答案:1、-52、43、[解析] 观察所给条件,a 的指数逐次减1,b 的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a 8b 4,它的系数为-1,次数为12.(2) 十二次十三项式.4、[解析] 根据题意拼出正方形ABCD ,将两个正方形和两个长方形的面积相加即可求出答案.解:如图所示,正方形ABCD 即为所拼图形.正方形ABCD 的面积是a 2+ab +ab +b 2或(a +b)2.5、解:(1)设S =1+3+32+33+34+…+32019+32020.①将等式①两边同时乘3,得3S =3+32+33+34+…+32020+32021.②②-①,得3S -S =32021-1,即S =12(32021-1). 所以1+3+32+33+34+…+32019+32020=12(32021-1). (2)(Ⅰ)第100个数是999.(Ⅰ)设S =-1+9-92+93-94+…-998+999.③将等式③两边同时乘9,得9S =-9+92-93+94-95+…-999+9100.④③+④,得10S =9100-1,即S =110(9100-1). 所以这列数中前100个数的和是110(9100-1). 6、[解析] 本题已知狗的奔跑速度是每小时10 km ,求狗奔跑的路程,它的奔跑时间是解决本题的关键,狗从甲、乙两人出发到甲、乙两人相遇时,一直在两人之间不断地奔跑,因此狗奔跑的时间即甲、乙两人从出发到相遇的时间.解:根据题意,得x 10=106+4.7、解:因为(2x -1)5=a 5x 5+a 4x 4+…+a 1x +a 0,所以令x =0,得(-1)5=a 0,即a 0=-1.①令x =-1,得(-3)5=-a 5+a 4-a 3+a 2-a 1+a 0,即-a 5+a 4-a 3+a 2-a 1+a 0=-243.②令x =1,得15=a 5+a 4+a 3+a 2+a 1+a 0,即a 5+a 4+a 3+a 2+a 1+a 0=1.③(1)③-①,得a 1+a 2+a 3+a 4+a 5=1-(-1)=2.(2)①-②,得a 1-a 2+a 3-a 4+a 5=(-1)-(-243)=242.(3)(③-②)÷2,得a 1+a 3+a 5=(1+243)÷2=122.8、解:(1)设点B 的运动速度为x 个单位长度/秒,列方程为82x =4,解得x =1. 答:点B 的运动速度为1个单位长度/秒.(2)设两点运动t 秒时相距6个单位长度.①若点A 在点B 的左侧,则2t -t =(4+8)-6,解得t =6;②若点A 在点B 的右侧,则2t -t =(4+8)+6,解得t =18.答:当A ,B 两点运动6秒或18秒时相距6个单位长度.(3)设点C 的运动速度为y 个单位长度/秒.由始终有CB ∶CA =1∶2,列方程,得2-y =2(y -1),解得y =43. 当点C 表示的数为-10时,所用的时间为1043=152(秒),此时点B 所表示的数为4-152×1=-72. 答:此时点B 表示的数为-72.。
(名师整理)数学七年级竞赛试题及答案解析

七年级下学期数学竞赛试卷(满分150,时间90分钟)一、单选题。
1.在方程中,二元一次方程有()A.1个B.2个C.3个D.4个2.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为( )A.20元B.42元C.44元D.46元3.不等式组的解集为( )A.2≤x<3 B.2<x<3 C.x<3 D.x≥24.关于x的不等式组只有3个整数解,则a的取值范围是()A .B .C .D .5.在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()1A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=746.不等式的解集为()A .B .C .D .7.若则下列不等式不正确的是A .B .C .D .8.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A .B .C .D .9.已知是二元一次方程组的解,那么的值是( )A.0 B.5 C.-1 D.110.下列方程组不是二元一次方程组的是( )A .B .C .D .11.某校开展丰富多彩的社团活动,每位同学可报名参加1~2个社团,现有25位同学报名参加了书法社或摄影社,已知参加摄影社的2人数比参加书法社的人数多5人,两个社团都参加的同学有12人.设参加书法社的同学有x人,则()A.x+(x﹣5)=25 B.x+(x+5)+12=25C.x+(x+5)﹣12=25 D.x+(x+5)﹣24=2512.一元二次方程x2+2x=0的根是()A.2 B.0 C.0或2 D.0或﹣2 13.不等式x﹣1<2的解集在数轴上表示正确的是()A .B .C .D .14.已知方程组和有相同的解,则a-2b 的值为()A.15 B.14 C.12 D.1015.下列不等式中一定成立的是()A.3a>2a B.a>-2a C.a+2<a+3 D .<二、填空题。
人教版七年级下册数学竞赛试题及答案

三一文库()/初中一年级〔人教版七年级下册数学竞赛试题及答案[1]〕一、选择题(共10题,每小题4分,满分40分)1、若多项式是一个完全平方式,则的值为 ( )A、6B、±6 C.、12 D、±122、已知三角形的三边分别为2,,4那么的取值范围是()A、 B、 C、 D、3、当时,代数式的值为( )A、12B、C、D、4、已知a=255,b=344,c=433 则a、b、c、的大小关系为:()A、b>c>aB、a>b>cC、c>a>bD、a积为______。
24、某仓库存有六批货物,它们的重量分别为150吨、160吨、180吨、190吨、200吨、310吨,第一次运走二批货物、第二次运走三批货物,并且第一次运走货物的总重量是第二次第1页共3页运走货物总重量的一半,则剩下的一批货物的吨数是_____。
25、如图,,AB∥CD,AC⊥BC,图中与∠CAB互余的角有个26、一昼夜时钟的分钟与时针互相重合_____次。
27、图中的□、△、○各代表一个数字,且满足以下三个等式:□+□+△+○=17□+△+△+○=14□+△+○+○=13则□代表的数字是______。
28、如图AB∥CD,则∠1+∠2+∠3+。
+∠2n=_________度29、某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了千米路程。
30、三、解答题(共3小题,总分30分)31、(10分)计算:32、(10分) 代数式与的差与字母x的取值无关,求代数式的值.23。
新人教版七年级下册数学竞赛试卷及答案

54D3E 21C B A七年级下册数学竞赛题一、选择题(共10小题,每小题3分,共30分) 1、如右图,下列不能判定AB ∥CD 的条件是( ).A 、︒=∠+∠180BCDB B 、;C、43∠=∠; D 、 5∠=∠B .2、在直角坐标系中,点P(6-2x ,x -5)在第二象限,•则x 的取值范围是( )。
A 、3< x <5B 、x > 5C 、x <3 D、-3< x <5 3、点A (3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B 的坐标为( ) A、(1,-8) B 、(1, -2) C 、(-7,-1)D 、( 0,-1)4、在下列各数:3.1415926、 10049、0.2、π1、7、11131、327、中,无理数的个数( )A、2 B 、3 C 、4 D、5 5、下列说法中正确的是( )A . 实数2a -是负数 B. a a =2 C. a -一定是正数 D .实数a -的绝对值是a6、若a >b,则下列不等式变形错误..的是 A.a +1 > b +1 B. a2 > 错误! C . 3a -4 > 3b -4 D .4-3a > 4-3b7、如图,直线l 1∥l 2,l 3⊥l 4,∠1=44°,那么∠2的度数( )A . 46°B . 44°C. 36°D . 22°8、若方程组⎩⎨⎧-=++=+a y x ay x 13313的解满足y x +>0,则a 的取值范围是( ) A 、a <-1 B 、a <1 C 、a >-1 D、a >19、如图,宽为50 cm的长方形图案由10个全等的小长方形拼成,其小长方形的面积( )A .400 cm 2ﻩB .500 cm 2 ﻩ C.600 c m2 ﻩD.4000 cm210.若不等式组有解,则实数a的取值范围是()A.a<﹣36 B. a≤﹣36 C. a>﹣36ﻩD. a≥﹣36二、填空题(本大题共9小题, 每题3分,共27分)11、16的平方根是_______________12、规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=.ﻩ13、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是________.14、阅读下列语句:①对顶角相等;②同位角相等;③画∠AOB的平分线OC;④这个角等于30°吗?在这些语句中,属于真命题的是_____ _____(填写序号)15、某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了题.16、如图④,AB∥CD,∠BAE =120º,∠DCE = 30º,则∠AEC = 度。
人教版初一下数学竞赛试题及答案

人教版初一下数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果a和b是两个连续的整数,且a > b,那么a-b的值是:A. 1B. 0C. -1D. 23. 一个数的平方根是它本身,这个数可以是:A. 1B. -1C. 0D. 44. 一个数的立方等于它本身,这个数有:A. 1个B. 2个C. 3个D. 4个5. 一个圆的半径是r,它的面积是:A. πr²B. 2πrC. πrD. r²6. 一个长方体的长、宽、高分别是a、b、c,它的体积是:A. abcB. 2abcC. a+b+cD. a²b²c²7. 一个等差数列的首项是a,公差是d,第n项是:A. a+(n-1)dB. a+ndC. a-dD. a-d(n-1)8. 如果一个三角形的三边长分别为a、b、c,且a² + b² = c²,那么这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 不规则三角形9. 一个分数的分子和分母同时扩大相同的倍数,其值:A. 增大B. 减小C. 不变D. 无法确定10. 一个数的绝对值是它本身,这个数:A. 必须为正数B. 必须为负数C. 可以是正数或零D. 可以是负数或零二、填空题(每题4分,共20分)11. 一个数的平方等于16,这个数是________。
12. 如果一个数的相反数是-5,那么这个数是________。
13. 一个数的绝对值等于5,这个数可以是________。
14. 一个数的立方根是2,那么这个数是________。
15. 一个数的倒数是1/4,这个数是________。
三、解答题(每题10分,共50分)16. 计算下列表达式的值:(3+5)² - 2×(4-1)。
17. 一个长方体的长是10厘米,宽是8厘米,高是6厘米,求它的表面积和体积。
人教版七年级数学下册竞赛试卷(含解析)

人教版七年级数学下册竞赛试卷一、选择题1.设a=,b=,c=,则a,b,c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b2.设有理数a、b、c都不为零,且a+b+c=0,则的值是()A.正数B.负数C.零D.不能确定3.如果0<p<15,那么代数式|x﹣p|+|x﹣15|+|x﹣p﹣15|在p≤x≤15的最小值是()A.30B.0C.15D.一个与p有关的代数式4.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有()A.36个B.40个C.44个D.48个5.在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是()A.2014B.2015C.2016D.20176.10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY 一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A.B.C.D.二.填空题7.关于x的不等式组恰好只有三个整数解,则a的取值范围是8.已知,,,则代数式a2+b2+c2﹣ab﹣bc ﹣ac的值为.9.已知x、y为正整数,且满足2x2+3y2=4x2y2+1,则x2+y2=.10.使代数式的值为整数的全体自然数x的和是.11.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2…,第n个三角形数记为x n,则x10=;x n+x n+1=.12.已知S=,则S的整数部分是.三.解答题13.(20分)(1)证明:1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4能被8整除(n为正整数).14.(14分)已知实数a、b、c,满足abc≠0且(a﹣c)2﹣4(b﹣c)(a﹣b)=0,求的值.15.(14分)对非负实数x“四舍五入”到个位的值记为[x],即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[2.9]=3,[2.4]=2,[x]=n,求满足[x]=x﹣2的所有实数x 的值.16.(14分)有n个连续的自然数1,2,3,…,n,若去掉其中的一个数x后,剩下的数的平均数是16,则满足条件的n和x的值分别是.(参考公式:S n=1+2+3+…+n=)17.(14分)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.18.(14分)如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC 于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是.参考答案与试题解析一、选择题(每题5分,共30分)1.设a=,b=,c=,则a,b,c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b【分析】利用平方法把三个数值平方后再比较大小即可.【解答】解:∵a2=2000+2,b2=2000+2,c2=4000=2000+2×1000,1003×997=1 000 000﹣9=999 991,1001×999=1 000 000﹣1=999 999,10002=1 000 000.∴c>b>a.故选:A.2.设有理数a、b、c都不为零,且a+b+c=0,则的值是()A.正数B.负数C.零D.不能确定【分析】由a+b+c=0,则b2+c2﹣a2=﹣2bc,a2+b2﹣c2=﹣2ab,a2+c2﹣b2=﹣2ac,然后代入化简即可得出答案.【解答】解:由a+b+c=0,则b2+c2﹣a2=﹣2bc,a2+b2﹣c2=﹣2ab,a2+c2﹣b2=﹣2ac,代入,=++,=,=0.故选:C.3.如果0<p<15,那么代数式|x﹣p|+|x﹣15|+|x﹣p﹣15|在p≤x≤15的最小值是()A.30B.0C.15D.一个与p有关的代数式【分析】根据x、p的取值范围,根据所给代数式,简化原式,再把x的最大值15代入计算即可.【解答】解:∵p≤x≤15,∴x﹣p≥0,x﹣15≤0,x﹣p﹣15≤0,∴|x﹣p|+|x﹣15|+|x﹣p﹣15|=x﹣p+(15﹣x)+(﹣x+p+15)=x﹣p+15﹣x﹣x+p+15=﹣x+30,又∵p≤x≤15,∴x最大可取15,即x=15,∴﹣x+30=﹣15+30=15.故选:C.4.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有()A.36个B.40个C.44个D.48个【分析】由题意可知这样的四位数可分别从使用的不同数字的个数分类考虑:(1)只用1个数字,(2)使用2个不同的数字,(3)使用3个不同的数字,(4)使用4个不同的数字,然后分别分析求解即可求得答案.【解答】解:根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个.故选:C.5.在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是()A.2014B.2015C.2016D.2017【分析】根据平方差公式将各数变形后判断即可.【解答】解:如果一个数可以表示成两个正整数的平方差,记为x=a2﹣b2=(a+b)(a ﹣b),则x可以分解为a+b,a﹣b的积,且注意到这两个因子差2b,即同奇同偶,所以大于1的奇数可以分解为两个奇数之积(1和他自身),必可以写成两数平方之差(可以反求出来);而一个偶数必须要写成两个偶数之积,则必能被4整除才行,所以四个数中,只有2014不能写成两整数之平方差,故选:A.6.10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY 一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A.B.C.D.【分析】首先设QY=x,根据题意得到PQ下面的部分的面积为:S△+S正方形=×5×(1+x)+1=5,解方程即可求得QY的长,即可解决问题.【解答】解:设QY=x,根据题意得到PQ下面的部分的面积为:S△+S正方形=×5×(1+x)+1=5,解得x=,∴XQ=1﹣=,∴==,故选:B.二.填空题(每题5分,共计30分)7.关于x的不等式组恰好只有三个整数解,则a的取值范围是【分析】首先确定不等式组的解集,根据整数解的个数确定有哪些整数解,根据解的情况得到关于a的不等式组,从而求出a的范围.【解答】解:解不等式组得,,∴不等式组的解集是﹣a<x≤a,∵关于x的不等式组恰好只有三个整数解,∴必定有整数解0,∵|﹣a|>|a|,∴三个整数解不可能是0,1,2.若三个整数解为﹣1,0,1,则,解得≤a≤;若三个整数解为﹣2,﹣1,0,则,此不等式组无解,所以a的取值范围是≤a≤.故答案为≤a≤.8.已知,,,则代数式a2+b2+c2﹣ab﹣bc ﹣ac的值为3.【分析】把已知的式子化成[(a﹣b)2+(a﹣c)2+(b﹣c)2]的形式,然后代入求解.【解答】解:∵,,,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3,故答案为:3.9.已知x、y为正整数,且满足2x2+3y2=4x2y2+1,则x2+y2=2.【分析】根据完全平方公式和非负性解答即可.【解答】解:由题意得:(2x2﹣1)(y2﹣1)+2y2(x2﹣1)=0,因为x≥1,y≥1,所以y2﹣1=0,x2﹣1=0,∴y=1,x=1,∴x2+y2=2,故答案为:2.10.使代数式的值为整数的全体自然数x的和是22.【分析】将原式分解为x﹣1+,得到使得原式的值为整数的自然数分别为0、1、2、3、5、11,求的其和即可.【解答】解:∵原式==x﹣1+,∴使得代数式的值为整数的全体自然数x分别为0、1、2、3、5、11,∴全体自然数x的和是0+1+2+3+5+11=22.故答案为22.11.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2…,第n个三角形数记为x n,则x10=55;x n+x n+1=(n+1)2.【分析】根据三角形数得到x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,据此求解可得.【解答】解:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴x10=1+2+3+4+5+6+7+8+9+10=55,x n=1+2+3+…+n=,x n+1=,则x n+x n+1=+=(n+1)2,故答案为:55、(n+1)2.12.已知S=,则S的整数部分是60.【分析】由已知可得,<S<,则可确定60<S<60,即可求解.【解答】解:S=>=60,S=<=60,∴60<S<60,∴S的整数部分是60,故答案为:60.三.解答题(第13题20分,其余每题14分,共计90分)13.(20分)(1)证明:1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4能被8整除(n为正整数).【分析】(1)设a=2002,将原式转化为[a(a﹣7)]2的形式,此题得证;(2)先将原式分解成[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1),在判断出(92n+1)2+(72n+1)2,92n+1+72n+1,92n+1﹣72n+1都是偶数,即可得出结论.【解答】(1)证明:设a=2002,原式=(a﹣3)(a﹣2)(a﹣1)(a+1)(a+2)(a+3)+36=(a2﹣1)(a2﹣4)(a2﹣9)+36=a6﹣(1+4+9)a4+(4+9+36)a2﹣36+36=a6﹣14a4+49a2=a2(a4﹣14a2+49)=a2•(a﹣7)2=[a(a﹣7)]2.故1999×2000×2001×2003×2004×2005+36=[2002(2002﹣7)]2=(2002×1995)2,即1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4=(92n+1)4﹣(72n+1)4=[(92n+1)2+(72n+1)2][(92n+1)2﹣(72n+1)2]=[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1),∵n为正整数,∴(92n+1)2+(72n+1)2,92n+1+72n+1,92n+1﹣72n+1都是偶数,∴[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1)能被8整除,即98n+4﹣78n+4能被8整除.14.(14分)已知实数a、b、c,满足abc≠0且(a﹣c)2﹣4(b﹣c)(a﹣b)=0,求的值.【分析】先将(a﹣c)2﹣4(b﹣c)(a﹣b)=0,按照完全平方公式和多项式乘法的运算法则展开化简,再利用三项的完全平方公式变形,从而利用偶次方的非负性得出a+c 与b的数量关系,则的值可得.【解答】解:∵(a﹣c)2﹣4(b﹣c)(a﹣b)=0,∴a2﹣2ac+c2﹣4ab+4b2+4ac﹣4bc=0,∴a2+c2+4b2+2ac﹣4ab﹣4bc=0,∴(a+c﹣2b)2=0,∴a+c=2b,∵abc≠0,∴=2.∴的值为2.15.(14分)对非负实数x“四舍五入”到个位的值记为[x],即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[2.9]=3,[2.4]=2,[x]=n,求满足[x]=x﹣2的所有实数x 的值.【分析】设,用m的代数式表示x,再根据“若,则[x]=n“,可以列出关于m的不等式,求出m的范围,再代回求出x.【解答】解:设是非负整数,,∴,∴,解得,4<m⩽8,∵m是非负整数,∴m=5,6,7,8,当m=5 时,得,当m=6 时,得x=6,当m=7 时,得,当m=8 时,得,即满足的所有实数x的值是,.16.(14分)有n个连续的自然数1,2,3,…,n,若去掉其中的一个数x后,剩下的数的平均数是16,则满足条件的n和x的值分别是n=30,x=1;n=31,x=16;n=32,x =32.(参考公式:S n=1+2+3+…+n=)【分析】根据已知得n个连续的自然数的和为.再根据两种特殊情况,即x=n;x=1;求得剩下的数的平均数的公式,从而得出1<x<n时,剩下的数的平均数的范围,则n有3种情况,分别计算即可.【解答】解:由已知,n个连续的自然数的和为.若x=n,剩下的数的平均数是;若x=1,剩下的数的平均数是,故,解得30≤n≤32当n=30时,29×16=﹣x,解得x=1;当n=31时,30×16=﹣x,解得x=16;当n=32时,31×16=﹣x,解得x=32.故答案为:n=30,x=1;n=31,x=16;n=32,x=32.17.(14分)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.【分析】(1)由已知得出(a+b+c)2=36,再由(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc,将已知条件代入即可解出abc=6;(2)由(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2),将已知条件及(1)中推得的式子代入,即可求出a2b2+b2c2+a2c2的值,由(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2),即可解出答案.【解答】解:(1)∵a+b+c=6∴(a+b+c)2=36∴a2+b2+c2+2(ab+bc+ac)=36∵a2+b2+c2=14∴ab+bc+ac=11∵a3+b3+c3=36∴(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc=6×(14﹣11)=18∴36﹣3abc=18∴abc=6.(2)∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2)∴121=a2b2+b2c2+a2c2+12(a+b+c)∴a2b2+b2c2+a2c2=121﹣12×6=49∴(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴a4+b4+c4=142﹣2×49=98∴a4+b4+c4的值为98.18.(14分)如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC 于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是3∠CNP =∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【分析】(1)如图1中,过E作EF∥a.利用平行线的性质即可解决问题.(2)如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,可得x+y=45°,证明∠AFB=180°﹣(2y+x),∠CGD=180°﹣(2x+y),推出∠AFB+∠CGD=360°﹣(3x+3y)即可解决问题.(3)分两种情形分别画出图形求解即可.【解答】(1)证明:如图1中,过E作EF∥a.∵a∥b,∴a∥b∥EF,∵AD⊥BC,∴∠BED=90°,∵EF∥a,∴∠ABE=∠BEF,∵EF∥b,∴∠ADC=∠DEF,∴∠ABC+∠ADC=∠BED=90°.(2)解:如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,由(1)知:2x+2y=90°,x+y=45°,∵FM∥a∥b,∴∠BFD=2y+x,∴∠AFB=180°﹣(2y+x),同理:∠CGD=180°﹣(2x+y),∴∠AFB+∠CGD=360°﹣(3x+3y),=360°﹣3×45°=225°.(3)如图,设PN交CD于E.当点N在∠DCB内部时,∵∠CIP=∠PBC+∠IPB,∴∠CIP+∠IPN=∠PBC+∠BPN+2∠IPE,∵PN平分∠EPB,∴∠EPB=∠EPI,∵AB∥CD,∴∠NPE=∠CEN,∠ABC=∠BCE,∵∠NCE=∠BCN,∴∠CIP+∠IPN=3∠PEC+3∠NCE=3(∠NCE+∠NEC)=3∠CNP.当点N′在直线CD的下方时,同法可知:∠CIP+∠CNP=3∠IPN,综上所述:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.故答案为:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.。
人教版本初中七年级的下学期数学竞赛试卷试题

人教版七年级下学期数学比赛试卷一、认真选一选(每题3 分,共 36 分)二、 1、在△ABC中,若∠A=∠B=,则∠ C等于()A、B、C、D、2、计算正确的结果是()A、B、C、D、3、以下事件中,必定事件是()A、翻开电视机,它正在播放广告B、往常状况下,当气温低于零摄氏度,水会结冰C、黑暗中,我从我的一大串钥匙中随意选了一把,用它翻开了门D、随意两个有理数的和是正有理数4、小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如上图,那么哥哥球衣上的实质号码是()A 、 25 号B、52号C、55 号D 、22 号5、在右图4×4 的正方形网格中,△MNP绕某点旋转必定的角度,获得△,则其旋转中心可()A、点 AB 、点 BC、点 CD 、点 D6.以下分解因式正确的选项是()A .B . 2a- 4b+2=2 ( a- 2b)C.D.7、若对于的二元一次方程组的解也是二元一次方程的解,则的值为()A、B、C、D、8.已知五条线段的长分别是 1, 2, 3,4, 5,若每次从中拿出三条,分别以这三条线段为三边,一共能够围成不一样三角形的个数是()A . 5 个B.4 个C.3 个D.2 个9 .如图,已知平分,.则下列结论错误的是()A△≌△B.垂直均分C.垂直均分D.四边形是轴对称图形10 、如图,有一块直角三角板XYZ 搁置在△ ABC 上,恰巧三角板XYZ 的两条直角边XY、XZ 分别经过点B, C,若∠ A= 40°,则∠ ABX+∠ ACX=()A 、 25°B 、30°C、45°D、 50°第 10 题11、如图△ ABC 中已知 D、 E、 F 分别为 BC、 AD 、 CE 的中点,且S△ABC=,则 S 暗影的值为()A、B、C、D、12.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从5 这点开始跳,则经2011 次跳后它停在的点所对应的数为()A . 1 B. 2 C.3 D. 5二、认真填一填(每题 3 分,共 18 分)13、计算:。
七年级下数学竞赛考试(含答案)

七年级下数学竞赛考试(含答案)————————————————————————————————作者:————————————————————————————————日期:姓名___________ 考号___________ 班别___________ 校名_____________………………………… 密 ………… 封 ………… 线 ………… 内 ………第二学期校际联考七年级数学试卷题次 一 二 16 17 18 19 20 21 22 23 24 25 总分 得分说明:本卷共8页,25题,总分120分,考试时间共120分钟。
温馨提示:亲爱的同学们,请相信自己,仔细审题,沉着作答,就一定能考出好成绩,祝你成功!一、精心选一选:(每小题给出四个供选答案,其中只有一个是正确的,把正确的答案代号填放下表相应题号下的空格内。
每小题3分,共30分。
) 题号 1 2 3 4 5 6 7 8 9 10 答案1.下列计算正确的是( )A .4416x x x •=B .235()x x x -•-=C .2222a a a •=D .235a a a +=2.已知∠A+∠B=1800,∠A 与∠C 互补,则∠B 与∠C 的关系是( ) A .相等 B .互补 C .互余 D .不能确定 3.用科学计数法表示近似数0.0515的正确的是( )A .15.1510-⨯B . 25.1510-⨯C .10.51510-⨯D . -25.210⨯ 4.下列说法正确的是( )A .0不是单项式B .ba是单项式 C .11x-多项式 D .单项式32x y π-的次数是3,系数是3π-5.如下图所示,已知AB ∥CD ∥EF ,且CG ∥AF ,则图中与∠BAF 相等的角的个数是( )A .7个B .3个C .4个D .9个6.用长分别为10cm ,30cm ,40cm ,50cm 的四段线段,任取其中三段线段可以构成不同的三角形有( )个A B C D E G FA .0B .1C .2D .37.已知等腰三角形的一个外角为1100,则它的一个底角等于( )A .550B .700C .550 或700D .不能确定 8.已知下列条件,不能唯一画出一个三角形的是( )A .AB=5cm ,∠A=700,∠B=500B .AB=5cm ,∠A=700,∠C=500C .AB=5cm ,AC=4 cm ,∠C=500D .AB=5cm ,AC=4 cm ,∠A=500 9.已知554433222,3,5,6a b c d ====,那么,,,a b c d 从小到大的顺序是( ) A .a <b <c <d B .a <b <d <c C .b <a <c <d D .a <d <b <c 10.计算:(2-1)(2+1)(22+1)(23+1)(24+1)……(232+1)+1结果的个位数是( ) A .2 B .4 C .6 D .7 二、耐心填一填:(把答案填放下表相应的空格里。
七年级数学竞赛试题(含答案)

七年级数学竞赛试题一、选择题(本大题共5小题,每小题4分,共20分)1.下面四个所给的选项中,能折成如图给定的图形的是( )A .B .C .D . 2.若定义“⊙”:a ⊙b=b a ,如3⊙2=23=8,则3⊙等于( )A .B .8C .D .3.已知x+y=7,xy=10,则3x 2+3y 2=( )A .207B .147C .117D .874.一天有个年轻人来到李老板的店里买了一件礼物,这件礼物成本是18元,标价是21元.结果是这个年轻人掏出100元要买这件礼物.李老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元.但是街坊后来发现那100元是假钞,李老板无奈还了街坊100元.现在问题是:李老板在这次交易中到底损失( )A .179元B .97C .100元D .118元5.如图,直线a ∥b ,那么∠x 的度数是( )A .72°B .78°C .108°D .90°二、填空题(本大题共8小题,每小题4分,共32分) 6.若()()1532-+=++mx x n x x ,则m 的值为___________。
7.已知4433553,5,2===c b a ,则a ,b ,c 的大小关系(从小到大排列,用“<”连接)__________________。
8.如果代数式535-++cx bx ax ,当x=﹣2时该式的值是7,那么当x=2时该式的值是__________。
9.若()0862=+++-y y x ,则xy=__________。
10. 如图的号码是由14位数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于14,则x 的值等于__________。
11. 已知多项式162++px x 是完全平方式,则p 的值为___________。
12.己如,△ABC 的面积为1,分别延长AB 、BC 、CA 到D 、E 、F ,使AB=BD ,BC=CE ,CA=AF ,连DE 、EF 、FD ,则△DEF 的面积为___________。
七年级竞赛模拟数学试题有答案

七年级竞赛模拟数学试题一.选择题(共11小题)1.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg2.文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20%,另一个亏了20%,则该老板()A.赚了5元B.亏了25元C.赚了25元D.亏了5元3.如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于()A.585°B.540°C.270°D.315°4.如果有2003名学生排成一列,按1, 2,3,4,3,2,l,2,3,4,3,2,…的规律报数,那么第2003名学生所报的数是()A.1 B.2 C.3 D.45.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.5 B.4 C.3 D.26.某人下午6点多外出购物,表上的时针和分针的夹角恰为55°,下午近7点回家,发现表上的时针和分针的夹角又是33°,此人外出共用了()分钟?A.16 B.20 C.32 D.407.如果将加法算式1+2+3+…+1994+1995中任意项前面“+”号改为“﹣”号,所得的代数和是()A.总是偶数B.n为偶数时是偶数,n为奇数时是奇数C.总是奇数D.n为偶数时是奇数,n为奇数时是偶数8.同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a,第二次提价的百分率为b;乙商场:两次提价的百分率都是(a>0,b>0);丙商场:第一次提价的百分率为b,第二次提价的百分率为a,则提价最多的商场是()A.甲B.乙C.丙D.不能确定二.填空题(共10小题)9.观察这一列数:,,,,,依此规律下一个数是_________ .10.自然数按一定规律排成如图所示,那么第200行的第5个数是_________ .11.设有四个数,其中每三个数的和分别是17、21、25、30.则这四个数分别是_________ .12.若|x﹣y+1|+(y+5)2=0,则xy= _________ .13.如图,把三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于D 点.若∠A′DC=90°,则∠A=_________ 度.14.已知2a=5,4b=3,求4a+2b= _________ .15.小龙乘坐商场的自动扶梯下楼,他以每步一级的速度往下走,结果走了30步就到楼下,猛然发现,由于匆忙包丢在购物处了,接着他又以下楼时速度的3倍冲上楼梯,结果走了90步才到楼上,当电梯停下时,露在外面的电梯一共有_________ 级.三.解答题(共5小题)16.某人沿电车路线骑车,每隔12分钟有一辆车从后面超过,每4分钟有车迎面驶来,若人、车的速度不变,问每隔几分钟有车从车站开出?17.阅读、理解和探索(1)观察下列各式:①;②;③;…用你发现的规律写出:第④个式子是(_________ ),第n个式子是(_________ );(2)利用(1)中的规律,计算:++;(3)应用以上规律化简:+;18.对于有理数x、y,定义新运算:x*y=ax+by,其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=9,(﹣3)*3=6,求2*(﹣7)的值.19.设x1,x2,…,x9是正整数,且x1<x2<…<x9,x1+x2+…+x8+x9=230,求x9的最小值,并写出x9取得最小值且x1取得最大值时一组x1,x2,…,x9的值.20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.初一数学竞赛答案一.选择题(共11小题)1 B.2.D.3 A4.C.5 B.6.A.7 A.8.B.二.填空题(共10小题)9.观察这一列数:,,,,,依此规律下一个数是.10.自然数按一定规律排成如图所示,那么第200行的第5个数是19905 .11.设有四个数,其中每三个数的和分别是17、21、25、30.则这四个数分别是14、10、6、1 .12.若|x﹣y+1|+(y+5)2=0,则xy= 30 .13.如图,把三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于D 点.若∠A′DC=90°,则∠A=55 度.14.已知2a=5,4b=3,求4a+2b= 225 .15.小龙乘坐商场的自动扶梯下楼,他以每步一级的速度往下走,结果走了30步就到楼下,猛然发现,由于匆忙包丢在购物处了,接着他又以下楼时速度的3倍冲上楼梯,结果走了90步才到楼上,当电梯停下时,露在外面的电梯一共有60 级.三.解答题(共5小题)16.某人沿电车路线骑车,每隔12分钟有一辆车从后面超过,每4分钟有车迎面驶来,若人、车的速度不变,问每隔几分钟有车从车站开出?分析:每12分钟有一辆电车从后面赶上属于追及问题,等量关系为:电车12分钟走的路程=行人12分钟走的路程+两辆电车间隔的路程;每4分钟有一辆电车迎面开来属于相遇问题,等量关系为:电车4分钟走的路程+行人4分钟走的路程=两辆电车间隔的路程.两辆电车间隔的路程为两辆电车相隔的时间×电车的速度.解答:解:设电车每分钟走x米,行人每分走y米,电车每隔a分钟从起点开出一辆.则,两式相减得:x=2y.把x=2y代入方程组中第二个式子,得到a=6.答:每隔6分钟有车从车站开出.17.附加题阅读、理解和探索(1)观察下列各式:①;②;③;…用你发现的规律写出:第④个式子是(),第n个式子是(.);(2)利用(1)中的规律,计算:++;(3)应用以上规律化简:+;解答:解:根据以上分析故(1)第④个式子是,第n个式子是.(2)解:++=(3)解:原式===18.对于有理数x、y,定义新运算:x*y=ax+by,其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=9,(﹣3)*3=6,求2*(﹣7)的值.解答:解:根据题意可得方程组解得那么定义的新运算xy=ax+by可替换为xy=x+y因此2×(﹣7)=2×+(﹣7)×=﹣.答:所求值为﹣.19.设x1,x2,…,x9是正整数,且x1<x2<…<x9,x1+x2+…+x8+x9=230,求x9的最小值,并写出x9取得最小值且x1取得最大值时一组x1,x2,…,x9的值.分析:由题意可知,x9最大,由于都是正整数,所以x8≤x9﹣1.x7≤x8﹣1≤x9﹣2.…,x2≤x9﹣7,x1≤x9﹣8.然后将x1+x2+…+x8+x9=230用含有x9的式子表示出来,即可求出x9的值,再解答即可得出答案.解答:解:由已知x8≤x9﹣1.x7≤x8﹣1≤x9﹣2.…,x2≤x9﹣7,x1≤x9﹣8.(4分)∴x1+x2+…+x9≤(x9﹣8)+(x9﹣7)+(x9﹣2)+(x9﹣1)+x9=9x9﹣(1+2++7+8)=9x9﹣36.(8分)∴9x9﹣36≥230.x9≥即x9的最小值为30.(11分)若x l=22,x2=23,…,x9=230.其和为234>230,可取x l=21,x2=22,x3=23,x4=24,x5=26x6=27,x7=28,x8=29,x9=30.(14分)20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.分析:可在AC延长线上截取CM1=BM,得Rt△BDM≌Rt△CDM1,得出边角关系,再求解△MDN≌△M1DN,得MN=NM1,再通过线段之间的转化即可得出结论.解答:证明:如图,在AC延长线上截取CM1=BM,∵△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,∴∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,∴∠ABD=∠ACD=90°,∴∠DCM1=90°,∵BD=CD,∵在Rt△BDM≌Rt△CDM1中,,∴Rt△BDM≌Rt△CDM1(SAS),得MD=M1D,∠MDB=∠M1DC,∴∠MDM1=120°﹣∠MDB+∠M1DC=120°,∴∠NDM1=60°,∵MD=M1D,∠MDN=∠NDM1=60°,DN=DN,∴△MDN≌△M1DN,∴MN=NM1,故△AMN的周长=AM+MN+AN=AM+AN+NM1=AM+AM1=AB+AC=2.。
数学竞赛试卷七年级【含答案】

数学竞赛试卷七年级【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个数的平方根是9,那么这个数是:A. 81B. 9C. 3D. -92. 下列哪个数是有理数?A. √2B. √3C. √5D. √93. 下列哪个数是整数?A. 3.5B. 2.7C. 1.2D. 0.94. 下列哪个数是无理数?A. 1/2B. 1/3C. 1/4D. 1/55. 下列哪个数是负数?A. -1B. 0C. 1D. 2二、判断题(每题1分,共5分)1. 任何数的平方都是正数。
()2. 两个负数相乘的结果是正数。
()3. 0的平方是0。
()4. 任何数的平方根都是正数。
()5. 两个正数相乘的结果是负数。
()三、填空题(每题1分,共5分)1. 如果一个数的平方是16,那么这个数是______。
2. 两个负数相乘的结果是______。
3. 0的平方根是______。
4. 任何数的平方都是______。
5. 两个正数相乘的结果是______。
四、简答题(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述无理数的定义。
3. 请简述整数的定义。
4. 请简述负数的定义。
5. 请简述正数的定义。
五、应用题(每题2分,共10分)1. 一个数的平方是25,请问这个数是多少?2. 两个负数相乘的结果是什么?3. 0的平方是多少?4. 两个正数相乘的结果是什么?5. 一个数的平方是9,请问这个数是多少?六、分析题(每题5分,共10分)1. 请分析并解释为什么两个负数相乘的结果是正数。
2. 请分析并解释为什么0的平方是0。
七、实践操作题(每题5分,共10分)1. 请计算并填写下表中的空缺部分:| 数字 | 平方 | 平方根 |--|| 4 | 16 | 2 || 9 | ? | ? || 16 | ? | ? |2. 请计算并填写下表中的空缺部分:| 数字 | 平方 | 平方根 |--|| -2 | 4 | ? || -3 | 9 | ? || -4 | 16 | ? |八、专业设计题(每题2分,共10分)1. 设计一个数学游戏,要求游戏中包含至少三种不同的数学运算。
七年级数学新人教版竞赛试题或试卷

选择题:1. 已知正方形ABCD的边长为6cm,点E为边AB上的点,连接DE并延长得到直线EF,若AC与EF平行,那么EF的长度为:A. 3cmB. 6cmC. 9cmD. 12cm2. 已知等差数列的首项为3,公差为4,若第n项为35,那么n的值是:A. 8B. 9C. 10D. 113. 若a + b = 7,ab = 12,那么a² + b²的值为:A. 49B. 61C. 73D. 854. 函数y = |x - 3| - 2的图像与x轴交于点P和Q,那么PQ的长度为:A. 2B. 4C. 6D. 85. 已知三角形ABC中,∠A = 60°,|AB| = 6cm,|AC| = 8cm,那么|BC|的长度为:A. 7cmB. 9cmC. 10cmD. 12cm填空题:1. 式子4x - 3 = 7的解为x = ______。
2. 若a² + b² = 25,且a + b = 7,那么ab的值为_______。
3. 已知等比数列的首项为2,公比为3,若第n项为1458,那么n的值为_______。
4. 解方程x² - 5x + 6 = 0得到的解为x = _______ 和x = _______。
5. 函数y = -2x + 5的图像与x轴的交点为(_______, 0)。
应用题:1. A、B两地相距300公里,A地有一辆车以50千米/小时的速度向B地出发,B地有一辆车以70千米/小时的速度向A地出发。
已知从A地出发的车比从B地出发的车早1小时到达对方所在地。
求从A地出发的车与从B地出发的车相遇的时间。
2. 一个长方形花坛,长与宽的比为3:2,若长边增加5米,短边减小3米,面积不变,求原来的长和宽各是多长。
3. 足球队比赛,每胜一场得3分,平一场得1分,负一场得0分。
某球队共打了10场比赛,得分总和为17分。
若该队未负过,那么该队平过几次?4. 甲、乙两个水箱一起开满水,正好用1小时时间。
七年级下数学竞赛试题及答案

七年级下数学竞赛试题及答案一、选择题:(每小题5分,共40分)1、在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为:A 、14辆B 、12辆C 、16辆D 、10辆2、文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板:A 、赚了5元B 、亏了25元C 、赚了25元D 、亏了5元3.如果关于x 的不等式 (a+1) x>a+1的解集为x<1,那么a 的取值范围是:A 、a>0B 、a<0C 、a>-1D 、a<-14已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数 5、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则S 阴影的值为:A 、2Mcm 61B 、2Mcm 51 C 、2Mcm 41 D 、2Mcm 31 6、x 是任意有理数,则2|x |+x 的值:A 、大于零B 、不大于零C 、小于零D 、不小于零7、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■” 的个数为:A 、5B 、4C 、3D 、2●● ▲■ ●■ ▲ ●▲ ? (1) (2)(3)8、老王家到单位的路程是3 500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x 米/分,则老王步行的速度范围是:A 、70≤x ≤87.5B 、x ≤70或x ≥87.5C 、x ≤70D 、x ≥87.5二、填空题(每小题6分,共60分)9、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分, 已知小王不答的题比答错的题多2道,他的总分是74分,则他答对了________________ 道题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
54D3E 21C B A七年级下册数学竞赛题一、选择题(共10小题,每小题3分,共30分) 1、如右图,下列不能判定AB ∥CD 的条件是( ).A 、︒=∠+∠180BCDB B 、;C 、43∠=∠;D 、 5∠=∠B .2、在直角坐标系中,点P (6-2x ,x -5)在第二象限,•则x 的取值范围是( )。
A 、3< x <5B 、x > 5C 、x <3D 、-3< x <5¥3、点A (3,-5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为( ) A 、(1,-8) B 、(1, -2) C 、(-7,-1) D 、( 0,-1)4、在下列各数:、10049、、π1、7、11131、327、中,无理数的个数( )A 、2B 、3C 、4D 、55、下列说法中正确的是( )A. 实数2a -是负数B.a a =2 C. a -一定是正数 D.实数a -的绝对值是a6、若a >b ,则下列不等式变形错误..的是 +1 > b +1 B . a 2 > b2 C . 3a -4 > 3b -4 > 4-3b7、如图,直线l 1∥l 2,l 3⊥l 4,∠1=44°,那么∠2的度数( )&A . 46°B . 44°C . 36°"D .22°8、若方程组⎩⎨⎧-=++=+a y x ay x 13313的解满足y x +>0,则a 的取值范围是( )A 、a <-1B 、a <1C 、a >-1D 、a >19、如图,宽为50 cm 的长方形图案由10个全等的小长方形拼成,其小长方形的面积( )A.400 cm2B.500 cm2C.600 cm2D.4000 cm2^10.若不等式组有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣36二、填空题(本大题共9小题, 每题3分, 共27分)11、16的平方根是_______________12、规定用符号[x]表示一个实数的整数部分,例如[]=3.[]=1,按此规定,[﹣1]=.、13、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是________.14、阅读下列语句:①对顶角相等;②同位角相等;③画∠AOB的平分线OC;④这个角等于30°吗在这些语句中,属于真命题的是_____ _____(填写序号)15 、某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了题.16、如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度。
17、小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买支.18、如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到长方形的边时的点为P1,第2次碰到矩形的边时的点为P2,……第n次碰到矩形的边时的点为P n. 则点P2014的坐标是.}19、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是.三、解答题:(本大题共43分)20.数a是不等于3的常数,解不等式组,并依据a的取值情况写出其解集.!21.图1,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现将线段AB 先向上平移2个单位,再向右平移1个单位,得到线段CD,连接AC,BC.(1)求点C,D的坐标及四边形ABDC的面积;(2)在y轴上是否存在一点P,使得,若存在这样一点,请求出点P 的坐标;若不存在,请说明理由.(3)如图2,点Q是线段BD上的一个动点,连接QC,QO,当点Q在BD上移动时(不与B,D重合)给出下列结论:①的值不变;②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.】22.平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点,若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)求出图中格点四边形DEFG对应的S,N,L.(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.23.读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:)解∵x﹣y=2,∴x=y+2又∵x>1,∴y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是.{(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).24.保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案哪种购车方案总费用最少最少总费用是多少【七年级数学竞赛参考答案;一、选择题(共10小题,每小题3分,共30分)1、B2、B3、D4、A5、B6、D 7 、A 8、C 9、A10. 解:,解①得:x<a﹣1,解②得:x≥﹣37,则a﹣1>﹣37,解得:a>﹣36.故选C.二、填空题(本大题共9小题, 每题3分, 共27分)11、±2;12、2 ;13、(4,3)或(-4,3);14、_①;; 16、90;17、1或2或318、(5, 0);19. 3、三、解答题:20.解:,解①得:x≤3,解②得:x<a,…………………………………4分∵实数a是不等于3的常数,∴当a>3时,不等式组的解集为x≤3,当a<3时,不等式组的解集为x<a.…………………………………6分}21.:(1)由于将线段AB先向上平移2个单位,再向右平移1个单位,得到线段CD,而A、点B的坐标分别为(-1,0)、(3,0),所以点C、D的坐标分别为(0,2)、(4,2),那么AB=4,CO=2,故S□ABCD=AB·CO=4×2=8.…………………………………4分(2)存在这样一点,点P的坐标为(0,4)或(0,-4).理由:设点P的坐标为(0,y),则S△PAB=AB·|y|=×4|y|=2|y|,由(1)知S□ABCD =8,∴2|y|=8,∴y=±4,∴点P的坐标为(0,4)或(0,-4).………………………8分(3)①正确…………………………………9分理由如下:过点Q作QE//CD,∴∠DCQ=∠1.又∵AB//CD,∴QE//AB,∴∠2=∠BOQ,∴∠DCQ+∠BOQ=∠1+∠2,而∠CQO=∠1+∠2,,∴∠DCQ+∠BOQ=∠CQO,即,故①正确.…………………………………12分22解:(1)观察图形,可得S=3,N=1,L=6;…………………………………3分(Ⅱ)根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得,…………………………………6分∴S=N+aL﹣1,将N=82,L=38代入可得S=82+1/2×38﹣1=100.…………………………………8分《23解:(1)∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①《同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;…………………………………3分(2)∵x﹣y=a,∴x=y+a,又∵x<﹣1,∴y+a<﹣1,∴y<﹣a﹣1,.又∵y>1,∴1<y<﹣a﹣1,…①同理得:a+1<x<﹣1,…②由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),∴x+y的取值范围是a+2<x+y<﹣a﹣2…………………………………8分24解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得答:设购买A型公交车每辆需100万元,购买B型公交车每辆需150万元……………………………3分.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:6≤a≤8,所以a=6,7,8;则10﹣a=4,3,2;…………………………………6分三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.…………………9分。