三角函数公式-大全

合集下载

三角函数所有公式大全

三角函数所有公式大全

三角函数所有公式大全三角函数所有公式大全两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)倍角公式tan2A = 2tanA/(1-tan? A)Sin2A=2SinA?CosACos2A = Cos^2 A–Sin? A=2Cos? A—1=1—2sin^2 A三倍角公式sin3A = 3sinA-4(sinA)?;cos3A = 4(cosA)? -3cosAtan3a = tan a ? tan(π/3+a)? tan(π/3-a) 半角公式sin(A/2) = √{(1–cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1–cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)} ?tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA)和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB积化和差sin(a)sin(b) = -1/2__[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2__[cos(a+b)+cos(a-b)]sin(a)cos(b) = 1/2__[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2__[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]?}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]?} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}其它公式a?sin(a)+b?cos(a) = [√(a?+b?)]__sin(a+c) [其中,tan(c)=b/a] a?sin(a)-b?cos(a) = [√(a?+b?)]__cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]?;1-sin(a) = [sin(a/2)-cos(a/2)]?;其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:cos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαcot(3π/2-α)= tanα三角函数诱导公式知识点公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系(1)π/2+α与α的三角函数值之间的关系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα(2)π/2-α与α的三角函数值之间的关系sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα(3)3π/2+α的三角函数值之间的关系sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/α+α)=-tanα(4)3π/2-α的三角函数值之间的关系sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα三角函数公式大全两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)cot(a+b)=(cotacotb-1)/(cotb+cota)cot(a-b)=(cotacotb+1)/(cotb-cota)倍角公式tan2a=2tana/[1-(tana)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2a=2sina__cosa半角公式sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa)) cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) ? tan(a/2)=(1-cosa)/sina=sina/(1+cosa)和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) )2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2) cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosb积化和差公式sin(a)sin(b)=-1/2__[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2__[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2__[sin(a+b)+sin(a-b)] 诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a) pi=3.1415926.... cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tga=tana=sina/cosa万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a__sin(a)+b__cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]a__sin(a)-b__cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2三角函数的周期三角函数的周期T=2π/ω。

初中三角函数常用公式大全

初中三角函数常用公式大全

初中三角函数常用公式大全一、基本关系式:1. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC=2R,其中a,b,c分别为三角形ABC的三边,A,B,C为对应的角,R为三角形的外接圆半径。

2. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。

3. 正弦公式:在任意三角形ABC中,有sinA/a=sinB/b=sinC/c。

4. 余弦公式:在任意三角形ABC中,有cosA=(b²+c²-a²)/2bc,cosB=(c²+a²-b²)/2ac,cosC=(a²+b²-c²)/2ab。

二、常用比值关系:1. 任意角的正弦公式:在直角三角形中,sinθ=对边/斜边。

2. 任意角的余弦公式:在直角三角形中,cosθ=邻边/斜边。

3. 任意角的正切公式:在直角三角形中,tanθ=对边/邻边。

4. 任意角的余切公式:在直角三角形中,cotθ=邻边/对边。

5. 任意角的正割公式:在直角三角形中,secθ=斜边/邻边。

6. 任意角的余割公式:在直角三角形中,cscθ=斜边/对边。

三、特殊角的值:1. π/6的正弦和余弦值:sin(π/6)=1/2,cos(π/6)=√3/22. π/4的正弦和余弦值:sin(π/4)=cos(π/4)=√2/23. π/3的正弦和余弦值:sin(π/3)=√3/2,cos(π/3)=1/24. π/2的正弦和余弦值:sin(π/2)=1,cos(π/2)=0。

四、和差化积公式:1. sin(A±B)=sinAcosB±cosAsinB。

2. cos(A±B)=cosAcosB∓sinAsinB。

3. tan(A±B)=(tanA±tanB)/(1∓tanAtanB)。

(完整版)三角函数公式大全

(完整版)三角函数公式大全

三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦函数:r y=αsin 余弦函数:r x =αcos 正切函数:x y =αtan余切函数:y x =αcot 正割函数:xr=αsec余割函数:yr=αcsc二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。

商数关系:x x x cos sin tan =,xxx sin cos cot =。

平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。

积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosαtan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin(απ-2)=cosα cos(απ-2)=sinα tan(απ-2)=cotα cot(απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin(απ+2)=cosα cos(απ+2)=-sinαtan(απ+2)=-cotα cot(απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系:sin(απ-23)=-cosα cos(απ-23)=-sinαtan(απ-23)=cotα cot(απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin(απ+23)=-cosα cos(απ+23)=sinαtan(απ+23)=-cotα cot(απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

最最完整版--三角函数公式大全

最最完整版--三角函数公式大全

三角函数与反三角函数第一部分三角函数公式·两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)·半角公式:sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1)) csc(α/2)=±√((2secα/(secα-1))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))·辅助角公式:Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)·万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))·降幂公式sin^2α=(1-cos(2α))/2=versin(2α)/2 cos^2α=(1+cos(2α))/2=covers(2α)/2tan^2α=(1-cos(2α))/(1+cos(2α))·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sin β·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sin β·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB·积化和差公式:sin α·cos β=(1/2)[sin(α+β)+sin(α-β)] cos α·sin β=(1/2)[sin(α+β)-sin(α-β)] cos α·cos β=(1/2)[cos(α+β)+cos(α-β)] sin α·sin β=-(1/2)[cos(α+β)-cos(α-β)] ·倍角公式:sin(2α)=2sin α·cos α=2/(tan α+cot α)cos(2α)=(cos α)^2-(sin α)^2=2(cos α)^2-1=1-2(sin α)^2tan(2α)=2tan α/(1-tan^2α) cot(2α)=(cot^2α-1)/(2cot α) sec(2α)=sec^2α/(1-tan^2α) csc(2α)=1/2*sec α·csc α ·三倍角公式:sin(3α) = 3sin α-4sin^3α = 4sin α·sin(60°+α)sin(60°-α) cos(3α) = 4cos^3α-3cos α = 4cos α·cos(60°+α)cos(60°-α)tan(3α) = (3tan α-tan^3α)/(1-3tan^2α) = tan αtan(π/3+α)tan(π/3-α) cot(3α)=(cot^3α-3cot α)/(3cot^2α-1) ·n 倍角公式:sin(n α)=ncos^(n-1)α·sin α-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-… cos(n α)=cos^n α-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…·三角和的三角函数:sin(α+β+γ)=sin α·cos β·cos γ+cos α·sin β·cos γ+cos α·cos β·sin γ-sin α·sin β·sin γcos(α+β+γ)=cos α·cos β·cos γ-cos α·sin β·sin γ-sin α·cos β·sin γ-sin α·sin β·cos γtan(α+β+γ)=(tan α+tan β+tan γ-tan α·tan β·tan γ)/(1-tan α·tan β-tan β·tan γ-tan γ·tan α) ·其它公式1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^ csc(a)=1/sin(a) sec(a)=1/cos(a) ·推导公式tan α+cot α=2/sin2α tan α-cot α=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 csc(a)=1/sin(a) sec(a)=1/cos(a) 。

三角函数运算公式大全

三角函数运算公式大全

以下是三角函数公式的个人归纳,请查收~诱导公式(1)sinx=sin(x+2kπ)cosx=cos(x+2kπ)tanx=tan(x+2kπ)k∈Z原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)(2)sin(-x)=-sinxcos(-x)=cosx tan(-x)=-tanx(3)sin(π+x)=-sinx cos(π+x)=-cosx tan(π+x)=tanx(4)sin(π-x)=sinx cos(π-x)=-cosxtan(π-x)=-tanx原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)(5)sin(π/2+x)=cosxcos(π/2+x)=-sinxtan(π/2+x)=-cotx(6)sin(π/2-x)=cosxcos(π/2-x)=sinxtan(π/2-x)=cotx(7)展开公式sin(3π/2+x)=sin(π+π/2+x)=-sin(π/2+x)=-cosx cos(3π/2+x)=cos(π+π/2+x)=-cos(π/2+x)=sinx tan(3π/2+x)=-cotxsin(3π/2-x)=sin(π+π/2-x)=-sin(π/2-x)=-cosx cos(3π/2-x)=cos(π+π/2-x)=-cos(π/2-x)=-sinx tan(3π/2-x)=cotx两角公式(1)两角和差公式sin(x+y)=sinxcosy+sinycosxsin(x-y)=sinxcosy-sinycosxcos(x+y)=cosxcosy-sinxsinycos(x-y)=cosxcosy+sinxsinytan(x+y)=sin(x+y)/cos(x+y)=sinxcosy+sinycosx/cosxcosy-sinxsiny=tanx+tany/1-tanxtanytan(x-y)=sin(x-y)/cos(x-y)=sinxcosy-sinycosx/cosxcosy+sinxsiny=tanx-tany/1+tanxtany证明:单位圆作图(2)二倍角公式sin2x=2sinxcosx推导:sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosxcos2x=(cosx)²-(sinx)²=2cos²x-1=1-2sin²x (sin²x+cos²x=1)推导:cos2x=cos(x+x)=cosxcosx-sinxsinx=cos²x-sin²xtan2x=sin2x/cos2x=2sinxcosx/cos²x-sin²x=2tanx/1-tan²x*三倍角公式sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinx(1-sin²x)+(1-2sin²x)sinx=3sinx-4sin³xcos3x=cos(2x+x)=cos2xcosx-sinxsin2x=(2cos²x-1)cosx-2cosx(1-cos²x)=4cos³x-3cosxtan3x=sin3x/cos3x=tanxtan(π/3+x)tan(π/3-x)(3)半角公式sin²(x/2)=(1-cosx)/2cos²(x/2)=(1+cosx)/2tan²(x/2)=1-cosx/1+cosx推导:cosx=2cos²(x/2)-1=1-2sin²(x/2)(4)辅助角公式asinx+bcosx=√(a²+b²)[asinx/√(a²+b²)+bcosx/√(a²+b²)]原理:配凑为sin²m+cos²m的形式,值域为[-√(a²+b²),√(a²+b²)] (5)两角推诱导例sin(π+x)=sinπcosx+sinxcosπ=-sinxcos(π+x)=cosπcosx-sinπsinx=-cosxsin(π-x)=sinπcosx-sinxcosπ=sinxcos(π-x)=cosπcosx+sinπsinx=-cosx与二次函数的那些事儿(1)变量法e.g.求f(x)=sinx+cos2x的值域解:由题f(x)=sinx+1-2sin²x......将sinx看做熟悉的变量f(x)=-2(sin²x-1/2sinx+1/16-1/16)+1=-2(sinx-1/4)²+9/8......化为熟悉的顶点式∵sinx∈[-1,1]......注意定义域(尤其是题目如果给出角范围)∴当sinx=1/4时,有f(x)最大值9/8;当sinx=-1时,有f(x)最小值-2 ∴f(x)值域为[-2,9/8](2)换元法e.g.求f(x)=sinx+cosx+sinxcosx的值域解:由题,令t=sinx+cosx=√2sin(x+π/4) t∈[-√2,√2]f(x)=t+sinxcosx∵t²=1+2sinxcosx∴sinxcosx=(t²-1)/2即f(x)=t+t²/2-1/2......换元,注意定义域接下来由二次函数解即可(3)公式法对于复合函数或不等式而言,需要注意其单调性与奇偶性,综合运用公式、定理与方程思想。

三角函数的公式大全

三角函数的公式大全

三角函数的公式大全1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan² A)Sin2A=2SinA•CosACos2A = Cos^2 A–Sin² A=2Cos² A—1=1—2sin^2 A3、三倍角公式sin3A = 3sinA-4(sinA)³;cos3A = 4(cosA)³ -3cosAtan3a = tan a • tan(π/3+a)• tan(π/3-a)4、半角公式sin(A/2) = √{(1–cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1–cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)} ?tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA) 5、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB6、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]7、诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA8、万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}9、其它公式a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a] a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]²;1-sin(a) = [sin(a/2)-cos(a/2)]²;10、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)11、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)12、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα13、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα14、公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα15、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα16、公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα17、公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα√表示根号,包括{……}中的内容18、三角函数记忆口诀三角函数是函数,象限符号坐标注。

三角函数相关所有公式

三角函数相关所有公式

三角函数相关所有公式1.正弦函数公式:正弦函数表示为:y = sin(x)关系:sin(x) = y/r,其中r为单位圆上的点(x, y)到圆心O的距离性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇偶性:奇函数,即sin(-x) = -sin(x)- 周期性:周期为2π,即sin(x+2π) = sin(x)2.余弦函数公式:余弦函数表示为:y = cos(x)关系:cos(x) = x/r,其中r为单位圆上的点(x, y)到圆心O的距离性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇偶性:偶函数,即cos(-x) = cos(x)- 周期性:周期为2π,即cos(x+2π) = cos(x)3.正切函数公式:正切函数表示为:y = tan(x)关系:tan(x) = sin(x)/cos(x)性质:- 定义域:(-∞, +∞),且除去一些点使得tan(x)无定义(如x = π/2 + nπ,其中n为整数)-值域:(-∞,+∞)- 奇偶性:奇函数,即tan(-x) = -tan(x)- 周期性:周期为π,即tan(x+π) = tan(x)4.余切函数公式:余切函数表示为:y = cot(x)关系:cot(x) = cos(x)/sin(x)性质:- 定义域:(-∞, +∞),且除去一些点使得cot(x)无定义(如x = nπ,其中n为整数)-值域:(-∞,+∞)- 奇偶性:奇函数,即cot(-x) = -cot(x)- 周期性:周期为π,即cot(x+π) = cot(x)5.正弦函数和余弦函数的和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))cot(x ± y) = (cot(x)cot(y) ∓ 1)/(cot(y) ± cot(x))6.正弦函数和余弦函数的倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = 2tan(x)/(1 - tan^2(x))7.正弦函数和余弦函数的半角公式:sin(x/2) = ±√((1 - cos(x))/2)cos(x/2) = ±√((1 + cos(x))/2)8.正弦函数和余弦函数的和积公式:sin(x) + sin(y) = 2sin((x + y)/2)cos((x - y)/2)sin(x) - sin(y) = 2cos((x + y)/2)sin((x - y)/2)cos(x) + cos(y) = 2cos((x + y)/2)cos((x - y)/2)cos(x) - cos(y) = -2sin((x + y)/2)sin((x - y)/2)这些是三角函数常见的公式,它们在数学和物理中有广泛的应用。

数学三角函数公式大全

数学三角函数公式大全

数学三角函数公式大全数学三角函数是数学中的重要分支之一,涉及到许多重要的公式和定理。

下面是一个全面的三角函数公式大全,包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。

正文:1. 正弦函数和余弦函数正弦函数 sin(x) 表示的是直角三角形中对边长度与斜边长度的比值,余弦函数 cos(x) 表示的是直角三角形中邻边长度与斜边长度的比值。

下面是它们的公式:sin(x) = 2 / (2 + x^2)cos(x) = 1 - sin^2(x)2. 正切函数和余切函数正切函数 tan(x) 表示的是直角三角形中对边长度与邻边长度的比值,余切函数 cot(x) 表示的是直角三角形中邻边长度与对边长度的比值。

下面是它们的公式:tan(x) = 2 / (1 + x^2)cot(x) = 1 / (1 + x^2)3. 正割函数和余割函数正割函数 sech(x) 表示的是直角三角形中对边长度与斜边长度的比值,余割函数 csch(x) 表示的是直角三角形中邻边长度与斜边长度的比值。

下面是它们的公式:sech(x) = 1 / (1 + x^2)csch(x) = x / (1 + x^2)4. 其他三角函数其他常见的三角函数包括正弦余弦函数、余弦正弦函数、正切余切函数、余切正切函数、正割余割函数和余割正割函数。

这些函数在三角学和物理学中都扮演着重要的角色。

下面是它们的公式:sin^2(x) + cos^2(x) = 1cos(2x) = - sin(2x)tan(2x) = 2 sin(x) / (1 - cos(2x))sech^2(x) + csch^2(x) = 1csch(2x) = - sech(2x)拓展:三角函数是数学中的重要分支之一,在各个领域都有着广泛的应用,包括物理学、工程学、经济学等等。

三角函数的公式和定理对于数学和物理学的学习都是至关重要的。

除了上面提到的公式和定理,还有许多其他的三角函数公式和定理,例如正弦定理、余弦定理、余切定理、正割定理和余割定理等等。

三角函数的公式大全

三角函数的公式大全

三角函数的公式大全三角函数是数学中的基本概念之一,用于描述在直角三角形中各个角的特性。

在三角函数中,最常用的三个函数是正弦函数、余弦函数和正切函数,它们分别表示一个角的正弦值、余弦值和正切值。

1. 正弦函数(Sine Function)正弦函数是一个周期函数,表示一个角的正弦值。

它的定义域是实数集,值域是区间[-1, 1]。

正弦函数通常用sin(x)表示,其中x为角的弧度值。

在直角三角形中,正弦值可以表示为对边与斜边的比值。

sin(x) = 边长(x) / 斜边长2. 余弦函数(Cosine Function)余弦函数是一个周期函数,表示一个角的余弦值。

它的定义域是实数集,值域是区间[-1, 1]。

余弦函数通常用cos(x)表示,其中x为角的弧度值。

在直角三角形中,余弦值可以表示为邻边与斜边的比值。

cos(x) = 邻边长(x) / 斜边长3. 正切函数(Tangent Function)正切函数是一个周期函数,表示一个角的正切值。

它的定义域是实数集,值域是整个实数集。

正切函数通常用tan(x)表示,其中x为角的弧度值。

在直角三角形中,正切值可以表示为对边与邻边的比值。

tan(x) = 边长(x) / 邻边长(x)此外,还有三角函数的倒数函数,sec(x),cosec(x)和cot(x),分别表示余弦的倒数、正弦的倒数和正切的倒数。

4. 余弦函数的倒数(Secant Function)余弦函数的倒数是一个周期函数,表示一个角的余弦值的倒数。

它的定义域是实数集减去余弦函数值为零的点,值域是实数集去除值为零和1的点。

余弦函数的倒数通常用sec(x)表示,其中x为角的弧度值。

sec(x) = 1 / cos(x)5. 正弦函数的倒数(Cosecant Function)正弦函数的倒数是一个周期函数,表示一个角的正弦值的倒数。

它的定义域是实数集减去正弦函数值为零的点,值域是实数集去除值为零的点。

正弦函数的倒数通常用cosec(x)表示,其中x为角的弧度值。

三角函数公式大全

三角函数公式大全

三角函数公式大全一、基本定义及性质1. 正弦函数(sin):sin A = 对边 / 斜边cos A = 临边 / 斜边tan A = 对边 / 临边余切函数(cot):cot A = 临边 / 对边2.零度三角函数:sin 0° = 0, cos 0° = 1, tan 0° = 0, cot 0° = ∞3.π/6弧度三角函数:sin (π/6) = 1/2, cos (π/6) = √3/2, tan (π/6) = 1/√3, cot (π/6) = √34.π/4弧度三角函数:sin (π/4) = √2/2, cos (π/4) = √2/2, tan (π/4) = 1, cot (π/4) = 15.π/3弧度三角函数:sin (π/3) = √3/2, cos (π/3) = 1/2, tan (π/3) = √3, cot (π/3) = 1/√36.相反角关系:sin (-A) = -sin A, cos (-A) = cos A, tan (-A) = -tan A, cot (-A) = -cot A7.90°三角函数:sin 90° = 1, cos 90° = 0, tan 90° = ∞, cot 90° = 08.π/2弧度三角函数:sin (π/2) = 1, cos (π/2) = 0, tan (π/2) = ∞, cot (π/2) = 09.倒数关系:sin (π - A) = sin A, cos (π - A) = -cos A, tan (π - A) = -tan A, cot (π - A) = -cot A10.余角关系:sin (π/2 - A) = cos A, cos (π/2 - A) = sin A, tan (π/2 -A) = cot A, cot (π/2 - A) = tan A二、和差与倍角公式1.和差公式:sin (A ± B) = sin A cos B ± cos A sin Bcos (A ± B) = cos A cos B ∓ sin A sin Btan (A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B)2.二倍角公式:sin 2A = 2 sin A cos Acos 2A = cos^2 A - sin^2 A = 2 cos^2 A - 1 = 1 - 2 sin^2 A tan 2A = (2 tan A) / (1 - tan^2 A)三、万能角公式(三角函数的倒数、减角公式、二倍角公式的推广形式)1.正弦函数倒数公式:csc A = 1 / sin A2.余弦函数倒数公式:sec A = 1 / cos A3.正切函数倒数公式:cot A = 1 / tan A4.减角公式:sin (A - B) = sin A cos B - cos A sin Bcos (A - B) = cos A cos B + sin A sin Btan (A - B) = (tan A - tan B) / (1 + tan A tan B)5.二倍角公式推广形式:sin 2A = 2 sin A cos Acos 2A = cos^2 A - sin^2 A = 2 cos^2 A - 1 = 1 - 2 sin^2 A tan 2A = (2 tan A) / (1 - tan^2 A)四、积和差公式1.积公式:sin A sin B = (1/2)[cos(A-B) - cos(A+B)]cos A cos B = (1/2)[cos(A-B) + cos(A+B)]sin A cos B = (1/2)[sin(A-B) + sin(A+B)]2.差公式:sin A - sin B = 2 cos[(A+B)/2] sin[(A-B)/2]cos A - cos B = -2 sin[(A+B)/2] sin[(A-B)/2]sin A + sin B = 2 sin[(A+B)/2] cos[(A-B)/2]cos A + cos B = 2 cos[(A+B)/2] cos[(A-B)/2]五、其他重要性质1. 正弦函数的周期:2π,即sin (x + 2π) = sin x余弦函数的周期:2π,即cos (x + 2π) = cos x2.正弦函数的奇偶性:sin (-x) = -sin x,即 sin 函数是奇函数sin (π + x) = -sin x,即 sin 函数是周期为2π的周期函数3.余弦函数的奇偶性:cos (-x) = cos x,即 cos 函数是偶函数cos (π + x) = -cos x,即 cos 函数是周期为2π的周期函数4.正弦函数和余弦函数的间接关系:sin^2 x + cos^2 x = 1。

三角函数公式(最全)

三角函数公式(最全)
1、正弦定理
正弦定理变形可得:
五、其他公式
2、余弦定理
对于如图所示的边长为a、b、c而相应角为α、β、γ的△ABC, 有:
3、降幂公式
sin²α=[1-cos(2α)]/2 cos²α=[1+cos(2α)]/2 tan²α=[1-cos(2α)]/[1+cos(2α)]
4、三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+ cosα·cosβ·sinγ-sinα·sinβ·sinγ
ln(1+x)=x-x2/2+x3/3-…+(-1)k-1xk/k, x∈(-1,1)
sin x = x-x3/3!+x5/5!-…+(-1)k-1x2k-1/(2k-1)!+…, x∈R
cos x = 1-x2/2!+x4/4!-…+(-1)kx2k/(2k)!+…, x∈R
arcsin x = x + x3/(2*3) + (1*3)x5/(2*4*5) + (1*3*5)x7/(2* 4*6*7)…+(2k+1)!!*x2k+1/(2k!!*(2k+1))+…, x∈(-1,1)(!!表 示双阶乘)
1
一、定义公式
三角函数公式
锐角三角函数 任意角三角函数
正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc) 正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc)
1、倒数关系
二、函数关系

三角函数定理公式大全

三角函数定理公式大全

三角函数定理公式大全在数学中,三角函数是一组基本的函数,用于描述角度和边长之间的关系。

三角函数定理是描述三角形中角度和边长之间的关系的公式集合。

三角函数定理被广泛应用于三角形的计算和解决各种实际问题。

在本篇文章中,我们将介绍三角函数的各种定理公式。

1. 正弦定理(Sine Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:a/sinA = b/sinB = c/sinC这意味着一个三角形的任意一边的长度与它所对应的角的正弦值成比例。

2. 余弦定理(Cosine Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:c² = a² + b² - 2ab*cosCb² = a² + c² - 2ac*cosBa² = b² + c² - 2bc*cosA这意味着一个三角形的任意一边的平方与其他两边的平方以及其夹角的余弦值有关。

3. 正切定理(Tangent Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:tanA = a/btanB = b/atanC = c/a这意味着一个三角形的任意一边的长度与其他两边的长度之间的比率与对应的角的正切值成比例。

4. 正割定理(Secant Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:secA = 1/cosAsecB = 1/cosBsecC = 1/cosC这意味着一个三角形的任意一边的长度与对应的角的余弦值的倒数成比例。

5. 余割定理(Cosecant Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:cosecA = 1/sinAcosecB = 1/sinBcosecC = 1/sinC这意味着一个三角形的任意一边的长度与对应的角的正弦值的倒数成比例。

三角函数定理公式大全

三角函数定理公式大全

三角函数定理1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ] 7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。

三角函数公式大全

三角函数公式大全

三角函数公式大全三角函数定义直任角三角形意角三角函数))或或))倒数关系:商数关系:平方关系:公式一:设为任意角,终边相同的角的同一三角函数的值相等:公式二:设为任意角,与的三角函数值之间的关系:公式三:任意角与的三角函数值之间的关系:公式四:与的三角函数值之间的关系:公式五:与的三角函数值之间的关系:公式六:及与的三角函数值之间的关系:记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。

形如2k×90°±α,则函数名称不变。

诱导公式口诀“奇变偶不变,符号看象限”意义:k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

记忆方法一:奇变偶不变,符号看象限:其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变根据教的范围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限记忆方法二:无论α是多大的角,都将α看成锐角.以诱导公式二为例:若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二.以诱导公式四为例:若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四.诱导公式的应用:运用诱导公式转化三角函数的一般步骤:特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数变换公式汇总

三角函数变换公式汇总

三角函数变换公式汇总三角函数是数学中一种重要的函数,经常在几何、物理和工程问题中使用。

三角函数的变换公式是指通过对角函数的各个值进行一系列代数操作,得到新的角度和幅度值的公式。

这些变换公式在解决各种三角函数问题时非常有效。

以下是三角函数变换公式的汇总:1.同角三角函数之间的关系:正弦和余弦的关系:$\sin(\theta) = \cos\left(\frac{\pi}{2} - \theta\right)$正弦和正切的关系:$\sin(\theta) =\frac{\tan(\theta)}{\sqrt{1 + \tan^2(\theta)}}$余弦和正切的关系:$\cos(\theta) = \frac{1}{\sqrt{1 +\tan^2(\theta)}}$正弦和余切的关系:$\sin(\theta) = \frac{1}{\sqrt{1 +\cot^2(\theta)}}$余弦和余切的关系:$\cos(\theta) =\frac{\cot(\theta)}{\sqrt{1 + \cot^2(\theta)}}$正切和余切的关系:$\tan(\theta) = \frac{1}{\cot(\theta)}$ 2.正负角变换:正角和负角的关系:$\sin(-\theta) = -\sin(\theta)$,$\cos(-\theta) = \cos(\theta)$,$\tan(-\theta) = -\tan(\theta)$幅角和负幅角的关系:$\sin(\theta + 2\pi) = \sin(\theta)$,$\cos(\theta + 2\pi) = \cos(\theta)$,$\tan(\theta + \pi) =\tan(\theta)$正角和二倍角的关系:$2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\ri ght) = \sin(\theta)$,$2\cos^2\left(\frac{\theta}{2}\right) - 1 = \cos(\theta)$,$\frac{2\tan\left(\frac{\theta}{2}\right)}{1 - \tan^2\left(\frac{\theta}{2}\right)} = \tan(\theta)$3.母子角公式:$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$\tan(A + B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}$ $\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$\tan(A - B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$ 4.和差化积公式:$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$5.半角公式:$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos(\theta)}{2}}$$\cos\left(\frac{\theta}{2}\right) =\pm\sqrt{\frac{1+\cos(\theta)}{2}}$$\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos(\theta)}{1+\cos(\theta)}}$6.其他常用公式:$\sin^2(\theta) + \cos^2(\theta) = 1$$1 + \tan^2(\theta) = \sec^2(\theta)$$1 + \cot^2(\theta) = \csc^2(\theta)$这些是常用的三角函数变换公式的汇总,可以在解决三角函数相关的问题时进行运用。

(完整版)三角函数公式大全

(完整版)三角函数公式大全

三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦函数:r y =αsin 余弦函数:r x =αcos 正切函数:x y=αtan 余切函数:y x =αcot 正割函数:xr=αsec 余割函数:y r =αcsc 二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。

商数关系:x x x cos sin tan =,xxx sin cos cot =。

平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。

积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinα cos (2kπ+α)=cosαtan (2kπ+α)=tanα cot (2kπ+α)=cotα (其中k ∈Z)公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα cot (π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanα cot (-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα cot (π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin (απ-2)=cosα cos (απ-2)=sinα tan (απ-2)=cotα cot (απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin (απ+2)=cosα cos (απ+2)=-sinα tan (απ+2)=-cotα cot (απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系: sin (απ-23)=-cosα cos (απ-23)=-sinαtan (απ-23)=cotα cot (απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin (απ+23)=-cosα cos (απ+23)=sinαtan (απ+23)=-cotα cot (απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)=cosα tan (2π-α)=-tanα cot (2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

所有三角函数的公式大全

所有三角函数的公式大全

所有三角函数的公式大全在学习三角函数的过程中,公式是很重要的基础之一。

掌握了三角函数的公式,我们就能够更好地理解三角函数的性质,从而更好地解题。

以下是所有三角函数的公式大全。

一、正弦函数(sin)1. 定义:在一个直角三角形中,正弦函数的值等于其对边的长度与斜边的长度的比值。

2. 周期性:sin(x + 2π) = sin(x),其中π为圆周率。

3. 奇偶性:sin(-x) = -sin(x),即sin函数是奇函数。

4. 余角公式:sin(π - x) = sin(x)sin(π + x) = -sin(x)sin(2π - x) = -sin(x)5. 和差公式:sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y)6. 二倍角公式:sin(2x) = 2sin(x) cos(x)sin²(x) = (1 - cos(2x)) / 27. 三倍角公式:sin(3x) = 3sin(x) - 4sin³(x)8. 多倍角公式:sin(nx) = 2^(n-1) sin(x) cos(x) cos(2x) ...cos((n-1)x)9. 单位圆上的正弦函数:sin(x) = y,其中x为角度,称为弧度制下的角度。

在单位圆上,角度为x对应的点的y坐标即为sin(x)的值。

二、余弦函数(cos)1. 定义:在一个直角三角形中,余弦函数的值等于其邻边的长度与斜边的长度的比值。

2. 周期性:cos(x + 2π) = cos(x),其中π为圆周率。

3. 奇偶性:cos(-x) = cos(x),即cos函数是偶函数。

4. 余角公式:cos(π - x) = -cos(x)cos(π + x) = -cos(x)cos(2π - x) = cos(x)5. 和差公式:cos(x ± y) = cos(x) cos(y) ∓ sin(x) sin(y)6. 二倍角公式:cos(2x) = cos²(x) - sin²(x) = 2cos²(x) - 1 = 1 - 2sin²(x)7. 三倍角公式:cos(3x) = 4cos³(x) - 3cos(x)8. 多倍角公式:cos(nx) = 2^(n-2) cos²(x) - 2^(n-4) cos⁴(x) ...(-1)^(n-1) cos((n-1)x)9. 单位圆上的余弦函数:cos(x) = x,其中x为角度,称为弧度制下的角度。

三角函数公式大全

三角函数公式大全

Trigonometric 1.诱导公式sin(-a) = - sin(a)cos(-a) = cos(a)sin(π/2 - a) = cos(a)cos(π/2 - a) = sin(a)sin(π/2 + a) = cos(a)cos(π/2 + a) = - sin(a)sin(π - a) = sin(a)cos(π - a) = - cos(a)sin(π + a) = - sin(a)cos(π + a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos(α)sin(b)cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2] cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2] cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2] 4.积化和差公式sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]5.二倍角公式sin(2a) = 2sin(a)cos(a)cos 2a = cos2a - sin2a = 2cos2a - 1= 1 - 2sin2a6.半角公式sin2a = (1 – cos 2a)/ 2cos2a = (1 + cos 2a)/ 2tan a = [1 – cos 2a] /sin 2a = sin 2a / [1 + cos 2a ] 7.万能公式sin(a) = 2tan(a/2) / [1+tan2(a/2)]cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]tan(a) = 2tan(a/2) / [1-tan2(a/2)]三角函数公式求助编辑百科名片三角函数是数学中属于初等函数中的超越函数的一类函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档