图形的全等复习经典例题与练习测试

合集下载

几何全等150题(1)

几何全等150题(1)

初三------几何全等经典150题一、选择题(共40小题;共200分)1.如果两个图形是全等图形,那么下列判断不正确的是A.形状相同B.大小相同C.面积相等D.周长不一定相等2.下列命题中正确的个数是①全等三角形对应边相等;②三个角对应相等的两个三角形全等;③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等.A.个B.个C.个D.个3.如图,于点,于点,且,则与全等的理由是A. B. C. D.4.如图,图中有两个三角形全等,且,与是对应边,则下列书写最规范的是A. B.C. D.5.如图,已知,下列结论正确的是A. B. C. D.6.如果两个三角形全等,则不正确的是A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等7.如图所示,小强利用全等三角形的知识测量池塘两端,的距离,如果,则只需测出其长度的线段是A. B. C. D.8.如图,在和中,点在边上,边交边于点.若,,,则等于A. B. C. D.9.如图,,若,,则的长度为A. B. C. D.10.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有,,,的四块),你认为将其中的哪一小块带去,就能配一块与原来一样的三角形?应该带A.第块B.第块C.第块D.第块11.如图,在中,点在边上,,,的延长线交于点,且,则等于A. B. C. D.12.如图所示,若,,则下列结论中,不正确的是A. B.C. D.13.如图所示,,,,有以下结论:①;②;③;④,其中正确的个数是A. B. C. D.14.如图,将正方形放在平面直角坐标系中,是原点,若点的坐标为,则点的坐标为A. B. C. D.15.如果,的周长为,,则的长是A. B. C. D.16.在中,,与全等的三角形有一个角是,那么在中与这角对应相等的角是A. B. C. D.或17.如图,在中,,点,分别是边,的中点,点在边上,连接,,,则添加下列哪一个条件后,仍无法判断与全等A. B. C. D.18.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为A.①②③④B.①③④C.①②④D.②③④19.已知,,,若的周长为偶数,则的取值为A. B. C. D.或或20.如图,点,在上,,,则添加下列哪一个条件后,仍无法判定A. B. C. D.21.如图,要测量河两岸相对的两点,的距离,先在的垂线上取两点,,使,再作出的垂线,使点,,在同一条直线上(如图所示),可以说明,得,因此测得的长就是的长,判定,最恰当的理由是A.边角边B.角边角C.边边边D.边边角22.如图所示,,,,是上的两点,且,,那么图中的全等三角形有A.对B.对C.对D.对23.如图,在和中,若,,则不正确的结论是A.和全等B.C.是的中点D.24.如图,已知图中有个正方形,和,若把图中全等的三角形看成一类,则图中三角形的种类数量为A. B. C. D.25.如图,过边长为的等边的边上一点,作于,为延长线上一点,当时,连交边于,则的长为A. B. C. D.不能确定26.如图,是等边三角形内的一点,且,,,以为边在外作,连接,则以下结论错误的是A.是等边三角形B.是直角三角形C. D.27.如图,直线,一等腰直角三角形的三个顶点,,分别在,,上,,交于点,已知与的距离为,与的距离为,则的值为A. B. C. D.28.如图,,是的角平分线,,相交于点,已知,则下列说法中正确的个数是①;②;③;④.A. B. C. D.29.如图,在正方形外取一点,连接,,,过点作的垂线交于点,连接,,.有下列结论:①;②点到直线的距离为;③;④;⑤.其中正确的结论是A.①③④B.①②⑤C.③④⑤D.①③⑤30.如图,等腰中,,是内一点,,,,为外一点,且,则四边形的面积为A. B. C. D.31.四边形中,和交于点,若平,且,,有以下四个命题:①;②;③;④.其中命题一定成立的是A.①②B.②③C.①③D.②④32.如图,正方形中,,分别为,上的点,,交于点,交于点,为的中点,交于点,连接.下列结论:①;②;③;④.其中正确的结论有A.只有①②B.只有①②④C.只有①④D.①②③④33.如图,内有一定点,过点的一条直线分别交射线于,射线于.当满足下列哪个条件时,的面积一定最小A. B.为的角平分线C.为的高D.为的中线34.在数学活动课上,小明提出这样一个问题:如图,,是的中点,平分,,则的度数是A. B. C. D.35.如图,四边形,都是正方形,点在线段上,连接,,和相交于点,设,.下列结论:①;②;③;④.其中结论正确的个数是A.个B.个C.个D.个36.如图,正方形的边长是,,连接,交于点,并分别与边,交于点,,连接.下列结论:①;②;③;④当时,.其中正确结论的个数是A. B. C. D.37.如图,在中,,角平分线、交于点,交于,于.下列结论:①;②;③;④.其中正确结论的个数为A.个B.个C.个D.个38.如图,在菱形中,,点,分别在,上,且,连接,交于点,延长到使,连接,,则以下四个结论:①;②;③是等边三角形;④.其中正确结论的个数是A. B. C. D.39.如图,为线段上一动点(不与点,重合),在同侧分别作等边三角形和等边三角形,与交于点,与交于点,与交于点,连接.以下六个结论:①;②;③;④;⑤;平分.其中不正确的有个.A. B. C. D.40.如图,在中,,点是内一点,若,,连接,则的度数为A. B. C. D.二、填空题(共40小题;共202分)41.全等三角形的性质:全等三角形的相等,相等.42.如图,,,交于点,要使,只需添加一个条件,这个条件可以是.43.能够完全重合的两个图形叫做.全等形的特征是和都相同.一个图形经过平移、翻折、旋转后,变化了,但和都没有改变,即平移、翻折、旋转前后的图形.44.如图,,和是对应角,和是对应边,那么还有对应角是,,对应边是,.45.图中有个条形方格图,图上由实线组成的图形是全等图形的有.46.如图,,,,图中全等三角形共有对.47.如图,与相交于点,且,,则与的数量关系是,位置关系是.48.如图,平面直角坐标系中,,若点的坐标为,,两点的纵坐标均为,,两点在轴上,则点到轴的距离为.49.如图所示,若该图案是由个全等的等腰梯形拼成的,则图中的.50.如图为个边长相等的正方形的组合图形,则51.如图所示,已知三个内角的平分线交于点,点在的延长线上,且,,若,则的度数为.52.如图,已知的六个元素,则下面甲、乙、丙三个三角形中与全等的图形是.53.如图,若,且,,则,.54.如图,已知.(),,则;()若,,则的值为.55.如图所示的方格中,度.56.已知,,于点,,则的度数为.57.如图,中,在边上,,在边上,,过点作,交于.若,,则的长为.58.如图,在四边形中,,,于.若四边形的面积是,则的长是.59.如图,中,,,,分别是其角平分线和中线,过点作交于,交于,连接,则线段的长为.60.已知是边长为的等边三角形,以为边作等腰三角形,使得,且,点是边上的一个动点,作交边于点,且满足,则的周长为.61.如图,在中,,是的中点,点,分别在,上运动(点不与点,重合)且保持,连接,,.则.62.如图,已知的面积为,为的平分线,垂直于点,则的面积为.63.如图,已知和为等腰三角形,,,,,点在上,,点在射线上,则长为.64.如图,已知,为的平分线上一点.连接,;如图.已知,,为的平分线上两点.连接,,,;如图.已知,,,为的平分线上三点,连接,,,,,;依此规律,第个图形中有全等三角形的对数是.65.如图,中,,于点,,,过点作且,于点,则.66.如图,等边的边长为,边上有一点,为延长线上的一点,且,过点作于点,过作交边于点,连接交边于点,则的长为.67.如图,在平行四边形中,的平分线与的延长线交于点,与交于点,且点为边的中点,,垂足为,若,,则的长为.68.如图,是的中线,是上的一点,交于,已知,,,则.69.如图,是等腰直角外一点,把绕直角顶点顺时针旋转到,已知,,则的值为.70.如图,将正方形放在平面直角坐标系中,是原点,的坐标为,则点的坐标为.71.在平面直角坐标系中,为坐标原点,点在轴的正半轴上,且,点,,将点向上平移个单位长度后得到点.若,且,则.72.把两个全等的矩形和矩形拼成如图所示的图案,若,,则的面积为.73.如图,中,,在上截取,在上,,,,是的中点,点在上,,则的长为.于点,连接,已知,,则另一直角边的长为.75.已知,均是边长为的等边三角形,点是边,的中点.(Ⅰ)如图①,这两个等边三角形的高为;(Ⅱ)如图②,直线,相交于点,当绕点旋转时,线段长的最小值是.76.现有多个全等直角三角形,先取三个拼成如图所示的形状,为的中点,分别交,于点,,易得.()若取四个直角三角形拼成如图所示的形状,为的中点,分别交,,于点,,,则;()若取五个直角三角形拼成如图所示的形状,为的中点,分别交,,,于点,,,,则.,.则.78.如图,在边长为的菱形中,,现有的三角板,,所在直线分别交线段于点,,若点关于直线的对称点为,当时,的长为.等腰直角三角形与,连接,交于点,则的最小值是.且,若,,则的长为.三、解答题81.已知:如图,点为的中点,,.求证:.82.如图,太阳光线与是平行的,同一时刻两根高度一样的垂直木杆在阳光的照射下的影子也是一样长的,请说明这是为什么?83.如图,在方格纸中,的三个顶点及,,,,五个点都在小方格的顶点上,现以,,,,中的三个点为顶点画三角形.(1)在图①中画一个三角形与全等;(2)在图②中画一个三角形与面积相等但不全等.84.如图,在和中,,,,在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.①,②,③,④.解:我写的真命题是:在和中,如果,那么.(不能只填序号)证明如下:85.如图,已知点,,,在同一条直线上,,,.求证:.86.如图,已知,求证:.87.如图,,,,在同一直线上,,,,求证:.88.如图,,,,.求证:.89.如图,,请添加一个条件(不得添加辅助线),使得,并说明理由.90.如图,已知与交于点,且.求证..角形,并给出证明.93.如图,在四边形中,,是的平分线.(1)求证;(2)若,求证:.94.如图,中,,是的平分线,于,点在上,,求证:.以,,,,中的三个点为顶点画三角形.(1)在图1中画出一个三角形与全等;(2)在图2中画出一个三角形与面积相等但不全等.96.分别画一笔,将下图各个“十字形”分成两个全等的图形(至少画出三种不同的全等形).,,求的周长.98.如图,,,以点为圆心,长为半径画弧,与射线相交于点,连接,过点作,垂足为.线段与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.结论:.99.如图所示,,且,试判断线段与的关系,并说明理由.100.如图,,.(1)求的度数.(2)可以看做是由绕着点,按(填顺时针或逆时针)方向,旋转度角形成的.101.如图,点在上,点在上,,,求证:.102.0如图1,在平面直角坐标系中,为坐标原点,,,,且点从点出发,以每秒个单位的速度沿射线匀速运动.设点的运动时间为秒.(1)求,的长.(2)连接,用含的代数式表示的面积.(3)过点作直线的垂线,垂足为,直线交轴于点.在点运动的过程中,当为何值时,,请求出此时的值.103.如图,在平行四边形中,为中点,过点作于,连接,延长,交的延长线于点.已知,,.求的长.104.在平面直角坐标系中,有点,,,点在第二象限,且.(1)请在图中画出,并直接写出点的坐标;(2)点在直线上,且是等腰直角三角形,求点的坐标.105.已知图中的四边形,,都是正方形.求证.(提示:通过图形的构造得出结论.)106.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图中,若是的平分线上一点,点在上,此时,在上截取,连接,根据三角形全等判定(),容易构造出全等三角形和,参考上面的方法,解答下列问题:如图,在非等边中,,,分别是,的平分线,且,交于点,求证.路和,这两条路等长吗?它们有什么位置关系?请证明你的猜想.108.已知,点,分别是正方形的边,的延长线上的点,连接,,,.(友情提醒:正方形的四条边都相等,即;四个内角都是,即)(1)如图①,若,求证:.成立,请说明理由.在的斜边上.(1)求证:;(2)如图,若,,点是的中点,直接写出的长是.110.如图:在中,点是的中点,点,分别在,边上,且.(1)猜想:(填上“”、“”或“”);(2)证明你的猜想.111.将两个全等的直角三角形和按图①方式摆放,其中,,点落在上,所在直线交所在直线于点.(1)连接,求证:;(2)若将图①中的绕点按顺时针方向旋转角,且,其他条件不变,如图②.求证:.(3)若将图①中的绕点按顺时针方向旋转角,且,其他条件不变,如图③.你认为()中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出,与之间的关系.112.如图,线段与相交于点,,垂足为,,垂足为.(1)如图,若,,试探究线段与的数量关系,并证明你的结论;(2)如图,若,,试探究线段与的数量关系,并证明你的结论.113.如图,在等腰三角形中,两腰上的中线,相交于点.求证:.114.如图,在中,,,请你在图中,分别用两种不同方法,将分割成四个小三角形,使得其中两个是全等的不等边三角形(不等边三角形指除等腰三角形以外),而另外两个是不全等的等腰三角形.请画出分割线段,并在两个全等三角形中标出一对相等的内角的度数,在每个等腰三角形中标出相等两底角度数(画图工具不限,不要求证明,不要求写出画法,但要保留作图痕迹,若经过图形变换后两个图形重合,则视为同一种方法).115.如图,在中,,为三角形外一点,且为等边三角形.(1)求证:直线垂直平分;(2)以为一边作等边(如图),连接,,试判断是否构成直角三角形?请说明理由.不写画法.不动,将绕点旋转,连接,,为的中点,连接.(2)当时,()的结论是否成立?请结合图②说明理由.连接,为中点,连接,.(1)求证;(2)将图①中绕点逆时针旋转,如图②所示,取中点,连接,.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.119.如图所示,在中,为的中点,,交的平分线于点,于点,交延长线于点.求证:.120.已知:四边形中,,对角线平分.(1)如图所示,当时.求证:;(2)如图所示,当时,线段,,有怎样的数量关系?并证明.121.阅读材料,解答问题数学课上,同学们兴致勃勃地探讨着利用不同画图工具画角的平分线的方法.小惠说:如图,我用相同的两块含角的直角三角板可以画角的平分线.画法如下:()在的两边分别取点,,使;()把直角三角板按如图所示的位置放置,两斜边交于点.射线是的平分线.小旭说:我只用刻度尺就可以画角平分线.请你也参与探讨,解决以下问题:(1)小惠的作法正确吗?若正确,请给出证明,若不正确,请说明理由.(2)请你和小旭一样,只用刻度尺画出图中的平分线,并简述画图的过程.122.已知:矩形内一点,为等腰直角三角形,连接,并延长分别交于点,,在上截取,连接.(1)求证:四边形为正方形;(2)求证:;(3)若,求的值.123.如图,在矩形中,是对角线,是的中点,过作交于,交于.(1)求证:;(2)若,,,求的长.124.如图,在平面直角坐标系中,点,,,点在第二象限,且.(1)请在图中画出,并直接写出点的坐标;(2)点在直线上,且是等腰直角三角形.求点的坐标.125.已知为等边三角形,为边所在的直线上的动点,连接,以为边在两侧作等边三角形和等边三角形(点在的右侧或上侧,点在左侧或下侧),连接,.(1)如图,若点在边上,请你通过观察,测量,猜想线段,和有怎样的数量关系?并证明你的结论;(2)如图,若点在的延长线上,其他条件不变,线段,和有怎样的数量关系?请直接写出结论(不需要证明);(3)若点在的反向延长线上,其他条件不变,请在图中画出图形,探究线段,和有怎样的数量关系,并直接写出结论(不需要证明).126.已知,如图:是的中线,,,,,连接.试猜想线段与的关系,并证明.127.如图,直线与轴交于点,与轴交于点.(1)求直线的表达式;(2)点是直线上的点,且,过动点且垂直于轴的直线与直线交于点,若点不在线段上,写出的取值范围.128.如图,,点在边上,,连接.求证:(1);(2)四边形是菱形.129.如图,分别以的直角边及斜边向外作等边三角形及等边三角形.已知,于点,连接.(1)求证:;(2)求证:四边形是平行四边形.130.如图,在矩形中,是的中点,将沿折叠后得到,且点在矩形内部,再延长交于点.(1)求证:,,三点在以点为圆心,的长为半径的圆上;(2)若,求的值;(3)若,求的值.131.(1)发现如图1,点为线段外一动点,且,.填空:当点位于时,线段的长取得最大值,且最大值为(用含,的式子表示).(2)应用点为线段外一动点,且,.如图2所示,分别以,为边,作等边三角形和等边三角形,连接,.①请找出图中与相等的线段,并说明理由;②直接写出线段长的最大值.(3)拓展如图3,在平面直角坐标系中,点的坐标为,点的坐标为,点为线段外一动点,且,,.请直接写出线段长的最大值及此时点的坐标.点为上的一点,连接,,,.(1)若,,求的长;(2)求证:.133.(1)拓展:如图①,在中,,点是上一点,点是延长线上一点,且.过点作交于点,连接交于点.求证:,.,垂足为点.若,则的长为.134.如图,已知为等腰三角形,,,为边的中上由点向点运动.(1)若点的运动速度与点的运动速度相等,请你判断:经过秒后,与是否全等?请说明理由.(2)若点的运动速度与点的运动速度不相等,请你求出当点的运动速度为多少时,能够使与全等?(3)若点以(2)中的运动速度从点出发,点以原来的运动速度从点同时出发,都逆时针沿三角形的三边运动,求经过多长时间点与点第一次在哪条边上相遇?请说明理由.135.如图,在中,,于点,于点,,与交于点,连接.求证:(1);(2);(3).136.有这样一个问题:如图,在四边形中,,,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整;已知:如图,在筝形中,,.求证:.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.从边、角、对角线或性质的逆命题等角度可以进一步探究筝形的判定方法,请你写出筝形的一个判定方法(定义除外),并说明你的结论.137.已知,平分,平分.(1)求的度数.(2)如图,过点的直线交射线于点,交射线于点,求证:;(3)如图,过点的直线交射线的反向延长线于点,交射线于点,,,,求的面积.138.如图,已知点是线段上一动点(不与,重合),,在线段的同侧作等边和等边,连接和,它们相交于点,与交于点.(1)求证:,;(2)若和不是等边三角形,如图,只满足,,(,为实数),是中点,是中点,是中点,连接,,求的值(用含的式子表示);(3)请直接写出在图中,经过,,三点的圆的半径的最小值.139.在平面直角坐标系中,点为坐标原点,直线与轴正半轴相交于点,与轴正半轴相交于点,的平分线与直线相交于点.(1)如图1,用含的代数式表示点的坐标;(2)如图2,点在线段上,点在的延长线上,过作直线轴分别于直线、轴、射线相交于点、点、点,过作轴交直线于点.设点的横坐标为,线段的长为,当时,求的长;(3)如图3,在(2)的条件下,连接,,当,时,求的值.140.图和图中的四边形和四边形都是正方形.(1)如图,连接,,为线段的中点,连接,探究与的数量关系和位置关系,并证明你的结论;(2)在图的基础上,将正方形绕点逆时针方向旋转到图的位置,连接,,为线段的中点,连接,探究与的数量关系和位置关系,并证明你的结论.141.已知抛物线的解析式为.(1)若抛物线与轴有交点,求的取值范围;(2)设抛物线与轴两个交点的横坐标分别为,.若,求的值.(3)若,是抛物线上位于第一象限的不同两点,,都垂直于轴,垂足分别为,,且与全等.求证:.142.如图,已知,中,,,,分别为,的中点,点在的延长线上,且,点在延长线上,且.(1)连接,线段与线段的大小关系是.(2)证明()中的结论;(3)求证:.143.已知:在平面直角坐标系中,等腰的顶点,在坐标轴上运动,且,.(1)如图,当,,点在第四象限时,则点的坐标为;(2)如图,当点在轴正半轴上运动,点在轴正半轴上运动,点在第四象限时,作于点,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.点,连接,求证:.144.(1)如图,中,,的垂直平分线交于点,连接.若,,则的周长为;(2)是正方形的中心,为边上一点,为边上一点,且的周长等于的长.①在图中作出,有适当的文字说明,并求出的度数;②若,求的值.145.在图、图、图、图中,点在线段上移动(不与,重合),在的延长线上.(1)如图,和均为正三角形,连接.①求证:.②的度数为(2)①如图,若四边形和四边形均为正方形,连接.则的度数为②如图,若五边形和五边形均为正五边形,连接.则的度数为.(3)如图,边形和边形均为正边形,连接,请你探索并猜想的度数与正多边形边数的数量关系(用含的式子表示的度数),并利用图(放大后的局部图形)证明你的结论.146.如图,在中,,,,垂足是,平分,交于点,在外有一点,使,.(1)求证:.(2)在上取一点,使,连接,交于点,连接.求证:①,②.147.如图,点是等边内一点,,.将绕点按顺时针方向旋转得,连接.(1)当,时,试判断的形状,并说明理由;(2)请写出是等边三角形时、的度数.度;度;(3)探究:若,则为多少度时,是等腰三角形?(只要写出探究结果).148.为等腰直角三角形,,点在边上(不与点、重合),以为腰作等腰直角,.(1)如图1,作于,求证:;(2)在图1中,连接交于,求的值;(3)如图2,过点作交的延长线于点,过点作,交于点,连接.当点在边上运动时,式子的值会发生变化吗?若不变,求出该值;若变化请说明理由.149.已知中,,,,分别为,上一点,连接,.(1)如图,若,,求证:;(3)如图,过作于,若.求证:.150.在中,,点是上的动点(不与,两点重合),点是延长线上的动点(不与点重合),且,,连接与交于点.(1)在图中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点,运动的过程中,始终有.小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:要想解决这个问题,首先应想办法移动部分线段构造全等三角形,证明线段相等,再构造平行四边形,证明线段相等,进而证明等腰直角三角形,出现的角,再通过平行四边形对边平行的性质,证明.他们的一种作法是:过点在下方作于点,并且使.通过证明,得到,再连接,证明四边形是平行四边形,得到,进而证明是等腰直角三角形,得到.又由四边形是平行四边形,推得.使问题得以解决.请你参考上面同学的思路,用另一种方法证明.答案第一部分1.D2.C3.D4.B5.A6.C7.B【解析】利用全等三角形对应边相等,可知要想求得的长,只需求得其对应边的长,据此可以得到答案.8.C【解析】在和中,,.是的外角,,.9.D10.B11.C12.D【解析】在和中,,,,,,,,.即,故A,B,C正确.13.B14.C15.D16.A17.A18.A19.B20.A21.B22.B【解析】,,,共对.23.C24.C25.B26.D27.A【解析】如图,作,,交于点.,,,,在和中,,,,与的距离为,与的距离为,,,,,,,,.28.B29.D【解析】过点作,交的延长线于点,易得点到直线的距离为,故②错误;易得,故④错误.30.C【解析】如图,连接.,,,.....在中,,,,...31.B32.B33.D【解析】当点是的中点时最小;如图,过点的另一条直线交,于点,,设,过点作交于,在和中,,.,,当点是的中点时最小.34.D【解析】过点作,垂足为,如图,,,,平分,,,,,,,平分,,,,是的中点,,在和中,,,.35.B36.C37.D【解析】,角平分线、交于点,,.,.①正确;延长交于.在和中..,,,易证,.,.②正确;过点作于,连接、.。

三角形全等的判定专题训练题

三角形全等的判定专题训练题

三角形全等的判定专题训练题(1)1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。

求证:△ABD ≌△ACD 。

2、如图(2):AC ∥EF ,AC=EF ,AE=BD 。

求证:△ABC ≌△EDF 。

3、 如图(3):DF=CE ,AD=BC ,∠D=∠C 。

求证:△AED ≌△BFC 。

4、 如图(4):AB=AC ,AD=AE ,AB ⊥AC ,AD ⊥AE 。

求证:(1)∠B=∠C ,(2)BD=CE5、如图(5):AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE 。

求证:AC ⊥CE 。

6、如图(6):CG=CF ,BC=DC ,AB=ED ,点A 、B 、C 、D 、E 在同一直线上。

求证:(1)AF=EG ,(2)BF ∥DG 。

7、如图(7):AC ⊥BC ,BM 平分∠ABC 且交AC 于点M 、N 是AB 的中点且BN=BC 。

求证:(1)MN 平分∠AMB ,(2)∠A=∠CBM 。

8、如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF 。

求证:△ABE ≌△DCF 。

9、如图(9)AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

10、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。

求证:AB=AC 。

11、如图(11)在△ABC 和△DBC 中,∠1=∠2,∠3=∠4,P 是BC上任一点。

求证:PA=PD 。

12、如图(12)AB ∥CD ,OA=OD ,点F 、D 、O 、A 、E 在同一直线上,AE=DF 。

求证:EB ∥CF 。

13、如图(13)△ABC ≌△EDC 。

求证:BE=AD 。

14、如图(14)在△ABC 中,∠ACB=90°,AC=BC ,AE 是BC 的中线,过点C 作CF ⊥AE 于F ,过B 作BD ⊥CB 交CF 的延长线于点D 。

初中数学《图形的全等》经典习题

初中数学《图形的全等》经典习题

平面图形的认识试卷副标题1.命题①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等;⑥任何数都有倒数;⑦如果a2=b2,那么a=b;⑧三角对应相等的两三角形全等;⑨如果∠A+∠B=90°,那么∠A与∠B互余.其中真命题有…()A. 3个B. 4个C. 5个D. 6个2.下列条件中能判定△ABC≌△DEF的是()A. AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC. AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF3.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形4.给出下列各命题:①有两边和它们的夹角对应相等的两个三角形一定全等;②有两边和一角对应相等的两个三角形一定全等;③有两条直角边对应相等的两个直角三角形一定全等;④有两条边分别相等的两个直角三角形一定全等;其中假命题共有()A. 1个B. 2个C. 3个D. 4个5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A. 50 B. 62 C. 65 D. 687.如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有()A. 2对B. 3对C. 4对D. 5对8.下列不能判定三角形全等的是()A.如图(1),线段AD与BC相交于点O,AO=DO,BO=CO.△ABO与△BCOB.如图(2),AC=AD,BC=BD.△ABC与△ABDC.如图(3),∠A=∠C,∠B=∠D.△ABO与△CDOD.如图(4),线段AD与BC相交于点E,AE=BE,CE=DE,AC=BD.△ABC与△BAD 9.如图,AC=DF,∠ACB=∠DFE,点B、E、C在一条直线上,则下列条件中不能断定△ADC≌DEF的是()A.∠A=∠D B. BE=CF C. AB=DE D. AB∥DE10.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B. 4 C.D. 511.如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,AB的长为cm.12.如图,在△ABC和△BAD中,若∠C=∠D,再添加一个条件,就可以判定△ABC≌△BAD 你添加的条件是.13.如图,已知AC=BD,则再添加条件,可证出△ABC≌△BAD.14.如图,已知∠ABC=∠DCB,现要说明△ABC≌△DCB,则还要补加一个条件是或或.15.如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC= cm.16.如图,△ABC≌△EFC,CF=3cm,CE=4cm,∠F=36°,则BC= cm,∠B=度.17.如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.18.如图,将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为N,P,Q,M的四个图形,试按照“哪个正方形剪开后与哪个图形”的对应关系填空:A与对应;B与对应;C与对应;D与对应.19.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有(填序号).20.如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,且AO平分∠BAC,那么图中全等三角形共有对.21.如图,在△ABC中,已知∠DBC=60°,AC>BC,又△ABC′、△BCA′、△CAB′都是△ABC形外的等边三角形,而点D在AC上,且BC=DC(1)证明:△C′BD≌△B′DC;(2)证明:△AC′D≌△DB′A;(3)对△A BC、△ABC′、△BCA′、△CAB′,从面积大小关系上,你能得出什么结论?22.如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.23.如图,已知:△ABC中,∠ACB=90°,D为AC边上的一点,E为DB的中点,CE的延长线交AB于点F,FG∥BC交DB于点G.试说明:∠BFG=∠CGF.24.如图(1),A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF,若将△DEC的边EC沿AC方向移动变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.25.如图,两个全等的直角三角形△ABC和△A1B1C1中,∠ACB=∠A1C1B1=90°,两条相等的直角边AC,A1C1在同一直线上,A1B1与AB交于O,AB与B1C1交于E1,A1B1与BC交于E.(1)写出图中除△ABC≌△A1B1C1外的所有其它各组全等三角形(不再连线和标注字母);(2)求证:B1E1=BE.26.(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.27.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE的道理.28.用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合.将三角尺绕点A按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?简要说明理由.29.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.30.如图,AD=BC,请添加一个条件,使图中存在全等三角形并给予证明.你所添加的条件为:;得到的一对全等三角形是△≌△.参考答案1.B【解析】试题分析:根据邻补角互补,对顶角相等的性质,线段的性质,直线的性质,倒数的特殊规定,绝对值的选择性,全等三角形的判定,余角的定义对各小题分析判断后即可求解.解:①邻补角互补,正确;②对顶角相等,正确;③被截线不平行则同旁内角不互补,故本小题错误;④两点之间线段最短,是线段的性质,正确;⑤直线是向两方无限延伸的,没有长短,故本小题错误;⑥0没有倒数,故本小题错误;⑦如果a2=b2,那么a=b或a=﹣b,故本小题错误;⑧三角对应相等的两三角形相似但不一定全等,故本小题错误;⑨如果∠A+∠B=90°,那么∠A与∠B互余,是定义,正确.综上所述,真命题有①②④⑨共4个.故选B.考点:对顶角、邻补角;倒数;线段的性质:两点之间线段最短;全等三角形的判定.点评:本题是对基础知识的综合考查,熟记概念与性质是解题的关键.2.D【解析】试题分析:全等三角形的判定方法有:SAS,ASA,AAS,SSS,而SSA,AAA都不能判定两三角形全等,根据以上内容判断即可.解:A、根据AB=DE,BC=EF,∠A=∠D,不能判断△ABC≌△DEF,故本选项错误;B、根据∠A=∠D,∠B=∠E,∠C=∠F,不能判断△ABC≌△DEF,故本选项错误;C、根据AC=DF,∠B=∠F,AB=DE,不能判断△ABC≌△DEF,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF(AAS),故本选项正确;故选D.考点:全等三角形的判定.点评:本题考查了全等三角形的判定的应用,题目比较好,但是一道比较容易出错的题目,全等三角形的判定方法有:SAS,ASA,AAS,SSS.3.D【解析】试题分析:根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选D.考点:全等三角形的性质.点评:本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.4.B【解析】试题分析:根据三角形全等的判定方法即可解得,做题时要根据已知条件结合判定方法逐个验证.解:①符合SAS,成立;②SSA不符合三角形全等的条件;③符合SAS,是真命题;④没有对应相等不符合三角形全等的条件,是假命题.则正确的是①和③.故选B.考点:全等三角形的判定.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.B【解析】试题分析:全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.考点:全等三角形的判定.点评:本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.A【解析】试题分析:由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.考点:全等三角形的判定与性质.点评:本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.7.C【解析】试题分析:根据已知条件可以找出题目中有哪些相等的角以及线段,然后猜想可能全等的三角形,然后一一进行验证,做题时要由易到难,循序渐进.解:①△ODC≌△OEC∵BD⊥AO于点D,AE⊥OB于点E,OC平分∠AOB∴∠ODC=∠OEC=90°,∠1=∠2∵OC=OC∴△ODC≌△OEC(AAS)∴OE=OD,CD=CE;②△ADC≌△BEC∵∠CDA=∠CEB=90°,∠3=∠4,CD=CE∴△OBE≌△OCD(AAS)∴AC=BC,AD=BE,∠B=∠A;③△OAC≌△OBC∵OD=OE∴OA=OB∵OA=OB,OC=OC,AC=BC∴△ABO≌△ACO(SSS);④△OAE≌△OBD∵∠ODB=∠OEA=90°,OA=OB,OD=OE∴△AEC≌△ADB(HL).故选C.考点:全等三角形的判定.点评:本题考查了全等三角形的判定方法;全等三角形的判定方法一般有:AAS、SAS、ASA、SSS、HL.应该对每一种方法熟练掌握做到灵活运用,做题时要做到不重不漏.提出猜想,证明猜想是解决几何问题的基本方法.8.C【解析】试题分析:全等三角形的判定定理有:SAS、ASA、AAS、SSS,只要具备以上四种方法中的一种,即可判定联三角形全等.解:A、因为∠AOB=∠DOC,根据SAS可判断△ABO≌△DCO,故本选项错误;B、AB=AB,根据SSS可证出△ABC≌△ABD,故本选项错误;C、全等三角形的判定定理有SAS、ASA、AAS、SSS,根据已知不能得出以上三个条件,即两三角形不全等,故本选项正确;D、∵AE=BE,CE=DE,∴AD=BC,∵AB=AB,AC=BD,根据SSS可证出△ABC≌△BAD,故本选项错误.故选C.考点:全等三角形的判定.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定有:SAS、ASA、AAS、SSS,题型较好,但是一道比较容易出错的题目.9.C【解析】试题分析:根据全等三角形的判定ASA推出三角形全等,即可判断A;求出BC=EF,根据SAS 即可判断B;根据有两边和其中一边的对角相等不能判断两三角形全等,即可判断C;根据平行线性质推出∠B=∠DEF,根据AAS即可判断D.解:A、在△ABC和△DEF中,∴△ABC≌△DEF,故本选项错误;B、∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF,故本选项错误;C、根据AB=DE,∠ACB=∠DFE,AC=DF,不能判定△ABC和△DEF全等,故本选项正确;D、∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,∴△ABC≌△DEF,故本选项错误;故选C.考点:全等三角形的判定;平行线的性质.点评:本题考查了平行线性质和全等三角形的判定的应用,熟练地运用定理进行推理是解此题的关键,题目比较好,难度适中.10.B【解析】试题分析:由∠ABC=45°,AD是高,得出BD=AD后,证△ADC≌△BDH后求解.解:∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADC=∠BDH,∵∠AHE+∠DAC=90°,∠AHE+∠C=90°,∴∠AHE=∠BHD=∠C,∴△ADC≌△BDH,∴BH=AC=4.故选B.考点:全等三角形的判定与性质.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.由∠ABC=45°,AD是高,得出BD=AD是正确解答本题的关键.11.2【解析】试题分析:AB不是全等三角形的对应边,但它通过全等三角形的对应边转化为AB=CD,而使AB+CD=AD﹣BC可利用已知的AD与BC求得.解:∵△ACF≌△DBE,∠E=∠F,∴CA=BD,∴CA﹣BC=DB﹣BC,即AB=CD,∴AB+CD=2AB=AD﹣BC=9﹣5=4(cm),∴AB=2(cm).故填2.考点:全等三角形的性质.点评:本题主要考查了全等三角形的对应边相等.难点在于根据图形得到线段AB=CD,也是解决本题的关键.12.∠DAB=∠CBA(答案不唯一)【解析】试题分析:由图可知,AB是公共边,然后根据全等三角形的判定方法选择添加不同的条件即可.解:∵∠C=∠D,AB是公共边,∴可添加∠DAB=∠CBA或∠DBA=∠CAB,故答案为:∠DAB=∠CBA(答案不唯一).考点:全等三角形的判定.点评:本题考查了全等三角形的判定,根据∠D、∠C是公共边AB的对角,只能选择利用“角角边”证明两三角形全等添加条件.13.∠CAB=∠DBA@BC=AD【解析】试题分析:本题要判定△ABC≌△ADC,已知AC=BD,AB是公共边,具备了两组边对应相等,故添加BC=AD、∠CAB=∠DBA,后可分别根据SSS、SAS、能判定△ABC≌△ADC.解:AC=BD,AB是公共边,加∠CAB=∠DBA,就可以用SAS证出△ABC≌△BAD;加BC=AD就可以用SSS证出△ABC≌△BAD.故填∠CAB=∠DBA@BC=AD.考点:全等三角形的判定.点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.14.∠A=∠D AB=CD ∠ACB=∠DBC【解析】试题分析:要证明△ABC≌△DCB,已知∠ABC=∠DCB,且有一个公共边BC=BC,则可以添加一组角从而利用AAS、ASA判定其全等;添加边从而利用SAS判定其全等.解:补充∠A=∠D.∵∠ABC=∠DCB,BC=BC,∠A=∠D∴△ABC≌△DCB(AAS)补充∠ACB=∠DBC.∵∠ABC=∠DCB,BC=BC,∠ACB=∠DBC∴△ABC≌△DCB(ASA)补充AB=CD.∵∠ABC=∠DCB,AB=CD,BC=BC∴△ABC≌△DCB(SAS).∴故填∠A=∠D或AB=CD或∠ACB=∠DBC.考点:全等三角形的判定.点评:题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.15.10【解析】试题分析:根据△DEF周长是32cm,DE=9cm,EF=13cm就可求出第三边DF的长,根据全等三角形的对应边相等,即可求得AC的长.解:DF=32﹣DE﹣EF=10cm.∵△ABC≌△DEF,∠E=∠B,∴AC=DF=10cm.考点:全等三角形的性质.点评:本题考查全等三角形的性质,解题时应注重识别全等三角形中的对应边,要根据对应角去找对应边.16.3 36【解析】试题分析:运用“全等三角形的对应边相等,对应角相等”即可得,做题时要根据△ABC≌△EFC找对对应边.解:∵△ABC≌△EFC,CF=3cm,∠F=36,∴BC的对应边是CF,∠B的对应角是∠F,∴BC=FC=3cm,∠B=∠F=36°.故填3,36.考点:全等三角形的性质.点评:本题考查了全等三角形的性质及对应关系的找法;全等三角形书写时各对应顶点应在同一位置,找准对应关系是解决本题的关键.17.【解析】试题分析:根据图形得出当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;根据以上结果得出当有n个点时,图中有个全等三角形即可.解:当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n个点时,图中有个全等三角形.故答案为:.考点:全等三角形的判定.点评:本题考查了对全等三角形的应用,关键是根据已知图形得出规律,题目比较典型,但有一定的难度.18.M N Q P【解析】试题分析:能够完全重合的两个图形叫做全等形.按照剪开前后各基本图形是重合的原则进行逐个验证、排查.解:由全等形的概念可知:A是三个三角形,与M对应;B是一个三角形和两个直角梯形,与N对应;C是一个三角形和两个四边形,与Q对应;D是两个三角形和一个四边形,与P对应故分别填入M,N,Q,P.考点:全等图形.点评:本题考查的是全等形的识别,注意辩别组成图形的基础图形的形状.19.①②③【解析】试题分析:由已知条件,可直接得到三角形全等,得到结论,采用排除法,对各个选项进行验证从而确定正确的结论.解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)∵∠CAN=∠BAM,∠B=∠C,AB=AC∴△ACN≌△ABM(③正确)∴CN=BM(④不正确).所以正确结论有①②③.故填①②③.考点:全等三角形的判定.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.得到三角形全等是正确解决本题的关键.20.4【解析】试题分析:根据已知条件可以找出题目中有哪些相等的角以及线段,然后猜想可能全等的三角形,然后一一进行验证.解:∵CD⊥AB,BE⊥AC,垂足分别为D、E,且AO平分∠BAC,∴△ODA≌△OEA,∴∠B=∠C,AD=AE,∴△ADC≌△AEB,∴AB=AC,∴△OAC≌△OAB,∴△COE≌△OBD.故填4.考点:全等三角形的判定.点评:本题考查了三角形全等的判定方法;提出猜想,验证猜想是解决几何问题的基本方法,做题时要注意从已知条件开始思考结合全等的判定方法逐一判断,做到不重不漏,由易到难.21.(1)先证明:△C′BD≌△ABC,再证明△ABC≌△B′DC;(2)根据(1)的结论,可以证明:△AC′D≌△DB′A;(3)由角的不等,导出边的不等关系,这是探索面积不等关系的关键.【解析】试题分析:(1)先证明:△C′BD≌△ABC,再证明△ABC≌△B′DC;(2)根据(1)的结论,可以证明:△AC′D≌△DB′A;(3)由角的不等,导出边的不等关系,这是探索面积不等关系的关键.(1)△C′BD与△ABC中,BC=DC,AB=BC′,∠C′BD=60°+∠ABD=∠ABC,∴△C′BD≌△ABC,∴C′D=AC又在△BCA与△DCB′中,BC=DC,AC=B′C,∠ACB=∠B′CD=60°,∴△BCA≌△DCB′.∴DB′=BA.∴△C′BD≌△B′DC(2)由(1)的结论知:C′D=B′C=AB′,B′D=BC′=AC′,又∵AD=AD,∴△AC′D≌△DB′A.(3)S△AB′C>S△ABC′>S△ABC>S△A′BC;S△AB′C=,S△A′BC=,S△ABC′=,S△ABC=,因为AB2=(AC2+BC2﹣2AC×BC×cos60°)整理得S△ACB′+S△BCA′=S△ABC′+S△ABC考点:全等三角形的判定;三角形的面积.点评:考查全等三角形的证明,考查在三角形中,已知两边和夹角求第三边的计算.22.有两种解法:①延长AD至点M,使MD=FD,连接MC,则可证△BDF≌△CDM(SAS),可得MC=BF,∠M=∠BFM,再得∠M=∠MAC,得AC=MC=BF.②延长AD至点M,使DM=AD,连接BM,可证△ADC≌△MDB(SAS),方法与①相同.【解析】试题分析:有两种解法:①延长AD至点M,使MD=FD,连接MC,则可证△BDF≌△CDM(SAS),可得MC=BF,∠M=∠BFM,再得∠M=∠MAC,得AC=MC=BF.②延长AD至点M,使DM=AD,连接BM,可证△ADC≌△MDB(SAS),方法与①相同.证明:方法一:延长AD至点M,使MD=FD,连接MC,在△BDF和△CDM中,∴△BDF≌△CDM(SAS).∴MC=BF,∠M=∠BFM.∵EA=EF,∴∠EAF=∠EFA,∵∠AFE=∠BFM,∴∠M=∠MAC,∴AC=MC,∴BF=AC;方法二:延长AD至点M,使DM=AD,连接BM,在△ADC和△MDB中,,∴△ADC≌△MDB(SAS),∴∠M=∠MAC,BM=AC,∵EA=EF,∴∠CAM=∠AFE,而∠AFE=∠BFM,∴∠M=∠BFM,∴BM=BF,∴BF=AC.考点:全等三角形的判定与性质.点评:本题考查了三角形全等的判定及性质、等腰三角形的性质.其中普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,解决此题的关键是作出巧妙的辅助线:倍长中线.23.本题首先通过∠ACB=90°,E为DB的中点,进而得到CE=EB=DE,又因为FG∥BC,则可证明△GEC≌△FEB,再通过角与角之间的关系求得∠BFG=∠CGF.【解析】试题分析:本题首先通过∠ACB=90°,E为DB的中点,进而得到CE=EB=DE,又因为FG∥BC,则可证明△GEC≌△FEB,再通过角与角之间的关系求得∠BFG=∠CGF.证明:∵∠ACB=90°,E为DB的中点,∴CE=DE=BE,(直角三角形斜边上的中线等于斜边一半)∴CE=EB,∴∠ECB=∠CBE,∵FG∥BC,∴∠GFE=∠ECB,∠EGF=∠CBE∴∠EGF=∠EFG,∴GE=EF,∵∠GEC=∠FEB,∴△GEC≌△FEB,∴∠EFB=∠EGC,∵∠BFG=∠EFB+∠EFG,∠CGF=∠EGC+∠EGF,∴∠BFG=∠CGF.考点:全等三角形的判定与性质.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DGE,从而得出FG=EG,即BD平分EF.(2)结论仍然成立,同样可以证明得到.【解析】(1)先利用HL判定Rt△ABF≌Rt△CDE,得出BF=DE;再利用AAS判定△BFG≌△DGE,试题分析:从而得出FG=EG,即BD平分EF.(2)结论仍然成立,同样可以证明得到.(1)证明:∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,∴△BFG≌△DGE(AAS),∴FG=EG,即BD平分EF.(2)FG=EG,即BD平分EF的结论依然成立.理由:因为 AE=CF,所以 AF=CE,因为 DE垂直于AC,BF垂直于AC,所以角AFB=角CED,BF∥DE,因为AB∥CD,所以角A=角C,所以三角形ABF全等于三角形CDE,所以 BF=DE,所以四边形BEDF是平行四边形,所以 GE=GF,即:BD平分EF,即结论依然成立.考点:全等三角形的判定与性质.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.(1)根据全等三角形的判定:三组对应边分别相等的两个三角形全等(简称SSS);有两边及其夹角对应相等的两个三角形全等(SAS);有两角及其夹边对应相等的两个三角形全等(ASA)可证得;(2)由1可证得△ACE≌△A1C1E1,可推出CE=C1E1,易证B1E1=BE.【解析】试题分析:(1)根据全等三角形的判定:三组对应边分别相等的两个三角形全等(简称SSS);有两边及其夹角对应相等的两个三角形全等(SAS);有两角及其夹边对应相等的两个三角形全等(ASA)可证得;(2)由1可证得△ACE≌△A1C1E1,可推出CE=C1E1,易证B1E1=BE.(1)解:△ACE≌△A1C1E1,△OBE≌△O1B1E1;(2)证明:∵△ABC≌△A1B1C1∴AC=A1C1,BC=B1C1∴AC1=A1C已知∠A=∠A1,∠ACE=∠A1C1E1=90°∴△ACE≌△A1C1E1∴CE=C1E1又∵BC=B1C1∴B1E1=BE.考点:全等三角形的判定与性质.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.26.(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.【解析】试题分析:(1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC.(2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.证明:(1)如图1∵∠MAN=120°,AC平分∠MAN,∴∠DAC=∠BAC=60°,∵∠ABC=∠ADC=90°,∴∠DCA=∠BCA=30°,∵在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°,∴AC=2AD,AC=2AB,∴AD+AB=AC.(2)判断是:(1)中的结论①DC=BC;②AD+AB=AC都成立.理由如下:如下图,在AN上截取AE=AC,连接CE,∵∠BAC=60°,∴△CAE为等边三角形,∴AC=CE,∠AEC=60°,∵∠DAC=60°,∴∠DAC=∠AEC∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∴△ADC≌△EBC,∴DC=BC,DA=BE,∴AD+AB=AB+BE=AE,∴AD+AB=AC.考点:全等三角形的判定与性质;角平分线的定义;三角形内角和定理.点评:本题考查了角平分线的性质,直角三角形的性质,和全等三角形的判定等知识综合运用,是一道由浅入深的训练题.27.根据已知,利用有两组角对应相等的两个三角形相似得到△AEF∽△DCF,从而得到∠E=∠C,再由已知可得∠BAC=∠DAE,又因为AC=AE,所以根据AAS可判定△ABC≌△ADE.【解析】试题分析:根据已知,利用有两组角对应相等的两个三角形相似得到△AEF∽△DCF,从而得到∠E=∠C,再由已知可得∠BAC=∠DAE,又因为AC=AE,所以根据AAS可判定△ABC≌△ADE.解:△ADF与△AEF中,∵∠2=∠3,∠AFE=∠CFD,∴∠E=∠C.∵∠1=∠2,∴∠BAC=∠DAE.∵AC=AE,∴△ABC≌△ADE.考点:全等三角形的判定.点评:此题考查学生对相似三角形的判定及全等三角形的判定的理解及运用.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.应先确定选择哪对三角形,再对应三角形全等条件求解.【解析】试题分析:本题是一道开放性题,应先确定选择哪对三角形,再对应三角形全等条件求解.解:(1)BE=CF.证明:在△ABE和△ACF中,∵∠BAE+∠EAC=∠CAF+∠EAC=60°,∴∠BAE=∠CAF.∵AB=AC,∠B=∠ACF=60°,∴△ABE≌△ACF(ASA).∴BE=CF;(2)BE=CF仍然成立.证明:在△ACE和△ADF中,∵∠CAE+∠EAD=∠FAD+∠DAE=60°,∴∠CAE=∠DAF,∵∠BCA=∠ACD=60°,∴∠FCE=60°,∴∠ACE=120°,∵∠ADC=60°,∴∠ADF=120°,在△ACE和△ADF中,∴△ACE≌△ADF,∴CE=DF,∴BE=CF,考点:全等三角形的判定.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.29.(1)利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC.(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF(3)利用等腰三角形“三线合一”)和勾股定理即可求解.【解析】试题分析:(1)利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC.(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF(3)利用等腰三角形“三线合一”)和勾股定理即可求解.(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=∠ABC=×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,。

北师大七年级数学下4.2《图形的全等》习题含详细答案

北师大七年级数学下4.2《图形的全等》习题含详细答案

《图形的全等》习题一、选择题1.下列说法正确的是( )A.周长相等的矩形是全等形B.所有的五角星都是全等形C.面积相等的三角形是全等形D.周长相等的正方形是全等形2.下列判断正确的是( )A.形状相同的图形叫全等形B.图形的面积相等的图形叫全等形C.部分重合的两个图形全等D.两个能完全重合的图形是全等形3.下列各组图形中,一定是全等图形的是( )A.两个周长相等的等腰三角形B.两个面积相等的长方形C.两个斜边相等的直角三角形D.两个周长相等的圆4.如果△ABC与△DEF是全等形,则有( )(1)它们的周长相等;(2)它们的面积相等;(3)它们的每个对应角都相等;(4)它们的每条对应边都相等.A.(1)(2)(3)(4)B.(1)(2)(3)C.(1)(2)D.(1)5.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是( )A.AC=CEB.∠BAC=∠ECDC.∠ACB=∠ECDD.∠B=∠D6.如图,△ABC≌△CDA,AB=4,BC=6,则AD等于( )A.4B.5C.6D.不确定二、填空题7.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=_____度.8.由同一张底片冲洗出来的五寸照片和七寸照片_____全等图形(填“是”或“不是”).9.下列图形中全等图形是_____(填标号).10.如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=_____度.三、解答题11.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.12.找出图中全等的图形.13.周长相等的两圆相同,周长相等的两个正方形相同,那么,周长相等的两个三角形全等吗?14.如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?15.判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.参考答案一、选择题1.答案:D解析:【解答】A周长相等的矩形不一定重合,错;B所有的五角星不一定重合,错;C面积相等的三角形也不一定重合,错;D周长相等的正方形边长一定相等,则周长相等的正方形一定是形状大小都相同的图形,一定重合,正确.故选D.【分析】全等的图形是指形状,大小都相同的图形,即能够完全重合的两个图形,两个条件要同时具备,按定义逐个验证可得答案.2.答案:D解析:【解答】A、如果形状相同而面积不同,则不是全等形,错误;B、如果面积相等,而形状不同,则不是全等形,错误;C、根据全等形概念,强调是完全重合,错误.D、正确.故选D.【分析】要判断选项的正误,要以全等形的概念为依据,结合各选项认真验证,与之相符和是正确的,反之,是错误的.3.答案:D解析:【解答】A、两个周长相等的等腰三角形,不一定全等,故此选项错误;B、两个面积相等的长方形,不一定全等,故此选项错误;C、两个斜边相等的直角三角形,不一定全等,故此选项错误;D、两个周长相等的圆,半径一定相等,故两圆一定全等,故此选项正确.故选:D.【分析】根据全等图形的性质分别判断得出即可.4.答案:A解析:【解答】根据全等形的概念可以判定:(1)(2)(3)(4)都成立.故选A.【分析】全等的图形是指形状,大小都相同的图形,即能够完全重合的两个图形.则它们的周长、面积、对应角、对应边一定都对应相等.5.答案:C解析:【解答】∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选C.【分析】两三角形全等,根据全等三角形的性质判断.6.答案:C解析:【解答】∵△ABC≌△CDA,∴AD=BC=6.故选C.【分析】根据全等三角形的性质,全等三角形的对应边相等,找到对应边即可解答.二、填空题7.答案:90°解析:【解答】在△ACM和△BAN中,AN=CM,∠AMC=∠BNA,CM=AN∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.【分析】根据图形可判断出△ACM≌△BAN,从而可得出∠1和∠2互余,继而可得出答案.8.答案:不是解析:【解答】由全等形的概念可知:由同一张底片冲洗出来的五寸照片和七寸照片,大小不一样,所以不是全等图形.【分析】能够完全重合的两个图形叫做全等形,图形重合的是全等形,不重合的不是全等形.9.答案:⑤和⑦解析:【解答】由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.【分析】要认真观察图形,从①开始找寻,看后面的谁与之全等,然后是②,看后面的哪一个与它全等,如此找寻,可得答案.10.答案:135°解析:【解答】如图所示:∠2=45°,在△ACB和△DCE中,AB=DE,∠A=∠D,AC=DC∴△ACB≌Rt△DCE(SAS),∴∠ABE=∠3,∴∠1+∠2+∠3=(∠1+∠3)+45°=90°+45°=135°【分析】首先利用全等三角形的判定和性质得出∠1+∠3的值,即可得出答案.三、解答题11.答案:见解答过程.解析:【解答】设计方案如下:【分析】根据正方形的性质,①两条对角线把正方形分成四个全等的三角形;②作一组对边的平行线也能把正方形分成四个全等的矩形;③连接一组对边的中点,把正方形分成两个全等的矩形,再作矩形的对角线就把每个矩形都分成两个全等的三角形,这样就分成了四个全等的三角形;④过正方形的中心做互相垂直的两条线也能把正方形分成四个全等的四边形.12.答案:见解答过程.解析:【解答】如图所示:1和2全等,3和4全等.【分析】利用能够完全重合的两个图形称为全等图形,全等图形的大小和形状都相同,进而判断即可.13.答案:不一定全等.解析:【解答】不一定全等,例如,两个三角形的周长均为10,一个三角形的三边长为4,3,3,而另一个三角形的三边长为4,4,2,这两个三角形显然不全等,但当两个三角形为正三角形时,这两个三角形全等.【分析】能够完全重合的两个三角形叫做全等三角形,周长相等的两个三角形,构成三角形的三条边不一定全部相等,可得周长相等的两个三角形不一定全等.14.答案:见解答过程.解析:【解答】如图所示:【分析】一共有20棵果树把它们平均分给四个小组去种植,每一个小组平均5棵,再根据条件“分得的果树组成的图形、形状大小要相同”进行分割即可.15.答案:(1)全等(2)不一定全等(3)不一定全等(4)不一定全等.解析:【解答】(1)全等.理由:等边三角形各角都是60°,各角对应相等,周长相等即边长相等,各边对应相等.(2)不一定全等.理由:由已知条件,只能得到一组直角对应相等,其余的角和边不能确定是否相等.(3)不一定全等.理由:菱形的四条边都相等,由周长相等只能得到四条边对应相等,不能确定四个角是否相等.(4)不一定全等.理由:正方形的四个角都是直角,所有的正方形的角对应相等,但边长不能确定.【分析】根据多边形全等必须同时具备各边对应相等,各角对应相等.若不能确定都相等,则两个多边形不一定全等对各小题分析判断即可得解.。

2022年北师七下《图形的全等》同步练习(附答案)

2022年北师七下《图形的全等》同步练习(附答案)

图形的全等一、单项选择题1.以下说法正确的选项是〔〕A. 所有的等边三角形都是全等三角形B. 全等三角形是指面积相等的三角形C. 周长相等的三角形是全等三角形D. 全等三角形是指形状相同大小相等的三角形2.以下说法中,错误的选项是〔〕A. 全等三角形对应角相等B. 全等三角形对应边相等C. 全等三角形的面积相等D. 面积相等的两个三角形一定全等3.以下命题①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.其中正确的个数为〔〕个个个个4.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等〔合同〕三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,假设运动方向相同,那么称它们是真正合同三角形如图,假设运动方向相反,那么称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,那么必须将其中一个翻转180°如图,以下各组合同三角形中,是镜面合同三角形的是〔〕A. B. C. D.5.以下说法正确的选项是〔〕A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的两个三角形C. 全等三角形的周长和面积相等D. 所有等边三角形是全等三角形6.以下说法正确的选项是〔〕A. 形状相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等7.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°,以下结论不正确的选项是〔〕A. EF⊥ACB. AD=4AGC. 四边形ADEF为菱形D. FH=BD8.以下说法正确的选项是〔〕A. 两个等边三角形一定全等B. 腰对应相等的两个等腰三角形全等C. 形状相同的两个三角形全等D. 全等三角形的面积一定相等9.如图为6个边长相等的正方形的组合图形,那么∠1+∠2+∠3=〔〕A. 90°B. 120°C. 135°D. 150°10.以下说法正确的选项是〔〕A. 面积相等的两个图形全等B. 周长相等的两个图形全等C. 形状相同的两个图形全等D. 全等图形的形状和大小相同二、填空题11.如图,方格纸中是4个相同的正方形,婉婷同学在这张方格纸上画了∠1、∠2、∠3三个角,那么∠1+∠2+∠3=________度。

【八年级数学试题】图形的全等达标测试题及答案

【八年级数学试题】图形的全等达标测试题及答案

图形的全等达标测试题及答案
154图形的全等
◆随堂检测
1、下列命题正确的是()
A.形状相同的两个图形叫做全等形
B.大小相同的两个多边形叫做全等多边形
c.“△ABc≌△DEF“说明点A与点D是对应点,点B与点F是对应点,点c与点E是对应点
D.全等三角形是能够完全重合的两个三角形
2、判断如图(1)(2)(3)所示的两个图形是不是全等图形。

3、如图,如果所画的两个三角形是全等的,那么可以写成________≌________.
4、下列8个图形中的全等图形
5.如图所示,△ABc≌△AEc,∠B=30°,∠AcB=85°,求出△AEc 各内角的度数.
◆典例分析
已知△ABc≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和Ec的长
分析由三角形的内角和求出∠AcB,再由△ABc≌△DEF,知△ABc 和△DEF的对应边相等,对应角相等,从而求出∠DFE的度数和Ec的长
解因为∠AcB=180°-∠A-∠B=180°-30°-50°=100°,
又因为△ABc≌△DEF,
所以∠DFE=∠AcB=100°,
EF=Bc,
所以 Ec=EF-cF=Bc-cF=BF=2,
即∠DFE的度数为100°,Ec的长为。

最新苏教版八年级上册《图形的全等》测试卷(含答案) (6)

最新苏教版八年级上册《图形的全等》测试卷(含答案) (6)

最新苏教版八年级上册图形的全等测试卷一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①A S=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 时,才能使△ABC和△APQ全等.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是.9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.12.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.13.如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.14.如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.(1)用含有t的代数式表示CP.(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?最新苏教版八年级上册图形的全等测试卷参考答案与试题解析一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′【考点】全等三角形的判定.【分析】根据三角形全等的判定方法,SSS、SAS、ASA、AAS,逐一检验.【解答】解:A、符合SAS判定定理,故本选项错误;B、符合ASA判定定理,故本选项错误;C、符合AAS判定定理,故本选项错误;D、没有AAA判定定理,故本选项正确.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【考点】全等三角形的应用.【分析】在△ADC和△ABC中,由于AC为公共边,AB=AD,BC=DC,利用SSS定理可判定△ADC≌△ABC,进而得到∠DAC=∠BAC,即∠QAE=∠PAE.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选:D.【点评】本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确【考点】角平分线的性质;全等三角形的判定与性质.【专题】压轴题.【分析】判定线段相等的方法可以由全等三角形对应边相等得出;判定两条直线平行,可以由“同位角相等,两直线平行”或“内错角相等,两直线平行”或“同旁内角互补,两直线平行”得出;判定全等三角形可以由SSS、SAS、ASA、AAS或HL得出.【解答】解:∵PR=PS,PR⊥AB于R,PS⊥AC于S,AP=AP∴△ARP≌△ASP(HL)∴AS=AR,∠RAP=∠SAP∵AQ=PQ∴∠QPA=∠SAP∴∠RAP=∠QPA∴QP∥AR而在△BPR和△QSP中,只满足∠BRP=∠QSP=90°和PR=PS,找不到第3个条件,所以无法得出△BPR ≌△QSP故本题仅①和②正确.故选B.【点评】本题涉及到全等三角形的判定和角平分线的判定,需要结合已知条件,求出全等三角形或角平分线,从而判定三个选项的正确与否.5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD【考点】轴对称的性质;全等三角形的判定;等边三角形的判定.【分析】先根据轴对称的性质得出AB=BC,AD=CD,OA=OC,BD⊥AC,再根据全等三角形的判定定理即可得出结论.【解答】解:∵主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,∴AB=BC,AD=CD,OA=OC,BD⊥AC,在△ABD与△CBD中,,∴△ABD≌△CBD,故A正确;在△AOB与△COB中,,∴△AOB≌△COB,故C正确;在△AOD与△COD中,,∴△AOD≌△COD,故D正确;△ABC是等腰三角形,故B错误.故选B.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等【考点】全等三角形的判定.【专题】证明题.【分析】根据全等三角形的判定定理:SAS,SSS,AAS,ASA对各个选项逐一分析即可【解答】解:A、∵各有一个角为95°,这个角只能是顶角,∴这两个等腰三角形全等,本选项正确;B、∵不知这个角是顶角还是底角,∴这两个等腰三角形不一定全等,故本选项错误;C、∵各有一个角为40°,∴此直角三角形各个角相等,再加上且其所对的直角边相等,∴两个直角三角形全等,本选项正确,D、∵各有一个角为40°,∴此直角三角形各个角相等,再加上有斜边相等,∴两个直角三角形全等,本选项正确,【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 5cm或10cm 时,才能使△ABC和△APQ全等.【考点】全等三角形的判定.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;②当P运动到与C点重合时,△QAP≌△BCA,即AP=AC=10cm.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是①②④.【考点】全等三角形的判定与性质;角平分线的性质.【分析】由HL证明Rt△BDE≌Rt△CDF,得出对应边相等DE=DF,得出AD平分∠BAC,①②正确;由AE>AD,得出③不正确,由全等三角形的对应边相等得出BE=CF,AE=AF,得出④正确,即可得出结果.【解答】解:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,①正确,∴AD平分∠BAC,②正确,∵在Rt△ADE中,AE是斜边,∴AE>AD,③不正确,∵Rt△BDE≌Rt△CDF,∴BE=CF,AE=AF,∴AB+AC=AB+AF+CF=AB+AE+BE=2AE,④正确;正确的是①②④.故答案为:①②④.【点评】本题考查了全等三角形的判定与性质、角平分线的判定;证明三角形全等得出对应边相等是解决问题的关键9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为75°.【考点】平行线的性质.【专题】计算题;线段、角、相交线与平行线.【分析】由等腰直角三角形的性质求出∠ACB的度数,进而求出∠1+∠ACB的度数,再利用两直线平行内错角相等即可求出∠2的度数.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵∠1=30°,∴∠1+∠ACB=75°,∵a∥b,∴∠2=∠1+∠ACB=75°,故答案为:75°【点评】此题考查了平行线的性质,以及等腰直角三角形的性质,熟练掌握性质是解本题的关键.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是①②④(请将所有正确结论的序号都填上).【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△QSP;连接RS,与AP交于点D,先证△ARD≌△ASD,则RD=SD,∠ADR=∠ADS=90°.【解答】解:①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AD=AD,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③错误;④如图,连接RS,与AP交于点D.在△ARD和△ASD中,,所以△ARD≌△ASD.∴RD=SD,∠ADR=∠ADS=90°.所以AP垂直平分RS,故④正确.故答案为:①②④.【点评】本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.(2015•无锡)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.【点评】本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.12.(2014秋•马鞍山期末)如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD 为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.【考点】全等三角形的判定与性质;平行线的判定;等边三角形的性质.【分析】(1)根据等边三角形各内角为60°和各边长相等的性质可证∠ECA=∠DCB,AC=BC,EC=DC,即可证明△ECA≌△DCB;(2)根据△ECA≌△DCB可得∠EAC=60°,根据内错角相等,平行线平行即可解题.【解答】证明:(1)∵△ABC、△DCE为等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=∠DBC=60°,∵∠ACD+∠ACB=∠DCB,∠ECD+∠ACD=∠ECA,∴∠ECA=∠DCB,在△ECA和△DCB中,,∴△ECA≌△DCB(SAS);(2)∵△ECA≌△DCB,∴∠EAC=∠DBC=60°,又∵∠ACB=∠DBC=60°,∴∠EAC=∠ACB=60°,∴AE∥BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ECA≌△DCB是解题的关键.13.(2015秋•无锡校级月考)如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质可得AB=AC,∠BAC=∠C=60°,然后利用“边角边”即可证明两三角形;(2)由SAS可得△ABE≌△CAD,进而得出对应角相等,再通过角之间的转化即可求解∠BPD的度数,进而求得结论.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,在△ABE与△CAD中,,∴△ABE≌△CAD(SAS);(2)由(1)知△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BPQ=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60°.∴∠PBQ=90°﹣∠BPQ=30°.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握这两个性质是解决问题的关键.14.(2013秋•仪征市期末)如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.当一个点停止运动时时,另一个点也随之停止运动.设运动时间为t.(1)用含有t的代数式表示CP.(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定;等腰三角形的性质.【专题】几何图形问题;动点型;分类讨论.【分析】(1)求出BP=3t,即可求出答案;(2)求出BP、CQ、CP,根据全等三角形的判定推出即可;(3)设当点Q的运动速度为x厘米/时,时间是t小时,能够使△BPD与△CQP全等,求出BD=5厘米,BP=3t厘米,CP=(8﹣3t)厘米,CQ=xt厘米,∠B=∠C,根据全等三角形的性质得出方程,求出方程的解即可.【解答】解:(1)∵点P在线段BC上以3厘米/秒的速度由B点向C点运动,∴BP=3t厘米,∵BC=8厘米,∴CP=(8﹣3t)厘米;(2)点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP全等,理由是:∵AB=AC=10厘米,点D为AB的中点,∴∠B=∠C,BD=5厘米,∵BP=CQ=3t厘米=3厘米,∴CP=8厘米﹣3厘米=5厘米=BD,在△DBP和△PCQ中,,∴△DBP≌△PCQ(SAS);(3)设当点Q的运动速度为x厘米/时,时间是t小时,能够使△BPD与△CQP全等,∵BD=5厘米,BP=3t厘米,CP=(8﹣3t)厘米,CQ=xt厘米,∠B=∠C,∴当BP=CQ,BD=CP或BP=CP,BD=CQ时,△BPD与△CQP全等,即①3t=xt,5=8﹣3t,解得:x=3(不合题意,舍去),②3t=8﹣3t,5=xt,解得:x=,即当点Q的运动速度为厘米/时时,能够使△BPD与△CQP全等.【点评】本题考查了全等三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,用了分类讨论思想.。

《图形的全等》习题精选及参考答案

《图形的全等》习题精选及参考答案

《图形的全等》习题精选及参考答案一、选择题1.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( )A.40个 B.45个 C.50个 D.55个2.如图,ΔABC≌ΔADE,∠B = 70º,∠C = 26º,∠DAC = 30º,则∠EAC = ( )A.27ºB.54ºC.30ºD.55º3.下列命题中,不正确的命题是( )①全等形的面积相等;②形状相同的两个三角形是全等三角形;③全等三角形的对应边,对应角相等;④若两个三角形全等,则其中一个三角形一定是由另一个三角形旋转得到的A.①与② B.③与④ C.①与③ D.②与④二、填空题1.如图6所示,△OCA≌△OBD,∠C和∠B、∠A和∠D是对应角,则另一组对应角是______和______,对应边是______和______,_______和_______,______ 和____2.如图7所示,△ABC≌△EFC,BC=FC,AC⊥BE,则AB=____,AC=____,∠B= _____,∠A=____3.如图9所示,△ABC≌△ADE,∠B=30°,∠EAD=24°,∠C=32°,则∠D=____,∠DAC=______4.在△ABC中,∠A=90°,CD是∠C的平分线,交AB于D点,DA=7,则D点到BC的距离是_______5.如图14所示,把△ABC绕点A按逆时针旋转就得△ADE,则AB=______,BC= ____,AC=_______,∠B=_____,∠C=______,∠BAC=______6.如图,ΔABD≌ΔACE,且AB<AD<BD,则在ΔACE中,有 ________ > ________ > ________.解答题:1.如图,ΔABE≌ΔDCF,∠1 =∠2,∠B =∠C,指出其余的对应角和对应边.2.如图,AB//DE,AC = CF,DF = CF,∠1 =∠2,又ΔABC≌ΔDEF,写出它们的对应边和对应角.答案:一、1.B 解:第四条直线最多和前三条直线都相交而增加3个交点,第五条直线最多和前四条直线都相交而增加4个交点……第十条直线最多和前9条直线都相交而增加9个交点,这样,10条直线相交、最多交点的个数为:1+2+3+……+9=45点拨:随着直线数的增加,最多交点数也随着增加;每增加一条直线,最多交点的增加数与原有直线数相同,应注意观察总结2.B 说明:由ΔABC≌ΔADE可得∠DAE =∠BAC,又∠B = 70º,∠C = 26º,则有∠BAC = 180º−70º−26º = 84º,所以∠DAE = 84º,而∠EAC =∠DAE−∠DAC = 84º−30º = 54º,因此,答案为B.3.D 解:①正确,∵全等形指的是两个能够完全重合的图形,∴它们的面积一定相等;②错误,∵把一个三角形放大得到另一个三角形,这两个三角形的形状是一样的,但大小不同,它们不全等;③正确,根据全等三角形的性质可知③正确;④错误,两个三角形全等可以是其中一个三角形由另一个三角形平移或翻折得到的,并不一定是由另一个三角形旋转而得到的二、1.∠AOC和∠DOB;OA和OD;OC和OB;AC和DB2.EF;EC;∠CFE;∠CEF3.36°;24°4.7 点拨:由角平分线的性质即可得到5.AD;DE;AE;∠D;∠E;∠DAE6.CE>AE>AC 解析:∵ΔABD≌ΔACE,∴AB = AC,AD = AE,BD = CE又AB<AD<BD,∴AC<AE<CE,即CE>AE>AC三、1.解:∠E与∠F是对应角,∠E =∠F;AB与DC,AE与DF,BE与CF是对应边;AB = CD,AE = DF,BE = CF2.解:∠1与∠2是对应角;由AB//DE可得,∠A =∠D,故∠A与∠D是对应角,余下的第三对角∠B、∠E也是对应角;∵AC = CF,DF = CF,∴AC = DF,AC与DF是对应边∵∠1与∠2是对应角,AC与DF是对应边∴BC是EF也是对应边余下的第三对边AB与DE是对应边;综上知,∠1与∠2,∠A与∠D,∠B与∠E是对应角, AC与DF,BC与EF,AB与DE是对应边.。

全等三角形复习和例习题含答案

全等三角形复习和例习题含答案

第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。

例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。

例如:图13-3和图13-4中的两对多边形就是全等多边形。

图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。

(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。

图13-5表示图形的全等时,要把对应顶点写在对应的位置。

(5)全等多边形的性质全等多边形的对应边、对应角分别相等。

A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。

2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。

(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。

(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。

相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。

(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。

3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。

初二数学全等图形练习题

初二数学全等图形练习题

初二数学全等图形练习题全等图形是数学中一个重要的概念,它在几何学中扮演着至关重要的角色。

了解全等图形的概念以及如何判断两个图形是否全等,对于初中数学学习至关重要。

本文将提供一些初二数学全等图形的练习题,帮助学生加深对这一概念的理解和应用。

练习题一:判断图形是否全等1. 图1中的三角形和图2中的三角形是否全等?若是,请写出它们之间的对应关系。

[在此插入图1和图2]2. 利用全等定理,验证下列三角形是否全等,并说明你的推理过程。

A. 图3中的三角形与图4中的三角形B. 图5中的三角形与图6中的三角形C. 图7中的三角形与图8中的三角形[在此插入图3、图4、图5、图6、图7和图8]练习题二:求全等图形的边长和角度1. 观察下面的三角形,如果其中两个角分别相等,则判断所给线段是否全等。

[在此插入图9]2. 求下列各图形中所示的未知角度大小。

[在此插入图10和图11]3. 已知图12中的所有角都相等,求证ABCD是一个正方形。

[在此插入图12]练习题三:填空题1. 在下面的图形中,填上适当的字母,使得图形全等。

[在此插入图13和图14]2. 在下面的图形中,填上适当的数字,使得图形全等。

[在此插入图15和图16]练习题四:求全等图形面积和周长1. 已知ABCD和EFGH是全等的正方形,AB = 6 cm,求EF的长度。

[在此插入图17]2. 图18和图19中的三角形全等,已知图18中的三角形的底边长为8 cm,高为4 cm,求图19中的三角形的面积。

[在此插入图18和图19]注意:以上是一些初二数学全等图形的练习题,供学生练习和巩固对全等图形的理解和应用。

学生在解答题目时,应仔细观察图形,并灵活运用全等图形的性质和定理进行推理和计算。

总结:全等图形是数学中的重要概念,它可以帮助我们判断两个图形是否完全相同。

通过解答上述练习题,我们可以加深对全等图形的理解,并掌握如何判断和证明图形的全等性。

在数学学习中,我们需要大量练习和实践,才能真正掌握和应用这一概念。

全等图形(三大类型)(题型专练)(解析版)

全等图形(三大类型)(题型专练)(解析版)

全等图形(三大类型)【题型1 全等图形的判定】【题型2 全等图形的定义】【题型3 全等图形的性质】【题型1 全等图形的判定】1.下列四个图形中,属于全等图形的是()A.①和②B.②和③C.①和③D.③和④【答案】A【解析】【解答】解:①、②和④都可以完全重合,因此全等的图形是①和②.故答案为:A.2.下列四组图形中,是全等形的一组是()A.B.C.D.【答案】C【解析】【解答】解:因为A中的两个图形形状相同,但是大小不同,不能够重合,所以A选项不合题意;因为B中的两个图形形状相同,但是大小不同,不能够重合,所以B选项不合题意;因为C中的两个图形形状相同,大小不同,能够重合,所以C选项符合题意;因为D中的两个图形形状不同,不能够重合,所以D选项不合题意.故答案为:C.3.下列各组图形中,属全等图形的是()A.周长相等的两个等腰三角形B.面积相等的两个长方形C.面积相等的两个直角三角形D.周长相等的两个圆【答案】D【解析】【解答】解:A、两个周长相等的等腰三角形,不一定全等,故此选项错误;B、两个面积相等的长方形,不一定全等,故此选项错误;C、两个面积相等的直角三角形,不一定全等,故此选项错误;D、两个周长相等的圆,半径一定相等,故两圆一定全等,故此选项正确.故答案为:D.4.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正三角形一定是全等图形【答案】B【解析】【解答】解:A、能够完全重合的两个图形就是全等形,所以两个面积相等的图形不一定是全等图形,故A错误,不符合题意;B、两个全等图形形状一定相同,故B正确,符合题意;C、两个周长相等的图形不一定是全等图形,故C错误,不符合题意;D、两个正三角形只是形状相同,大小不一定相等,所以不一定是全等图形,故D错误,不符合题意.故答案为:B.5.下列各组图形中,是全等图形的是()A.B.C.D.【答案】C【解析】【解答】解:根据全等图形的定义可得C是全等图形,故答案为:C.6.下列各组两个图形属于全等图形的是()A.B.C.D.【答案】B【解析】【解答】解:A、两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形能完全重合,是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形不能完全重合,不是全等图形,不符合题意,故答案为:B.【题型2 全等图形的定义】7.下列说法正确的是()A.形状相同的两个三角形一定全等B.面积相等的两个三角形一定全等C.所有的正方形都全等D.一个图形经过平移后,前后两个图形一定全等【答案】D【解析】【解答】解:A、形状相同,边长不对应相等的两个三角形不全等,故本选项错误;B、面积相等的两个三角形不一定全等,故本选项错误;C、两个边长不相等的正方形不全等,故本选项错误;D、一个图形经过平移后,前后两个图形自身没有发生变化,一定全等,故本选项正确.故答案为:D.8.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等【答案】C【解析】【解答】解:全等图形是指两个图形的形状和大小都相等,能够完全重合,故答案为:C.9.如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状大小均相同C.大小相同,但形状不同D.形状大小均不相同【答案】B【解析】【解答】解:如果两个图形全等,则这个图形必定是形状大小完全相同.故答案为:B.10.下列说法中正确的是()A.面积相等的两个图形是全等图形B.周长相等的两个图形是全等图形C.所有正方形都是全等图形D.能够完全重合的两个图形是全等图形【答案】D【解析】【解答】解:只有能够完全重合的两个图形是全等形.故答案为:D.11.下列说法错误的是()A.如果两个图形全等,那么它们的形状和大小一定相同;B.图形全等,只与形状,大小有关,而与它们的位置无关;C.全等图形的面积相等,面积相等的两个图形是全等图形;D.全等三角形的对应边相等,对应角相等.【答案】C【解析】【解答】解:A、如果两个图形全等,那么它们的形状和大小一定相同,不符合题意;B、图形全等,只与形状,大小有关,而与它们的位置无关,不符合题意;C、全等图形的面积相等,但面积相等的两个图形不一定是全等图形,符合题意;D、全等三角形的对应边相等,对应角相等,不符合题意;故答案为:C.12.下列说法正确的是()①用一张相纸冲洗出来的10张1寸相片是全等形;②我国国旗上的4颗小五角星是全等形;③所有的正方形是全等形;④全等形的面积一定相等.A.1个B.2个C.3个D.4个【答案】C【解析】【解答】解:能够完全重合的两个图形叫做全等形.①正确,用一张相纸冲洗出来的10张1寸相片,各相片可以完全重合,故是全等形;②正确,我国国旗上的4颗小五角星是全等形;③错误,所有的正方形边长不一定一样,故不能完全重合,不能称都是全等形;④正确,全等形可以完全重合,故其面积一定相等.∴共有三个正确,故选C.13.下列说法正确是()A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.两个等边三角形是全等三角形D.全等三角形是指两个能完全重合的三角形【答案】D【解析】【解答】A、全等三角形是指形状相同、大小相等的两个三角形,故本选项不符合题意;B、全等三角形的面积相等,但是面积相等的两个三角形不一定全等,故本选项不符合题意;C、边长相等的两个等边三角形是全等三角形,故本选项不符合题意;D、全等三角形是指两个能完全重合的三角形,故本选项符合题意.故答案为:D.【题型3 全等图形的性质】14.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.90°B.135°C.150°D.180°【答案】B【解析】【解答】解:如图,在△ABC和△DEA中,{AB=DE∠ABC=∠DEA=90∘BC=AE,∴△ABC≌△DEA(SAS),∴∠1=∠4,∵∠3+∠4=90°,∴∠1+∠3=90°,又∵∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选B.15.如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A.4cm B.5cm C.6cm D.以上都不对【答案】B【解析】【解答】解:∵△ABC≌△BAD,A和B,C和D分别是对应顶点∴AD=BC=5cm.故选B.16.如图是由四个全等的直角三角形与一个小正方形拼成的大正方形.若小正方形边长为3,大正方形边长为15,则一个直角三角形的面积等于()A.36B.48C.54D.108【答案】C【解析】【解答】解:由题意得:15×15-3×3=216,216÷4=54,故答案为:C.17.如图,B,D,E,C四点共线,且△ABD≌△ACE,若∠AEC=105°,则∠DAE的度数等于()A.30°B.40°C.50°D.65°【答案】A【解析】【解答】解:∵△ABD≌△ACE,∴∠ADB=∠AEC=105°,∴∠ADE=∠AED=75°,∴∠DAE=180°﹣75°﹣75°=30°,故选:A18.如图,在△ABC中,∠A=30°,∠ABC=50°,∠ACB=100°,△EDC≌△ABC,且A、C、D在同一条直线上,则∠BCE=()A.20°B.30°C.40°D.50°【答案】A【解析】【解答】解:∵△EDC≌△ABC,∴∠DCE=∠ACB=100°,∵A、C、D在同一条直线上,∴∠ACD=180°,∴∠BCE=∠ACB+∠DCE﹣∠ACD=20°,故选A.19.如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠ACA′的度数是()A.20°B.30°C.35°D.40°【答案】D【解析】【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′=70°,∴∠ACA′=∠ACB﹣∠A′CB=40°故选:D.20.如图,已知△AOC≌△BOD,∠A=30°,∠C=20°,则∠COD=()A.50°B.80°C.100°D.130°【答案】B【解析】【解答】解:∵△AOC≌△BOD,∴∠AOC=∠BOC,∴∠AOD=∠BOC=∠A+∠C=50°,∴∠COD=180°﹣∠AOD﹣∠BOC=80°.故选B.21.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.54°B.60°C.66°D.76°【答案】C【解析】【解答】解:根据三角形内角和可得∠2=180°﹣55°﹣60°=66°,因为两个全等三角形,所以∠1=∠2=66°,故选C.22.如图,△ABC≌△BAD,如果AB=7cm,BD=6cm,AD=4cm,那么BC=()A.4cm B.5cm C.6cm D.7cm 【答案】A【解析】【解答】解:∵△ABC≌△BAD,∴BC=AD=4cm,故选:A.23.如图,△ABC≌△AEF,AB和AE,AC和AF是对应边,那么∠EAF等于()A.∠ACB B.∠BAC C.∠F D.∠CAF 【答案】B【解析】【解答】解:∵△ABC≌△AEF,∴∠EAF=∠BAC,故选B24.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2B.AC=CA C.AB=AD D.∠B=∠D【答案】C【解析】【解答】解:∵△ABC≌△CDA,BC=DA∴AB=CD,∠1=∠2,AC=CA,∠B=∠D,∴A,B,D是正确的,C、AB=AD是错误的.故选C.25.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.【答案】45°【解析】【解答】解:如图所示:由题意可得∠1=∠3,则∠1+∠2=∠3+∠2=45°.故答案为:45°.26.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′=,∠A=,B′C′=,AD=.【答案】120;70;12;6【解析】【解答】∵四边形ABCD与四边形A′B′C′D′全等,由题意得:∠A′=∠D =∠120°,D′=∠A=70°,B′C′=CB=12,AD = D′A′=627.如图,△ABC 中,点A(0,1),点C(4,3),如果要使△ABD 与△ABC 全等,那么符合条件的点 D 的坐标为.【答案】(4,−1)或(−1,−1)或(-1,3)【解析】【解答】解:因为△ABC与△ABD的一条边AB重合当点D在AB的下方时,满足条件的坐标有(4,−1)和(−1,−1);当点D在AB的上方时,满足条件的坐标是(−1,3).故满足条件的为(4,−1)或(−1,−1)或(-1,3)28.如图,4个全等的长方形组成如图所示的图形,其中长方形的边长分别为a和b,且a>b,求出阴影部分的面积为.【答案】(a﹣b)2【解析】【解答】解:∵如图所示的图形是4个全等的长方形组成的图形,∴阴影部分的边长为a﹣b的正方形,∴阴影部分的面积=(a﹣b)2,故答案为:(a﹣b)2.29.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点•对应边与对应角,并说出图中标的a,b,c,e,α各字母所表示的值.【答案】解:对应顶点:A和G,E和F,D和J,C和I,B和H,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,e=11,α=90°.。

初中数学全等图形练习题

初中数学全等图形练习题

初中数学全等图形练习题全等图形是初中数学中重要的概念之一,通过练习题的方式来加深对全等图形的理解和应用是非常有效的方法。

本文将为您提供一些初中数学全等图形的练习题,帮助您巩固相关知识。

练习题一:已知三角形ABC和三角形DEF的对应边分别相等,判断以下哪些命题成立:1. 三角形ABC和三角形DEF全等;2. 三角形ABC和三角形DEF相似;3. 三角形ABC和三角形DEF既不全等也不相似。

练习题二:已知矩形ABCD和矩形EFGH的对应边分别相等,判断以下哪些命题成立:1. 矩形ABCD和矩形EFGH全等;2. 矩形ABCD和矩形EFGH相似;3. 矩形ABCD和矩形EFGH既不全等也不相似。

练习题三:已知平行四边形ABCD和平行四边形EFGH的对应边分别相等,判断以下哪些命题成立:1. 平行四边形ABCD和平行四边形EFGH全等;2. 平行四边形ABCD和平行四边形EFGH相似;3. 平行四边形ABCD和平行四边形EFGH既不全等也不相似。

练习题四:已知三角形ABC和三角形DEF的两组对应边分别相等,判断以下哪些命题成立:1. 三角形ABC和三角形DEF全等;2. 三角形ABC和三角形DEF相似;3. 三角形ABC和三角形DEF既不全等也不相似。

练习题五:已知正方形ABCD的边长为a,正方形EFGH的边长为b,如果a=b,请判断以下哪些命题成立:1. 正方形ABCD和正方形EFGH全等;2. 正方形ABCD和正方形EFGH相似;3. 正方形ABCD和正方形EFGH既不全等也不相似。

练习题六:已知三角形ABC和三角形DEF的对应角度分别相等,判断以下哪些命题成立:1. 三角形ABC和三角形DEF全等;2. 三角形ABC和三角形DEF相似;3. 三角形ABC和三角形DEF既不全等也不相似。

练习题七:已知四边形ABCD和四边形EFGH的对应边分别相等,判断以下哪些命题成立:1. 四边形ABCD和四边形EFGH全等;2. 四边形ABCD和四边形EFGH相似;3. 四边形ABCD和四边形EFGH既不全等也不相似。

8年级数学全等三角形经典例题

8年级数学全等三角形经典例题

8年级数学全等三角形经典例题一、全等三角形经典例题1。

例1:如图,在△ABC中,AB = AC,AD是BC边上的中线,求证:△ABD≌△ACD。

解析:1. 在△ABD和△ACD中:- 已知AB = AC(题目中给出的等腰三角形的两腰相等)。

- 因为AD是BC边上的中线,所以BD = CD(中线的定义)。

- AD = AD(公共边)。

2. 根据SSS(边边边)全等判定定理,可得△ABD≌△ACD。

二、全等三角形经典例题2。

例2:已知:如图,AB = AD,∠B = ∠D,∠1=∠2,求证:△ABC≌△ADE。

解析:1. 因为∠1 = ∠2,所以∠1+∠DAC = ∠2+∠DAC,即∠BAC = ∠DAE。

2. 在△ABC和△ADE中:- 已知AB = AD。

- ∠B = ∠D。

- 且∠BAC = ∠DAE(已证)。

3. 根据ASA(角边角)全等判定定理,可得△ABC≌△ADE。

三、全等三角形经典例题3。

例3:如图,在△ABC中,∠C = 90°,AC = BC,AD平分∠CAB交BC于D,DE⊥AB于E,AB = 6cm,求△DEB的周长。

解析:1. 因为AD平分∠CAB,∠C = 90°,DE⊥AB,根据角平分线的性质,可知CD = DE。

2. 在Rt△ACD和Rt△AED中:- AD = AD(公共边)。

- CD = DE(已证角平分线性质)。

- 根据HL(斜边直角边)定理,可得Rt△ACD≌Rt△AED。

- 所以AC = AE。

3. 因为AC = BC,AB = 6cm,设AC = BC=x,根据勾股定理AC^2+BC^2=AB^2,即x^2+x^2=6^2,2x^2=36,x^2=18,x = 3√(2)。

4. 又因为AE = AC = 3\sqrt{2}\),所以BE=AB - AE = 6 - 3\sqrt{2}\)。

5. 而△DEB的周长为DE+DB+BE,因为CD = DE,BC = BD + CD,所以△DEB的周长为BC+BE = 3\sqrt{2}+6 - 3\sqrt{2}=6cm。

图形的全等练习题

图形的全等练习题

图形的全等练习题图形的全等练习题在数学学科中,图形的全等是一个重要的概念。

全等指的是两个图形在形状和大小上完全相同。

通过解决全等的练习题,学生可以加深对几何形状的理解,培养准确观察和判断的能力。

下面我们来看一些有趣的全等练习题。

1. 三角形全等练习题首先,让我们来看一些关于三角形的全等练习题。

假设有两个三角形ABC和DEF,如何判断它们是否全等呢?首先,我们可以通过边边边(SSS)的全等条件来判断。

如果两个三角形的三条边分别相等,则可以判断它们全等。

例如,如果AB=DE,BC=EF,AC=DF,那么三角形ABC和DEF就是全等的。

其次,我们可以通过边角边(SAS)的全等条件来判断。

如果两个三角形的两边和夹角分别相等,则可以判断它们全等。

例如,如果AB=DE,∠BAC=∠EDF,AC=DF,那么三角形ABC和DEF就是全等的。

最后,我们可以通过角边角(ASA)的全等条件来判断。

如果两个三角形的两角和一边分别相等,则可以判断它们全等。

例如,如果∠BAC=∠EDF,AC=DF,∠ABC=∠DEF,那么三角形ABC和DEF就是全等的。

2. 矩形全等练习题接下来,让我们来看一些关于矩形的全等练习题。

矩形是一种具有四个直角的四边形,它的对边相等且平行。

如果两个矩形的对边分别相等且平行,则可以判断它们全等。

例如,如果AB=DE,AD=BE,那么矩形ABCD和矩形DEFG就是全等的。

3. 正方形全等练习题正方形是一种特殊的矩形,它的四条边和四个角都相等。

如果两个正方形的边长相等,则可以判断它们全等。

例如,如果AB=DE,那么正方形ABCD和正方形DEFG就是全等的。

4. 圆形全等练习题圆形是一个非常特殊的几何图形,它由一个圆心和一条半径组成。

圆形没有边和角,但可以通过半径和直径来判断全等。

如果两个圆形的半径相等,则可以判断它们全等。

例如,如果圆O的半径为r,圆P的半径也为r,那么圆O和圆P就是全等的。

通过解决这些全等练习题,我们可以加深对图形的认识和理解。

全等100题(学生版)

全等100题(学生版)

第一部分 全等100题1.如图1.1所示,在Rt △ABC 中,∠ACB =90°,∠A =30°,BD 是∠ABC 的角平分线,DE ⊥AB 于点E . (1)如图(a )所示,连接EC ,求证:△EBC 为正三角形.(2)如图(a )所示,点M 是线段CD 上一点(与点C 、D 不重合),以为BM 一边,在BM 的下方作∠BMG =60°,MG 交DE 的延长线于点G ,求证:AD =DM +DG .(3)如图(c )所示, 点M 是线段AD 上的一点(与点A 、D 不重合),以BM 为一边,在BM 的下方作∠BMG =60°,MG 交DE 的延长线于点G ,求证:探究DM 、DG 和AD 之间的数量关系,并说明理由.图1.12.如图1.2所示,在△ABC 中,AB =AC ,BD ⊥AC 于点D ,点E 为线段AD 上一点,点F 为线段BD 上一点,满足CE =BF ,且BE 平分∠ABD . 求证:∠EBC =∠BEF =45°.图1.2 (c )(b )(a )G EDG ED EDAAAB C BCMBCMDBCAFE3.如图1.3所示,在菱形ABCD 中,∠BAD =60°,M 为对角线AC 上异于A 、C 的一点,以AM 为边,作等边△AMN ,线段MN 与AD 交于点G ,连接NC 、DM ,Q 为线段NC 的中点,连接DQ 、MQ .求证:(1)DM =2DQ ;(2)DQ ⊥MQ .图1.34.如图1.4所示,凸四边形ABCD 中,AB >AD ,AC 平分∠BAD ,过点C 作DE ⊥AB 于点E ,并且AE =12(AB +AD ). 求证:∠ABC 与∠ADC 互补.图1.4 G QNCAB DMEA DB C5.如图1.5所示,在等腰Rt △ABC 中,∠ACB =90°,点E 是AC 上一点,连接BE ,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD 、CF . 当AF =DF 时,求证:DC =BC .图1.56.如图1.6所示,在等腰Rt △ABC 中,AD 为斜边上的中线,以D 为端点任作两条互相垂直的射线与两腰相交于点E 、F ,连接EF 与AD 相交于点G .求证:∠AED =∠AGF .GF EDCBAFACBE D7.如图1.7所示,AD 是△ABC 的中线,点E 、F 分别在AB 、AC 上,且DE ⊥DF ,求证:BE +CF >EF .FEDCBA8.如图1.8所示,已知正方形ABCD ,点E 为边AB 上异于点A 、B 的一动点,EF ∥AC ,交BC 于点F ,点G 为DA 延长线上一定点,满足AG =AD ,GE 的延长线与DF 交于点H ,连接BH .探究:∠EHB 是否为定值?如果是定值,请说明理由,并求出该定值;如果不是定值,请说明理由.GHFEDCBA9.如图1.9所示,在Rt △ABC 中,∠ACB =90°,点D 是线段AC 上一点,BC =CD ,过点A 作AE ⊥BD 交BD 的延长线于点E .(1)如图(a )所示,若BC =3,AE =2,求AB .(2)如图(b )所示,点F 是AB 的中点,连接FC 、FE ,探究CF 、EF 的位置关系与数量关系.(3)如图(c )所示,EF 与AC 交于点H ,若AD =BD ,求CHAE.E DCBAFABCDEHCB FEDA(a ) (b )(c )10.如图1.10所示,已知矩形ABCD 中,点E 为AB 上一点,连接CE ,在CE 上找一点F ,连接AF ,使得∠F AC =∠ECB ,且∠DCA =∠DAF .求证:CF =2EB .FEDC BA11.如图1.11所示,点E 是正方形ABCC 边CD 上一动点,BE 的垂直平分线交对角线AC 于点G ,垂足为点H ,连接BG ,并延长交AC 于点F ,连接EF ;若AC =√2a ,探究:△CFE 的周长L 是否为定值?如果是定值,求出这个值;如果不是,请说明理由12.如图1.12所示,AD 为△ABC 的角平分线,直线MN ⊥AC 于点A ,点E 为MN 上一动点,且不与A 重合,若△ABC 的周长记为P A ,△EBC 的周长记为P B ,探究P A 、P B 的大小关系图1.11F GHBC ADE图1.12D BACEMN13.如图1.13所示,在△ABC 中,∠BAC =120°,AD 为中线,将AD 绕点A 顺时针旋转120°得到AE ,点F 为AC 上一点,连接BF ,∠ABE =∠AFB ,若AF =6,BE =7;求CF14.如图1.14所示,在△ABC 中,AD 平分∠BAC ,DG 垂直平分BC 于点G ,DE ⊥AB 于点E ,连接CD ,若AB =a ,AC =b (a >b ),求BE (用含a 、b 的代数式表示)图1.13ED CBAF图1.14E D GBAC15.如图1.15所示,在等腰Rt △ABC 中,∠ACB =90°,点D 、E 是斜边AB (不包括点A 、B )上的两点,且∠DCE =45°;求证:DE 2=AD 2+BE 216.如图1.16所示,在△ABD 中,∠ABD =60°,点C 为△ABD 外部一点,满足AB =AC ,连接DC 、BC ,DE ⊥AD 交BC 于点E ,且DE 平分∠BDC ,若ABBD=n (n >1),求BDE CDE S S △△.图1.16ABCDE图1.1545°DACBE17.如图1.17所示,在等腰Rt △ABC 中,∠BAC =90°,点E 在Rt △ABC 外部,连接BE ,以BE 为直角边作等腰Rt △BED ,连接AD 、AE ,点H 是AE 的中点,过点C 作CF ∥AD ,过点D 作DF ∥AC ,两线交于点F ,连接AF ,点G 是AF 的四等分点. 求证:HG ⊥AF .图1.17A BCDEFGH18.如图1.18所示,在等腰Rt △ABC 中,∠BAC =90°,点D 是△ABC 内一点,且∠DAC =∠DCA =15°.若BD =2a ,求S △AB C .图1.18ABCD19.如图1.19所示,在△ABC 中,∠ABC =45°,AD ⊥BC 于点D ,点E 在AD 上,CD =DE ,连接BE 并延长交AC 于点F ,延长FD 到点G ,连接BG . 若FG =BG ,求证:BG ⊥FG .20.如图1.20所示,在矩形ABCD 中,点O 为AC 的中点,AO =AE =CF .若OE =42,OF =6,求AE .图1.20ABCD EFO图1.19ABCD E FG21.如图1.21所示,在△ABC中,点P为BC上一动点,且不与点B、C重合,AP⊥BE于点E,AP⊥CD 于点D,点F为BC的中点。

三角形全等20个经典试题(图形变换)

三角形全等20个经典试题(图形变换)

三角形全等20个经典试题(图形变换).1.四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)(1)如图1,点G是BC边上任意一点(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.求证:△ABF≌△DAE;(2)直接写出(1)中,线段EF与AF、BF的等量关系(3)①如图2,若点G是CD边上任意一点(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,则图中全等三角形是____________,线段EF与AF、BF的等量关系是___________②如图3,若点G是CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,线段EF与AF、BF的等量关系是__________________(4)若点G是BC延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG 于点E,请画图、探究线段EF与AF、BF的等量关系.2小明、小敏两人一起做数学作业,小敏把题读到如图(1)所示,CD⊥AB,BE ⊥AC时,还没把题读完,就说:“这题一定是求证∠B=∠C,也太容易了.”她的证法是:由CD⊥AB,BE⊥AC,得∠ADC=∠AEB=90°,公共角∠DAC=∠BAE,所以△DAC≌△EAB.由全等三角形的对应角相等得∠B=∠C.小明说:“小敏你错了,你未弄清本题的条件和结论,即使有CD⊥AB,BE⊥AC,公共角∠DAC=∠BAE,你的推理也是错误的.看我画的图(2),显然△DAC与△EAB是不全等的.再说本题不是要证明∠B=∠C,而是要证明BE=CD.”(1)根据小敏所读的题,判断“∠B=∠C”对吗?她的推理对吗?若不对,请做出正确的推理.(2)根据小明说的,要证明BE=CD,必然是小敏丢了题中条件,请你把小敏丢的条件找回来,并根据找出的条件,你做出判断BE=CD的正确推理.(3)要判断三角形全等,从这个问题中你得到了什么启发?3请阅读下列材料:问题:如图1,在正方形ABCD和正方形CEFG中,点B、C、E在同一条直线上,M是线段AF的中点,连接DM,MG.探究线段DM与MG数量与位置有何关系.小聪同学的思路是:延长DM交GF于H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中线段DM与MG数量与位置有何关系(2)将图1中的正方形CEFG绕点C顺时针旋转,使正方形CEFG对角线CF恰好与正方形ABCD的边BC在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)如图3,将正方形CEFG绕点C顺时针旋转任意角度,原问题中的其他条件不变,写出你的猜想.4在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:(1)写出原问题中DF与EF的数量关系;(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的全等章节复习一、知识点复习:1.全等图形:能够完全重合的两个图形叫全等图形。

(形状、大小都相同) 2.全等三角形及其相关概念:⑴ 全等三角形:能够完全重合的两个三角形叫做全等三角形; ⑵ 对应顶点:两个全等三角形中,互相重合的顶点叫做对应顶点; ⑶ 对应角:互相重合的角叫做对应角; ⑷ 对应边:互相重合的边叫做对应边。

3.全等三角形的数学语言:三角形ABC 与三角形A′B′C′全等,记作△ABC ≌△A′B′C′,读作“三角形ABC 全等于三角形A′B′C′”.(符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等;) 4. 全等三角形的性质:⑴ 全等三角形的对应边相等,对应角相等; ⑵ 全等三角形的面积相等,周长相等;⑶ 全等三角形的对应线段(高线、中线、角平分线)相等。

5. 全等三角形的判定方法:①“边、角、边”(或SAS )定理; ②“角、边、角”(或ASA )定理; ③“角、角、边”(或AAS )定理; ④“边、边、边”(或SSS )定理; ⑤ “斜边、直角边”(或HL )定理. 6.证明三角形全等的思路:(ASA)(AAS)⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎨⎪⎩⎪⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边(SAS)(HL)(SSS) (AAS)(SAS)(ASA)(AAS) 7.全等三角形的常见模型:(1)平移型 下图的图形属于平移型图形它们可看成是由对应相等的边在同一直线上移动所构成的,故该对应边的相等关系一般可由同一直线上的线段和或差而证得。

(2)对称型 下面的图形属于对称型图形它们的特征是可沿某一直线对折,且这直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点。

(3)旋转型 下面的图形属于旋转型图形它们可看成是以三角形的某一顶点为中心旋转所构成的,故一般有一对相等的角隐含在平行线、对顶角、某些角的和或差中。

二、例题分析:例1.如图4,在ABC △中,AB AC =,点E ,D ,F 在边BC 上,且BAD CAD ∠=∠,BE CF =,则图中全等三角形共有( )A .2对B .3对C .4对D .5对例2.如图5,ABC △是不等边三角形,DE BC =,以D ,E 为两个顶点作位置不同的三角形,使所作三角形与ABC △全等,这样的三角形最多可以画出( )A .2个B .4个C .6个D .8个例3.(1)如图6,已知AB =AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个).(2)已知:如图7,点C 、D 在线段AB 上,PC=PD .请你添加一个条件是图中存在全等三角形,并给予证明.所添条件为 ,你得到的一对全等三角形为例4.已知:如图8,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB =________度. AB D E图5AB C D E 1 2 图6 B图7例5.某校二(4)班学生到野外活动,为测量一池塘两端A 、B 的距离,设计了如下方案: (1)如图9(1)先在平地取一个可以直接到达A 、B 的点C ,可连结AC 、BC ,并延长AC 到D 、BC 到E ,使DC=AC ,EC=BC ,最后测出DE 的距离即为AB 之长。

(2)如图9(2)先过B 点作AB 的垂线BF ,再在BF 上取C 、D 两点,使BC=CD ,接着过点D 作BD 的垂线DE ,交AC 的延长线于E 。

① 方案(1)是否可行? ,理由是 ② 方案(2)是否切实可行? ,理由是③ 方案(2)中作BF ⊥AB ,ED ⊥BF 的目的是 ;若仅满足∠ABD=∠BDE≠90°,方案(2)是否成立? .例6.复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC 中,AB=AC ,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ ,使∠QAP=∠BAC ,连接BQ 、CP ,则BQ=CP .”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ ≌△ACP ,从而证得BQ=CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.三、课堂练习:一、判断题:1、有一个角是100°且腰相等的两个等腰三角形全等 ( )2、有一个角是80°且腰相等的两个等腰三角形全等 ( )3、有一边对应相等的两个等边三角形全等 ( )4、有两边和一角对应相等的两个三角形全等 ( )5、有一锐角和一边对应相等的两个直角三角形全等 ( )6、有两边对应相等的两个直角三角形全等 ( )二、填空题:7、如图,已知△ABC 的两条高AD 、BE 交于F ,AE =BE ,若要运用“HL ”说明△AEF ≌△BEC ,还需添加条件: ; 若要运用“SAS ”说明△AEF ≌△BEC ,还需添加条件: ; 若要运用“AAS ”说明△AEF ≌△BEC ,还需添加条件: .8、如图,有一块三角形的玻璃,不小心掉在地上打成三块,现要到玻璃店重新划一块与原来形状、大小一样的玻璃,只需带第 块到玻璃店去,其理由B C D E A B C D F 图9(1)图9(2) 图① Q P B AA QB PC 图②是: .9、如图,正方形ABCD 中,把△ADE 绕顶点A 顺时针旋转90°后到△ABF 的位置,则△ADE ≌ ,AF 与AE 的关系是 .10、如图,将长方形纸片按如图方式折叠,BC 、BD 为折痕,则∠CBD = .第7题 第8题 第9题 第10题 11、长度为20cm 的铁丝可以折成 个三边长均为整数的三角形(全等的只算一个).12、与电子显示的四位数 不相等,但为全等图形的四位数是 . 13、根据“角平分线上的点到这个角 ”来观察下图: (1) 已知OM 是∠AOB 的平分线,P 是OM 上的一点,且PE ⊥OA ,PF ⊥OB.垂足分别为E.F ,那么 = 这是根据“ POF 而得到的.第13(1)题 第13(2)题 第14题 第15题(2)如图,ΔABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB ,垂足为E , AB=6㎝,则ΔDEB 的周长为 ㎝.14、如图,已知AB ∥CF ,E 为DF 的中点,若AB=9㎝,CF=5㎝,则BD= ㎝. 15、如图,有一个直角三角形ABC ,∠C=90°,AC=10,BC=5,一条线段PQ=AB ,P.Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,问P 点运动到 位置时,才能使ΔABC ≌ΔPQA.三、选择题:16、下列条件中不能判断两个三角形全等的是 ( ) A.有两边和它们的夹角对应相等. B.有两边和其中一边的对角对应相等. C.有两角和它们的夹边对应相等. D.有两角和其中一角的对边对应相等.17、在ΔABC 和ΔFED 中,∠A=∠F ,∠B=∠E ,要使这两个三角形全等,还需要的条件是( )A.AB=DEB.BC=EFC.A B=FED.∠C=∠D 18、如图,ΔABC ≌ΔCDA ,∠BAC=∠DCA ,则BC 的对应边是 ( ) A.CD B.CA C.DA D.AB19、如图,已知AD 平分∠BAC ,AB=AC ,则此图中全等三角形有 ( ) A. 2对 B.3 对 C.4对 D.5对第18题 第19题 第20题 第21题A D CB E F ① ②③ C B E F A DC B E A ′E ′F E PA OB MD E B A C FE A B C D P QC AB xC A BD FE DA B C O D B A C20、 如图,AB.CD 相交于O ,O 是AB 的中点,∠A=∠B=80°,若∠D=40°,则∠C= ( ) A.80° B.40° C.60° D.无法确定 21、用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是 ( ) A 、SAS B 、ASA C 、AAS D 、SSS三、解答题: 22、“三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD ,CB=CD ,不用度量,他就知道∠ABC=∠ADC ,请你用学过的知识给予说明.23、已知:A 、C 、D 、B 在同一直线上,AC =DB ,AE =BF , ∠E 、∠F 为直角,试说明:DE ∥CF.24、如图,五边形ABCDE 中,BC =DE ,AE =DC ,∠C =∠E ,DM ⊥AB 于M ,试说明M 是AB 中点.25、如图,AB 、CD 相交于点O ,∠A =∠C ,EO =FO ,∠1=∠2,试说明;DO =BO.A C DO B2 1F E26、如图,已知点C 为线段AB 上一点,△ACM 、△BCN 是等边三角形。

(1) 试说明AN=BM ;(2) 若把原题中“△ACM 和△BCN 是两个等边三角形”换成两个正方形(如图),AN 与BM 的关系如何?请说明理由。

27、如图,已知△ACB 、△FCD 都是等腰直角三角形,且C 在AD 上,AF 的延长线与BD 交于E ,请你在图中找出一对全等三角形,并证明。

28、以直角三角形ABC 的两直角边AB 、BC 为一边,分别向外作等边三角形△ABE 和等边△BCF ,连结EF 、EC 。

试说明:(1)EF =EC ;(2)EB ⊥CFEC B A N M FEDCBANMOA EF D B CE29、已知,如图BA⊥AD,CD⊥AD,垂足分别为A、D,BE、CE分别平分∠ABC和∠BCD,交点E恰好在AD上,那么BC=AB+CD吗?为什么?B C A E D。

相关文档
最新文档