压缩机防喘振控制分析
压缩机防喘振曲线详解(一)
压缩机防喘振曲线详解(一)压缩机防喘振曲线什么是喘振喘振是指在机械系统中由于某种激励作用下,产生周期性振荡的一种现象,通常为系统共振的结果。
压缩机的喘振在压缩机运行时,由于叶轮的旋转速度和叶轮之间的间隙,会产生一定的压力波,进而产生压缩机的喘振现象。
喘振会严重影响压缩机的工作效率,甚至可能会导致压缩机的损坏。
防止喘振的措施为了避免或减少压缩机的喘振现象,工程师们通过各种方式研究和探索,在压缩机的设计和制造过程中,加入了一些预防喘振的措施。
其中,一种比较有效的措施是通过曲线图的方式来控制压缩机的工作状态,进而达到防止喘振的目的。
压缩机防喘振曲线压缩机防喘振曲线是一种通过图像方式来控制压缩机的工作状态的方法,它能够有效地避免压缩机的喘振现象。
具体而言,该曲线是由一系列曲线组成的,每条曲线表示了压缩机在不同压力下的工作状态。
曲线的作用通过压缩机防喘振曲线,可以清晰地看到压缩机在不同压力下的工作状态,进而根据实际情况来调整压缩机的工作状态,避免或减少喘振的发生。
因此,压缩机防喘振曲线是一种有效的防止喘振的措施。
结论通过引入压缩机防喘振曲线这一有效的技术手段,压缩机的工作效率和稳定性得以提高,喘振现象得到有效遏制。
作为机械系统中非常重要的一环,压缩机的稳定运行是保证生产效率的关键因素,因此,对压缩机防喘振曲线的研究和应用具有重要的意义。
总结压缩机防喘振曲线是一种非常实用的技术手段,它通过图像的方式清晰地表现了压缩机在不同压力下的工作状态,为压缩机的稳定运行提供了有力的保障。
在实际应用中,对于压缩机的设计和制造人员来说,深入研究和掌握压缩机防喘振曲线的相关原理和技术,将对提高产品的品质和市场竞争力有着重要的促进作用。
大型透平式压缩机防喘振控制及应用
大型透平式压缩机防喘振控制及应用大型透平式压缩机是工业领域中常见的压缩设备,常用于石油化工、电力、冶金等行业。
在运行过程中,压缩机容易出现喘振现象,严重影响压缩机的工作效率和安全性。
为了有效控制和预防喘振,需要在透平压缩机的设计和使用过程中考虑一系列的防喘振措施。
喘振是指压缩机由于外界扰动、流量脉动或系统参数波动等原因,引起压缩机内部压力和流量发生不稳定的现象。
喘振有时表现为高密度压缩机背压的跳动,有时表现为冷却水温度的跳动,甚至可能引发严重的机械振动和震动,造成设备的损坏。
为了防止喘振,需要从动态特性、结构设计、控制系统和操作维护等方面进行综合考虑。
对于透平式压缩机的动态特性分析非常重要。
通过对压缩机的传递函数进行建模,可以得到压缩机的振动特性和稳定性,进而确定设计参数和控制策略。
对压缩机的敏感性分析也非常重要,可以通过扰动试验和频率响应试验等方法获取敏感性矩阵和敏感频率范围,为防喘振控制提供有效的依据。
在结构设计方面,需要注意减小压缩机结构的共振频率,增加压缩机的刚度和阻尼,以提高压缩机的稳定性。
常见的措施包括增加支撑结构的刚度和阻尼、采用阻尼材料和阻尼器、改变结构形式等。
还可以通过优化叶轮、控制叶片等方式改善压缩机的稳定性。
在控制系统方面,可以采用主动控制和被动控制相结合的策略来防止喘振。
主动控制是指通过控制策略和控制器来主动消除或抑制喘振现象。
常见的控制策略包括PID控制、模糊控制、自适应控制等。
被动控制是指通过结构设计和改进来被动地减小压缩机结构的共振频率和提高稳定性。
在操作维护方面,需要加强对压缩机的监测和维护,及时发现和处理可能引起喘振的故障和问题。
定期对压缩机进行振动监测、润滑油分析、叶片磨损检测以及定期检查和维护,可以有效地延长压缩机的使用寿命并提高压缩机的可靠性和稳定性。
大型透平式压缩机防喘振控制需要综合考虑动态特性、结构设计、控制系统和操作维护等多个方面的因素。
通过合理的设计和有效的控制策略,可以有效地预防和控制喘振现象,保证压缩机的安全稳定运行。
压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统是用于防止压缩机在工作过程中出现喘振现象的一种控制系统。
喘振是指压缩机在运行过程中由于压力倒挂和气阀开闭不当等原因,使得压缩机出现杂音、振动加剧,甚至引起设备损坏的现象。
1. 振动增大:喘振会使得压缩机的振动加剧,导致设备整体的振动增大,从而造成设备寿命降低、设备故障增多等问题。
2. 噪音增大:喘振会使得压缩机发出较大的噪音,影响工作环境和工人的身心健康。
3. 能耗增加:喘振会使得压缩机的工作效率下降,从而导致能耗增加,造成能源的浪费。
4. 设备损坏:喘振会使得压缩机的工作过程不稳定,从而可能导致设备的损坏,增加维修和更换的成本。
1. 定期检修:定期检修压缩机,对机械设备、气阀等进行维护和修理,确保其正常工作。
2. 合理选型:在选用压缩机时,需要根据实际工况和设备需要,选择合适的型号和规格,减少喘振的可能性。
3. 安装调试:在安装压缩机时,需要严格按照厂家的要求进行安装和调试,确保设备的稳定运行。
4. 加装减振装置:在压缩机的进出口处加装减振装置,减少设备振动对周围环境和设备的影响。
5. 增加控制系统:增加喘振控制系统,可以监测和控制压缩机的工作状态,及时采取措施避免喘振的发生。
6. 做好运行维护:在压缩机工作过程中,要做好运行控制和维护,及时清洁设备和更换损坏的部件,确保设备的正常工作。
7. 培训工作人员:对使用压缩机的工作人员进行培训,提高其对喘振现象的识别和处理能力,减少人为操作引起的喘振问题。
通过采取上述防范措施,可以有效降低压缩机防喘振系统出现问题的可能性,提高设备的安全性和稳定性,延长设备的使用寿命,减少生产成本。
压缩机防喘振的3种控制方法
压缩机防喘振的3种控制方法
压缩机喘振是一种有害的现象,因为喘振可能导致压缩机损坏或减少其寿命。
因此,为了防止压缩机喘振,可以采取以下三种控制方法:
1. 变频控制方法
变频控制方法是通过改变压缩机的转速来防止喘振。
具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。
这种方法的好处是不会产生噪音和振动,而且可以在喘振之前避免发生。
但是,这种方法的缺点是成本较高,需要购买变频设备。
2. 放气控制方法
放气控制方法是通过对不合格气体进行放气来防止喘振。
具体来说,当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。
这种方法的好处是成本较低,但缺点是会产生一定的噪音和振动,而且需要人工干预。
3. 自动控制方法
自动控制方法是通过对压缩机的转速和气体浓度进行监测和自动调整来防止喘振。
具体来说,当输入流量低于一定值时,压缩机将自动降低转速,从而防止喘振。
当气体浓度低于一定值时,压缩机将自动放气,从而防止喘振。
这种方法的好处是既不会产生噪音和振动,又可以在喘振之前避免发生,而且成本相对较低。
综上所述,变频控制方法、放气控制方法和自动控制方法是防止压缩机喘振的三种有效方法。
根据具体情况选择合适的方法可以有效地避免喘振的发生,保证压缩机的正常运转。
压缩机防喘振控制方案
压缩机防喘振的两种方法[分享]压缩机防喘振的两种方法一、离心式压缩机喘振的原因喘振是离心式压缩机的固有特性。
产生喘振的原因首先得从对象特性上找。
从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。
在此点右面的曲线上工作,压缩机是稳定的。
在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。
当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。
喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。
二、防喘振自控系统的可行性分析为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。
只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。
即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。
三、防喘振自控系统的几种实现方法目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法1.固定极限流量法固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。
此法优点是控制系统简单,使用仪表较少。
缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。
2.可变极限流量法在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极限流量法。
常用控制方案有两种:一是采用测量压缩机转速,经函数发生器作为流量调节器给定值(图2)。
压缩机防喘振控制
压缩机防喘振控制方法
压缩机防喘振的控制方法大致可分为固定极限 流量法和可变极限流量法,
1 . 固定极限流量法
固定极限流量是使压 缩机的入口流量保持控制线大于源自高转速下的临界流量,从而避免进
入喘振区运行,但在
低转速下效率太低,
能量浪费太大,
2 . 可变极限流量法
可变极限流量法是为 了减少压缩机的能量 损耗,在压缩机负荷 经常波动的场合采用,
4. 喘振的原因
当压缩机入口气体流量小于压缩机的最小流量 时,会导致压缩机排气管压力比机组内部压力 高,这时气体会发生瞬间倒流,压缩气体倒流又 使得排出侧气体压力降低,机组内部压力升高, 使气体流量恢复,直到出口压力升高,又重复上 述过程,这就是压缩机的喘振,
压缩机性能曲线的最高点就是喘振点,
离心压缩机特性
2. 喘振 当压缩机的负荷降低到一定程度时,气体排送会 发生往复运动的强烈振荡,从而导致机身的剧 烈振动,称为喘振,这是气体动力装置的一种特 性,
离心式压缩机与轴流式压缩机的比较
离心压缩机适用于中、小流量和中、高压力的 场合,流量约20~2000Nm3/min,大的可达 10000Nm3/min,单缸压比约 3.5~10,多缸排气 压力可高达90MPa以上,多变效率约为 76~83 %,
3. 压缩机的工作点
因为压缩机是串联在管路中,故当它正常工作 时,必须满足:
1 流过压缩机的气量必须等于流过管路的气量 指换算到同一状态下 ;
2 管端压力pe应与压缩机的排压相等,
因此,压缩机的工作点一定是在该压缩机的性 能曲线与管路特性曲线的交点上,
压缩机的工作点
性能曲线
工作点
管路特性曲线
压缩机的种类
2. 根据压缩机的压缩形式分,可分为往复式压 缩机、回转式压缩机、离心式压缩机和轴流式 压缩机,
大型透平式压缩机防喘振控制及应用
大型透平式压缩机防喘振控制及应用随着工业生产的日益发展,大型透平式压缩机在工业生产中扮演着重要的角色。
由于透平式压缩机工作时会产生较大的振动和噪音,如果不加以控制和防范,很容易引发喘振问题,严重影响设备的安全性和正常运行。
对大型透平式压缩机的喘振控制及应用成为工程技术领域亟待解决的重要问题。
什么是喘振?喘振是由于压缩机内部气体振荡而产生的一种不稳定的振动现象。
当压缩机工作时,由于气体流动速度和压力变化引起的共振效应,会使得系统产生自激振动,即所谓的喘振。
喘振不仅会导致设备损坏,还会引起严重的噪音污染,甚至对生产车间的安全形成威胁。
大型透平式压缩机的喘振控制成为了工程技术领域的焦点关注。
在喘振控制中,需要从多个方面入手,包括结构设计、控制系统、运行管理等多个方面,才能全面有效地解决喘振问题。
对于大型透平式压缩机的结构设计来说,需要合理设计压缩机的内部结构。
通过科学的设计和优化,减小气体流动速度的变化,降低共振效应的发生,从而减少喘振的产生。
还可以通过结构的改善和优化,增加阻尼器、削减共振频率等措施来有效抑制喘振的发生。
在压缩机的结构设计阶段,就可以采取措施来预防喘振问题的产生,这是避免喘振问题的有效手段。
对于大型透平式压缩机的控制系统来说,需要建立完善的控制系统,并对其进行合理的配置和优化。
通过运用先进的控制算法和技术,实时监测和调节压缩机的工作状态,及时发现并处理喘振问题。
还可以通过自适应控制、模糊控制和神经网络控制等方法,对压缩机的振动进行智能化控制,从而有效减少喘振的发生。
还可以通过合理的控制策略和调整参数,提高控制系统的稳定性和可靠性,进一步降低喘振的风险。
对于大型透平式压缩机的运行管理而言,需要建立严格的运行管理制度,确保设备的正常运行。
通过定期的维护和保养,及时发现和解决压缩机设备的问题,确保设备处于良好的工作状态。
还可以通过对设备运行数据的分析,及时发现异常情况,采取措施进行修复和调整,有效降低喘振的发生。
离心式压缩机的防喘振控制
离心式压缩机的防喘振控制离心式压缩机是一种常见的工业设备,广泛应用于制冷、空调、石化、化工和能源等领域。
但离心式压缩机在高速旋转过程中,易发生喘振现象,严重影响设备的可靠性和运行效率。
因此,实现离心式压缩机的防喘振控制,成为压缩机研发领域的热门话题。
喘振的概念和机理喘振是指机械系统在一定运行工况下,出现自激振动和自我放大的现象。
具体表现为设备发出高频噪声、振幅剧烈震动、设备受到损坏等。
离心式压缩机的喘振主要由两种类型引起,分别是稳定喘振和非稳定喘振。
稳定喘振是指设备在一定工况下,由于颤振力和阻尼力平衡不稳定而发生振动。
非稳定喘振则是指由于系统参数的变化而导致的振动,如流量、压力、转速等。
喘振的机理比较复杂,通常是由流体特性、机械特性和控制策略等多个因素综合作用形成。
针对离心式压缩机,具体原因如下:•离心式压缩机转子和静子间的流体动力学作用•离心式压缩机转子的惯性力和弹力•离心式压缩机流量的变化导致的系统不稳定防喘振的控制为了防止离心式压缩机的喘振,降低因喘振而引起的振动、噪声、能耗和设备损坏等问题,可以采用以下控制策略:转子动平衡离心式压缩机转子的动平衡是减少振动和噪声的有效措施。
动平衡可以通过加装质量均匀化转子重量分布,减少旋转惯量差异,使转子自身的振动减少。
减弱单元耦合离心式压缩机中存在转子和静子的相互作用,转子运转时的振动会将振动传递到静子中,同时静子的反作用力也会反过来影响转子。
因此,为了减小单元之间的耦合作用,需要采用合适的材料和合理的结构设计。
控制喘振频率喘振频率是指转子和压气机系统之间的谐振频率。
为了控制喘振,可以借助传感器、控制系统和信号处理技术,实时检测喘振频率,调节系统工况,减小喘振频率。
同时还可以采用创建额外的泄放卡止或捆绑物来改变系统频率。
控制驱动力离心式压缩机喘振的发生和发展与外界激励力有关。
为了降低驱动力,需要在系统中加入有阻尼的弹簧,将外部力矩转换为电信号或机械压力信号,并将信号传输到控制系统中,调节工况,实现防喘振。
离心式压缩机喘振原因及其预防措施分析
离心式压缩机喘振原因及其预防措施分析发布时间:2022-11-08T05:39:57.849Z 来源:《工程管理前沿》2022年第14期作者:赵钧[导读] 喘振是离心式压缩机运行期间常见危害性现象,设计不当、赵钧开封空气液化有限公司河南省开封市顺河回族区 475000摘要:喘振是离心式压缩机运行期间常见危害性现象,设计不当、调试不佳、运行失误等均可引发喘振,阻碍正常生产工作,因此必须重视离心式压缩机的喘振预防工作。
在离心式压缩机设计阶段,应搭建完整的防喘振控制系统,合理设计结合尺寸与逆止阀,并按规定做好试运行与设备调试工作,最后于离心式压缩机运行期间时作为维护保养,以此全方位避免喘振现象的产生。
关键词:离心式压缩机;喘振原因;预防措施1离心式压缩机构造研究离心压缩机结构可细分两部分即静子和转子,其中,静子结构有隔板、机壳、级间密封等;转子包括大量旋转零件,如平衡盘、叶轮、主轴等。
机械具体构造如下:(1)水平轴向部分型。
静子有密封、焊接机壳;转子包含联轴器、推力盘、隔套、轴套、叶轮。
(2)垂直径向部分型。
静子为隔板、内机壳、端盖、机壳;转子与水平轴向构造相同。
(3)整体齿轮增速。
静子有型环、扩压器、蜗壳、齿轮箱体;转子包括叶轮、联轴器、低速齿轮轴、低速齿轮、高速齿轮。
2离心式压缩机喘振现象分析2.1喘振现象分析喘振现象应从以下3个角度入手,全方位了解离心式压缩机喘振现象:①观察离心式压缩机进出口压力数值及入口流量,运用CCS软件得出数值波动幅度轨迹趋势图,分析CCS趋势图特征,若此时存在较大波动或周期性波动,则离心式压缩机可能出现喘振现象;②采用“听”的方式判断喘振,若离心式压缩机进出气管出现“呼哧呼哧”的气流噪声,则证明离心式压缩机运行不稳定,机组存在喘振问题;③根据离心式压缩机实际情况分析其轴系振动图,若发现离心式压缩机内出现轴系急剧振动的情况,且振动相对明显,则说明离心式压缩机存在喘振现象。
离心式压缩机防喘振控制系统的分析研究
量 时 的 不 稳 定 流 动 状 态 , 喘 振 现 象 对 压 缩 机 十 分 有 害 , 它 的 出 现 轻 则 使 压 缩 机 停
对 压 缩 机 的 危 害 极 大 , 因 为 一 旦 喘 振 发 生 ,压缩 机 将 处 于 不 安 全 工 作状 态 , 为 了 保证 压 缩 机 的正 常 运 行 ,必 须配 备控 制 系 统来防止喘振 的发生。 1 离心 式 压 缩机 喘 振 特性 分 析 喘 振 是 由 于 离 心 式 压 缩 机 在 某 一 个 小 流 量 下 工 作 时 , 在 叶 轮 和 扩 压 器 中 产 生 强
喘 振 系统 ,浪 费 了能 源 ,降 低 了 经济 效 益 。
图 1 固 定 极 限 流 量 法 防 喘 振 控 制 原 理 图
图 2 固 定 极 限 流 量 法 控 制 系 统
限 流 量 防喘 振 控 制 系 统 见 图 2,流 量 控 制 器 是 以 Qp+S作 为 其 设 定值 的 防 喘 振 控 制 器 。 当压 缩 机 正 常 工 作 时 ,控 制 器 的 测 量 值 大 于 其 设 定 值 , 而 回 流 阀 是 气 关 阀 , 输 出 达 最 大 值 时 阀 门 关 闭 ; 当 压 缩 机 吸 入 量 小 于 其 设 定 值 时 , 回流 阀打 开 ,压 缩 机 出 口 气 体 经 回 流 阀 返 回 至 压 缩 机 入 口 ,气 量 又 增 大 到 大 于 Qp+S值 ,这 样 就 可以有效地 防止喘振 的发生。 这 种 控 制 方 法 是 使 压 缩 机 的 入 口流 量 始终 保 持在 大 于某 一 固定值 Qp S S为 安全 +( 裕 度 ) ,又 称 为单 参数 法 。Q 上 p为正 常 可 以 达 到 最 高 转 速 下 的 喘 振 流 量 值 ,从 而 可 以
离心式压缩机喘振的原因分析及处理
离心式压缩机喘振的原因分析及处理摘要:离心式压缩机喘振现象的发生主要取决于管网的特性曲线和离心式压缩机的特性曲线。
本文对离心式压缩机特点、喘振现象、产生的危害、判断方法、发生原因进行了总结,并提出了相应的预防措施。
关键词:压缩机;喘振;预防措施喘振是离心压缩机特有的一种现象,它是危害压缩机结构的主要原因之一,在工艺流程中应尽力避免压缩机喘振现象的出现。
根据石化企业压缩机机组现场应用反馈,机组发生喘振现象比较普遍,有些机组甚至频繁发生喘振,给企业安稳生产及经济效益造成了一定的影响。
1.喘振原因喘振作为离心式压缩机运行中的一-种特殊现象,易造成气流往复强烈冲击,严重影响压缩机运行部件,是造成运行事故的主要因素。
喘振是离心式压缩机本身固有的特性,导致喘振产生的因素有两方面:内在因素是由于离心式压缩机中的气流在一定的条件下出现了“旋转脱离”这种状况:而外在因素是由于离心式压缩机管网系统的特性。
2.离心机的特点离心式压缩机是具有处理气量大、体积小、结构简单、运转平稳、维修方便等特点,应用范围广。
但由于离心机本身结构所限,仍然存在短板,在压力高、流量小的场合会发生喘振,且不能从设计上予以消除。
3.离心式压缩机喘振的危害、现象及判断3.1喘振的危害喘振是当离心式压缩机的进口流量减少至一定程度时所发生的一种非正常工况下的振动,气体流量、进出口压力出现波动,从而引起压缩机转速及工艺气在系统中产生周期性振荡现象。
喘振的危害:(1)由于气流强烈的脉动和周期性振荡,会使供气参数(压力、流量等)大幅波动,破坏了工艺系统的稳定性;(2)使压缩机叶片发生强烈振动,叶轮应力大幅增加,噪声加剧;(3)引起动静部件的摩擦与碰撞,使压缩机的轴发生弯曲变形,严重时会产生轴向窜动,使轴向推力增大,发生烧毁止推轴瓦甚至扫膛事故;(4)加剧轴承、轴瓦的磨损,破坏润滑油膜的稳定性,使轴瓦合金产生疲劳裂纹,甚至发生烧瓦抱轴等事故;(5)损坏压缩机的机械密封及轴封,使压缩机效率降低,同时由于密封的损坏会造成工艺气泄漏,极易引发火灾、爆炸等事故;(6)影响驱动机的正常运转,干扰操作人员的正常操作,使一些仪表、仪器的测量准确性降低甚至损坏。
压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统出现的问题及防范措施【摘要】压缩机防喘振系统在工业生产中起着至关重要的作用,但是在运行过程中会出现一些问题,例如振动过大、压缩机故障频繁、能效降低等。
为了预防这些问题的发生,可以通过定期检查系统、调整系统参数、安装振动吸收器、提高设备维护水平等方式来加强防范措施。
本文总结了压缩机防喘振系统问题及防范措施的重要性,并展望了未来对该系统的研究方向。
通过加强对压缩机防喘振系统问题的认识和采取有效的预防措施,可以提高设备的稳定性和运行效率,从而确保工业生产的顺利进行。
【关键词】压缩机防喘振系统、问题、防范措施、振动、故障、能效、定期检查、系统参数、振动吸收器、设备维护、重要性、研究方向、展望。
1. 引言1.1 介绍压缩机防喘振系统的重要性压缩机是工业生产中常用的设备,用于将气体压缩成高压气体以供各种设备使用。
在压缩机工作过程中,由于压力的变化和内部构件的运动,容易产生振动,并可能演变成压缩机喘振,给设备和工作环境带来严重影响。
压缩机防喘振系统的重要性不言而喻,它可以有效地控制振动频率和振幅,减轻喘振对设备的损害,提高设备的可靠性和稳定性。
通过引入防喘振系统,可以实时监测压缩机振动情况,一旦发现异常振动就及时采取措施处理,避免振动进一步恶化导致严重故障。
而且,防喘振系统的使用还有助于提高压缩机的运行效率,减少能源消耗,降低生产成本,提升设备的使用寿命。
压缩机防喘振系统的建立和运行对于保障设备安全稳定运行、提高生产效率具有重要意义。
在工业生产中,对压缩机防喘振系统的关注和重视,不仅有利于生产的顺利进行,也为企业节约成本,增加竞争力奠定了基础。
1.2 阐述本文的研究意义本文旨在探讨压缩机防喘振系统出现的问题及相应的防范措施,旨在帮助工程师和维护人员更好地理解并处理此类系统中可能出现的振动、故障和能效降低等问题。
通过对压缩机防喘振系统的问题进行深入分析和研究,本文旨在为相关领域的工作人员提供有效的解决方案,帮助他们更好地维护和保养压缩机防喘振系统,提高设备运行效率和使用寿命。
浅析如何做好离心压缩机的防喘振控制
价值 工 程
浅析如何做好 离心压 缩机 的防喘振控制
An t i - s u r g e Co n t r o l o f Ce n t r i f u g a l Co mp r e s s o r
谢聃 X I E D a n
( 河 北 沧 州 渤 海 石 化工 程 有 限公 司 , 沧州 0 6 1 0 0 0 )
摘要 :离心式压缩机在石油化工行业有着 广泛 的应用 , 它的重量 小、 容 易磨损 的部件 少、 装 置的运行效率 高、 供 气比较也 没有油 气的污染、 可 以运转平稳 及经济性好等优点。离心压缩机有 着众多的优势 , 可是在特定的一些工况就会产生喘振, 机器无法正常的使 用, 甚至还有可 能会 由于失误 而造成更严重的事故 。 做好 离心压缩机的防喘振控制有着非常重要的意义。 本文介绍 了压缩机喘振的现 象、 原 理, 并针对 离心压缩机的喘振提 出了有效 的方法和控 制方案 。
( He b e i C a n g z h o u B o h a i P e t r o c h e mi c a l E n g i n e e i r n g C o m p a n y , C ng a z h o u 0 6 1 0 0 0 , C h i n a )
较强 的气流波动 , 将其称 为压缩机喘振 。在压缩 机发生喘
在压缩机 处于正常运行状态时 , 若 气流的量进入叶轮 振过 程中 , 不但会 引起气流量 的大幅周期 性波 动 , 同时也 会 造 成 压 缩 机 机 身 强 烈 振 动 , 同 时 带 动 出 口管 道 和 厂 房 框 的内部 比那 个工况下规定 的最小气流量要小 , 那 么系统管 发 出周期性 响声。 当没有及时找到控制方法 , 网内的一部 分气体就会倒流进入到压缩机 , 这种现象就叫 架一起振动 , 将 会 破 坏 压 缩 机 的轴 封 和 级 间 密 封 ,并 加 快 轴 承 磨 损 速 做 喘振流量 , 一旦压缩机 的出口压力 比系统管网内 的压力 又会造成压缩机动静部件 的摩擦和碰撞 , 压缩机 停工 , 要高 , 压缩机 就会再一次 的出现排气 , 压 缩 机 系 统 内 的气 率 , 甚至会 引发 重大事故等。 总而言之 , 喘振 已成 为影Ⅱ 向 压缩 体 就会出现周期性 的振荡 , 主要 震荡表现出的位置是机组 机组 正常、 稳 定 工 作 的一 个 主 要 因素 。 [ 3 ] 和连 接 的 管 道 , 这 些 设备 会 共 同 出现 幅 度 很 大 的并 且 带有 1 离心压缩机的喘振机理 周期性的振荡 , 这 种 工程 上 的现 象被 称 作 喘 振 。【 l 】 如图 1 所示表示 的为离心压缩机 的喘振原理 , 从图 中 当压缩 机运行 时 , 如压缩机 的吸入气体量减小至一定 可知 , 离 心压缩机 的工作特性 曲线主要 可以分为稳定区和 数值 时 , 压缩 比降低 , 会造 成排气管 线内部 的压力远 大于 不 稳定 区 两 个 区域 。 而 我 们 所 说 的压 缩 机 的喘 振 一 般 发 生 压缩机 出口处的压 力 ,已被压缩 的气体会倒流至压缩机 , 的区域是不稳定 区。 当压缩机系统 收到 外面 的阻力 , 由于 当管 线 内部 压 力 降 低 后 ,气体 的流 动 方 向发 生 改 变 。 闭 此 某种 原因阻力升 高到一定 的高度 时, 压缩机 的工况会从 A 时, 压 缩 机 入 口处 气 体 流 量 及 出 口出压 力 会 出现 较 大 幅度 点一下子 突变到图 中的 B点 ,此时设备 的排气压 力会一 的周期 性低 频率振动 , 如 此现象持续 出现 , 会造 成压缩机 下子升 到最大 , 然后就 会 出现脱流 , 这种现 象一般 发生在
浅谈离心式压缩机防喘振控制及故障诊断系统
浅谈离心式压缩机防喘振控制及故障诊断系统摘要:压缩机有轴流式、离心式、复合式等种类,离心式压缩机结构比较简单,在我国工业生产中的应用较为广泛,在工业生产中起到了十分重要的作用。
目前随着离心式压缩机的更新换代升级,压缩机逐渐提高了工作效率。
但是在压缩机的工作中,往往由于温度与分子量等条件的变化和管理应用的不当,会出现喘振现象,即压缩机的流体机械和管道出现震荡,这是许多离心式压缩机都会出现的通病,这对机器的使用寿命、安全性、工作效率都会产生较大的威胁,甚至会出现比较严重的资源浪费。
离心式压缩机的防喘振设计可以在一定程度上对喘振现象进行原因分析,在第一时间及时采取措施进行控制,对机器设备的安全运行能够起到保障作用,也可以帮助操作人员进一步改善、维护离心式压缩机的运行,因此离心式压缩机的喘振现象十分具有防控的必要。
关键词:离心式压缩机;喘振;控制技术;防治引言离心压缩机是速度式压缩机中的一种,由于具有排气量大、效率高、结构简单、体积小、气体不受油污染等特点,喘振是透平压缩机的特有现象,流量大幅度下降出口压力大幅度波动,机组发生强烈振动并伴有异常的、低沉的,有时是周期性的吼声,但声音不十分明显,不易发现,运行中压缩机喘振会造成严重事故,所以要熟悉喘振的现象及迹象,掌握发生喘振的原因,切实有效地采取措施防止喘振。
1离心式压缩机喘振的危害离心式压缩机在运转过程中,如果突然出现流量以及压缩机排量大幅降低,出口具有压力波动导致测量仪表指针大幅度摆动,排气管道中会有呼哧呼哧的低吼声,并且整体机组产生强烈振动等现象,就代表着离心式压缩机正处于故障状态中,而这种故障酷似人咳嗽的状态所以俗称喘振。
喘振是离心式压缩机常见的一种故障,轻则会影响离心式压缩机的正常运行,导致离心式压缩机报废,相关单位需重新购置离心式压缩机,给相关单位带来一定的经济损失,重则会导致离心式压缩机爆炸,并引发重大火灾事故,威胁工作人员的人身安全,造成不可挽回的损失。
离心压缩机防喘振控制
离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。
此时可看到气体出口压力表、流量表的指示大幅波动。
随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。
如不及时 采取措施,将使压缩机遭到严重破坏。
例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。
下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。
离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。
当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。
如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。
因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。
由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。
2.喘振线方程喘振是离心压缩机的固有特性。
离心压缩机的喘振点与被压缩机介质的特性、转速等有关。
将不同转速下的喘振点连接,组成该压缩机的喘振线。
实际应用时,需要考虑安全余量。
喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。
压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统出现的问题及防范措施压缩机是工业生产中常用的设备之一,但在使用中常常会出现喘振或振动等问题,这不仅会影响生产效率,还可能导致设备的损坏和人员的安全问题。
因此,必须采取有效的防范措施来避免这些问题的出现。
一、喘振和振动的原因1、系统管道设计不合理,直径过小或过长;2、系统管道漏气,或管道连接处泄漏;3、压缩机自身结构松动或损坏;4、压缩机受力不平衡,导致机身振动;5、系统管道内气体流速过大或变化不稳定。
二、防范措施1、管道设计合理根据气体流量、压力差等参数合理选择管道直径,并保证管道通畅,减少管道连接点,避免漏气点的出现。
2、管道漏气检查定期检查系统管道的连接点是否漏气,可以利用泄漏检测仪等设备进行检测,在压缩机运行时进行检测可以更好地发现问题。
3、压缩机结构检查定期检查压缩机的结构是否松动,比如固定螺栓是否正常、机内管道是否连接紧等,若发现问题及时处理。
4、维护压缩机平衡在运行中,尽量避免出现过载或空载状态,这将导致压缩机产生不平衡的受力,增加喘振和振动的风险。
此外,也要注意机体的平衡,如润滑系统油量、过滤器清洗等。
5、气体流速控制压缩机出气管道内,冷却风机叶轮和散热排成型件都可能成为引发振动的元凶。
其工作原理类似于翼型。
对于翼型式风机或散热器,为减小旋翼的阻力,其内壁通常都采用低密度网格或微小的平衡凸起,如果此类内壁材料堆积有灰尘和油污,将严重干扰了其工作,打破平衡状态,从而产生振动,因此要进行定期清洗。
以上就是压缩机防喘振的问题及防范措施,对于企业来说,应重视这些问题的发生,加强日常维护,确保设备的正常稳定运行,提高生产效率和安全性。
离心压缩机的防喘振控制措施
转子和静态部分相撞,对压缩机正常运行,带来非常大的威胁,甚至导致压缩机报废,需要在压缩机实际运行的过程中,认真做好相关应对工作。
2 离心式压缩机性能曲线离心压缩机喘振的产生与流体机械和管道特性有着非常密切的关系,在离心压缩机运行的过程中,若压缩机的排气量与进气量二者之间相等,并且压缩形成的排气压力与管网压力相等,说明压缩机与管网性能之间具有良好的协调性,在实际操作中,应该及时查看离心压缩机的性能曲线,关注压缩机的运行状况,避免压缩机进入喘振区域,为压缩机的安全稳定运行奠定基础。
3 离心式压缩机发生喘振的原因3.1 流量因素离心压缩机在运行过程中,当压缩机流量降低,压缩机出口压力增大,当达到这一转速时的最高出口压力时,机组就会进入喘振区,此时压缩机出口压力下降,导致压缩机出现喘振[2]。
同时,在流量一定的情况下,压缩机转速越高越容易出现喘振现象。
离心压缩机之所以出现喘振,其根本原因是流量小所造成的,所以在压缩机的运行中,增加压缩机的流量,是离心压缩机预防喘振的重要条件。
3.2 入口压力压缩机入口压力降低,压缩机就越接近喘振区域,这是由于入口过滤器的压差增加,造成进入压缩机气体流量减少,从而导致压缩机出现了喘振,在离心压缩机操作的过程中需要及0 引言离心压缩机是通过叶轮高速旋转,在离心力的作用下将叶轮中心的气体甩向叶轮的边缘,气体的动能增加,被甩出后的气体,进入扩压器之中,通过这一过程降低气体速度,使得动能与静压能之间转化,压力得到提升。
而在叶轮的中心区域就会成为低压真空地带,此时外界新鲜气体被吸入,之后又会随着叶轮旋转,在不断吸入和甩出气体的过程中,使得气体得以持续流动。
喘振的发生使压缩机不能正常工作,压缩机性能恶化,效率降低,对压缩机组造成严重损伤,离心式压缩机不可以在喘振时运行,所以做好喘振预防,能够进一步提升离心压缩机的安全运行效果。
1 离心式压缩机喘振现象在离心式压缩机运行的过程中,当压缩机入口流量不断降低,就会在压缩机流道中产生严重的旋转脱离现象,堵塞流道,造成压缩机出口压力大幅下降,难以保证管网的输气压力,此时管网中的气体会倒流入压缩机中,直到管网压力下降到与压缩机出口压力相等时倒流停止。
浅谈压缩机喘振原因及解决措施
浅谈压缩机喘振原因及解决措施一、设备喘振流体机械及其管道中介质的周期性振荡,是介质受到周期性吸入和排出的激励作用而发生的机械振动。
例如,泵或压缩机出现流量减小到最小值时,出口压力会突然下降,管道内压力反而高于出口压力,于是被输送介质倒流回机内,直到出口压力升高重新向管道输送介质为止;当管道中的压力恢复到原来的压力时,流量再次减少,管道中介质又产生倒流,如此周而复始。
人们把以上现象称为喘振。
喘振现象在压缩机使用过程较为常见,设备和管道系统出现周期性的出风与倒流,相对来讲轴流式风机更容易发生喘振,严重的喘振会导致风机叶片疲劳损坏。
喘振的产生与流体机械和管道的特性有关,管道系统的容量越大,则喘振越强,频率越低。
一旦喘振引起管道、机器及其基础共振时,还会造成严重后果。
为防止喘振,必须使流体机械在喘振区之外运转。
在压缩机中,通常采用最小流量式、流量-转速控制式或流量-压力差控制式防喘振调节系统。
当多台机器串联或并联工作时,应有各自的防喘振调节装置。
二、风机喘振的现象当风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也发生很大的波动。
风机的电动机电流波动很大,最大波动值有50A左右。
风机机体产生强烈的振动,风机房地面、墙壁以及房内空气都有明显的抖动。
风机发出“呼噜、呼噜”的声音,使噪声剧增。
风量、风压、电流、振动、噪声均发生周期性的明显变化,持续一个周期时间在8s左右。
三、喘振原因根据对轴流式通风机做的大量性能试验来看,轴流式通风机的p-Q性能曲线是一组带有驼峰形状的曲线(这是风机的固有特性,只是轴流式通风机相对比较敏感),如左图所示。
当工况点处于B点(临界点)左侧B、C之间工作时,将会发生喘振,将这个区域划为非稳定区域。
发生喘振,说明其工况已落到B、C之间。
离心压缩机发生喘振,根本原因就是进气量减少并达到压缩机允许的最小值。
理论和实践证明:能够使离心压缩机工况点落入喘振区的各种因素,都是发生喘振的原因。
离心式压缩机的喘振原因及控制分析
离心式压缩机的喘振原因及控制分析韩建彬(河南龙宇煤化工有限公司,河南 永城 476600)摘要:喘振是离心式压缩机典型故障之一,是造成装置运行不稳定,压缩机性能缺失的重要因素。
本文分析了离心式压缩机发生喘振的内、外因素,并提出了避免喘振发生的措施。
关键词:离心式压缩机;喘振;流量;叶轮化石能源输送、化工生产、钢铁冶炼、化肥生产等国家重点项目中都离不开基于离心式压缩机对气体的压缩与输送,可以说离心式压缩机是工业设计、生产、工程改造的重点对象。
离心式压缩机是一种基于回转运动原理的设备,其具有空间占地小、设备密度低、结构单元紧凑、运行稳定、输送压缩气体流量大等特点。
但是离心式压缩机运行时也会面对如喘振、稳定工作区域窄等技术问题,一方面会影响压缩机工作性能造成装置运行波动,另一方面也会造成压缩机故障或者寿命缩减。
例如喘振会导致离心式压缩机轴承润滑液体被破坏,导致轴瓦过电压损坏;离心式压缩机密封设备损坏,造成气体泄漏。
因此,准确的掌握离心式压缩机工作原理,掌握离心式压缩机出现喘振故障的诱导因素,制定采取一系列防止喘振的措施,保障离心式压缩机脱离喘振工作范围,是保证工业生产的关键手段。
1 喘振的判断方法离心式压缩机发生喘振现象时会伴随着明显的机组和管道异常特征:(1)离心式压缩机和管道会发生周期性、高频率振动,这种震动会产生振动噪音,严重时整个离心式压缩机机组会发生激烈的 “吼叫”噪音。
(2)机组外壳、轴承、机组配件等发生剧烈振动,振动频率、幅度随机变化,并伴随着剧烈、周期性的气流声。
(3)压缩机机组的出入口压力、流量不稳定,出现大幅度变化,变化频率呈现一定周期性,同时伴随着管道气体倒流的情况,是造成装置波动的主要因素。
从上述说明可以看出,观察离心式压缩机运行工况时的声音、仪表指数变化情况、进出口压力、进出口流量等是判断压缩机是否发生喘振的重要依据。
2 喘振原因的分析2.1 喘振发生的内因造成离心式压缩机喘振的内部原因是由于压缩机设备叶轮结构组成以及压缩介质气体之间的不匹配性导致的。
浅谈离心压缩机的防喘振控制
但 压 力 多变 , 而且 在 压 缩 机 的进 出口均 无 节 流元件 , 此 种 防 喘 振 控 制 方 案 就 只能 采 用 脉 动 函数 控 制方 法 , 此 种 方 法也 是 目前 研 究 中 最 不 确 定 的 办法 。 在 这 种 情况 下, 多 采 用 压 比脉 动 、 电流 脉 动 等 矩 阵 在一起运 行的各种装 置、 设备、 容器、 阀和 喘振 控 制 是 将 压 缩 机 控 制 运 行 在 机 组 的 防 出 口压 力 脉 动 、 管道组成。 喘振 线 右 线 即为 成功 。 函数, 来实 现 防喘 振 控 制 方案 。
的。 由喘 振 点 连 成 的 线 , 叫喘 振 线 。 喘 振 线 出 给 一 个 执 行 器 , 这 样 就 会 给 编程 、 调试 、 左侧 叫喘 振 区 , 喘 振 振 右 侧 叫运 行 区。 机 组 操 作 带 来麻 烦 , 存 在 人为 的 不 可确 定 因素 , 因 此 要 做 防 喘振 使 控 制 变 为不 稳定 , 不可 靠 , 更 不智能 。 组 本体 性 能 的掌 握 、 工 艺要 求 的了解 及 控制 是 严 禁 在 喘 振 区运 行 的 。 所 谓 喘振 ( s u r g e ) : 是 由于 严重 失 速 ( 4 ) 性 能 曲线 多条 , 工 艺 变化 多变 , 无 节 方 案 的 选 择 成 为了其 控 制 系统 的 前 提 基 础 控 制 。 ‘ 采用脉 动 函数 控制 必要条件。 在 复杂 的控 制 中, 要求 最 高 的 就 导 致 在 压 气 机 和 连 接 管 道 中 , 出现 工 质 流 流 元 件 , 此 种 情 况是 压 缩 机 介 质多为空 气 , 电 机 是 机 组性 能 控 制 中的 防 喘 振 控 制 。 其 控 制 量 以 较 低 的 频 率 振 荡为 特 征 的 不 稳 定 流 动 恒转速, 而 工艺 流 量 调 节 量 为 稳 定 , 是 为 了使 压 缩 机 能 够 满 足 工 艺 过 程 中对 于 的 有 害 工 况 。 当压 缩 机 运 行 中, 气 流 在 排 出 脱 动 ,