2020届南京市高三上学期期初联考数学试卷附答案解析

合集下载

南京市2020届高三年级数学第三次模拟考试参考答案

南京市2020届高三年级数学第三次模拟考试参考答案

南京市2020届高三年级第三次模拟考试数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.{x |1<x <4} 2.2 3.60 4.10 5.236. 37.2n +1-2 8.62 9.8310.[2,4] 11.6 12. [-2,+∞) 13.-9414.38二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)证明:(1)取PC 中点G ,连接DG 、FG .在△PBC 中,因为F ,G 分别为PB ,PC 的中点,所以GF ∥BC ,GF =12BC .因为底面ABCD 为矩形,且E 为AD 的中点,所以DE ∥BC ,DE =12BC , ······························································ 2分所以GF ∥DE ,GF =DE ,所以四边形DEFG 为平行四边形, 所以EF ∥DG . ············································································· 4分 又因为EF ⊄平面PCD ,DG ⊂平面PCD ,所以EF ∥平面PCD . ······································································ 6分 (2)因为底面ABCD 为矩形,所以CD ⊥AD .又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊂平面ABCD ,所以CD ⊥平面P AD . ··································································· 10分 因为P A ⊂平面P AD ,所以CD ⊥P A . ·················································· 12分 又因为P A ⊥PD ,PD ⊂平面PCD ,CD ⊂平面PCD ,PD ∩CD =D ,所以P A ⊥平面PCD . 因为P A ⊂平面P AB ,所以平面P AB ⊥平面PCD . ·································· 14分16.(本小题满分14分)解:(1) 因为向量m =(cos x ,sin x ),n =(cos x ,-sin x ),所以 f (x )=m ·n +12=cos 2x -sin 2x +12=cos2x +12. ··································· 2分因为f (x 2)=1,所以cos x +12=1,即cos x =12.又因为x ∈(0,π) ,所以x =π3, ························································· 4分所以tan(x +π4)=tan(π3+π4)=tan π3+ tan π41-tan π3tanπ4=-2-3. ······························· 6分(2)若f (α)=-110,则cos2α+12=-110,即cos2α=-35.因为α∈(π2,3π4),所以2α∈(π,3π2),所以sin2α=-1-cos 22α=-45. ········ 8分因为sin β=7210,β∈(0,π2),所以cos β=1-sin 2β=210, ······················· 10分所以cos(2α+β)=cos2αcos β-sin2αsin β=(-35)×210-(-45)×7210=22. ····· 12分又因为2α∈(π,3π2),β∈(0,π2),所以2α+β∈(π,2π),所以2α+β的值为7π4. ····································································· 14分17.(本小题满分14分)解:如图,以O 为原点,正东方向为x 轴,正北方向为y 轴,建立直角坐标系xOy . 因为OB =2013,tan ∠AOB =23,OA =100,所以点B (60,40),且A (100,0). ···························································· 2分(1)设快艇立即出发经过t 小时后两船相遇于点C ,则OC =105(t +2),AC =50t .因为OA =100,cos ∠AOD =55, 所以AC 2=OA 2+OC 2-2OA ·OC ·cos ∠AOD ,即(50t )2=1002+[105(t +2)]2-2×100×105(t +2)×55. 化得t 2=4,解得t 1=2,t 2=-2(舍去), ·············································· 4分 所以OC =405.因为cos ∠AOD =55,所以sin ∠AOD =255,所以C (40,80),所以直线AC 的方程为y =-43(x -100),即4x +3y -400=0. ······················· 6分因为圆心B 到直线AC 的距离d =|4×60+3×40-400|42+32=8,而圆B 的半径r =85, 所以d <r ,此时直线AC 与圆B 相交,所以快艇有触礁的危险.答:若快艇立即出发有触礁的危险. ······················································· 8分 (2)设快艇所走的直线AE 与圆B 相切,且与科考船相遇于点E . 设直线AE 的方程为y =k (x -100),即kx -y -100k =0.因为直线AE 与圆B 相切,所以圆心B 到直线AC 的距离d =|60k -40-100k |12+k 2=85,即2k 2+5k +2=0,解得k =-2或k =-12. ············································· 10分由(1)可知k =-12舍去.因为cos ∠AOD =55,所以tan ∠AOD =2,所以直线OD 的方程为y =2x . 由⎩⎨⎧y =2x , y =-2(x -100),解得⎩⎨⎧x =50,y =100,所以E (50,100),所以AE =505,OE =505, ······························································· 12分此时两船的时间差为505105-50550=5-5,所以x ≥5-5-2=3-5.答:x 的最小值为(3-5)小时. ···························································· 14分18.(本小题满分16分)解:(1)因为椭圆x 2a 2+y 2b 2=1(a >b >0)过点(-2,0)和 (1,32),所以a =2,1a 2+34b2=1,解得b 2=1,所以椭圆C 的方程为x 24+y 2=1. ·························································· 2分(2)因为B 为左顶点,所以B (-2,0).因为四边形AMBO 为平行四边形,所以AM ∥BO ,且AM =BO =2. ··········· 4分 设点M (x 0,y 0),则A (x 0+2,y 0).因为点M ,A 在椭圆C 上,所以⎩⎨⎧x 024+y 02=1, (x 0+2)24+y 02=1,解得⎩⎪⎨⎪⎧x 0=-1, y 0=±32, 所以M (-1,±32). ········································································ 6分 (3) 因为直线AB 的斜率存在,所以设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(4k 2+1)x 2+8kmx +4m 2-4=0, 则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2. ···················································· 8分因为平行四边形AMBO ,所以OM →=OA →+OB →=(x 1+x 2,y 1+y 2).因为x 1+x 2=-8km 1+4k 2,所以y 1+y 2=k (x 1+x 2)+2m =k ·-8km 1+4k 2+2m =2m1+4k 2, 所以M (-8km 1+4k 2,2m1+4k 2). ·································································· 10分因为点M 在椭圆C 上,所以将点M 的坐标代入椭圆C 的方程,化得4m 2=4k 2+1.① ········································································ 12分 因为A ,M ,B ,O 四点共圆,所以平行四边形AMBO 是矩形,且OA ⊥OB , 所以OA →·OB →=x 1x 2+y 1y 2=0. 因为y 1y 2=(kx 1+m )(kx 1+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m2-4 k 21+4k 2,所以x 1x 2+y 1y 2=4m 2-41+4k 2+m 2-4k 21+4k 2=0,化得5m 2=4k 2+4.② ················· 14分 由①②解得k 2=114,m 2=3,此时△>0,因此k =±112.所以所求直线AB 的斜率为±112. ····················································· 16分 19. (本小题满分16分)解:(1)当a =1时,f (x )=e xx 2-x +1,所以函数f (x )的定义域为R ,f'(x )=e x (x -1)(x -2)(x 2-x +1)2.令f'(x )<0,解得1<x <2,所以函数f (x )的单调减区间为(1,2). ··················································· 2分 (2)由函数f (x )的定义域为R ,得x 2-ax +a ≠0恒成立,所以a 2-4a <0,解得0<a <4. ························································· 4分 方法1由f (x )=e xx 2-ax +a ,得f'(x )=e x (x -a )(x -2)(x 2-ax +a )2.①当a =2时,f (2)=f (a ),不符题意. ②当0<a <2时,因为当a <x <2时,f ′(x )<0,所以f (x )在(a ,2)上单调递减,所以f (a )>f (2),不符题意. ··························································· 6分 ③当2<a <4时,因为当2<x <a 时,f ′(x )<0,所以f (x )在(2,a )上单调递减, 所以f (a )<f (2),满足题意.综上,a 的取值范围为(2,4). ························································ 8分方法2由f (2)>f (a ),得e 24-a >e aa .因为0<a <4,所以不等式可化为e 2>e a a(4-a ).设函数g (x )=e xx (4-x )-e 2, 0<x <4. ·················································· 6分因为g'(x )=e x·-(x -2)2x 2≤0恒成立,所以g (x )在(0,4)上单调递减.又因为g (2)=0,所以g (x )<0的解集为(2,4).所以,a 的取值范围为(2,4). ··························································· 8分 (3)证明:设切点为(x 0,f (x 0)),则f'(x 0)=e x 0(x 0-2)(x 0-a )(x 02-ax 0+a )2,所以切线方程为y -ex 0x 02-ax 0+a =e x 0(x 0-2)(x 0-a )(x 02-ax 0+a )2×(x -x 0).由0-ex 0x 02-ax 0+a =e x 0(x 0-2)(x 0-a )(x 02-ax 0+a )2×(0-x 0),化简得x 03-(a +3)x 02+3ax 0-a =0. ···················································· 10分 设h (x )=x 3-(a +3)x 2+3ax -a ,a ∈(2,4), 则只要证明函数h (x )有且仅有三个不同的零点.由(2)可知a ∈(2,4)时,函数h (x )的定义域为R ,h'(x )=3x 2-2(a +3)x +3a . 因为△=4(a +3)2-36a =4(a -32)2+27>0恒成立,所以h'(x )=0有两不相等的实数根x 1和x 2,不妨x 1<x 2. 因为所以函数h (x )最多有三个零点. ························································· 12分 因为a ∈(2,4),所以h (0)=-a <0,h (1)=a -2>0,h (2)=a -4<0,h (5)=50-11a >0, 所以h (0)h (1)<0,h (1)h (2)<0,h (2)h (5)<0.因为函数的图象不间断,所以函数h (x )在(0,1),(1,2),(2,5)上分别至少有一个零点. 综上所述,函数h (x )有且仅有三个零点. ············································· 16分20.(本小题满分16分)解:(1) 因为{a n }的“L 数列”为{12n },所以a n a n +1=12n ,n ∈N *,即a n +1a n =2n ,所以n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=2(n -1)+(n -2)+…+1=2n (n -1)2.又a 1=1符合上式,所以{a n }的通项公式为a n =2n (n -1)2,n ∈N *. ·················· 2分(2)因为a n =n +k -3(k >0),且n ≥2,n ∈N *时,a n ≠0,所以k ≠1. 方法1设b n =a n a n +1,n ∈N *,所以b n =n +k -3(n +1)+k -3=1-1n +k -2.因为{b n }为递增数列,所以b n +1-b n >0对n ∈N*恒成立, 即1n +k -2-1n +k -1>0对n ∈N*恒成立. ············································ 4分因为1n +k -2-1n +k -1=1(n +k -2)(n +k -1),所以1n +k -2-1n +k -1>0等价于(n +k -2)(n +k -1)>0.当0<k <1时,因为n =1时,(n +k -2)(n +k -1)<0,不符合题意. ··········· 6分 当k >1时,n +k -1>n +k -2>0,所以(n +k -2)(n +k -1)>0,综上,k 的取值范围是(1,+∞). ························································· 8分 方法2令f (x )=1-1x +k -2,所以f (x )在区间(-∞,2-k )和区间(2-k ,+∞)上单调递增.当0<k <1时,f (1)=1-1k -1>1,f (2)=1-1k <1,所以b 2<b 1,不符合题意. ···················· 6分当k >1时,因为2-k <1,所以f (x )在[1,+∞)上单调递增,所以{b n }单调递增,符合题意.综上,k 的取值范围是(1,+∞). ························································· 8分(3)存在满足条件的等差数列{c n },证明如下:因为a k a k +1=1+p k -11+p k =1p +1-1p 1+p k,k ∈N*, ·············································· 10分所以S n =n p +(1-1p )·(11+p +11+p 2+…+11+p n -1+11+p n). 又因为p >1,所以1-1p >0,所以n p <S n <n p +(1-1p )·(1p +1p 2+…+1p n -1+1p n ),即n p <S n <n p +1p ·[1-(1p )n ]. ································································· 14分 因为1p ·[1-(1p )n ]<1p ,所以n p <S n <n +1p.设c n =np ,则c n +1-c n =n +1p -n p =1p,且c n <S n <c n +1,所以存在等差数列{c n }满足题意. ······················································· 16分南京市2020届高三年级第三次模拟考试数学附加题参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷..纸.指定区域内.....作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—2:矩阵与变换解:(1) ⎣⎢⎡⎦⎥⎤1 -1a 0 ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0a .··································································· 2分 因为点P (1,1)在矩阵A 的变换下得到点P ′(0,-2),所以a =-2,所以A =⎣⎢⎡⎦⎥⎤1 -1-2 0. ········································································· 4分 (2)因为A =⎣⎢⎡⎦⎥⎤1 -1-2 0,所以A 2=⎣⎢⎡⎦⎥⎤1 -1-2 0 ⎣⎢⎡⎦⎥⎤1 -1-2 0=⎣⎢⎡⎦⎥⎤3 -1-2 2, ·············· 6分 所以A 2⎣⎡⎦⎤03=⎣⎢⎡⎦⎥⎤3 -1-2 2 ⎣⎡⎦⎤03=⎣⎢⎡⎦⎥⎤-36, 所以,点Q ′的坐标为(-3,6). ························································ 10分B .选修4—4:坐标系与参数方程解:由l 的参数方程⎩⎨⎧x =3t ,y =1+t(t 为参数)得直线l 方程为x -3y +3=0. ············· 2分曲线C 上的点到直线l 的距离d =|1+cos θ- 3 sin θ+3|2 ······························ 4分=|2cos(θ+π3)+1+3|2. ········································································ 6分当θ+π3=2k π,即θ=-π3+2k π(k ∈Z )时, ·················································· 8分曲线C 上的点到直线l 的距离取最大值3+32. ········································ 10分C .选修4—5:不等式选讲 证明:因为a ,b 为非负实数,所以a 3+b 3-ab (a 2+b 2)=a 2a (a -b )+b 2b (b -a )=(a -b )[(a )5-(b )5]. ·································· 4分 若a ≥b 时,a ≥b ,从而(a )5≥(b )5,得(a -b )·[(a )5-(b )5]≥0. ···························································· 6分 若a <b 时,a <b ,从而(a )5<(b )5,得(a -b )·[(a )5-(b )5]>0. ···························································· 8分 综上,a 3+b 3≥ab (a 2+b 2). ····························································· 10分 22.(本小题满分10分)解:(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以AA 1⊥平面ABC ,所以AA 1⊥AB ,AA 1⊥AC .又AB ⊥AC ,所以以{AB →,AC →,AA 1→}为正交基底建立如图所示的 空间直角坐标系A —xyz .设AA 1=t (t >0),又AB =3,AC =4,则A (0,0,0),C 1(0,4,t ),B 1(3,0,t ),C (0,4,0),所以AC 1→=(0,4,t ),B 1C →=(-3,4,-t ). ·············································· 2分 因为B 1C ⊥AC 1,所以B 1C →·AC 1→=0,即16-t 2=0,解得t =4,所以AA 1的长为4. ············································································· 4分 (2)由(1)知B (3,0,0),C (0,4,0),A 1(0,0,4), 所以A 1C →=(0,4,-4),BC →=(-3,4,0). 设n =(x ,y ,z )为平面A 1CB 的法向量,则n ·A 1C →=0,n ·BC →=0,即⎩⎨⎧4y -4z =0,-3x +4y =0.取y =3,解得z =3,x =4,所以n =(4,3,3)为平面A 1CB 的一个法向量. 又因为AB ⊥面AA 1C 1C ,所以AB →=(3,0,0)为平面A 1CA 的一个法向量,则cos <n ,AB →>=AB →·n |AB →|·|n |=123·42+32+32=434, ····································· 6分所以sin <n ,AB →>=317.设P (3,0,m ),其中0≤m ≤4,则CP →=(3,-4,m ). 因为AB →=(3,0,0)为平面A 1CA 的一个法向量,所以cos <CP →,AB →>=AB →·CP →|AB →|·|CP →|=93·32+(-4)2+m 2=3m 2+25, 所以直线PC 与平面AA 1C 1C 的所成角的正弦值为3m 2+25. ·························· 8分 因为直线PC 与平面AA 1C 1C 所成角和二面角B -A 1C -A 的大小相等, 所以3m 2+25=317,此时方程无解,所以侧棱BB 1上不存在点P ,使得直线PC 与平面AA 1C 1C 所成角和二面角B -A 1C -A 的大小相等 . ········································································································ 10分 23.(本小题满分10分)解:(1)根据题意,每次取出的球是白球的概率为25,取出的球是黑球的概率为35.所以P 1=25×25+C 12×(25)2×35=425+24125=44125. ········································ 2分(2)证明:累计取出白球次数是n +1的情况有:前n 次取出n 次白球,第n +1次取出的是白球,概率为C nn ×(25)n +1;前n +1次取出n 次白球,第n +2次取出的是白球,概率为C nn +1×(25)n +1×35;······································································································ 4分 ……前2n -1 次取出n 次白球,第2n 次取出的是白球,概率为C n2n -1×(25)n +1×(35)n -1;前2n 次取出n 次白球,第2n +1次取出的是白球,概率为C n2n ×(25)n +1×(35)n ;则P n =C n n ×(25)n +1+C n n +1×(25)n +1×35+…+C n 2n -1×(25)n +1×(35)n -1+C n2n ×(25)n +1×(35)n=(25)n +1×[C n n +C n n +1×35+…+C n 2n -1×(35)n -1+C n2n ×(35)n ] =(25)n +1×[C 0n +C 1n +1×35+…+C n -12n -1×(35)n -1+C n 2n ×(35)n ], ························ 6分因此P n +1-P n =(25)n +2×[C 0n +1+C 1n +2×35+…+C n 2n +1×(35)n +C n +12n +2×(35)n +1]-(25)n +1×[C 0n +C 1n +1×35+…+C n -12n -1×(35)n -1+C n 2n ×(35)n ] =(25)n +1×{25×[C 0n +1+C 1n +2×35+…+C n 2n +1×(35)n +C n +12n +2×(35)n +1]。

2020届高三上学期期末教学质量检测数学理试题含答案及评分标准

2020届高三上学期期末教学质量检测数学理试题含答案及评分标准

理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

全卷满分150分,考试时间120分钟。

考生注意事项: 1.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.答第Ⅱ卷时,必须答题卡上作答.在试题卷上作答无效. 参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P AB P A P B =棱柱的体积公式V Sh =,其中S 、h 分别表示棱柱的底面积、高.第Ⅰ卷(选择题 共40分)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项符合题目要求. 1.12i i +=A .i --2B .i +-2C .i -2D .i +22.集合{||2|2}A x x =-≤,2{|,12}B y y x x ==--≤≤,则A B =IA .RB .{|0}x x ≠C .{0}D .∅3.若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 A .2- B .2 C .4- D .44.不等式10x x->成立的一个充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >- D .1x > 5.对于平面α和共面的两直线m 、n ,下列命题中是真命题的为 A .若m α⊥,m n ⊥,则//n α B .若//m α,//n α,则//m nC .若m α⊂,//n α,则//m nD .若m 、n 与α所成的角相等,则//m n6.平面四边形ABCD 中0AB CD +=u u u r u u u r r ,()0AB AD AC -=⋅u u u r u u u r u u u r,则四边形ABCD 是A .矩形B .菱形C .正方形D .梯形 7.等比数列{}n a 中5121=a ,公比21-=q ,记12n n a a a ∏=⨯⨯⨯L (即n ∏表示 数列{}n a 的前n 项之积),8∏ ,9∏,10∏,11∏中值为正数的个数是 A . 1 B . 2 C . 3 D . 48.定义域R 的奇函数()f x ,当(,0)x ∈-∞时()'()0f x xf x +<恒成立,若3(3)a f =,(log 3)(log 3)b f ππ=⋅,()c f =-2-2,则A .a c b >>B .c b a >>C .c a b >>D . a b c >>第Ⅱ卷(非选择题,共110分)二 填空题:本题共6小题,共30分,把答案填在答题卷相应的位置上.9.某校有4000名学生,各年级男、女生人数如表,已知在全校学生中随机抽取一名奥运火炬手,抽到高一男生的概率是0.2,现用分层抽样的方法在全校抽取100名奥运志愿者,则在高二抽取的学生人数为______.10.如果实数x 、y 满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么2x y -的最大值为______.11.在ABC ∆中角A 、B 、C 的对边分别是a 、b 、c ,若(2)cos cos b c A a C -=, 则cos A =________. 12.右图给出的是计算201614121+⋅⋅⋅+++的值 的一个程序框图,其中判断框内应填入的条件是i >___?13.由数字0、1、2、3、4组成无重复数字的 五位数,其中奇数有 个. 14.若一个正三棱柱的三视图如下图所示,则这 个正三棱柱的体积为__________.三.解答题(本大题共6小题,共80分 解答应写出文字说明、证明过程或演算步骤) 15.(本小题共12分)已知函数()sin cos f x x x =+,()f x '是()f x 的导函数. (1)求函数()()'()g x f x f x =⋅的最小值及相应的x 值的集合; (2)若()2()f x f x '=,求tan()4x π+的值.16.(本题满分12分)近年来,政府提倡低碳减排,某班同学利用寒假在两个小区逐户调查人们的生活习惯是否符合低碳观念.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳题12图 主视图 俯视图左视图族”.数据如下表(计算过程把频率当成概率).(1)如果甲、乙来自A小区,丙、丁来自B小区,求这4人中恰有2人是低碳族的概率;(2)A小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A小区中任选25个人,记X表示25个人中低碳族人数,求()E X.17.(本小题满分14分)已知点(4,0)M、(1,0)N,若动点P满足6||MN MP NP=⋅u u u u r u u u r u u u r.(1)求动点P的轨迹C;(2)在曲线C上求一点Q,使点Q到直线l:2120x y+-=的距离最小.18.(本小题满分14分)已知梯形ABCD中,AD∥BC,2π=∠=∠BADABC,42===ADBCAB,E、F分别是AB、CD上的点,EF∥BC,xAE=.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为()f x.(1)当2=x时,求证:BD⊥EG;(2)求()f x的最大值;(3)当()f x取得最大值时,求异面直线AE与BD所成的角的余弦值.19.(本题满分14分)数列{}na中112a=,前n项和2(1)n nS n a n n=--,1n=,2,….(1)证明数列1{}nnSn+是等差数列;(2)求nS关于n的表达式;(3)设3n nnb S=1,求数列{}nb的前n项和nT.20.(本题满分14分)二次函数()f x满足(0)(1)0f f==,且最小值是14-.A小区低碳族非低碳族频率p0.50.5B小区低碳族非低碳族频率p0.80.2(1)求()f x 的解析式;(2)设常数1(0,)2t ∈,求直线l : 2y t t =-与()f x 的图象以及y 轴所围成封闭图形的面积是()S t ;(3)已知0m ≥,0n ≥,求证:211()()24m n m n +++≥.答案及评分标准:8~1:CCDD ;CBB A ;9.30;10.1;11.12;12.10;13.36;14.以下是各题的提示:1.21222i i i i i i+-+==-.2.[0,4]A =,[4,0]B =-,所以{0}A B =I .3.双曲线22122x y -=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =.4.画出直线y x =与双曲线1y x=,两图象的交点为(1,1)、(1,1)--,依图知10x x->10x ⇔-<<或1x >(*),显然1x >⇒(*);但(*)⇒/1x >.5.考查空间中线、面的平行与垂直的位置关系的判断.6.由0AB CD +=u u u r u u u r r ,得AB CD DC =-=u u u r u u u r u u u r,故平面四边形ABCD 是平行四边形,又()0AB AD AC -=⋅u u u r u u u r u u u r ,故0DB AC =⋅u u u r u u u r,所以DB AC ⊥,即对角线互相垂直.7.等比数列{}n a 中10a >,公比0q <,故奇数项为正数,偶数项为负数,∴110∏<,100∏<,90∏>,80∏>,选B .8.设()()g x xf x =,依题意得()g x 是偶函数,当(,0)x ∈-∞时()'()0f x xf x +<,即'()0g x <恒成立,故()g x 在(,0)x ∈-∞单调递减,则()g x 在(0,)+∞上递增,3(3)(3)a f g ==,(log 3)(log 3)(log 3)b f g πππ==⋅,2(2)(2)(2)c f g g =--=-=.又log 3123π<<<,故a c b >>. 9.依表知400020002000x y z ++=-=,0.24000x=,于是800x =, 1200y z +=,高二抽取学生人数为112003040⨯=.10.作出可行域及直线l :20x y -=,平移直线l 至可行域的点(0,1)-时2x y -取得最大值.11.由(2)cos cos b c A a C -=,得2cos cos cos b A c A a C =+,2sin cos sin cos sin cos B A C A A C =+,故2sin cos sin()B A A C =+,又在ABC ∆中sin()sin 0A C B +=>,故1cos 2A =,12.考查循环结构终止执行循环体的条件.13.1132336636C C A =⨯=⋅⋅.14.由左视图知正三棱柱的高2h =,设正三棱柱的底面边长a ,=,故4a =,底面积142S =⨯⨯=,故2V Sh === 15.解:(1)∵()sin cos f x x x =+,故'()cos sin f x x x =-, …… 2分∴()()'()g x f x f x =⋅(sin cos )(cos sin )x x x x =+-22cos sin cos 2x x x =-=, ……… 4分∴当22()x k k Z ππ=-+∈,即()2x k k Z ππ=-+∈时,()g x 取得最小值1-,相应的x 值的集合为{|,}2x x k k Z ππ=-+∈. ……… 6分评分说明:学生没有写成集合的形式的扣1分. (2)由()2()f x f x '=,得sin cos 2cos 2sin x x x x +=-,∴cos 3sin x x =,故1tan 3x =, …… 10分 ∴11tan tan34tan()2141tan tan 143x x x πππ+++===--. …… 12分 16.解:(1)设事件C 表示“这4人中恰有2人是低碳族”. …… 1分2222112222222222()0.50.20.50.50.20.80.50.8P C C C C C C C =+⨯⨯⨯+⋅⋅⋅⋅⋅⋅⋅⋅0.010.160.160.33=++=. …… 4分 答:甲、乙、丙、丁这4人中恰有2人是低碳族的概率为0.33; …… 5分(2)设A 小区有a 人,两周后非低碳族的概率20.5(120%)0.32a P a⨯⨯-==.故低碳族的概率10.320.68P =-=. ………… 9分 随机地从A 小区中任选25个人,这25个人是否为低碳族相互独立,且每个 人是低碳族的概率都是0.68,故这25个人中低碳族人数服从二项分布,即17~(25,)25X B ,故17()251725E X =⨯=. ………… 12分 17.解:(1)设动点(,)P x y ,又点(4,0)M 、(1,0)N ,∴(4,)MP x y =-u u u r ,(3,0)MN =-u u u u r ,(1,)NP x y =-u u u r. ……… 3分由6||MN MP NP =⋅u u u u r u u u r u u u r,得3(4)x --= ……… 4分∴222(816)4(21)4x x x x y -+=-++,故223412x y +=,即22143x y +=, ∴轨迹C 是焦点为(1,0)±、长轴长24a =的椭圆; ……… 7分 评分说明:只求出轨迹方程,没有说明曲线类型或交代不规范的扣1分. (2)椭圆C 上的点Q 到直线l 的距离的最值等于平行于直线l :2120x y +-=且与椭圆C 相切的直线1l 与直线l 的距离.设直线1l 的方程为20(12)x y m m ++=≠-. ……… 8分由22341220x y x y m ⎧+=⎨++=⎩,消去y 得2242120x mx m ++-= (*). 依题意得0∆=,即0)12(16422=--m m ,故216m =,解得4m =±.当4m =时,直线1l :240x y ++=,直线l 与1l 的距离5d ==当4m =-时,直线1l :240x y +-=,直线l 与1l 的距离d ==由于55<,故曲线C 上的点Q 到直线l 的距离的最小值为5.…12分 当4m =-时,方程(*)化为24840x x -+=,即2(1)0x -=,解得1x =.由1240y +-=,得32y =,故3(1,)2Q . ……… 13分 ∴曲线C 上的点3(1,)2Q 到直线l 的距离最小. ……… 14分18.(法一)(1)证明:作EF DH ⊥,垂足H ,连结BH ,GH , ∵平面AEFD ⊥平面EBCF ,交线EF ,DH ⊂平面EBCF , ∴⊥DH 平面EBCF ,又⊂EG 平面EBCF ,故DH EG ⊥, ∵12EH AD BC BG ===,//EF BC ,90ABC ∠=o . ∴四边形BGHE 为正方形,故BH EG ⊥.又BH 、DH ⊂平面DBH ,且BH DH H =I ,故⊥EG 平面DBH . 又⊂BD 平面DBH ,故BD EG ⊥.(2)解:∵AE EF ⊥,平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD .∴AE ⊥面EBCF .又由(1)⊥DH 平面EBCF ,故//AE DH ,∴四边形AEHD 是矩形,DH AE =,故以F 、B 、C 、D 为顶点的三棱 锥D BCF - 的高DH AE x ==,又114(4)8222BCF S BC BE x x ∆==⨯⨯-=-⋅. ∴三棱锥D BCF -的体积()f x =13BFC S DH ∆⋅13BFC S AE ∆=⋅2128(82)333x x x x =-=-+2288(2)333x =--+≤.∴当2x =时,()f x 有最大值为83.(3)解:由(2)知当()f x 取得最大值时2AE =,故2BE =,由(2)知//DH AE ,故BDH ∠是异面直线AE 与BD 所成的角. 在Rt BEH ∆中222422BH BE EH AD =+=+=,由⊥DH 平面EBCF ,BH ⊂平面EBCF ,故DH BH ⊥ 在Rt BDH ∆中222823BD BH DH AE =+=+=,∴3cos 323DH BDH BD ∠===. ∴异面直线AE 与BD 所成的角的余弦值为33. 法二:(1)证明:∵平面AEFD ⊥平面EBCF ,交线EF ,AE ⊂平面AEFD ,EF AE ⊥,故AE ⊥平面EBCF ,又EF 、BE ⊂平面EBCF ,∴AE ⊥EF ,AE ⊥BE ,又BE ⊥EF ,取EB 、EF 、EA 分别为x 轴、y轴、z 轴,建立空间坐标系E xyz -,如图所示. 当2x =时,2AE =,2BE =,又2AD =,122BG BC ==. ∴(0,0,0)E ,(0,0,2)A ,(2,0,0)B ,(2,2,0)G ,(0,2,2)D .∴(2,2,2)BD =-u u u r ,(2,2,0)EG =u u u r,∴440BD EG ⋅=-+=u u u r u u u r.∴BD EG ⊥u u u r u u u r,即BD EG ⊥;(2)解:同法一;(3)解:异面直线AE 与BD 所成的角θ等于,AE BD <>u u u r u u u r或其补角.又(0,0,2)AE =-u u u r , 故3cos ,3|||2444|AE BD AE BD AE BD <>===-++⋅⋅u u u r u u u ru u u r u u u r u u u r u u u r ∴3cos 3θ=,故异面直线AE 与BD 所成的角的余弦值为33. 19.(1)证明:由2(1)n n S n a n n =--,得21()(1)(2)n n n S n S S n n n -=---≥.∴221(1)(1)n n n S n S n n ---=-,故111(2)1n n n nS S n n n -+-=≥-.…2分 ∴数列由1{}n n S n+是首项11221S a ==,公差1d =的等差数列; …… 4分 (2)解:由(1)得112(1)11n n S S n d n n n+=+-=+-=.……… 6分∴21n n S n =+; ………8分(3)由(2),得3n n nb S =1=321n n n +g 1=111(1)1n n n n =-++.…… 10分∴数列{}n b 的前n 项和1211111111122311n n n T b b b b n n n n -=++++=-+-++-+--+L L …12分 1111n n n =-=++. ……… 14分 20.解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x ax x a =-≠,则221()()24af x ax ax a x =-=--. ……………… 2分 又()f x 的最小值是14-,故144a -=-.解得1a =.∴2()f x x x =-; ………………4分(2)依题意,由22x x t t -=-,得x t =,或1x t =-.(1t -p t)……6分由定积分的几何意义知3232222002()[()()]()|3232t tx x t t S t x x t t dx t x tx =---=--+=-+⎰…… 8分(3)∵()f x 的最小值为14-,故14m -,14n ≥-. …… 10分∴12m n +-≥-,故12m n ++. ……… 12分∵1()02m n +,102m n ++≥≥, ……… 13分∴11()()22m n m n +++≥=,∴211()()24m n m n +++≥. ……… 14分。

江苏专版2020届高三数学一轮复习《数列》典型题精选精练附答案详析

江苏专版2020届高三数学一轮复习《数列》典型题精选精练附答案详析
则称数列{an}为 P(k)数列. (1)若等比数列{an}为 P(4)数列,求 a1 的值; (2)已知 m 为给定的正整数,且 m≥2. ① 若公差为正数的等差数列{an}是 P(2m+3)数列,求数列{an}的公差; qn-1,1≤n≤m,n∈N*, 3 ② 若 an= m-n,m+1≤n≤2m,n∈N*,其中 q 为常数,q<-1.判断数列{an}是否为 P(2m) 12 数列,说明理由.
3、(南京市 13 校 2019 届高三 12 月联合调研)设等比数列 {an }的前 n 项积为 Pn ,若 P12 = 32P7 ,则
a10 的值是 ▲ .
4、(苏州市
2019
届高三上学期期中)已知等比数列an 的前 n 项和为 Sn
,S4 S2


4
,则
S8 S4

▲.
5、(徐州市 2019 届高三上学期期中)已知等差数列{an} 的前 n 项和为 Sn , S11 132 , a6 a9 30 , 则 a12 的值为 ▲ .
(3)若数列 an
的各项均为正数,且an M
,数列
4n

an
中是否存在无穷多项依次成等差数列,
若存在,给出一个数列an 的通项;若不存在,说明理由.
4、(南京市 2018 高三 9 月学情调研)已知数列{an}的各项均为正数,记数列{an}的前 n 项和为 Sn, 数列{an2}的前 n 项和为 Tn,且 3Tn=Sn2+2Sn,n∈N*. (1)求 a1 的值; (2)求数列{an}的通项公式; (3)若 k,t∈N*,且 S1,Sk-S1,St-Sk 成等比数列,求 k 和 t 的值.

11、(苏锡常镇四市 2019 届高三教学情况调查(二))已知数列an 是各项都不为 0 的无穷数列,

南京市2020届高三数学三模含答案

南京市2020届高三数学三模含答案

南京市2020届高三年级第三次模拟考试数 学注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题卡的密封线内.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡. 一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题卡的指定位置....上) 1.已知集合A ={x |2<x <4},B ={x |1<x <3},则A ∪B = ▲ . 2.若z =a 1+i+i (i 是虚数单位)是实数,则实数a 的值为 ▲ .3.某校共有教师300人,男学生1200人,女学生1000人,现用分层抽样从所有师生中抽取一个容量为125的样本,则从男学生中抽取的人数为 ▲ . 4.如图是一个算法的伪代码,其输出的结果为 ▲ .5.将甲、乙、丙三人随机排成一行,则甲、乙两人相邻的概率为 ▲ .6.已知函数f (x )=2sin(ωx +φ) (其中ω>0,-π2<φ<π2)的部分图象如图所示,则f (π2)的值为▲ .7.已知数列{a n }为等比数列.若a 1=2,且a 1,a 2,a 3-2成等差数列,则{a n }的前n 项和为 ▲ .8.在平面直角坐标系xOy 中,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F .若以F 为圆心,a 为半径的圆交该双曲线的一条渐近线于A ,B 两点,且AB =2b ,则该双曲线的离心率为 ▲ .9.若正方体ABCD -A 1B 1C 1D 1的棱长为2,则三棱锥A -B 1CD 1的体积为 ▲ .(第6题图)10.已知函数f (x )=⎩⎨⎧x +2, x ≤0,f (-x ),x >0,g (x )=f (x -2).若g (x -1)≥1,则x 的取值范围为 ▲ .11.在平面直角坐标系xOy 中,A ,B 是圆O :x 2+y 2=2上两个动点,且OA →⊥OB →.若A ,B 两点到直线l :3x +4y -10=0的距离分别为d 1,d 2,则d 1+d 2的最大值为 ▲ . 12.若对任意a ∈[e ,+∞) (e 为自然对数的底数) ,不等式x ≤e ax+b对任意x ∈R 恒成立,则实数b 的取值范围为 ▲ .13.已知点P 在边长为4的等边三角形ABC 内,满足AP →=λAB →+μAC →,且2λ+3μ=1,延长AP 交边BC 于点D .若BD =2DC ,则PA →·PB →的值为 ▲ .14.在△ABC 中,∠A =π3,D 是BC 的中点.若AD ≤22BC ,则sin B sin C 的最大值为 ▲ .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域....内. 15.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,E ,F 分别为AD ,PB 的中点. 求证:(1)EF ∥平面PCD ;(2)平面PAB ⊥平面PCD .16.(本小题满分14分)已知向量m =(cos x ,sin x ),n =(cos x ,-sin x ),函数f (x )=m ·n +12.(1)若f (x 2)=1,x ∈(0,π),求tan(x +π4)的值;(2)若f (α)=-110, α∈(π2,3π4),sin β=7210,β∈(0,π2),求2α+β的值.FEPBDCA(第15题图)17.(本小题满分14分)如图,港口A 在港口O 的正东100海里处,在北偏东方向有一条直线航道OD ,航道和正东方向之间有一片以B 为圆心,半径85海里的圆形暗礁群(在这片海域行船有触礁危险),其中OB =2013海里,tan ∠AOB =23,cos ∠AOD =55.现一艘科考船以105海里/小时的速度从O 出发沿OD 方向行驶,经过2个小时后,一艘快艇以50海里/小时的速度准备从港口A 出发,并沿直线方向行驶与科考船恰好相遇. (1)若快艇立即出发,判断快艇是否有触礁的危险,并说明理由; (2)在无触礁危险的情况下,若快艇再等x 小时出发,求x 的最小值.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点 (-2,0)和 (1,32),椭圆C 上三点A ,M ,B 与原点O 构成一个平行四边形AMBO . (1)求椭圆C 的方程;(2)若点B 是椭圆C 的左顶点,求点M 的坐标; (3)若A ,M ,B ,O 四点共圆,求直线AB 的斜率.(第18题图)19.(本小题满分16分)已知函数f(x)=e xx2-ax+a(a∈R) ,其中e为自然对数的底数.(1)若a=1,求函数f(x)的单调减区间;(2)若函数f(x)的定义域为R,且f(2)>f(a),求a的取值范围;(3)证明:对任意a∈(2,4),曲线y=f(x)上有且仅有三个不同的点,在这三点处的切线经过坐标原点.20.(本小题满分16分)若数列{a n}满足n≥2,n∈N*时,a n≠0,则称数列{a na n+1}(n∈N*)为{a n}的“L数列”.(1)若a1=1,且{a n}的“L数列”为{12n},求数列{a n}的通项公式;(2)若a n=n+k-3(k>0),且{a n}的“L数列”为递增数列,求k的取值范围;(3)若a n=1+p n-1,其中p>1,记{a n}的“L数列”的前n项和为S n,试判断是否存在等差数列{c n},对任意n∈N*,都有c n<S n<c n+1成立,并证明你的结论.南京市2020届高三年级第三次模拟考试数学附加题注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题卡的密封线内.试题的答案写在答题..卡.上对应题目的答案空格内.考试结束后,交回答题卡. 21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷..卡指定区域内......作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 0,a ∈R .若点P (1,1)在矩阵A 的变换下得到点P ′(0,-2).(1)求矩阵A ;(2)求点Q (0,3)经过矩阵A 的2次变换后对应点Q ′的坐标.B .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎨⎧x =3t ,y =1+t (t 为参数),求曲线C 上的点到直线l 的距离的最大值.C .选修4—5:不等式选讲已知a ,b 为非负实数,求证:a 3+b 3≥ab (a 2+b 2).【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =3,AC =4,B 1C ⊥AC 1. (1)求AA 1的长.(2)试判断在侧棱BB 1上是否存在点P ,使得直线PC 与平面AA 1C 1C 所成角和二面角B -A 1C -A 的大小相等,并说明理由.23.(本小题满分10分)口袋中有大小、形状、质地相同的两个白球和三个黑球.现有一抽奖游戏规则如下:抽奖者每次有放回的从口袋中随机取出一个球,最多取球2n +1(n ∈N *)次.若取出白球的累计次数达到n +1时,则终止取球且获奖,其它情况均不获奖.记获奖概率为P n . (1)求P 1;(2)证明:P n +1<P n .(第22题图)A 1CABB 1C 1P南京市2020届高三年级第三次模拟考试数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.{x |1<x <4} 2.2 3.60 4.10 5.236. 37.2n +1-2 8.62 9.8310.[2,4] 11.6 12. [-2,+∞)13.-9414.38二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)证明:(1)取PC 中点G ,连接DG 、FG .在△PBC 中,因为F ,G 分别为PB ,PC 的中点,所以GF ∥BC ,GF =12BC .因为底面ABCD 为矩形,且E 为AD 的中点,所以DE ∥BC ,DE =12BC , ······························································ 2分所以GF ∥DE ,GF =DE ,所以四边形DEFG 为平行四边形, 所以EF ∥DG . ············································································· 4分 又因为EF ⊄平面PCD ,DG ⊂平面PCD ,所以EF ∥平面PCD . ······································································ 6分(2)因为底面ABCD 为矩形,所以CD ⊥AD .又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,CD ⊂平面ABCD , 所以CD ⊥平面PAD . ·································································· 10分 因为PA ⊂平面PAD ,所以CD ⊥PA . ················································· 12分 又因为PA ⊥PD ,PD ⊂平面PCD ,CD ⊂平面PCD ,PD ∩CD =D ,所以PA ⊥平面PCD .因为PA ⊂平面PAB ,所以平面PAB ⊥平面PCD . ································ 14分16.(本小题满分14分)解:(1) 因为向量m =(cos x ,sin x ),n =(cos x ,-sin x ),所以 f (x )=m ·n +12=cos 2x -sin 2x +12=cos2x +12. ··································· 2分因为f (x 2)=1,所以cos x +12=1,即cos x =12.又因为x ∈(0,π) ,所以x =π3, ························································· 4分所以tan(x +π4)=tan(π3+π4)=tan π3+ tan π41-tan π3tanπ4=-2-3. ······························· 6分(2)若f (α)=-110,则cos2α+12=-110,即cos2α=-35.因为α∈(π2,3π4),所以2α∈(π,3π2),所以sin2α=-1-cos 22α=-45. ········ 8分因为sin β=7210,β∈(0,π2),所以cos β=1-sin 2β=210, ······················ 10分所以cos(2α+β)=cos2αcos β-sin2αsin β=(-35)×210-(-45)×7210=22. ····· 12分又因为2α∈(π,3π2),β∈(0,π2),所以2α+β∈(π,2π),所以2α+β的值为7π4. ····································································· 14分17.(本小题满分14分)解:如图,以O 为原点,正东方向为x 轴,正北方向为y 轴,建立直角坐标系xOy . 因为OB =2013,tan ∠AOB =23,OA =100,所以点B (60,40),且A (100,0). ··············································(1)设快艇立即出发经过t 小时后两船相遇于点C , 则OC =105(t +2),AC =50t .因为OA =100,cos ∠AOD =55, 所以AC 2=OA 2+OC 2-2OA ·OC ·cos ∠AOD , 即(50t )2=1002+[105(t +2)]2-2×100×105(t +2)×55.化得t 2=4,解得t 1=2,t 2=-2(舍去), ··············································· 4分 所以OC =405.因为cos ∠AOD =55,所以sin ∠AOD =255,所以C (40,80),所以直线AC 的方程为y =-43(x -100),即4x +3y -400=0. ······················· 6分因为圆心B 到直线AC 的距离d =|4×60+3×40-400|42+32=8,而圆B 的半径r =85,所以d <r ,此时直线AC 与圆B 相交,所以快艇有触礁的危险.答:若快艇立即出发有触礁的危险. ······················································· 8分 (2)设快艇所走的直线AE 与圆B 相切,且与科考船相遇于点E . 设直线AE 的方程为y =k (x -100),即kx -y -100k =0.因为直线AE 与圆B 相切,所以圆心B 到直线AC 的距离d =|60k -40-100k |12+k2=85, 即2k 2+5k +2=0,解得k =-2或k =-12. ············································ 10分由(1)可知k =-12舍去.因为cos ∠AOD =55,所以tan ∠AOD =2,所以直线OD 的方程为y =2x . 由⎩⎨⎧y =2x , y =-2(x -100),解得⎩⎨⎧x =50,y =100,所以E (50,100),所以AE =505,OE =505, ······························································ 12分此时两船的时间差为505105-50550=5-5,所以x ≥5-5-2=3-5.答:x 的最小值为(3-5)小时. ···························································· 14分18.(本小题满分16分)解:(1)因为椭圆x 2a 2+y 2b 2=1(a >b >0)过点(-2,0)和 (1,32),所以a =2,1a 2+34b2=1,解得b 2=1,所以椭圆C 的方程为x 24+y 2=1. ·························································· 2分(2)因为B 为左顶点,所以B (-2,0).因为四边形AMBO 为平行四边形,所以AM ∥BO ,且AM =BO =2. ··········· 4分 设点M (x 0,y 0),则A (x 0+2,y 0).因为点M ,A 在椭圆C 上,所以⎩⎨⎧x 024+y 02=1, (x 0+2)24+y 02=1,解得⎩⎪⎨⎪⎧x 0=-1, y 0=±32,所以M (-1,±32). ········································································ 6分 (3) 因为直线AB 的斜率存在,所以设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y ,得(4k 2+1)x 2+8kmx +4m 2-4=0, 则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2. ···················································· 8分因为平行四边形AMBO ,所以OM →=OA →+OB →=(x 1+x 2,y 1+y 2).因为x 1+x 2=-8km 1+4k 2,所以y 1+y 2=k (x 1+x 2)+2m =k ·-8km 1+4k 2+2m =2m1+4k 2, 所以M (-8km 1+4k 2,2m1+4k 2). ································································· 10分因为点M 在椭圆C 上,所以将点M 的坐标代入椭圆C 的方程,化得4m 2=4k 2+1.① ········································································ 12分 因为A ,M ,B ,O 四点共圆,所以平行四边形AMBO 是矩形,且OA ⊥OB , 所以OA →·OB →=x 1x 2+y 1y 2=0.因为y 1y 2=(kx 1+m )(kx 1+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-4 k 21+4k 2,所以x 1x 2+y 1y 2=4m 2-41+4k 2+m 2-4k 21+4k 2=0,化得5m 2=4k 2+4.② ················· 14分 由①②解得k 2=114,m 2=3,此时△>0,因此k =±112.所以所求直线AB 的斜率为±112. ···················································· 16分 19. (本小题满分16分)解:(1)当a =1时,f (x )=e xx 2-x +1,所以函数f (x )的定义域为R ,f'(x )=e x (x -1)(x -2)(x 2-x +1)2.令f'(x )<0,解得1<x <2,所以函数f (x )的单调减区间为(1,2). ··················································· 2分(2)由函数f (x )的定义域为R ,得x 2-ax +a ≠0恒成立,所以a 2-4a <0,解得0<a <4. ·························································· 4分 方法1由f (x )=e x x 2-ax +a ,得f'(x )=e x (x -a )(x -2)(x 2-ax +a )2. ①当a =2时,f (2)=f (a ),不符题意.②当0<a <2时,因为当a <x <2时,f ′(x )<0,所以f (x )在(a ,2)上单调递减,所以f (a )>f (2),不符题意. ···························································· 6分 ③当2<a <4时,因为当2<x <a 时,f ′(x )<0,所以f (x )在(2,a )上单调递减,所以f (a )<f (2),满足题意.综上,a 的取值范围为(2,4). ························································· 8分 方法2由f (2)>f (a ),得e 24-a >e a a. 因为0<a <4,所以不等式可化为e 2>e a a(4-a ). 设函数g (x )=e x x(4-x )-e 2, 0<x <4. ·················································· 6分 因为g'(x )=e x·-(x -2)2x 2≤0恒成立,所以g (x )在(0,4)上单调递减. 又因为g (2)=0,所以g (x )<0的解集为(2,4).所以,a 的取值范围为(2,4). ··························································· 8分(3)证明:设切点为(x 0,f (x 0)),则f'(x 0)=e x 0(x 0-2)(x 0-a )(x 02-ax 0+a )2, 所以切线方程为y -e x 0x 02-ax 0+a =e x 0(x 0-2)(x 0-a )(x 02-ax 0+a )2×(x -x 0). 由0-e x 0x 02-ax 0+a =e x 0(x 0-2)(x 0-a )(x 02-ax 0+a )2×(0-x 0), 化简得x 03-(a +3)x 02+3ax 0-a =0. ··················································· 10分 设h (x )=x 3-(a +3)x 2+3ax -a ,a ∈(2,4),则只要证明函数h (x )有且仅有三个不同的零点.由(2)可知a ∈(2,4)时,函数h (x )的定义域为R ,h'(x )=3x 2-2(a +3)x +3a .因为△=4(a +3)2-36a =4(a -32)2+27>0恒成立, 所以h'(x )=0有两不相等的实数根x 1和x 2,不妨x 1<x 2.因为所以函数h (x )最多有三个零点. ························································ 12分 因为a ∈(2,4),所以h (0)=-a <0,h (1)=a -2>0,h (2)=a -4<0,h (5)=50-11a >0, 所以h (0)h (1)<0,h (1)h (2)<0,h (2)h (5)<0.因为函数的图象不间断,所以函数h (x )在(0,1),(1,2),(2,5)上分别至少有一个零点.综上所述,函数h (x )有且仅有三个零点. ············································ 16分20.(本小题满分16分)解:(1) 因为{a n }的“L 数列”为{12n },所以a n a n +1=12n ,n ∈N *,即a n +1a n =2n , 所以n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=2(n -1)+(n -2)+…+1=2n (n -1)2. 又a 1=1符合上式,所以{a n }的通项公式为a n =2n (n -1)2,n ∈N *. ··················· 2分(2)因为a n =n +k -3(k >0),且n ≥2,n ∈N *时,a n ≠0,所以k ≠1.方法1设b n =a n a n +1,n ∈N *,所以b n =n +k -3(n +1)+k -3=1-1n +k -2. 因为{b n }为递增数列,所以b n +1-b n >0对n ∈N*恒成立,即1n +k -2-1n +k -1>0对n ∈N*恒成立. ············································· 4分 因为1n +k -2-1n +k -1=1(n +k -2)(n +k -1), 所以1n +k -2-1n +k -1>0等价于(n +k -2)(n +k -1)>0. 当0<k <1时,因为n =1时,(n +k -2)(n +k -1)<0,不符合题意.············ 6分 当k >1时,n +k -1>n +k -2>0,所以(n +k -2)(n +k -1)>0,综上,k 的取值范围是(1,+∞). ························································· 8分方法2令f (x )=1-1x +k -2,所以f (x )在区间(-∞,2-k )和区间(2-k ,+∞)上单调递增. 当0<k <1时,f (1)=1-1k -1>1,f (2)=1-1k <1,所以b 2<b 1,不符合题意. ···················· 6分 当k >1时,因为2-k <1,所以f (x )在[1,+∞)上单调递增,所以{b n }单调递增,符合题意.综上,k 的取值范围是(1,+∞). ························································· 8分(3)存在满足条件的等差数列{c n },证明如下:因为a k a k +1=1+p k -11+p k =1p +1-1p 1+p k ,k ∈N*, ············································· 10分 所以S n =n p +(1-1p )·(11+p +11+p 2+…+11+p n -1+11+p n). 又因为p >1,所以1-1p >0,所以n p <S n <n p +(1-1p ).(1p +1p 2+ (1)n -1+1p n ), 即n p <S n <n p +1p ·[1-(1p)n ]. ································································· 14分 因为1p ·[1-(1p )n ]<1p ,所以n p <S n <n +1p. 设c n =n p ,则c n +1-c n =n +1p -n p =1p,且c n <S n <c n +1, 所以存在等差数列{c n }满足题意. ······················································· 16分南京市2020届高三年级第三次模拟考试数学附加题参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷..纸.指定区域内.....作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—2:矩阵与变换解:(1) ⎣⎢⎡⎦⎥⎤1 -1a 0 ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0a . ··································································· 2分 因为点P (1,1)在矩阵A 的变换下得到点P ′(0,-2),所以a =-2,所以A =⎣⎢⎡⎦⎥⎤1 -1-2 0. ········································································· 4分 (2)因为A =⎣⎢⎡⎦⎥⎤1 -1-2 0,所以A 2=⎣⎢⎡⎦⎥⎤1 -1-2 0 ⎣⎢⎡⎦⎥⎤1 -1-2 0=⎣⎢⎡⎦⎥⎤3 -1-2 2, ·············· 6分 所以A 2⎣⎡⎦⎤03=⎣⎢⎡⎦⎥⎤3 -1-2 2 ⎣⎡⎦⎤03=⎣⎢⎡⎦⎥⎤-36, 所以,点Q ′的坐标为(-3,6). ························································ 10分B .选修4—4:坐标系与参数方程解:由l 的参数方程⎩⎨⎧x =3t ,y =1+t(t 为参数)得直线l 方程为x -3y +3=0. ············· 2分 曲线C 上的点到直线l 的距离d =|1+cos θ- 3 sin θ+3|2······························· 4分 =|2cos(θ+π3)+1+3|2. ········································································ 6分 当θ+π3=2k π,即θ=-π3+2k π(k ∈Z )时, ··················································· 8分曲线C 上的点到直线l 的距离取最大值3+32. ········································ 10分 C .选修4—5:不等式选讲证明:因为a ,b 为非负实数, 所以a 3+b 3-ab (a 2+b 2)=a 2a (a -b )+b 2b (b -a )=(a -b )[(a )5-(b )5]. ·································· 4分 若a ≥b 时,a ≥b ,从而(a )5≥(b )5,得(a -b )·[(a )5-(b )5]≥0. ···························································· 6分 若a <b 时,a <b ,从而(a )5<(b )5,得(a -b )·[(a )5-(b )5]>0. ···························································· 8分 综上,a 3+b 3≥ab (a 2+b 2). ····························································· 10分22.(本小题满分10分)解:(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱,所以AA 1⊥平面ABC ,所以AA 1⊥AB ,AA 1⊥AC .又AB ⊥AC ,所以以{AB →,AC →,AA 1→}为正交基底建立如图所示的空间直角坐标系A —xyz .设AA 1=t (t >0),又AB =3,AC =4,则A (0,0,0),C 1(0,4,t ),B 1(3,0,t ),C (0,4,0), 所以AC 1→=(0,4,t ),B 1C →=(-3,4,-t ). ·············································· 2分因为B 1C ⊥AC 1,所以B 1C →·AC 1→=0,即16-t 2=0,解得t =4,所以AA 1的长为4. ·············································································· 4分(2)由(1)知B (3,0,0),C (0,4,0),A 1(0,0,4),所以A 1C →=(0,4,-4),BC →=(-3,4,0).设n =(x ,y ,z )为平面A 1CB 的法向量,则n ·A 1C →=0,n ·BC →=0,即⎩⎨⎧4y -4z =0,-3x +4y =0.取y =3,解得z =3,x =4,所以n =(4,3,3)为平面A 1CB 的一个法向量.又因为AB ⊥面AA 1C 1C ,所以AB →=(3,0,0)为平面A 1CA 的一个法向量,。

2020届江苏高三高考数学全真模拟试卷07(解析版)

2020届江苏高三高考数学全真模拟试卷07(解析版)

直线 AB 的方程为____________.
答案:x+y-3=0
解析:设圆心为 C,由题知 kAB·kCP=-1,又 kCP=2-1=1,∴ kAB=-1,∴ 直线 AB 的方程为 y= 1-0
-(x-1)+2,即 x+y-3=0.
11. 在△ABC 中,BC=2,A=2π,则A→B·A→C的最小值为________. 3
抛物线 y2=-4x 的焦点重合,则该双曲线的渐近线方程为________.
答案: y=± 3x 解析:由题设知a2=1,又易知双曲线焦点在 x 轴上,且 a=1,所以 b2=c2-a2=3,从而双曲线方程为
c2
x2-y2=1,所以双曲线渐近线方程为 y=± 3x. 3
7. 在平面直角坐标系 xOy 中,若点 P(m,1)到直线 4x-3y-1=0 的距离为 4,且点 P 在不等式 2x+y≥3 表示的平面区域内,则 m=________. 答案:6 解析:由题知|4m-4|=4,得 m=6 或-4,∴ P(6,1)或 P(-4,1).又 2x+y≥3,∴ m=6. 5
11

a

- 1 x4+4x3-12x2 25 3
+12×104],(10
分)
11
令 f(x)=- 1 x4+4x3-12x2,则 25 3
f′(x)=-
4
x3+4x2-24x=-4x
1 x2-x+6 25
.
25
由 f′(x)=0,解得 x=0(舍去)或 x=10 或 x=15,(12 分)
列表如下:
a
a
14. 已知等比数列{an}的首项为4,公比为-1,其前 n 项和为 Sn,若 A≤Sn- 1 ≤B 对 n∈N*恒成立,则 B

江苏省南京市溧水区第二高级中学第三高级中学等三校联考2020届高三数学上学期期中试题

江苏省南京市溧水区第二高级中学第三高级中学等三校联考2020届高三数学上学期期中试题

江苏省南京市溧水区第二高级中学、第三高级中学等三校联考2020届高三数学上学期期中试题注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸...上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:锥体的体积公式:V =13Sh ,其中S 为锥体的底面积,h 为锥体的高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A ={1,2,3,4},B ={x |x 2-4x <0},则A ∩B = ▲ . 2.若复数z 满足z i =1-3i ,其中i 为虚数单位,则z = ▲ .3.某校有教师300人,男学生1500人,女学生1200人,现用分层抽样的办法从全校师生中抽取200人进行某项调查,则应抽取的女学生人数为 ▲ .4.执行如图算法框图,若输入a =4,b =12,则输出a 的值是 ▲ .5.在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±3x ,则该双曲线的离心率为 ▲ .6.任取x ∈{-2,2,4},y ∈{-1,1,2},则使得向量a =(2,1) 与b =(x ,y )平行的概率为 ▲ .7.已知f (x )是定义在R 上的奇函数,且当x ≥0时f (x )=x +a ,a 为实数, 则f (-4)的值是 ▲ .开始结束输入a ,ba >b输出aa ←a ×bYN8.已知数列{a n }是等比数列,且a 1a 3a 5=8,a 7=8,则a 1的值是 ▲ .9.已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使得平面DAC ⊥平面BAC , 则三棱锥D -ABC 的体积是 ▲ .10.在平面直角坐标系xOy 中,过点P (-1,0)的直线l 与圆C :x 2+y 2-2x =0交于A ,B 两点,若CA ⊥CB ,则直线l 的斜率是 ▲ .11.已知α∈(0,π2),且P (4,3)是α-π6终边上一点,则cos α的值是 ▲ .12.实数x ,y 满足条件xy +1=4x +y 且x >1,则(x +1)(y +2)的最小值是 ▲ . 13.已知AB 是半径为3的圆M 的直径,点C 是圆周上除A ,B 外一点,若点P 满足PC →=2CM →,则PA →·PB →的值是 ▲ .14.已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,-1<x ≤0,x ,0<x ≤1,且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3b cos C =c sin B . (1)求角C 的大小;(2)若c =27,a +b =10,求△ABC 的面积.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,A 1B 与AB 1交于点D ,A 1C 与AC 1交于点E . 求证:(1)DE ∥平面B 1BCC 1; (2)平面A 1BC ⊥平面A 1ACC 1.ED B 1A1C 117.(本小题满分14分)在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a>b>0)的离心率为22,且短轴长为2.(1)求椭圆的方程;(2)设椭圆的上、下顶点分别为A,B,点C,D是椭圆上关于y轴对称的两个不同的点,直线AC,BD 交x轴分别于点M,N,求证:OM→·ON→为定值.18.(本小题满分16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD.AB,AD的长分别为23m和4m,上部是圆心为O的劣弧CD,∠COD=2π3.图1 图2 图3 图4(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.yxO NMDCBA19.(本小题满分16分)等差数列{a n }公差大于零,且a 2+a 3=52,a 22+a 32=134,记{a n }的前n 项和为S n ,等比数列{b n }各项均为正数,公比为q ,记{b n }的前n 项和为T n . (1)求S n ;(2)若q 为正整数,且存在正整数k ,使得T k ,T 3k ∈{S 2,S 5,S 6},求数列{b n }的通项公式; (3)若将S n 中的整数项按从小到大的顺序排列构成数列{c n },求{c n }的一个通项公式.20.(本小题满分16分)已知函数f (x )=x 2-(a +2)x +2,g (x )=ln x ,a ∈R .(1)若曲线y =g (x )在x =1处的切线恰与曲线y =f (x )相切,求a 的值; (2)不等式f (x )≥xg (x )对一切正实数x 恒成立,求a 的取值范围;(3)已知a <2,若函数h (x )=f (x )+ag (x )+2a 在(0,2)上有且只有一个零点,求a 的取值范围.2019-2020学年度第一学期高三期中考试数学附加题注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题..纸.上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答.卷纸指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—2:矩阵与变换 已知x ,y ∈R ,矩阵A =⎣⎢⎡⎦⎥⎤x 1y 0有一个属于特征值-2的特征向量α=⎣⎢⎡⎦⎥⎤1-1,(1)求矩阵A ;(2)若矩阵B =⎣⎢⎡⎦⎥⎤1 20 6,求A -1B .B .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,P 为曲线C 1:⎩⎨⎧x =cos θ,y =3sin θ,(θ为参数)上的动点,Q 为曲线C 2:⎩⎪⎨⎪⎧x =4- 22t ,y =4+2 2t ,(t 为参数)上的动点,求线段PQ 的最小值.C .选修4—5:不等式选讲设a ,b ,c 为正实数,求证:a b +c +b c +a +ca +b ≥32.【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说APFE CBD明、证明过程或演算步骤. 22.(本小题满分10分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为正方形,AP =AB =1,F ,E 分别是PB ,PC中点.(1)求DE 与平面PAB 所成角的正弦;(2)求平面ADEF 与平面PDE 所成锐二面角的值.23.(本小题满分10分)2020年6月,第十六届欧洲杯足球赛将在12个国家的13座城市举行.某体育网站组织球迷对德国、西班牙、法国、葡萄牙四支热门球队进行竞猜,每位球迷可从四支球队中选出一支球队,现有三人参与竞猜.(1)若三人中每个人可以选择任何一支球队,且选择每个球队都是等可能的,求四支球队中恰好有两支球队有人选择的概率;(2)若三人中有一名女球迷,假设女球迷选择德国队的概率为13,男球迷选择德国队的概率为25,记X 为三人中选择德国队的人数,求X 的分布列和数学期望.南京市建邺高级中学、溧水第二高级中学期中考试高三数学参考答案 2019.11一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.{2,3} 2.-3+i 3.80 4.12 5.2 6.13 7.-2 8.1 9.24510.±77 11.43-310 12.27 13.72 14.(-94,-2]∪(0,12] 二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.解:(1)因为3cos sin b C c B =,由正弦定理可得:3cos sin sin B C C B = 所以tan 3C =4分 又因为()0,C π∈…………5分 所以3C π=…………6分(2)因为2222cos c a b ab C =+-2()3a b ab =+-…………8分所以 24ab =…………10分 所以 1sin 632ABC S ab C ==V 14分 16.证明:(1)直三棱柱ABC -A 1B 1C 1中, 1AA //1BB ,所以四边形11ABB A 是平行四边形,且11A B AB DE =I 所以D 为1A B 中点,…………2分 同理E 为1A C 中点, 所以//DE BC …………4分又因为DE ⊄平面11B BCC ,BC ⊂平面11B BCC , 所以//DE 11B BCC …………6分ED B 1A 1C1CBA(2)直三棱柱ABC -A 1B 1C 1中,1C C ⊥平面ABC , 因为BC ⊂平面ABC ,所以1C C BC ⊥,因为AC BC ⊥,1AC C C C =I , 1AC C C ⊂、平面11A ACC 所以BC ⊥平面11A ACC …………12分 又因为BC ⊂平面1A BC所以平面1A BC ⊥平面11A ACC …………14分17.解:(1)22c a =,22b =…………2分 解得:2,1a b c ===所以椭圆方程为:2212x y +=…………4分 (2)设00(,)D x y ,00(,)C x y - 则AC l :0011y y x x -=+-…………6分 所以00(,0)1x M y -…………8分 同理00(,0)1x N y +…………10分 所以20201x OM ON y ⋅=-u u u u r u u u r又因为220012x y +=,22002200212x x OM ON x y ⋅===---u u u u r u u u r …………14分y xON MD CBA18.解:(1)如图,过O 作与地面垂直的直线交AB ,CD 于点1O ,2O ,交劣弧CD 于点E , 1O E 的长即为拱门最高点到地面的距离. 在2Rt O OC ∆中,23O OC π∠=,23CO =,所以21OO =,圆的半径2R OC ==. 所以11225O E R O O OO =+-=.…………4分 答:拱门最高点到地面的距离为5m .(2)在拱门放倒过程中,过点O 作与地面垂直的直线与“拱门外框上沿”相交于点P . 当点P 在劣弧CD 上时,拱门上的点到地面的最大距离h 等于圆O 的半径长与圆心O 到地面距离 之和;当点P 在线段AD 上时,拱门上的点到地面的最大距离h 等于点D 到地面的距离.连接OB 由(1)知,在1Rt OO B ∆中,221123OB OO O B =+=…………6分. 以B 为坐标原点,水平直线l 为x 轴,建立如图所示的坐标系. ①当点P 在劣弧CD 上时,62ππθ<≤.由6OBx πθ∠=+,23OB =,由三角函数定义,得23cos ,23sin 66O ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则223sin()6h πθ=++. …………8分所以当62ππθ+=,即3πθ=时,h 取得最大值223+. …………10分②当点P 在线段AD 上时,06πθ≤≤.连接BD ,设CBD ϕ∠=,在Rt BCD ∆中,2227DB BC CD =+=则2321sin 727ϕ==,27cos 727ϕ==. 由DBx θϕ∠=+,得(27cos(),27sin())D θϕθϕ++. 所以 27sin()4sin 23cos h θϕθθ=+=+. …………13分 又当06πθ<<时,4cos 23sin 4cos23sin3066h ππθ'=->-=>.所以4sin 23cos h θθ=+在0,6π⎡⎤⎢⎥⎣⎦上递增.所以当6πθ=时,h 取得最大值5. 因为,所以h 的最大值为.…………15分综上,艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为()m 。

江苏省2023届新高考数学高三上学期10月月考试卷分类汇编:解析几何解答题(原卷版)

江苏省2023届新高考数学高三上学期10月月考试卷分类汇编:解析几何解答题(原卷版)

江苏省2023届新高考数学高三上学期10月期初考试试卷分类汇编:解析几何解答题部分1.(2023·江苏泰州中学10月)(本题满分10分)已知直线(1-a )x +(1+a )y +3a -3=0(a ∈R ).(1)求证:直线经过定点,并求出定点P ;(2)经过点P 有一条直线l ,它夹在两条直线l 1:2x -y -2=0与l 2:x +y +3=0之间的线段恰被P 平分,求直线l 的方程.2.(2023·江苏扬州中学10月)(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 2,上顶点为H ,O 为坐标原点,∠OHF 2=30°,(1,32)在椭圆E 上. (1)求椭圆E 的方程;(2)设经过点F 2且斜率不为0的直线l 与椭圆E 相交于A ,B 两点,点P (-2,0),Q (2,0).若M ,N 分别为直线AP ,BQ 与y 轴的交点,记△MPQ ,△NPQ 的面积分别S △MPQ ,S △NPQ ,求S △MPQ S △NPQ的值.3.(2023·江苏南通如皋10月)已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为1(1,0)F -,2(1,0)F ,点P 在椭圆E 上,212PF F F ⊥,且12||3||.PF PF =(1)求椭圆E 的标准方程;(2)设直线:1()l x my m R =+∈与椭圆E 相交于A ,B 两点,与圆222x y a +=相交于C ,D 两点,求2||||AB CD ⋅的取值范围.4.(2023·江苏金陵中学、海安中学10月第二次联考)(12分)在一张纸上有一个圆C :(x +5)2+y 2=4,定点M (5,0),折叠纸片使圆C 上某一点M 1好与点M 重合,这样每次折叠都会留下一条直线折痕PQ ,设折痕PQ 与直线M 1C 的交 点为T .(1)求证:||TC |-|TM ||为定值,并求出点T 的轨迹C 方程;(2)设A (-1,0),M 为曲线C ′上一点,N 为圆x 2+y 2=上一点(M ,N 均不在x 轴上).直线AM ,AN 的斜率分别记为k 1,k 2,且k 2=-14k 1,求证:直线MN 过定点,并求出此定点的坐标.5.(2023·江苏南师附中10月考试)(本小题满分12分)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,C 的右焦点F 与点M (0,2)的连线与C 的一条渐近线垂直.(1)求双曲线C 的标准方程:(2)经过点M 且斜率不为零的直线l 与C 的两支分别交于点A ,B ,①若O 为坐标原点,求→OA ·→OB 的取值范围:②若点D 是点B 关于y 轴的对称点,证明:直线AD 过定点.6.(2023·江苏南京盐城部分学校10月联考)(12分)已知椭圆C 的中心为坐标原点O ,对称轴为x 轴,y 轴,且过A (0,3),B (12,32)两点. (1)求C 的方程;(2)若P 为C 上不同于点A ,B 的一点,求△P AB 面积的最大值.7.(2023·江苏南京六校联合体10月)已知双曲线Γ:)0,0(12222>>=-b a by a x 的焦距为,4且过点).33,2(P (1)求双曲线Γ的方程;(2)过双曲线Γ的左焦点F 分别作斜率为21,k k 的两直线21l l 与,直线1l 交双曲线Γ于B A ,两点,直线2l 交双曲线Γ于D C ,两点,设N M ,分别为AB 与CD 的中点,若121-=⋅k k ,试求OMN ∆与FMN ∆的面积之比.8.(2023·江苏南京市建邺区第一次联合统测10月)(12分)已知O 为坐标原点,点(1,62)在椭圆C :x 2a 2+y 2b2=1(a >b >0)上,直线l :y =x +m 与C 交于A ,B 两点,且线段AB 的中点为M ,直线OM 的斜率为-12. (1)求C 的方程;(2)若m =1,试问C 上是否存在P ,Q 两点关于l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.9.(2023·江苏南通如皋10月)已知双曲线22:12xC y-=上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan PAQ∠=PAQ的面积.。

江苏省南京市秦淮区2020届高三数学第一次模拟考试适应性测试试卷

江苏省南京市秦淮区2020届高三数学第一次模拟考试适应性测试试卷

江苏省南京市秦淮区2020届高三数学第一次模拟考试适应性测试试卷一、填空题 (共14题;共14分)1.(1分)设全集 U ={1,2,3,4,5} ,若集合 A ={3,4,5} ,则 C U A = . 2.(1分)已知复数 z =21+i+2i ( i 是虚数单位),则 z 的共轭复数为 . 3.(1分)函数f (x ) =1√x−1的定义域为 . 4.(1分)根据如图所示的伪代码可知,输出的结果为 .5.(1分)某班要选一名学生做代表,每个学生当选是等可能的,若“选出代表是男生”的概率是“选出代表是女生”的概率的 13,则这个班的女生人数占全班人数的百分比是 .6.(1分)若双曲线 x 2a 2−y 2b2=1(a >0,b >0) 的渐近线方程为 y =±x ,则双曲线的离心率为 .7.(1分)已知某正四棱锥的底面边长和侧棱长均为 2cm ,则该棱锥的体积为 cm 3 .8.(1分)函数 f(x)={x 2−3x +2,x ≤012x ,x >0 ,则f (f (0))= . 9.(1分)在平面直角坐标系xOy 中,圆C 的半径为 √13 ,圆心在y 轴上,且圆C 与直线2x+3y ﹣10=0相切于点P (2,2),则圆C 的标准方程是 .10.(1分)设D ,E 分别是△ABC 的边AB ,BC 上的点, AD =12AB ,BE =23BC ,若 DE ⃗⃗⃗⃗⃗⃗ =λ1CB⃗⃗⃗⃗⃗ +λ2CA ⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2= . 11.(1分)已知e 为自然对数的底数.若不等式(e x ﹣1﹣1)(x ﹣a )≥0恒成立,则实数a 的值是 .12.(1分)在等差数列{a n }中,已知公差d≠0,a 22=a 1a 4,若 a 1,a 3,a k 1,a k 2,⋯,a k n ,…成等比数列,则k n = .13.(1分)在平面直角坐标系xOy 中,直线l 是曲线M :y =sinx (x ∈[0,π])在点A 处的一条切线,且l ∥OP ,其中P 为曲线M 的最高点,l 与x 轴交于点B ,过A 作x 轴的垂线,垂足为C ,则BA⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ = . 14.(1分)在锐角三角形ABC 中,已知4sin 2A+sin 2B =4sin 2C ,则1tanA +1tanB +1tanC的最小值为 .二、解答题 (共6题;共65分)15.(10分)如图,在△ABC 中,已知B =π4 ,AB =3,AD 为边BC 上的中线,设∠BAD =α,若cosα =2√55.(1)(5分)求AD 的长; (2)(5分)求sinC 的值.16.(10分)在四棱锥P ﹣ABCD 中,底面ABCD 为平行四边形,PD ⊥平面ABCD ,BD =CD ,E ,F 分别为BC ,PD 的中点.(1)(5分)求证:EF ∥平面PAB ; (2)(5分)求证:平面PBC ⊥平面EFD .17.(10分)如图,在平面直角坐标系xOy 中,已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的离心率为12,右焦点F 到右准线的距离为3.(1)(5分)求椭圆C的标准方程;(2)(5分)设过F的直线l与椭圆C相交于P,Q两点.已知l被圆O:x2+y2=a2截得的弦长为√14,求△OPQ的面积.18.(10分)如图,OM,ON是某景区的两条道路(宽度忽略不计,OM为东西方向),Q为景区内一景点,A为道路OM上一游客休息区,已知tan∠MON=−3,OA=6(百米),Q到直线OM,ON的距离分别为3(百米),6√105(百米),现新修一条自A经过Q的有轨观光直路并延伸至道路ON于点B,并在B处修建一游客休息区.(1)(5分)求有轨观光直路AB的长;(2)(5分)已知在景点Q的正北方6百米的P处有一大型组合音乐喷泉,喷泉表演一次的时长为9分钟,表演时,喷泉喷洒区域以P为圆心,r为半径变化,且t分钟时,r=2√at(百米)(0≤t≤9,0<a<1).当喷泉表演开始时,一观光车S(大小忽略不计)正从休息区B沿(1)中的轨道BA以√2(百米/分钟)的速度开往休息区A,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.19.(15分)在数列{a n}中,a1=3,且对任意的正整数n,都有a n+1=λa n+2×3n,其中常数λ>0.(1)(5分)设b n=a n3n,n∈N∗.当λ=3时,求数列{b n}的通项公式;(2)(5分)若λ≠1且λ≠3,设c n=a n+2λ−3×3n,n∈N∗,证明:数列{c n}为等比数列;(3)(5分)当λ=4时,对任意的n∈N*,都有a n≥M,求实数M的最大值.20.(10分)已知函数g(x)=e x﹣ax2﹣ax,h(x)=e x﹣2x﹣lnx.其中e为自然对数的底数.(1)(5分)若f(x)=h(x)﹣g(x).①讨论f(x)的单调性;②若函数f(x)有两个不同的零点,求实数a的取值范围.(2)(5分)已知a>0,函数g(x)恰有两个不同的极值点x1,x2,证明:x1+x2< ln(4a2).答案解析部分1.【答案】{1,2}【解析】【解答】∵全集U={1,2,3,4,5},集合A={3,4,5},∴C U A=={1,2},故答案为:{1,2}.【分析】利用补集定义直接求解即可2.【答案】1−i【解析】【解答】∴z=21+i+2i=2(1−i)(1+i)(1−i)+2i=1−i+2i=1+i∴z̅=1−i.故答案为1−i【分析】利用复数代数形式的乘除运算化简得z,再由共轭复数的定义得答案.3.【答案】(1,+∞)【解析】【解答】由题,若函数有意义,则x−1>0,解得x>1,所以定义域为(1,+∞), 故答案为: (1,+∞)【分析】若函数有意义,则x−1>0,求解即可.4.【答案】65【解析】【解答】由题, i=1, S=2,i=1+3=4, S=3×4+2=14,i=4+3=7, S=3×7+14=35,i=7+3=10, S=3×10+35=65,此时输出,故答案为:65【分析】根据程序伪代码列出程序的每一步,进而可得输出结果.5.【答案】75%【解析】【解答】设“选出代表是女生”的概率为a,则“选出代表是男生”的概率为13a,因为a+13a=1,所以a=34,所以这个班的女生人数占全班人数的百分比为75%,故答案为: 75%【分析】设“选出代表是女生”的概率为a,则“选出代表是男生”的概率为13a ,则a+13a=1,进而求解即可.6.【答案】√2【解析】【解答】双曲线x2a2−y2b2=1(a>0,b>0)的渐近线方程为y=±bax,根据题意知±ba=±1,所以b a=1.双曲线的离心率e=ca =√c2a2=√a2+b2a2=√1+b2a2=√2.故答案为:√2.【分析】利用双曲线求渐近线方程的公式结合已知条件求出a,b的关系式,再利用双曲线中a,b,c三者的关系式结合双曲线的离心率公式变形,从而求出双曲线的离心率。

江苏省盐城市、南京市2022届高三年级第一次模拟考试数学试题及答案解析

江苏省盐城市、南京市2022届高三年级第一次模拟考试数学试题及答案解析

高三数学试题第1页(共5页)盐城市、南京市2022届高三年级第一次模拟考试数学2022.01(总分150分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第I 卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={y |y =sin x ,x ∈R },N ={y |y =2x ,x ∈R },则M ∩N =A .[-1,+ )B .[-1,0)C .[0,1]D .(0,1]2.在等比数列{a n }中,公比为q ,已知a 1=1,则0<q <1是数列{a n }单调递减的条件A .充分不必要B .必要不充分C .充要D .既不充分又不必要3.某中学高三(1)班有50名学生,在一次高三模拟考试中,经统计得:数学成绩X ~N (110,100),则估计该班数学得分大于120分的学生人数为(参考数据:P (|X -μ|<σ)≈0.68,P (|X -μ|<2σ)≈0.95)A .16B .10C .8D .24.若f (α)=cos α+isin α(i 为虚数单位),则[f (α)]2=A .f (α)B .f (2α)C .2f (α)D .f (α2)5.已知直线2x +y +a =0与⊙C :x 2+(y -1)2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =A .-4或2B .-2或4C .-1±3D .-1±66.在平面直角坐标系xOy 中,设A (1,0),B (3,4),向量→OC =x →OA +y →OB ,x +y =6,则|→AC |的最小值为A .1B .2C .5D .25高三数学试题第2页(共5页)7.已知α+β=π4(α>0,β>0),则tan α+tan β的最小值为A .22B .1C .-2-22D .-2+228.已知f (x )x -4,x ≤4x -16)2-143,x >4,则当x ≥0时,f (2x )与f (x 2)的大小关系是A .f (2x )≤f (x 2)B .f (2x )≥f (x 2)C .f (2x )=f (x 2)D .不确定二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若函数f (x )=cos2x +sin x ,则关于f (x )的性质说法正确的有A .偶函数B .最小正周期为πC .既有最大值也有最小值D .有无数个零点10.若椭圆C :x 29+y 2b 2=1(b >0)的左右焦点分别为F 1,F 2,则下列b 的值,能使以F 1F 2为直径的圆与椭圆C 有公共点的有A .b =2B .b =3C .b =2D .b =511.若数列{a n }的通项公式为a n =(-1)n -1,记在数列{a n }的前n +2(n ∈N *)项中任取两项都是正数的概率为P n ,则A .P 1=13B .P 2n <P 2n +2C .P 2n -1<P 2nD .P 2n -1+P 2n <P 2n +1+P 2n +212.如图,在四棱锥P -ABCD 中,已知PA ⊥底面ABCD ,底面ABCD 为等腰梯形,AD ∥BC ,AB=AD =CD =1,BC =P A =2,记四棱锥P -ABCD 的外接球为球O ,平面P AD 与平面PBC 的角线为l ,BC 的中点为E ,则A .l ∥BC B .AB ⊥PCC .平面PDE ⊥平面PAD D .l 被球O 截得的弦长为1第II 卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.若f (x )=(x +3)5+(x +m )5是奇函数,则m =.ABDCEP(第12题图)高三数学试题第3页(共5页)14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3b ,则cos B 的最小值是.15.计算机是二十世纪最伟大的发明之一,被广泛地应用于人们的工作于生活之中,计算机在进行数的计算处理时,使用的是二进制.一个十进制数n (n ∈N *)可以表示成二进制数(a 0a 1a 2…a k )2,k ∈N ,则n =a 0⋅2k +a 1⋅2k -1+a 2⋅2k -2+…+a k ⋅20,其中a 0=1,当i ≥1时,a i ∈{0,1}.若记a 0,a 1,a 2,…,a k 中1的个数为f (n ),则满足k =6,f (n )=3的n 的个数为.16.已知:若函数f (x ),g (x )在R 上可导,f (x )=g (x ),则f′(x )=g′(x ).又英国数学家泰勒发现了一个恒等式e2x=a 0+a 1x +a 2x 2+…+a n x n +…,则a 0=,∑=+1011n nn na a =.(第一空2分,第二空3分)四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)从①sin D =sin A ;②S △ABC =3S △BCD ;③→DB ·→DC =-4这三个条件中任选一个,补充在下面的问题中,并完成解答.已知点D 在△ABC 内,cos A >cos D ,AB =6,AC =BD =4,CD =2,若,求△ABC 的面积.注:选择多个条件分别解答,按第一个解答计分.18.(本小题满分12分)已知数列{a n }的通项公式为a n =2n +4,数列{b n }的首项为b 1=2.(1)若{b n }是公差为3的等差数列,求证:{a n }也是等差数列;(2)若{a b n}是公比为2的等比数列,求数列{b n }的前n 项和.高三数学试题第4页(共5页)19.(本小题满分12分)佩戴头盔是一项对家庭与社会负责的表现,某市对此不断进行安全教育.下表是该市某主干路口连续4年监控设备抓拍到的驾驶员不戴头盔的统计数据:年度2018201920202021年度序号x 1234不戴头盔人数y125010501000900(1)请利用所给数据求不戴头盔人数y 与年度序号x 之间的回归直线方程ŷ=bˆx +a ˆ,并估算该路口2022年不戴头盔的人数;(2)交警统计2018~2021年通过该路口的开电瓶车出事故的50人,分析不戴头盔行为与事故是否伤亡的关系,得到右表,能否有95%的把握认为不戴头盔行为与事故伤亡有关?参考公式:bˆ=∑∑==--ni ini iix n xyx n yx 1221=()()()∑∑==---n i ini ii x x y yx x 121,aˆ=y -x bˆ.P (K 2≥k )0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .不戴头盔戴头盔伤亡73不伤亡1327高三数学试题第5页(共5页)20.(本小题满分12分)在三棱柱ABC -A 1B 1C 1中,AA 1=13,AB =8,BC =6,AB ⊥BC ,AB 1=B 1C ,D 为AC 中点,平面AB 1C ⊥平面ABC .(1)求证:B 1D ⊥平面ABC ;(2)求直线C 1D 与平面A 1BC 所成角的正弦值.21.(本小题满分12分)(1)设双曲线C :x2a 2-y2b 2=1(a ,b >0)的右顶点为A ,虚轴长为2,两准线间的距离为263.(1)求双曲线C 的方程;(2)设动直线l 与双曲线C 交于P 、Q 两点,已知AP ⊥AQ ,设点A 到动直线l 的距离为d ,求d 的最大值.22.(本小题满分12分)设函数f (x )=-3ln x +x 3+ax 2-2ax ,a ∈R .(1)求函数f (x )在x =1处的切线方程;(2)若x 1,x 2为函数f (x )的两个不等于1的极值点,设P (x 1,f (x 1)),Q (x 2,f (x 2)),记直线PQ 的斜率为k ,求证:k +2<x 1+x 2.A BC 1D(第20题图)A 1CB 1高三数学试题第1页(共18页)盐城市、南京市2022届高三年级第一次模拟考试数学2022.01(总分150分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第I 卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={y |y =sin x ,x ∈R },N ={y |y =2x ,x ∈R },则M ∩N =A .[-1,+ )B .[-1,0)C .[0,1]D .(0,1]2.在等比数列{a n }中,公比为q ,已知a 1=1,则0<q <1是数列{a n }单调递减的条件A .充分不必要B .必要不充分C .充要D.既不充分又不必要3.某中学高三(1)班有50名学生,在一次高三模拟考试中,经统计得:数学成绩X ~N (110,100),高三数学试题第2页(共18页)则估计该班数学得分大于120分的学生人数为(参考数据:P (|X -μ|<σ)≈0.68,P (|X -μ|<2σ)≈0.95)A .16B .10C .8D .24.若f (α)=cos α+isin α(i 为虚数单位),则[f (α)]2=A .f (α)B .f (2α)C .2f (α)D .f (α2)5.已知直线2x +y +a =0与⊙C :x 2+(y -1)2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =A .-4或2B .-2或4C .-1±3D .-1±66.在平面直角坐标系xOy 中,设A (1,0),B (3,4),向量→OC =x →OA +y →OB ,x +y =6,则|→AC |的最小值为A .1B .2C .5D .25高三数学试题第3页(共18页)7.已知α+β=π4(α>0,β>0),则tan α+tan β的最小值为A .22B .1C .-2-22D .-2+228.已知f (x )x -4,x ≤4x -16)2-143,x >4,则当x ≥0时,f (2x )与f (x 2)的大小关系是A .f (2x )≤f (x 2)B .f (2x )≥f (x 2)C .f (2x )=f(x 2)D .不确定二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若函数f (x )=cos2x +sin x ,则关于f (x )的性质说法正确的有A .偶函数B .最小正周期为πC .既有最大值也有最小值D .有无数个零点高三数学试题第4页(共18页)10.若椭圆C :x 29+y 2b 2=1(b >0)的左右焦点分别为F 1,F 2,则下列b 的值,能使以F 1F 2为直径的圆与椭圆C 有公共点的有A .b =2B .b =3C .b =2D .b =511.若数列{a n }的通项公式为a n =(-1)n -1,记在数列{a n }的前n +2(n ∈N *)项中任取两项都是正数的概率为P n ,则A .P 1=13B .P 2n <P 2n +2C .P 2n -1<P 2nD .P 2n -1+P 2n <P 2n +1+P 2n +2高三数学试题第5页(共18页)12.如图,在四棱锥P -ABCD 中,已知PA ⊥底面ABCD ,底面ABCD 为等腰梯形,AD ∥BC ,AB=AD =CD =1,BC =P A =2,记四棱锥P -ABCD 的外接球为球O ,平面P AD 与平面PBC 的角线为l ,BC 的中点为E ,则A .l ∥BC B .AB ⊥PCC .平面PDE ⊥平面PAD D .l 被球O 截得的弦长为1ABDCEP(第12题图)高三数学试题第6页(共18页)高三数学试题第7页(共18页)第II 卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.若f (x )=(x +3)5+(x +m )5是奇函数,则m =.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3b ,则cos B 的最小值是.高三数学试题第8页(共18页)15.计算机是二十世纪最伟大的发明之一,被广泛地应用于人们的工作于生活之中,计算机在进行数的计算处理时,使用的是二进制.一个十进制数n (n ∈N *)可以表示成二进制数(a 0a 1a 2…a k )2,k ∈N ,则n =a 0⋅2k +a 1⋅2k -1+a 2⋅2k -2+…+a k ⋅20,其中a 0=1,当i ≥1时,a i ∈{0,1}.若记a 0,a 1,a 2,…,a k 中1的个数为f (n ),则满足k =6,f (n )=3的n 的个数为.16.已知:若函数f (x ),g (x )在R 上可导,f (x )=g (x ),则f′(x )=g′(x ).又英国数学家泰勒发现了一个恒等式e 2x=a 0+a 1x +a 2x 2+…+a n x n +…,则a 0=,∑=+1011n nn na a =.(第一空2分,第二空3分)高三数学试题第9页(共18页)四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)高三数学试题第10页(共18页)从①sin D =sin A ;②S △ABC =3S △BCD ;③→DB ·→DC =-4这三个条件中任选一个,补充在下面的问题中,并完成解答.已知点D 在△ABC 内,cos A >cos D ,AB =6,AC =BD =4,CD =2,若,求△ABC 的面积.注:选择多个条件分别解答,按第一个解答计分.【解析】高三数学试题第11页(共18页)18.(本小题满分12分)已知数列{a n }的通项公式为a n =2n +4,数列{b n }的首项为b 1=2.(1)若{b n }是公差为3的等差数列,求证:{a n }也是等差数列;(2)若{a b n}是公比为2的等比数列,求数列{b n }的前n 项和.【解析】19.(本小题满分12分)佩戴头盔是一项对家庭与社会负责的表现,某市对此不断进行安全教育.下表是该市某主干路口连续4年监控设备抓拍到的驾驶员不戴头盔的统计数据:年度2018201920202021年度序号x 1234不戴头盔人数y125010501000900(1)请利用所给数据求不戴头盔人数y 与年度序号x 之间的回归直线方程ŷ=bˆx +a ˆ,并估算该路口2022年不戴头盔的人数;(2)交警统计2018~2021年通过该路口的开电瓶车出事故的50人,分析不戴头盔行为与事故是否伤亡的关系,得到右表,能否有95%的把握认为不戴头盔行为与事故伤亡有关?参考公式:bˆ=∑∑==--ni ini iix n xyx n yx 1221=()()()∑∑==---n i ini ii x x y yx x 121,aˆ=y -x b ˆ.不戴头盔戴头盔伤亡73不伤亡1327高三数学试题第12页(共18页)P (K 2≥k )0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .【解析】不戴头盔戴头盔总计伤亡7310不伤亡132740总计203050高三数学试题第13页(共18页)20.(本小题满分12分)在三棱柱ABC -A 1B 1C 1中,AA 1=13,AB =8,BC =6,AB ⊥BC ,AB 1=B 1C ,D 为AC 中点,平面AB 1C ⊥平面ABC .(1)求证:B 1D ⊥平面ABC ;(2)求直线C 1D 与平面A 1BC 所成角的正弦值.【解析】A BC 1D(第20题图)A 1CB 1高三数学试题第14页(共18页)21.(本小题满分12分)(1)设双曲线C :x2a 2-y2b 2=1(a ,b >0)的右顶点为A ,虚轴长为2,两准线间的距离为263.(1)求双曲线C 的方程;(2)设动直线l 与双曲线C 交于P 、Q 两点,已知AP ⊥AQ ,设点A 到动直线l的距离为d ,求d 的最大值.【解析】高三数学试题第15页(共18页)法二:高三数学试题第16页(共18页)22.(本小题满分12分)设函数f (x )=-3ln x +x 3+ax 2-2ax ,a ∈R .(1)求函数f (x )在x =1处的切线方程;(2)若x 1,x 2为函数f (x )的两个不等于1的极值点,设P (x 1,f (x 1)),Q (x 2,f (x 2)),记直线PQ 的斜率为k ,求证:k +2<x 1+x 2.【解析】法一:高三数学试题第17页(共18页)高三数学试题第18页(共18页)。

江苏专版2020届高三数学一轮复习《统计与概率》典型题精选精练附答案详析

江苏专版2020届高三数学一轮复习《统计与概率》典型题精选精练附答案详析

江苏专版2020届高三数学一轮复习典型题精选精练统计与概率一、填空题1、(南京市2018高三9月学情调研)某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取40名学生进行调查,则应从丙专业抽取的学生人数为▲.2、(南京市2019高三9月学情调研)已知某地连续5天的最低气温(单位:摄氏度)依次是18,21,22,24,25,那么这组数据的方差为▲.3、(南京市2019高三9月学情调研)不透明的盒子中有大小、形状和质地都相同的5只球,其中2只白球,3只红球,现从中随机取出2只球,则取出的这2只球颜色相同的概率是▲.4、(南京市六校联合体2019届高三12月联考)若一组样本数据3,4,8,9,a的平均数为6,则该组数据的方差s2=▲.5、(南京市六校联合体2019届高三12月联考)从1,2,3,4这四个数中一次性随机地取出2个数,则所取2个数的乘积为奇数的概率是____▲__.6、(南京市13校2019届高三12月联合调研)已知4瓶饮料中有且仅有2瓶是果汁饮料,从这4瓶饮料中随机取2瓶,则所取两瓶中至少有一瓶是果汁饮料的概率是▲.7、(南京市13校2019届高三12月联合调研)如图是样本容量为200的频率分布直方图.根据此样本的频率分布直方图估计,样本数据落在[6,10)内的频数为▲.8、(南师附中2019届高三年级5月模拟)某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是.9、(南师附中2019届高三年级5月模拟)3张奖券分别标有特等奖、一等奖和二等奖,甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是.10、(苏州市2018高三上期初调研)为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2: 3,第2小组的频数为12,则报考飞行员的学生人数是.11、(徐州市2019届高三上学期期中)某水产养殖场利用100个网箱养殖水产品,收获时测量各箱水产品的产量(单位:kg),其频率分布直方图如图所示,则该养殖场有▲个网箱产量不低于50 kg.12、(海安市2019届高三上学期期中)已知某民营车企生产A,B,C三种型号的新能源汽车,库存台数依次为120,210,150,某安检单位欲从中用分层抽样的方法随机抽取16台车进行安全测试,则应抽取B型号的新能源汽车的台数为.13、(海安市2019届高三上学期期中)有红心1,2,3,4和黑桃5这五张扑克牌,现从中随机抽取两张,则抽到的牌均为红心的概率是.14、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末)如图是某次青年歌手大奖赛上5位评委给某位选手打分的茎叶图,则这组数据的方差为▲15、(如皋市2019届高三上学期期末)为了解某地区的中小学生视力情况,从该地区的中小学生中用分层抽样的方法抽取300位学生进行调查,该地区小学、初中、高中三个学段学生人数分别为1200、1000、800,则从高中抽取的学生人数为▲16、(苏北三市(徐州、连云港、淮安)2019届高三期末)已知一组样本数据5,4,x,3,6的平均数为5,则该组数据的方差为.17、(南京市、盐城市2019届高三上学期期末)某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽取一个容量为n的样本,其中样本中A型号产品有16件,那么此样本的容量n=▲18、(泰州市2019届高三上学期期末)从1,2,3,4,5这五个数中随机取两个数,则这两个数的和为6的概率为19、(无锡市2019届高三上学期期末)史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,先从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为.20、(宿迁市2019届高三上学期期末)春节将至,三个小朋友每人自制1张贺卡,然后将3张贺卡装在一盒子中,再由三人依次任意抽取1张,则三人都没抽到自己制作的贺卡的概率为▲.21、(南京市、盐城市2019届高三第二次模拟)某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17),将其按从左到右的顺序分别编号为第一组、,第二组,……,第五组,右图市根据实验数据制成的频率分布直方图,已知第一组于第二组共有20人,则第三组钟人数为.22、(南京市2019届高三第三次模拟)已知某商场在一周内某商品日销售量的茎叶图如图所示,那么这一周该商品日销售量的平均数为▲.23、(南通、如皋市2019届高三下学期语数英学科模拟(二))随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,则在[50,60)年龄段抽取的人数为__24、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月))某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为▲.25、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为▲.26、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟(5月))一只口袋装有形状、大小都相同的4只小球,其中有3只白球,1只红球.从中1次随机摸出2只球,则2只球都是白球的概率为▲.27、(苏锡常镇四市2019届高三教学情况调查(二))口装中有形状大小完全相同的四个球,球的编号分别为1,2,3,4.若从袋中随机抽取两个球,则取出的两个球的编号之积大于6的概率为.28、(苏锡常镇四市2019届高三教学情况调查(一))箱子中有形状、大小都相同的3只红球、1只白球,一次摸出2只球,则摸到的2只球颜色相同的概率为.29、(盐城市2019届高三第三次模拟)现有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加同一个兴趣小组的概率为_____.30、(江苏省2019年百校大联考)某路口一红绿灯东西方向的红灯时间为45s,黄灯时间为3s,绿灯时间为60s.从西向东行驶的一辆公交车通过该路口,遇到红灯的概率为.二、解答题1、(南京市2018高三9月学情调研)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.(1)若两个球颜色不同,求不同取法的种数;(2)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.2、(南京市六校联合体2019届高三上学期12月联考)将4名大学生随机安排到A,B,C,D四个公司实习.(1)求4名大学生恰好在四个不同公司的概率;(2)随机变量X表示分到B公司的学生的人数,求X的分布列和数学期望E(X).3、(南京市13校2019届高三12月联合调研)在某次活动中,有5名幸运之星.这5名幸运之星可获得A、B两种奖品中的一种,并规定:每个人通过抛掷一枚质地均匀的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得A奖品,抛掷点数不小于3的获得B奖品.(1)求这5名幸运之星中获得A奖品的人数大于获得B奖品的人数的概率;ξ=-,求随机变量ξ的分布列及数学(2)设X、Y分别为获得A、B两种奖品的人数,并记X Y期望.4、(徐州市2018高三上期中考试)某同学在上学路上要经过A 、B 、C 三个带有红绿灯的路口.已知他在A 、B 、C 三个路口遇到红灯的概率依次是13、14、34,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,(2)求这名同学在上学路上因遇到红灯停留的总时间.5、(南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟)一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.(1)求甲三次都取得白球的概率;(2)求甲总得分ξ的分布列和数学期望.6、(镇江市2018届高三第一次模拟(期末)考试)某学生参加4门学科的学业水平测试,每门得A 等级的概率都是14,该学生各学科等级成绩彼此独立,规定:有一门学科获A 等级加1分,有两门学科获A 等级加2分,有三门学科获A 等级加3分,四门学科全获A 等级加5分,记ξ1表示该生的加分数,ξ2表示该生获A 等级的学科门数与未获A 等级学科门数的差的绝对值。

专题05 不等式专项突破(解析版)

专题05 不等式专项突破(解析版)

当且仅当x=y=z时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,
得: .
16.已知实数 满足 ,求证: .
【解析】因为 ,所以
,得证.
17.已知 、 、 是正实数,求证:
【解析】∵ ,即 ,即 ,∴ .
18.( 2019—2020学年度苏、锡、常、镇四市高三教学情况调查(一) )
【答案】
【解析】由b2+2(a+c)b﹣ac=0得(b+a+c)2=ac+(a+c)2≤ +(a+c)2= ,
∴b+a+c≤ (a+c),∴b≤ (a+c),∴ ≤ ,当且仅当a=c时取等.故答案为 .
14.( 2020南通名师高考原创卷压轴卷 )已知x,y∈R,且x+y>0,则 的最小值为
【答案】
所以 ,当且仅当t=2时,等号成立,
所以 ,即 ,
当且仅当a=1时,等号成立.
20.(江苏省苏北七市2020届高三第二次调研考试 )已知实数x,y,z满足 ,证明: .
【解析】因为 ,
所以 .
由柯西不等式得, .
所以 .
所以 .
【答案】1
【解析】 ,由基本不等式得:当 =1时有最小值1.
3.(2019~2020学年度高三年级如皋中学第二学期期初调研测试)若 ,且 ,则 最小值为.
【答案】
【解析】法一:若 ,且 , 则 ,即 时,等号成立.
4.(江苏省海安高级中学2020届高三3月线上考试数学试题)已知a>0,b>0,且 1,则3a+2b 的最小值等于.
已知正数x,y,z满足 (t为常数),且 的最小值为 ,求实数t的值。

江苏省金陵中学、海安中学2022-2023学年高三上学期10月第二次联考数学试题

江苏省金陵中学、海安中学2022-2023学年高三上学期10月第二次联考数学试题

金陵中学、海安中学2023届高三10月第二次联考数 学2022.10一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设集合{}1,1,2,3,6A =-,{}2,5B =,{}13C x x =≤<,则()A C B =( )A. {}1,2B. {}2,5C. {}1,2,5D. {}1,2,3,52. i 为虚数单位,则32i -满足的方程是( ) A. 26130x x --=B. 26130x x ++=C. 26130x x +-=D. 26130x x -+=3. ()()8x y x y -+的展开式中36x y 的系数为( ) A. 28B. -28C. 56D. -564. 设D 为ABC △所在平面内一点,且满足3CD BD =,则( ) A. 3122AD AB AC =- B. 3122AD AB AC =+ C. 4133AD AB AC =- D. 4133AD AB AC =+ 5. 已知数列{}n a ,若p :数列{}n a 是等比数列;q :()()22222212123n n a a a a a a -++++++()212231n n a a a a a a -=+++,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 关于函数2,02(),2x a x f x b x x ⎧-≤<=⎨-≥⎩其中,a b R ∈,给出下列四个结论:甲:6是该函数的零点; 乙:4是该函数的零点; 丙:该函数的零点之积为0;丁:方程()52f x =有两个不等的实根 若上述四个结论中有且只有一个结论错误,则该错误的结论是( ) A. 甲B. 乙C. 丙D. 丁7. 设常数a 使方程sin 22x x a =在区间[]0,2π上恰有五个解()1,2,3,4,5i x i =,则51ii x==∑( )A.73πB.256πC.133πD.143π8. 设x R ∈,[]x 表示不超过x 的最大整数,若存在实数t ,使得[]1t =,22t ⎡⎤=⎣⎦,…,nt n ⎡⎤=⎣⎦同时成立,则正整数n 的最大值是( ) A. 4B. 5C. 6D. 7二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9. 已知函数()cos 22sin cos 22f x x x x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,则( ) A. ()f x 的最大值为3 B. ()f x 的最小正周期为πC. ()f x 的图象关于直线8x π=对称D. ()f x 在区间3,88ππ⎡⎤-⎢⎥⎣⎦上单调递减 10. 已知实数a ,b ,c 满足a b c >>且0abc <,则下列不等式关系一定正确的是( ) A.c c a b> B.2c c a b+≥ C. 22ac bc > D. 22c c a b <11. 已知a 与b 均为单位向量,其夹角为θ,则( ) A. 02a b ≤+≤B. 11a b -≤⋅≤C. 若1a b +>,则20,3πθ⎛⎫∈ ⎪⎝⎭D. 若,3πθπ⎛⎫∈⎪⎝⎭,则1a b -> 12. 连接正方体每个面的中心构成一个正八面体.甲随机选择此正八面体的三个顶点构成三角形,乙随机选择此正八面体三个面的中心构成三角形,且甲、乙的选择互不影响,则( )A. 甲选择的三个点构成正三角形的概率为25B. 甲选择的三个点构成等腰直角三角形的概率为25C. 乙选择的三个点构成正三角形的概率为17D. 甲选择的三个点构成的三角形与乙选择的三个点构成的三角形相似的概率为1135三、填空题:本题共4小题,每小题5分,共20分.13. 已知函数()22()22xf x ax x x e =+-+,不论a 为何值,曲线()y f x =均存在一条固定的切线,则这条切线的方程是 .14. 已知函数32()22f x x a b =-+,若存在a ,b ,使得()f x 在区间[]0,1的最小值为-11且最大值为1,则符合条件的一组a ,b 的值为 .15. 在数列{}n a 中,11a =,22a =,数列{}n b 满足1(1)n n n n b a a +=+-,*n N ∈.若2210n n b b --=,21262n n n b b ++=,*n N ∈,则数列{}n a 的前2022项和为 . 16. 已知椭圆C :()222210x y a b a b+=>>的右焦点为()2,0F ,经过原点O且斜率k ≥C 交于A ,B 两点,AF 的中点为M ,BF 的中点为N .若OM ON ⊥,则椭圆C 的离心率e 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知数列{}n a 是公比为q 的等比数列,前n 项和为n S ,且满足1321a a q +=+,3231S a =+. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足12,3,451n n n nnn a a n b a n a a +-⎧⎪=⎨⎪-+⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T . 18.(12分)在检测中为减少检测次数,我们常采取“n 合1检测法”,即将n 个人的样本合并检测,若为阴性,则该小组所有样本均未感染病毒;若为阳性,则改需对本组的每个人再做检测.现有()*10k k N ∈人,已知其中有2人感染病毒.(1)若5k =,并采取“10合1检测法”,求共检测15次的概率;(2)设采取“5合1检测法”的总检测次数为X ,采取“10合1检测法”的总检测次数为Y ,若仅考虑总检测次数的期望值,当k 为多少时,采取“10合1检测法”更适宜?请说明理由. 19.(12分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,D 为边BC 上一点,若AB DBAC DC=. (1)证明:(i )AD 平分BAC ∠; (ii )2AD AB AC DB DC =⋅-⋅;(2)若(1sin )sin cos (1cos )B BAC B BAC +∠=+∠,求a bc+的最大值. 20.(12分)在一张纸上有一个圆C:(224x y +=,定点)M ,折叠纸片使圆C 上某一点1M 好与点M 重合,这样每次折叠都会留下一条直线折痕PQ ,设折痕PQ 与直线1M C 的交点为T .(1)求证:TC TM -为定值,并求出点T 的轨迹C 方程;(2)设()1,0A -,M 为曲线C '上一点,N 为圆221x y +=上一点(M ,N 均不在x 轴上).直线AM ,AN的斜率分别记为1k ,2k ,且2114k k =-,求证:直线MN 过定点,并求出此定点的坐标. 21.(12分)已知底面ABCD 为菱形的直四棱柱,被平面AEFG 所截几何体如图所示,若2AB DG ==,3CF =,3BAD π∠=.(1)求点D 到平面BFG的距离; (2)求锐二面角A EC B --的余弦值. 22.(12分)已知函数()2ln f x x x =,()21g x x ax =+-,a R ∈.(1)若()()()F x g x f x =-在[)1,+∞存在极小值点,求a 的取值范围; (2)若函数()()2h x f x a =-有3个零点1x ,2x ,3x (123x x x <<),求证:(i )3x >(ii )232222x e x e +>-.金中、海安2023届高三年级10月第二次联考数学参考答案一、单选题1-5:CDBAA 6-8:BCA8.【答案】A【解析】[][)11,2t t =⇒∈,22t t ⎡⎤=⇒∈⎣⎦,33t t ⎡⎤=⇒∈⎣⎦,4t t t ⎡⎤=⇒∈⎣⎦,55t t ⎡⎤=⇒∈⎣⎦ 1.732≈ 1.587≈ 1.495≈ 1.431 1.495≈<)当4n =时,可以找到t 使其在区间[))))34343,1,22,44,53⎡⎡⎡⎣⎣⎣上, 当5n =时,无法找到t 使其在区间[)))))3435543,44,55,61,22,3⎡⎡⎡⎡⎣⎣⎣⎣上, 即正整数n 的最大值为4,故选A. 二、多选题 9.【答案】BC【解析】()cos 22sin cos cos 2sin 22224f x x x x x x x πππ⎛⎫⎛⎫⎛⎫=--+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,A 错,max ()f x =,B 对,22T ππ==,C 对,82f ππ⎛⎫== ⎪⎝⎭D 错,3288242x x πππππ-≤≤⇒-≤+≤,故函数单调增. 10.【答案】AC【解析】由题意得0a b c >>>或0a b c >>>, A 对,11()0c c c b a c a b a b ab -⎛⎫>⇒-=> ⎪⎝⎭, B 错,0c <时与选项矛盾, C 对,22ac bc a b >⇒>,D 错,1a =-,2b =-,3c =-时,2626(1)(2)cc a b --=->=-,与选项矛盾.11.【答案】ABD【解析】A 对,[]211222cos 0,4a b a b θ+=++⋅=+∈, B 对,[]cos 1,1a b θ⋅=∈-,C 错,21222cos 1cos 0,23a b πθθθ⎡⎫=+>⇒>-⇒∈⎭+⎪⎢⎣,D 对,()21,cos 1,22cos 1,432a b πθπθθ⎛⎫⎛⎫∈⇒∈-⇒-=-∈ ⎪ ⎪⎝⎭⎝⎭.12.【答案】ACD【解析】甲总有3620C =种情况,乙总有3856C =种情况. A 对,甲为正三角形则在上下顶点选一且中间四个顶点选二,即8种;B 错,甲为等腰直角三角形则分三种情况:中间选三个点即4种;上下都选加中间一点,即4种,上下选一中间选二即4种,共12种;C 对,乙为正三角形即一方(上方或下方)四个中心选一,且另一方选择两个相对的中心,即8种;D 对,相似则都为正三角形或等腰直角三角形,即都为正三角形时由A ,C 得概率为2125735⋅=,都为等腰直角三角形时,乙的情况共有24种,结合B 得概率为3395735⋅=,即总概率为1135. 三、填空题 13.【答案】2y =【解析】()222()22()2x xf x ax x x e f x ax x e '=+-+⇒=+ 要满足题意,则取0x =,即切点为()0,2,所以切线方程为2y =.14.【答案】14b a =⎧⎨=⎩【解析】322()2()622(3)f x x ax b f x x ax x x a '=-+⇒=-=-,为简单,则令13a>, 即让函数在区间上单调递减,此时要满足题意则()()0111f f =⎧⎪⎨=-⎪⎩,解得14b a =⎧⎨=⎩.15.【答案】1009152⎛⎫- ⎪⎝⎭【解析】由已知得2212n n n b a a +=+,212221n n n b a a +++=-,所以22122262n n n n n b b a a +++=+=,即前2022项中偶数项的和为:()()246202020222101066222a a a a a +++++=+++;又由已知得2212n n n b a a +=+,21221n n n b a a --=-,所以2212121n n n n b b a a -+-=⇒=-,即奇数项为公比为-1的等比数列,即121(1)n n a --=-,即前2022项中奇数项和为1;综上所述,前2022项和为1009152⎛⎫- ⎪⎝⎭.16.【答案】1⎤⎥⎝⎦【解析】设()2,2A m n (不妨设0m >,0n >),则()1,M m n +,同理()1,N m n -+-,22220101OM ON OM ON m n m n ⊥⇒⋅=⇒--=⇒+=2222213134n k n n m m m m m ≥⇒≥≥⇒≥⇒-≥⇒≤ 所以由点在椭圆上得2222441m n a b+=,结合上述条件可得:222244414m m a a -+=-, 化简得()222816a a m -=,即()22810164a a -<≤,解得248a +≤<,所以21c e a a ⎤==∈⎥⎝⎦.四、解答题17.【解析】(1)()2111312121121211312131a a q q a a q a S a q a q q a q ⎧+=++=+=⎧⎧⎪⇒⇒⎨⎨⎨=+=++=+⎩⎩⎪⎩,即12n n a -=; (2)由已知得11111,21,212n n n n n n b +-----⎧⎪=⎨⎪⎩为偶数为奇数, 所以()()21321242n n n T b b b b b b -=+++++++()022231532121111111222212*********n n n -+-⎛⎫=++++-+-++- ⎪------⎝⎭21441321n n +-=+-.18.【解析】(1)现共有50人,由题意先平均分为5组,检测5次,因为共检测15次,所以两个感染者必定分在同一组中,所以共检测15次的概率有两种算法,第一种是分组分配思想,第二种是算一组已经有一名感染者的情况下,选中另一名感染者,即两种算法结果为8101010104840302010441010101010504030201055C C C C C A C C C C C A ⋅⋅⋅⋅⋅⋅⋅⋅和848994C C ,结果均为949;(2)当感染者在同一组时,25X k =+,10Y k =+,此时310241014()101k k C P X C k --==-,810291019()101k k C P Y C k --==-,当感染者不在同一组时,210X k =+,20Y k =+, 此时4()1101P X k =--,9()1101P Y k =--,所以4420()(25)(210)1210101101101E X k k k k k k ⎛⎫=+⋅++⋅-=+- ⎪---⎝⎭, 9990()(10)(20)120101101101E Y k k k k k k ⎛⎫=+⋅++⋅-=+- ⎪---⎝⎭, 由题意()()21010180019E Y k k E X k ⇒+<⇒≤>-≤, 答:当19k ≤≤时,采取10合1检测法更适宜.19.【解析】(1)(i )在三角形ABD 中,由正弦定理得sin sin AB DBADB BAD=∠∠, 在三角形ACD 中,由正弦定理得sin sin AC DCADC CAD=∠∠, 因为ADB ∠与ADC ∠互补,所以sin sin ADB ADC ∠=∠,由题意得AB DBAC DC=,所以sin sin CAD BAD ∠=∠,即CAD BAD ∠=∠, 所以AD 平分BAC ∠得证;(ii )因为CAD BAD ∠=∠,所以cos cos CAD BAD ∠=∠,由余弦定理得22222222AB AD DB AC AD DC AB AD AC AD+-+-=⋅⋅,化简得222()()AD AC AB AB AB DC AB DB AC -=⋅-+⋅-⋅, 由(i )得AC DC AC DB ⋅=⋅,代入上式有:2()()AD AC AB AB AC AC AB DC AC DB DB AB DC -=⋅-+⋅⋅-⋅⋅, 即2AD AB AC DB DC =⋅-⋅得证;(2)由已知得(1sin )sin cos (1cos )B BAC B BAC +∠=+∠2222sin cos 2sin cos cos sin 2cos 22222B B B B BAC BAC BAC ∠⎛⎫⎛⎫⇒+⋅∠∠=-⋅ ⎪ ⎪⎝⎭⎝⎭ 1tan2tan tan tan 224221tan2B BAC BAC B BAC B B ππ-∠∠⎛⎫⇒=⇒=-⇒∠+= ⎪⎝⎭+, 所以ABC △是直角三角形,即222c a b =+,所以a b c +==≤a b =时取等,所以a bc+20.【解析】(1)由题意得1TM TM =,所以12TC TM TC TM CM -=-=<=,即T 的轨迹是以C ,M 为焦点,实轴长为2的双曲线,即C ':2214y x -=; (2)由已知得AM l :()11y k x =+,AN l :()21y k x =+,联立直线方程与双曲线方程()()22222111124124014k x k y k x k x y x ⎧=+----=-⎪⇒⎨⎪⎩=, 由韦达定理得212144A M k x x k --=-,所以212144M k x k +=-,即()1121814M M k y k x k =+=-, 所以211221148,44k k M k k ⎛⎫+ ⎪--⎝⎭, 联立直线方程与圆方程()()2222222222112110y k x x y k x k x k ⎧=+⎪⇒⎨+=⎪⎩+++-=, 由韦达定理得222211A N k x x k -=+,所以222211N k x k -+=+,即()2222211N N k y k x k =+=+, 因为14ANAM k k =-,即2114k k =-,所以2112211168,1616k k N k k ⎛⎫-+- ⎪++⎝⎭, 若直线MN 所过定点,则由对称性得定点在x 轴上,设定点(),0T t , 由三点共线得MT NT k k =,即()()1122222211111122112211884164416161416416k k k k k k t k k t t k k t t k k --+=⇒++-=-++⇒=+-+---+, 所以直线MN 过定点()1,0T . 21.【解析】(1)设ACBD O =,由已知易得CO =,BF =GF =BG =且CO ⊥面BDG ,设点D 到平面BFG 的距离为d ,则D BFG E BDG V V --=, 即1133BFG BDG d S CD S ⋅=⋅△△,即BDG BFG CD S d S ⋅===△△; (2)以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,过O 平行于CF 的直线为z 轴建立空间直角坐标系,由已知得)A,()0,1,0B,()C ,()0,1,1E ,即()AC =-,()3,1,1CE=,()1,0BC =--,设面AEC 法向量为(),,n a b c=,则0000n AC n CE b c ⎧⎧⋅=-=⎪⎪⇒⎨⋅=++=⎪⎩, 设1b =,则()0,1,1n =-,设面BEC 法向量为(),,m a b c '''=,则000n BC b n CE b c ⎧⎧''⋅=-=⎪⎪⇒⎨'''⋅=++=⎪⎩, 设1b '=,则m ⎫=⎪⎭,所以1co 42s ,n m n m n m⋅=⋅==⋅. 答:锐二面角A EC B --的余弦值为4. 22.【解析】(1)2()12ln ()22ln 2F x x ax x x F x x a x '=+--⇒=+--, 设()22ln 2m x x a x =+--,则()121m x x ⎛⎫'=-⎪⎝⎭, 1x ≥时,()0m x '≥,()m x 单调递增,要满足题意,则()10m <,即0a <,所以a 的取值范围是(),0-∞;(2)()2ln 2,12ln 22ln 2,01x x a x h x x x a x x a x -≥⎧=-=⎨--<<⎩,则()()()2ln 1,12ln 1,01x x h x x x +≥⎧⎪'=⎨-+<<⎪⎩,即10x e <<时,()h x 单调增;11x e<<时,()h x 单调减;1x >时,()h x 单调增,要满足题意则需()1010h e h ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪<⎩,即10a e <<,此时123101x x x e <<<<<. (i1>,因此要证3x >()3h x h>,即证0h >,0a <,设t ⎛= ⎝,即证11ln 02t t t ⎛⎫--< ⎪⎝⎭, 设11()ln 2n t t t t ⎛⎫=-- ⎪⎝⎭,则222111(1)()1022t n t t t t --⎛⎫'=-+=< ⎪⎝⎭,所以()()10n t n <=, 即11ln 02t t t ⎛⎫--< ⎪⎝⎭得证,则3x > (ii )由(i)可知3x >1a e <,所以3x >2321x e>+, 因此要证232222x e x e +>-,即证23222121x e x e+>-,即证2221x e <-,即证2x < 因为10a e <<,即证2x <()2h x h >,即证0h >,0a +>,设s ⎫=⎪⎪⎭,即证11ln 02s s s ⎛⎫--> ⎪⎝⎭, 由(i )可知()0n s '<,所以()()10n s n >=, 即11ln 02s s s ⎛⎫--> ⎪⎝⎭得证,则2x < 所以232222x e x e +>-得证.。

江苏省南京市2020届高三上学期期初联考试卷数学试题 (含解析答案)

江苏省南京市2020届高三上学期期初联考试卷数学试题 (含解析答案)

江苏省南京市2020届高三年级第一学期期初联考考试数学试题一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合A ={}12x x -<≤,B ={}0x x ≤,则A I B = . 答案:(﹣1,0] 考点:集合的运算 解析:(﹣1,0] 2.已知复数z =3i1i-+(i 是虚数单位),则z 的虚部是 . 答案:﹣2 考点:虚数解析:z =223i (3i)(1i)i 4i 34i 22i 11i (1i)(1i)1i 2----+-+====-+++--,所以则z 的虚部是﹣2. 3.对一批产品的质量(单位:克)进行抽样检测,样本容量为1600,检测结果的频率分布直方图如图所示.根据标准,单件产品质量在区间[25,30)内为一等品,在区间[15,20),[20,25)和[30,35)内为二等品,其余为三等品.则样本中三等品件数为 .答案:200考点:统计,抽样调查 解析:2004.现有三张卡片,分别写有“1”、“2”、“3”这三个数字.将这三张卡片随机排序组成一个三位数,则该三位数是偶数的概率是 . 答案:13考点:古典概型解析:将这三张卡片随机排序组成一个三位数如下:123,132,213,231,312,321,共6种,其中偶数有2种,所以该三位数是偶数的概率是1263÷=. 5.函数21log y x =+的定义域为 . 答案:[12,+∞) 考点:函数的定义域解析:由21log 00x x +≥⎧⎨>⎩,解得12x ≥,所以原函数定义域为[12,+∞).6.运行如图所示的伪代码,其结果为 .答案:17考点:算法初步,伪代码解析:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S =1+1+3+5+7的值,所以S =1+1+3+5+7=17.7.在平面直角坐标系xOy 中,双曲线C :222116x y a -=(a >0)的右顶点到双曲线的一条渐近线的距离为453,则双曲线C 的方程为 . 答案:2212016x y -= 考点:双曲线的性质解析:由题意可知双曲线的右顶点为(a ,0),渐近线方程为4y x a=±,根据点到线的距离公式求得右顶点到双曲线渐近线距离为:216a +,即可得方程216a +=45,解得a 2=20,所以双曲线C 的方程为2212016x y -=. 8.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现,圆柱的表面积与球的表面积之比为 .答案:32考点:圆柱、球的表面积解析:设球的半径为R ,则圆柱的底面半径为R ,高为2R ,S 圆柱=2πR ×2R +2×πR 2=6πR 2,S 球=4πR 2.所以22S 63S 42R R ππ==圆柱球. 9.函数()Asin()f x x ωϕ=+(A >0,ω>0)的部分图象如图所示.若函数()y f x =在区间[m ,n ]上的值域为[2-,2],则n ﹣m 的最小值是 .答案:3考点:三角函数的图像与性质解析:由函数的最大值为2,可得A =2.由12•2πω=4,可得4πω=.由五点法作图可得4π×2+ϕ=2π,∴ϕ=0,函数()2sin()4f x x π=.由于函数在[2,5]上是减函数,x =2时,()f x =2,x =5时,()f x =2-,故n ﹣m 的最小值是5﹣2=3. 10.在公比为q 且各项均为正数的等比数列{}n a 中,n S 为{}n a 的前n 项和.若121a q=,且527S S =+,则首项1a 的值为 . 答案:14考点:等比数列解析:因为527S S =+,所以3457a a a ++=,则2341()7a q q q ++=,将121a q =代入可得:260q q +-=,因为q >0,所以q =2,从而首项1a 的值为14. 11.已知()f x 是定义在区间(﹣1,1)上的奇函数,当x <0时,()(1)f x x x =-.已知m满足不等式2(1)(1)0f m f m -+-<,则实数m 的取值范围为 . 答案:(0,1)考点:函数性质综合解析:当x <0时,()(1)f x x x =-,可得()f x 在(﹣1,0)单调递减;由()f x 是定义在区间(﹣1,1)上的奇函数,可得()f x 也是区间(﹣1,1)上的减函数.因为2(1)(1)0f m f m -+-<,所以2(1)(1)f m f m -<-,可得如下不等式组:2211111111m m m m -<-<⎧⎪-<-<⎨⎪->-⎩,得02022021m m m m <<⎧⎪<<-<<⎨⎪-<<⎩或,解得:01m <<.所以实数m的取值范围为(0,1).12.已知圆O :x 2+y 2=4和圆O 外一点P(0x ,0y ),过点P 作圆O 的两条切线,切点分别为A ,B ,且∠AOB =120°.若点C(8,0)和点P 满足PO =λPC ,则λ的范围是 . 答案:113λ≤≤ 考点:圆的方程解析:首先求得PO =4,设P(x ,y ),则2216x y +=①,由PO =λPC ,得PO 2=λPC 2,则x 2+y 2=λ2[(x ﹣8)2+y 2],化简得222220(1)()1664x y x λλλ=-+-+②,由①②得:2251x λλ-=,根据﹣4≤2251λλ-≤4,求得113λ≤≤. 13.如图,已知梯形ABCD ,AD ∥BC ,BC 2AD 3=,取BD 中点E ,连接AE 并延长交CD 于F ,若AB AD 2FA CD ⋅=⋅u u u r u u u r u u u r u u u r ,则AB AD= .3 考点:平面向量的数量积解析:根据题意可得CF 1FD 3=,21CD CB BA AD AD AB AD AD AB 33=++=--+=-u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r u u u r ,2331132FA CD 2(CD AD)CD 2[(AD AB)AD](AD AB)AB 44332⋅=-⋅=--⋅-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r21AD AB AD 2-+⋅u u ur u u u r u u u r ,所以由AB AD 2FA CD ⋅=⋅u u u r u u u r u u u r u u u r ,得2231AB AD AB AD 22⋅=-+u u u r u u u r u u u r u u u rAB AD ⋅u u u r u u u r ,所以22AD 3AB =u u u r u u u r ,所以ABAD314.已知函数1ln 1()11122x x f x x x +≥⎧⎪=⎨+<⎪⎩,,,若12x x ≠,且12()()2f x f x +=,则12x x +的取值范围是 .答案:[32ln 2-,+∞) 考点:函数与方程 解析:设121x x <<,则12111ln 222x x +++=,得:1212ln x x =-,所以12x x +=1﹣22ln x +2x .令222()12ln g x x x =-+,2222()x g x x -'=,当1<2x <2,2()g x '<0,2()g x 在(1,2)上单调递减,当2x >2,2()g x '>0,2()g x 在(2,+∞)上单调递增,∴当x =2时,2()g x 有最小值为32ln 2-,所以12x x +≥32ln 2-,即12x x +的取值范围是[32ln 2-,+∞).二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA =AD ,点F 是棱PD 的中点,点E 为CD 的中点.(1)证明:EF ∥平面PAC ; (2)证明:AF ⊥PC .解:16.(本小题满分14分)在△ABC 中,A =34π,AB =6,AC =32(1)求sinB的值;(2)若点D在BC边上,AD=BD,求△ABD的面积.解:(1)∵A=34π,AB=6,AC=32∴由余弦定理可得:BC2=AB2+AC2﹣2AB·AC·cosA=90∴BC=310由正弦定理可得:232AC sin A102sin BBC10310⨯⋅===.(2)∵A=34π,B为锐角∴cosB=310由余弦定理:AD2=AB2+BD2﹣2AB·BD·cosB因为AD=BD,所以BD=AB102cos B3102==⨯所以S△ABD=12AB·BD·sinB=1106102⨯⨯⨯=3所以△ABD的面积为3.17.(本小题满分14分)窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.图中的窗花是由一张圆形纸片剪去一个正十字形剩下的部分,正十字形的顶点都在圆周上.已知正十字形的宽和长都分别为x,y(单位:dm)且x<y,若剪去的正十字形部分面积为4dm2.(1)求y关于x的函数解析式,并求其定义域;(2)现为了节约纸张,需要所用圆形纸片面积最小.当x取何值时,所用到的圆形纸片面积最小,并求出其最小值.解:(1)由题意可得:224xy x-=,则242xyx+=,∵y x>,∴0<x<2∴y 关于x 的函数解析式242x y x+=,定义域为(0,2).(2)设正十字形的外接圆的直径为d ,由图可知22222222454()2224x x d x y x x x+=+=+=++≥,当且仅当2x =时,正十字形的外接圆直径d 最小,则半径最小值为2d =,∴正十字形的外接圆面积最小值为2142ππ⨯=答:当x . 18.(本小题满分16分)已知椭圆C :22221x y a b+=(a >b >0),左、右焦点分别为F 1(﹣1,0),F 2(1,0),椭圆离心率为12,过点P(4,0)的直线l 与椭圆C 相交于A 、B 两点(A 在B 的左侧). (1)求椭圆C 的方程;(2)若B 是AP 的中点,求直线l 的方程;(3)若B 点关于x 轴的对称点是E ,证明:直线AE 与x 轴相交于定点. 解:(1)∵左、右焦点分别为F 1(﹣1,0),F 2(1,0) ∴c =1, ∵椭圆离心率为12∴a =2∴b 2=a 2﹣c 2=4﹣1=3∴椭圆C 的方程为22143x y +=. (2)设B(0x ,0y ),根据B 是AP 的中点,得A(024x -,02y ) 由于A 、B 两点都在椭圆上,可得方程组:22002200143(24)4143x y x y ⎧+=⎪⎪⎨-⎪+=⎪⎩,解得0074x y ⎧=⎪⎪⎨⎪=⎪⎩或0074x y ⎧=⎪⎪⎨⎪=⎪⎩所以B(74,8)或(74,8-)设直线l 的斜率为k ,则k=8744-或8744--,即k所以直线l的方程为:4)6y x =±-,60y --=60y +-=. (3)设A(1x ,1y ),B(2x ,2y ),则E(2x ,2y -) 设D 为直线AE 与x 轴的焦点,且D(d ,0) 根据A 、D 、E 三点共线得:1212y y x d x d -=--,解得122112x y x y d y y +=+ 设直线l 为:(4)y k x =-,其中k ≠0 则11(4)y k x =-,22(4)y k x =-,代入122112x y x y d y y +=+得12121224()8x x x x d x x -+=+-22(4)143y k x x y =-⎧⎪⎨+=⎪⎩,化简得:2222(34)3264120k x k x k +-+-= 所以21223234k x x k +=+,2122641234k x x k -=+则2222121221226412322424()34341328834k k x x x x k k d k x x k ---+++===+--+所以直线AE 与x 轴相交于定点(1,0).19.(本小题满分16分)在数列{}n a 中,已知12a =,13()n n a a f n +=+. (1)若()f n k =(k 为常数),314a =,求k ;(2)若()21f n n =-.①求证:数列{}n a n +为等比数列;②记(1)n n b a n λ=+-,且数列{}n b 的前n 项和为n T ,若3T 为数列{}n T 中的最小项,求λ的取值范围. 解:(1)k 的值为﹣1; (2)①②20.(本小题满分16分)已知函数()ln 2f x x x =--.(1)求曲线()y f x =在x =1处的切线方程;(2)函数()f x 在区间(k ,k +1)(k ∈N)上有零点,求k 的值; (3)记函数21()2()2g x x bx f x =---,设1x ,2x (1x <2x )是函数()g x 的两个极值点,若32b ≥,且12()()g x g x k -≥恒成立,求实数k 的最大值. 解:(1)∵()ln 2f x x x =-- ∴1()1f x x'=-则(1)0k f '== 又∵(1)1f =-∴曲线()y f x =在x =1处的切线方程y =﹣1. (2)k =3. (3)所以实数k的最大值为152ln28.11。

人教版数学高三期中测试精选(含答案)8

人教版数学高三期中测试精选(含答案)8

【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x

y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn

【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .

高考数学《平面解析几何》练习题及答案

高考数学《平面解析几何》练习题及答案

平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。

新高考地区2022届高三上学期期初考试数学试卷分类汇编2:不等式与逻辑用语(含答案解析)

新高考地区2022届高三上学期期初考试数学试卷分类汇编2:不等式与逻辑用语(含答案解析)

范围是( )
A.(-∞,-2]∪[4,+∞) B.(-∞,-4]∪[2,+∞)
C.(-2,4)
D.(-4,2)
7.(2022·河北衡水一中一调)若集合 A={x|x>2}, B={x|bx>1},其中 b 为实数.
(1)若 A 是 B 的充要条件,则 b=

(2)若 A 是 B 的充分不必要条件,则 b 的取值范围是:
对于选项 B,2x+1y=(2x+1y)(2x+y)=4+1+2xy+2yx≥5+2 2xy·2yx=9,当且仅当2xy=2yx,且 2x+y=1,即 x =y=13时取等号,故选项 B 正确; 对于选项 C,4x2+y2=(2x+y)2-4xy≥1-4×18=12,4x2+y2≥12,即当且仅当 2x=y=12时取等号,故选项 C 正确;
实数 x0,使得 ax02+2x0+b=0 成立,则aa2+ -bb2最小值为

10.(2022·湖北华中师大附中等六校开学考试联考)若正数 x , y 满足 3 1 5 ,则 3x 4 y 的最小值是 xy
()
24
A.
28
B.
C. 5
5
5
D. 25
11.(2022·湖北省新高考联考协作体高三起点考试)已知 a 0 , b 0 且 a b 1,若不等式 1 1 m 恒 ab
成立, m N .则 m 的最大值为( )
A. 3
B. 4
C. 5
D. 6
逻辑用语部分:
1.(2022·南京 9 月学情【零模】)“m=1”是“直线 4x+3y+m=0 与圆 x2+y2-2x=0 相切”的
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x1

x2 是函数
g
x 的两个极值点,若 b

3 2

且 g x1 g x2 k 恒成立,求实数 k 的最大值.
解析
2020 届南京市高三上学期期初联考
数学试卷
一、填空题(本大题共 14 小题,每小题 5 分,共 70 分,请将答案填写在答题卷相应的位置上.)
1.已知集合 A=x 1 x 2 ,B=x x 0 ,则 A B=_______.
数,则该三位数是偶数的概率是_______.
【答案】
1 3
.
【解析】
【分析】
计算出三位数个数和其中偶数个数,根据古典概型概率公式求得结果.
【详解】三张卡片随机排序组成一个三位数,共有: A33 6 个,其中偶数有: A22 2 个
该三位数是偶数的概率: p 2 1 63
第 5 页 共 20 页
【答案】x 1 x 0
【解析】 【分析】 根据交集定义直接求得结果.
【详解】由交集定义可得: A B x 1 x 0
本题正确结果: x 1 x 0
【点睛】本题考查集合运算中的交集运算,属于基础题.
2.已知复数 z 3 i (i 是虚数单位),则 z 的虚部是
5.函数 y 1 log2 x 的定义域为______.
6.运行如图所示的伪代码,其结果为

7.在平面直角坐标系
xOy
中,双曲线
C:
x2 a2

y2 16
1(a>0)的右顶点到双曲线的一条渐近线的距离为
4 5 ,则双曲线 C 的方程为_______. 3
8.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球 的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟 大发现,圆柱的表面积与球的表面积之比为_______.
【详解】由题意可知,单间产品质量在10,15 和35, 40 的为三等品
三等品对应的频率为: 0.0125 2 5 0.125 三等品件数为:1600 0.125 200 本题正确结果: 200 【点睛】本题考查根据频率分布直方图计算频数的问题,属于基础题.
4.现有三张卡片,分别写有“1”、“2”、“3”这三个数字.将这三张卡片随机排序组成一个三位
圆柱的表面积与球的表面积之比为
S1 S2

6 R2 4 R2

3 2
本题正确结果: 3 2
【点睛】本题考查圆柱表面积和球的表面积公式的应用,属于基础题.
9.函数 f (x) A sin(x ) (A>0, >0)的部分图象如图所示.若函数 y f (x) 在区间[m,n]上的
第 7 页 共 20 页

5 4
2k1
, k1 Z
x 8k1 1或 x 8k1 5 , k1 Z

f
x

2 时,
4
x

2

2k2
, k2
Z
x 8k2 2
若 n m 最小,则 k1 k2 n m min 3
本题正确结果: 3
【点睛】本题考查利用三角函数图象求解函数解析式、根据值域求解定义域的问题;关键是能够通过
.
1 i
第 4 页 共 20 页
【答案】-2 【解析】 【分析】
直接利用复数代数形式的除法运算化简,则复数 z 的虚部可求.
【详解】∵z

3i 1 i

3 i1 i 1 i1 i

2 4i 2
1
2i

∴z 的虚部是﹣2. 故答案为﹣2. 【点睛】本题考查了复数代数形式的除法运算,考查了复数的基本概念,是基础题.
z
的虚部是
.
3.对一批产品的质量(单位:克)进行抽样检测,样本容量为 1600,检测结果的频率分布直方图如图
所示.根据标准,单件产品质量在区间[25,30)内为一等品,在区间[15,20),[20,25)和[30,35)内
为二等品,其余为三等品.则样本中三等品件数为_______.
4.现有三张卡片,分别写有“1”、“2”、“3”这三个数字.将这三张卡片随机排序组成一个三位 数,则该三位数是偶数的概率是_______.
2020 届南京市高三上学期期初联考
数学试卷
一、填空题(本大题共 14 小题,每小题 5 分,共 70 分,请将答案填写在答题卷相应的位置上.)
1.已知集合 A=x 1 x 2 ,B=x x 0 ,则 A B=_______.
2.已知复数
z

3 1
i i
(i
是虚数单位),则
7.在平面直角坐标系
xOy
中,双曲线
C:
x2 a2

y2 16
1(a>0)的右顶点到双曲线的一条渐近线的距离为
4 5 ,则双曲线 C 的方程为_______. 3
【答案】 x2 y2 1 . 20 16
第 6 页 共 20 页
【解析】 【分析】
由方程得到顶点坐标和渐近线方程,利用点到直线距离公式构造方程求得 a2 ,从而得到所求方程.
(1)证明:EF∥平面 PAC; (2)证明:AF⊥PC.
16.在△ABC
中,A=
3 4
,AB=6,AC=
3
2.
(1)求 sinB 的值; (2)若点 D 在 BC 边上,AD=BD,求△ABD 的面积.
17.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.图中的窗花是由一张圆 形纸片剪去一个正十字形剩下的部分,正十字形的顶点都在圆周上.已知正十字形的宽和长都分别为 x,y(单位:dm)且 x<y,若剪去的正十字形部分面积为 4dm2.
12.已知圆 O:x2+y2=4 和圆 O 外一点 P( x0 , y0 ),过点 P 作圆 O 的两条切线,切点分别为 A,B,
且∠AOB=120°.若点 C(8,0)和点 P 满足 PO= PC,则 的范围是_______.
13.如图,已知梯形
ABCD

AD
/
/ BC

BC AD

2 3
,取
BD
中点
E
,连接
AE
并延长交
CD

F
,若
AB

AD

2FA CD
,则
AB AD

_______.
14.已知函数
f
x


1 1x 2
ln
x, x 1 1,x 1 2
,若
x1

x2
,且
f
x1
f
x2

2 ,则
x1
n
项和.若 a1

1 q2
,且 S5

S2
7

则首项 a1 的值为_______. 11.已知 f (x) 是定义在区间(﹣1,1)上的奇函数,当 x<0 时, f (x) x(x 1) .已知 m 满足不等式
f (1 m) f (1 m2) 0 ,则实数 m 的取值范围为_______.
本题正确结果: 1 3
【点睛】本题考查古典概型概率问题的求解,属于基础题.
5.函数 y 1 log2 x 的定义域为______.
【答案】[1 , ) 2
【解析】
【分析】
直接由根式内部的代数式大于等于 0,然后求解对数不等式得答案.
【详解】由1
log 2
x

0
,得
x

1 2

函数 y
1
log 2 x
的定义域为

1 2
,


.
故答案为:

1 2
,


.
【点睛】本题考查了函数的定义域及其求法,考查对数不等式的解法,是基础题.
6.运行如图所示的伪代码,其结果为

【答案】17 【解析】
试题分析:第一次循环,I=1,S=1+1=2;第二次循环,I=3,S=2+3=5;第三次循环,I=5,S=5+5=10; 第四次循环,I=7,S=10+7=17,结束循环输出 S=17 考点:循环结构流程图
【点睛】本题考查双曲线标准方程的求解,关键是能够利用点到直线距离公式构造方程求得未知量.
8.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球 的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟 大发现,圆柱的表面积与球的表面积之比为_______.
第 3 页 共 20 页
19.在数列an 中,已知 a1 2 , an1 3an f (n) .
(1)若 f (n) k (k 为常数), a3 14 ,求 k;
(2)若 f (n) 2n 1.①求证:数列an n 为等比数列;②记 bn an (1 )n ,且数列bn 的前 n 项和为 Tn ,若T3 为数列Tn 中的最小项,求 的取值范围.
【答案】
3 2
.
【解析】
【分析】
设球的半径为 R ,可知圆柱高为 2R ;根据圆柱表面积和球的表面积公式分别求得表面积,作比得到
结果.
【详解】设球的半径为 R ,则圆柱的底面半径为 R ,高为 2R
圆柱的表面积 S1 2 R2 2 R 2R 6 R2 ;球的表面积 S2 4 R2
20.已知函数 f x x ln x 2 .
相关文档
最新文档