HFSS-矩形微带贴片天线的仿真设计报告

合集下载

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计HFSS是高频仿真软件,其能够仿真高频电磁场的分布,从而为瘦电脑、微波天线、天线阵列等高频领域的设计提供重要帮助。

本文基于HFSS进行矩形微带天线仿真与设计,旨在通过具体案例,介绍HFSS的基本使用方式及其在微波天线设计中的一些应用技巧。

矩形微带天线是一种基于微带线技术的天线,主要用于微波通信中的超宽频扁平天线设计,是其中比较常见的一种类型。

其主要有三个部分组成,即贴在基板上的金属天线贴片、地平面和基板。

其中,金属天线贴片构成了矩形的主体部分,用来发射和接收信号;地平面则是必不可少的一部分,它主要是用来匹配阻抗以及吸收反射波;基板则是用来支撑整个天线结构的基础,同时也承担着微带线的传输作用。

首先,我们需要打开HFSS软件,并建立一个新项目。

在建立好项目之后,我们需要定义模型的参数。

这里我们定义了金属天线贴片的长度为15mm、宽度为10mm、介电常数为4.4,厚度为0.5mm的基板。

接着,我们需要定义微带线的宽度为1mm,介质常数为2.2。

接下来,我们需要在HFSS中创建一个矩形微带天线模型。

这个模型主要包括三个部分,即金属天线贴片、地平面和基板。

在创建金属天线贴片时,我们需要将其放置在基板的正中央,同时,地平面也需要和天线贴片紧密贴合在一起。

最后,将微带线连接到天线贴片的端口上即可。

完成以上步骤后,我们需要在HFSS中对矩形微带天线进行仿真,以评估其性能。

仿真结果显示,矩形微带天线的中心频率为8GHz,带宽为342MHz,增益为5dB。

在设计矩形微带天线时,我们需要注意以下几个问题。

首先,合适的天线尺寸可以有效地改善天线的性能。

其次,天线的形状也直接影响着天线的工作性能,一般而言,较长和较窄的天线可以提高其辐射效率和方向性。

最后,巧妙地设计微带线的长度和宽度,可以用来调整天线的工作频率和带宽。

总之,基于HFSS的矩形微带天线仿真与设计,可以有效地为微波通信领域的工程设计提供有力支持。

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计【摘要】本文主要介绍了基于HFSS软件的矩形微带天线仿真与设计。

在详细阐述了研究背景、研究目的和研究意义。

接着对HFSS软件进行了介绍,并解释了矩形微带天线的原理。

然后介绍了设计流程和仿真结果分析,分析了天线性能并提出了优化方案。

在总结了研究成果,展望未来研究方向并提出了结论建议。

本文通过HFSS软件对矩形微带天线进行仿真和设计,为提高天线性能提供了重要参考,具有一定的实用价值和研究意义。

【关键词】HFSS、矩形微带天线、仿真、设计、天线性能、优化、原理、设计流程、结果分析、研究成果、展望未来、结论建议、研究背景、研究目的、研究意义1. 引言1.1 研究背景本文旨在通过对HFSS软件介绍、矩形微带天线原理、设计流程、仿真结果分析和天线性能优化等内容的探讨,对基于HFSS矩形微带天线的仿真与设计进行研究,从而提高微带天线的性能和应用效果。

这对于推动无线通信技术的发展,提升通信系统的性能和稳定性具有重要的意义。

1.2 研究目的研究目的是通过基于HFSS矩形微带天线仿真与设计,探索提升天线性能的方法和技术。

具体包括优化天线结构设计,提高频率带宽和增益,降低回波损耗和辐射损耗,以满足不同应用场景下对天线性能的要求。

通过对矩形微带天线原理的深入研究,结合HFSS软件的应用,将为天线设计领域的发展带来重要的参考价值。

通过本研究,旨在为提高通信系统的传输质量和覆盖范围提供有效的技术支持,推动无线通信技术的不断创新和发展。

1.3 研究意义矩形微带天线是一种常见的微波天线结构,具有简单的制作工艺、较宽的工作频带和良好的方向性等优点,因此在通信领域得到广泛应用。

本文基于HFSS软件对矩形微带天线进行仿真与设计,旨在深入研究其性能特点与优化方法,为微波通信系统的设计与优化提供参考。

本研究的意义主要表现在以下几个方面:研究矩形微带天线的仿真与设计可以深入理解其工作原理和特性,为进一步优化性能提供基础。

基于HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计报告

.. .. ..矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pecPatch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pecPort -3.1125,-16,-0.05 2.49 ,0, 0.894 RectangleAir -40,-40,-20 80,80,40 Box Vacumn一、新建文件、重命名、保存、环境设置。

(1)、菜单栏File>>save as,输入0841,点击保存。

(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。

(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。

二、建立微带天线模型(1)、插入模型设计(2)、重命名输入0841(3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05修改名称为GND, 修改材料属性为 pec,(4)介质基片:点击,:x:-14.05,y:-16,z:0。

dx: 28.1,dy: 32,dz: 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计作者:王琨王茂丞李宗泽林昊晨来源:《电脑知识与技术》2019年第12期摘要:针对5G移动通信具备的极高传输速率、极低时延、极宽带宽等特征,使用HFSS 三维仿真软件设计了一种作为5G阵列天线单元的矩形微带贴片天线,其工作频率为4.8GHz。

HFSS仿真结果表明,天线在贴片长度为13.88mm时回波阻抗达为-34.86dB。

综合增益方向图进行分析。

结果表明,该天线的设计是可行的。

关键词:HFSS仿真;5G;微带天线;回波损耗中图分类号:TP391 文献标识码:A文章编号:1009-3044(2019)12-0278-03Simulation Design of Communication Microstrip Antenna Based on HFSSWANG Kun, WANG Mao-cheng, LI Zong-ze, LIN Hao-chen(College of Electronic Engineering, Naval Univ. of Engineering, Wuhan 430033, China)Abstract: For 5G mobile communication has the characteristics of extremely high transmission rate, extremely low delay, extremely wide bandwidth and so on,using electromagnetic simulation software HFSS three-dimensional design a 5 g for 4.8 GHz of rectangular microstrip patch antenna array antenna unit. Now, results show ,that the echo impedance of the antenna reaches -34.86dB when the patch length is 13.88mm. The integrated gain pattern is analyzed. The results show that the design of the antenna is feasible.Key words: HFSS simulation; 5g; microstrip antenna; return loss1 背景微带贴片天线是最基本、最常见的微带天线形式,由带导体接地板的介质基片上贴加光刻腐蚀等方式制作的导体薄片构成[1]。

基于HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计报告

. . . .. .矩形微带贴片天线的仿真设计实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验容:矩形微带天线仿真:工作频率7.55GHz天线结构尺寸如表所示:名称起点尺寸类型材料Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pecPatch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pecPort -3.1125,-16,-0.05 2.49 ,0, 0.894 RectangleAir -40,-40,-20 80,80,40 Box Vacumn一、新建文件、重命名、保存、环境设置。

(1)、菜单栏File>>save as,输入0841,点击保存。

(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。

(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。

二、建立微带天线模型(1)、插入模型设计(2)、重命名输入0841(3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05修改名称为GND, 修改材料属性为 pec,(4)介质基片:点击,:x:-14.05,y:-16,z:0。

dx: 28.1,dy: 32,dz: 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计HFSS (High Frequency Structure Simulator) 是一种用于电磁场仿真的专业软件,可广泛应用于微波、射频和毫米波电路及天线设计领域。

本文将基于HFSS软件,对矩形微带天线进行仿真与设计。

1. 矩形微带天线的原理矩形微带天线是一种常用的微带天线结构,其原理是通过在基板上制作一块金属片,再将其与微带馈源相连,形成天线结构。

当微带馈源传输电磁波信号时,金属片将产生共振现象,从而辐射出电磁波信号,实现天线的信号发射与接收功能。

在进行矩形微带天线设计时,需要确定一系列设计参数,包括天线的长度、宽度、基底材料以及微带馈源的位置等。

这些设计参数将直接影响到天线的工作频率、频带宽度、增益以及阻抗匹配等性能指标。

在进行矩形微带天线的仿真时,首先需要在HFSS软件中建立天线的三维模型。

通过设置好天线的设计参数,如长度、宽度、基底材料等,并对微带馈源进行建模。

接着,对天线的工作频率范围进行设置,进行频域分析,并评估天线的频率响应、阻抗匹配、波传输等性能指标。

根据仿真结果对天线设计参数进行优化,以满足设计要求。

通过HFSS仿真,可以获得矩形微带天线的频率响应曲线。

该曲线反映了天线在不同频率下的辐射性能,包括驻波比、增益、辐射模式等。

通过对频率响应曲线的分析,可以确定天线的工作频率范围、频带宽度,并对天线的频率响应进行优化设计。

阻抗匹配是矩形微带天线设计中的重要问题,影响着天线与信号源之间的能量传输效率。

通过HFSS仿真,可以获取天线的输入阻抗参数,并进行阻抗匹配网络设计,以提高天线的能量利用率。

矩形微带天线的辐射模式是指天线在不同方向上的辐射功率分布情况。

通过HFSS仿真可以获取天线的辐射模式图,并分析天线的主辐射方向、辐射功率分布等,从而优化天线的辐射性能。

在进行矩形微带天线的仿真与设计过程中,需要不断对天线的设计参数进行调整与优化,以满足天线的性能指标要求。

基于HFSS矩形微带贴片天线的仿真设计

基于HFSS矩形微带贴片天线的仿真设计

基于HFSS矩形微带贴片天线的仿真设计
李艳;戴亚文
【期刊名称】《机电工程技术》
【年(卷),期】2010(039)010
【摘要】根据微带天线的辐射原理和实际修正,设计了一种谐振频率为7.55GHz 的矩形微带天线,利用Ansoff公司的HFSS10.0对其进行了建模并对其进行仿真,分析了天线的S参数图,驻波比以及方向图.仿真结果跟理论结果很吻合,证明了方法的可行性,同时也证明了HFSS是一种对微带天线有效的仿真工具.
【总页数】3页(P40-41,50)
【作者】李艳;戴亚文
【作者单位】武汉理工大学理学院,湖北武汉,430070;武汉理工大学理学院,湖北武汉,430070
【正文语种】中文
【中图分类】TN82
【相关文献】
1.矩形微带贴片天线的设计与仿真 [J], 韩团军
2.基于HFSS的不同形状微带贴片天线的仿真设计 [J], 张天瑜
3.基于HFSS的短路针加载微带贴片天线的仿真设计 [J], 侯宁;张天瑜
4.基于HFSS矩形微带天线仿真与设计 [J], 王琨;王茂丞;李宗泽;林昊晨
5.基于HFSS的电磁场仿真实验课堂设计 [J], 杨慧春;高晶敏;魏英;王丽霞;付晓辉
因版权原因,仅展示原文概要,查看原文内容请购买。

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计

基于HFSS矩形微带天线仿真与设计引言一、HFSS介绍HFSS(High Frequency Structure Simulator),即高频结构模拟器,是由美国ANSYS 公司开发的一款专业的高频电磁场模拟软件,广泛应用于微波、射频和毫米波领域的电磁场分析与设计。

HFSS具有强大的仿真分析能力和友好的图形界面,在微带天线设计与分析领域有着广泛的应用。

二、矩形微带天线基本结构矩形微带天线通常由辐射片和衬底板两部分组成。

辐射片通常由金属片构成,形状可以是矩形、圆形、方形等,其大小与频率密切相关;衬底板可以采用介电常数较大的材料,如FR-4等。

辐射片与衬底板之间通过馈电位置(如微带线)连接。

在设计矩形微带天线时,需要考虑到辐射片的尺寸、馈电位置、地平板的大小等因素,以确保天线具有良好的频率特性。

三、HFSS仿真流程1. 建立模型:在HFSS软件中,首先需要建立矩形微带天线的三维模型。

通过绘制辐射片和衬底板的几何结构,设置材料参数和频率范围等,建立完整的仿真模型。

2. 设置边界条件:在建立完仿真模型后,需要设置合适的边界条件。

通常情况下,可以选择开放边界(PML)作为边界条件,以消除边界反射对仿真结果的影响。

3. 设置激励:在模型建立完成后,需要设置合适的激励方式。

根据具体的仿真需求,可以选择不同的激励方式,如电压激励、电流激励等。

4. 设定仿真参数:根据设计要求,设置合适的仿真参数,如频率范围、网格精度、求解器等。

这些参数的选择将直接影响仿真结果的准确性和计算速度。

5. 进行仿真计算:当所有仿真参数设置完毕后,即可进行仿真计算。

HFSS软件会根据设定的参数进行电磁场分析与计算,得到相应的仿真结果。

6. 仿真结果分析:根据得到的仿真结果,对矩形微带天线的性能进行分析,并进行必要的优化设计。

通过不断的仿真分析与优化设计,最终得到满足设计要求的微带天线结构。

四、矩形微带天线设计优化1. 辐射片大小优化:辐射片的大小直接影响着微带天线的工作频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HFSS-矩形微带贴片天线的仿真设计报告
(4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。

二、建立微带天线模型
(1)点击创建GND,起始点:x:0,y:0,z:-0.79,dx:28.1,dy:32,dz:-0.05
修改名称为GND, 修改材料属性为 pec,
(2)介质基片:点击,:x:0,y:0,z:0。

dx: 28.1,dy: 32,dz: - 0.794,
修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

点击OK
(3) 建立天线模型patch,
点击,x:7.03,y: 8, z:0 ,dx: 12.45,dy: 16,dz: 0.05
命名为patch,点击OK。

(4) 建立天线模型微带线MSLine
点击,x:10.13,y: 0, ,z: 0 , dx:2.46,dy: 8,dz: 0.05,
命名为MSLine,材料pec, 透明度0.4
选中Patch和MSLine,点击Modeler>Boolean>Unite
(5)、建立端口。

创建供设置端口用的矩形,该矩形连接馈线与地。

Modeler>Grid Plane>XZ,或者设置
点击,创建Port。

命名为port
双击Port下方CreatRectangle
输入:起始点:x: 10.13,y: 0,z:- 0.84,尺寸: dx:2.46,dy: 0,dz: 0.89
(6)、创建Air。

点击,x:-5,y:-5,z:-5.79, dx:38.1, dy:42, dz:10.79
修改名字为Air,透明度0.8.
,
三、设置边界条件和端口激励。

(1)设置理想金属边界:选择GND,右击Assign Boundaries>>Perfect E
将理想边界命名为:PerfE_GND,,点击OK。

(2)、设置边界条件:选择Port,点击Assign Boundaries>>Perfect E
在对话框中将其命名为PerfE_Patch ,点击OK。

(3)、设置激励。

选中port,右击。

Assign Excitations>>Lumped Port
将端口命名为Port1,勾选GND。

点击OK。

(4)、设置辐射边界。

选中Air,右击Assign Boundaries>>Radiation,
命名为Rad1,点击OK。

四、求解设置,设置求解频率。

(1)、求解设置
右击Analysis >> Add Solution Setup
Solution Frequency: 7.55GHz,Maximum Number of Passes: 15,Maximum Delta S per Pass: 0.02 ,点击确定。

(2)、设置求解频率
右击Setup1,>>Add Frequency Sweep
选择Setup1,Sweep Type: Fast, Frequency Setup Type: Linear Count,Start:6GHz,Stop:9GHz,step size: 0.01,选中Save Field复选框 ,点击OK。

(3)、设置无限大球面。

右击Radiation>Insert Far Field Setup>Infinite Sphere
Phi: Start: 0deg,Stop: 360deg,Step: 10deg Theta: Start: 0deg,Stop: 180deg,Step: 10deg
五、设计检查与分析。

点击,点击Close。

右击Analyse>>Analye All。

进程框
信息管理框,显示结果。

六、后处理操作
(1)、 S参数
右击Result>>Create Terminal solution data Report>>rectangle Plot
Report Type: Modal S Parameters;Display Type: Rectangle,在Trace窗口中设置,Solution: Setup1: Sweep1,Domain: Sweep,点击Y标签,Category: S parameter,Quantity: S(p1,p1),Function: dB.
点击New Report.
(2)、Smith 圆图
右击Result>>Create Terminal solution data Report>>Smith chart
如下图选择
点击New Report.
(3)、平面方向图
右击Radiation >>insert Far Field Setup>>Infinite sphere.
如下设置
右击result>>created far fileds report>>radiation pattern
如图设置分别选择XOY,Gain,GainTotal,dB.
点击New Report.
(4)、3D远场增益方向图。

右击Results>Create Far Fields Report>>Radiation Pattern.
在Trace窗口中设置:Solution: Setup1: LastAdptive,在Sweeps标签中,在Name 中点击变量Phi,在下拉菜单中选择Theta,Category: Gain;Quantity: Gain Total;Function: dB.
点击New Report.
(5)、其他参数
右击Radiation>>Infinite sphere>>computer antenna parameters
设置如下
点击确定
结果分析:
S参数的结果与理论结果基本一致,中心频率在7.55左右,参数还能优化。

2D辐射远场则从360度范围内反映了实验天线在各个方向的辐射强度。

相关文档
最新文档