山西省平遥和诚中学数列的概念单元测试题 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.已知数列{}n a 满足()()*622,6,6
n n p n n a n p n -⎧--≤=∈⎨>⎩N ,且对任意的*n ∈N 都有1n n a a +>,则实数p 的取值范围是( )
A .71,4⎛⎫ ⎪⎝⎭
B .101,7⎛⎫ ⎪⎝⎭
C .()1,2
D .10,27⎛⎫ ⎪⎝⎭
2.已知数列{}
ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )
A .13i =,33j =
B .19i =,32j =
C .32i =,14j =
D .33i =,14j =
3.已知数列{}n a 前n 项和为n S ,且满足*
112(N 3)33n n n n S S S S n n --+≤+∈≥+,,则( )
A .63243a a a ≤-
B .2736+a a a a ≤+
C .7662)4(a a a a ≥--
D .2367a a a a +≥+
4.已知数列{}n a 的前n 项和为n S ,且2
1n S n n =++,则{}n a 的通项公式是( )
A .2n a n =
B .3,12,2
n n a n n =⎧=⎨≥⎩ C .21n a n =+
D .3n a n =
5.已知数列{}n a 的前n 项和为(
)*
22n
n S n =+∈N ,则3
a
=( )
A .10
B .8
C .6
D .4
6.已知数列,21,
n -21是这个数列的( )
A .第10项
B .第11项
C .第12项
D .第21项
7.
的一个通项公式是( )
A
.n a =
B
.n a =C
.n a =D
.n a =8.在数列{}n a 中,已知11a =,25a =,()
*
21n n n a a a n N ++=-∈,则5a 等于( )
A .4-
B .5-
C .4
D .5
9.数列{}n a 的通项公式是2
76n a n n =-+,4a =( )
A .2
B .6-
C .2-
D .1
10.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =
C .1024是三角形数
D .123111121
n n a a a a n +++⋯+=+ 11.在数列{}n a 中,已知13a =,26a =,且21n n n a a a ++=-,则2020a =( ) A .-6 B .6 C .-3
D .3
12.在数列{}n a 中,114a =-,1
11(1)n n a n a -=-
>,则2019a 的值为( ) A .
4
5
B .14
-
C .5
D .以上都不对
13.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511
B .513
C .1025
D .1024
14.在数列{}n a 中,12a =,1
1
1n n a a -=-(2n ≥),则8a =( ) A .1-
B .
12
C .1
D .2
15.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有1n n a a +=成立,则称数列
{}n a 为周期数列,周期为T .
已知数列{}n a 满足()111,1
0,{1
,01n n n n n
a a a m m a a a +->=>=<≤ ,则下列结论错误的是( ) A .若34a =,则m 可以取3个不同的数; B
.若m =
,则数列{}n a 是周期为3的数列;
C .存在m Q ∈,且2m ≥,数列{}n a 是周期数列;
D .对任意T N *∈且2T ≥,存在1m >,使得{}n a 是周期为T 的数列. 16.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( )
A .4
B .6
C .8
D .10
17.定义:在数列{}n a 中,若满足
21
1n n n n
a a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则2020
2018
a a 等于( ) A .4×20162-1
B .4×20172-1
C .4×20182-1
D .4×20182
18.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45
B .46
C .47
D .48
19.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则20
1
k
k a
=∑的值不可能是( ) A .2
B .4
C .10
D .14
20.数列{}n a 满足 112
a =,111n n a a +=-,则2018a 等于( )
A .
1
2
B .-1
C .2
D .3
二、多选题
21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:
1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列
数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数
C .202020182022
3a a a =+
D .123a a a +++…20202022a a +=
22.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
23.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114
a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1
4(1)
n a n n =+
C .数列{}n a 为递增数列
D .数列1n S ⎧⎫
⎨
⎬⎩⎭
为递增数列 24.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组