生物化学重点

合集下载

生物化学重点整理

生物化学重点整理

生物化学重点整理生物化学是一门研究生物体化学组成和生命过程中化学变化的科学。

它涵盖了广泛的领域,从分子水平揭示生命的奥秘。

以下是对生物化学重点内容的整理。

一、蛋白质化学蛋白质是生物体内最为重要的大分子之一。

1、蛋白质的组成蛋白质主要由碳、氢、氧、氮等元素组成,其基本组成单位是氨基酸。

氨基酸通过肽键相连形成多肽链,进而折叠形成具有特定空间结构的蛋白质。

2、蛋白质的结构蛋白质具有一级、二级、三级和四级结构。

一级结构指的是氨基酸的排列顺序;二级结构包括α螺旋、β折叠等;三级结构是整个多肽链的三维构象;四级结构则是由多个亚基组成的蛋白质的空间排列。

3、蛋白质的性质蛋白质具有两性解离、胶体性质、变性与复性等特性。

变性会导致蛋白质的空间结构破坏,从而失去生物活性,但在一定条件下可以复性。

二、核酸化学核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

1、核酸的组成核酸由核苷酸组成,核苷酸包含碱基、戊糖和磷酸。

DNA 中的碱基有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C);RNA 中的碱基用尿嘧啶(U)代替了胸腺嘧啶。

2、 DNA 的结构DNA 是双螺旋结构,两条链反向平行,碱基之间遵循互补配对原则(A 与 T 配对,G 与 C 配对)。

3、 RNA 的种类与功能RNA 包括信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体RNA(rRNA)。

mRNA 携带遗传信息,指导蛋白质合成;tRNA 转运氨基酸;rRNA 是核糖体的组成部分。

三、酶酶是生物体内具有催化作用的蛋白质或 RNA。

1、酶的特点酶具有高效性、专一性和可调节性。

高效性使得酶能够大大加快反应速率;专一性保证了酶对特定底物的作用;可调节性使酶的活性能够适应生物体的需求。

2、酶的作用机制酶通过降低反应的活化能来加速反应。

它与底物结合形成酶底物复合物,然后经过一系列的中间步骤完成催化反应。

3、影响酶活性的因素温度、pH 值、底物浓度、酶浓度、抑制剂和激活剂等都会影响酶的活性。

生物化学考试重点总结

生物化学考试重点总结

生物化学考试重点总结
1. 生物化学基本概念
- 生物大分子:蛋白质、核酸、多糖、脂质
- 酶:催化生化反应的生物催化剂
- 代谢路径:物质在生物体内相互转化的路径
2. 生物大分子的结构与功能
- 蛋白质:结构、功能、种类、合成和降解
- 核酸:DNA和RNA的结构、功能、复制和转录
- 多糖:单糖、二糖、多糖的结构、功能、合成和降解- 脂质:脂肪酸、甘油三酯、磷脂的结构、功能和代谢
3. 代谢途径与调控
- 糖代谢:糖酵解、糖异生、糖原代谢
- 脂肪代谢:脂肪酸氧化、甘油三酯合成、脂肪酸合成- 蛋白质代谢:蛋白质降解、蛋白质合成、氨基酸代谢- 核酸代谢:DNA和RNA的代谢途径及调控机制
4. 其他重点知识点
- 酶动力学:酶的活性、酶动力学参数、酶抑制剂
- 信号转导与调控:细胞信号传导、信号通路、蛋白质磷酸化- 生物膜:细胞膜结构、跨膜转运和信号传导
5. 实验技术
- 分子生物学实验技术:PCR、DNA测序、蛋白质电泳
- 生物化学分离和分析方法:色谱技术、质谱技术、光谱技术
以上是生物化学考试的重点内容总结,希望对你的备考有所帮助。

祝你考试顺利!。

生物化学知识重点

生物化学知识重点

生物化学知识重点第一章绪论1.生物化学的发展过程大致分为三阶段:叙述生物化学、动态生物化学和机能生物化学;2.生物化学研究的内容大体分为三部分:①生物体的物质组成及生物分子的结构与功能②代谢及其调节③基因表达及其调控第二章糖类化学1.糖类通常根据能否水解以及水解产物情况分为单糖、寡糖和多糖;2.单糖的分类:①按所含C原子的数目分为:丙糖、丁糖......②按所含羰基的特点分为:醛糖和酮糖;3.葡萄糖既是生物体内最丰富的单糖,又是许多寡糖和多糖的组成成分;4.甘油醛是最简单的单糖;5.两种环式结构的葡萄糖:6.核糖和脱氧核糖的环式结构:见下图CH2OH CH2OHO O OH HOCH2O OH HOCH2O OHHO OH OH HO OHOH OH OH OH OH Hα-D-+-砒喃葡萄糖β-D-+-砒喃葡萄糖β-D-核糖β-D-脱氧核糖7.单糖的重要反应有成苷反应、成酯反应、氧化反应、还原反应和异构反应;8.蔗糖是自然界分布最广的二糖;9.多糖根据成分为:同多糖和杂多糖;同多糖又称均多糖,重要的同多糖有淀粉、糖原、纤维素等;杂多糖以糖胺聚糖最为重要;10.淀粉包括直链淀粉和支链淀粉;糖原分为肝糖原和肌糖原;11.糖胺聚糖包括透明质酸、硫酸软骨素和肝素;第三章脂类化学1.甘油脂肪脂肪酸短链脂肪酸、中链脂肪酸和长链脂肪酸根据C原子数目分类脂类饱和脂肪酸和不饱和脂肪酸根据是否含有碳-碳双键分类类脂:磷脂、糖脂和类固醇2.亚油酸、α亚麻酸和花生四烯酸是维持人和动物正常生命活动所必必需的脂肪酸,是必需脂肪酸;3.类花生酸是花生四烯酸的衍生物,包括前列腺素、血栓素和白三烯;4.脂肪又称甘油三酯;右下图是甘油三酯、甘油和脂肪酸的结构式:5.皂化值:水解1克脂肪所消耗KOH的毫克数; CH2-OH CHOOC-R1皂化值越大,表示脂肪中脂肪酸的平均分子量越小; R-COOH HO- CH R2-COO-CH6.磷脂根据所含醇的不同分为甘油磷脂和鞘磷脂; CH2-OH CH2-OOC-R37.糖脂包括甘油糖脂和鞘糖脂; 脂肪酸甘油甘油三酯8.类固醇是胆固醇及其衍生物,包括胆固醇、胆固醇脂、维生素D、胆汁酸和类固醇激素等;9.胆汁酸有游离胆汁酸和结合胆汁酸两种形式;10.类固醇激素包括肾上腺皮质激素如醛固酮、皮质酮和皮质醇和性激素雄激素、雌激素和孕激素;11.肾上腺皮质激素具有升高血糖浓度和促进肾脏保钠排钾的作用;其中皮质醇对血糖的调节作用较强,而对肾脏保钠排钾的作用很弱,所以称为糖皮质激素;醛固酮对水盐平衡的调节作用较强,所以称为盐皮质激素;第四章蛋白质化学1.蛋白质的作用:①生物催化—酶②运载和储存③免疫保护④机械支持⑤激素——受体系统⑥产生和传递神经冲动2.氨基酸的结构:①在20种标准氨基酸中只有脯氨酸为亚氨基酸,其他氨基酸都是α-氨基酸; COOHCOOH②除了甘氨酸之外,其他氨基酸的α-碳原子都结合了4个不同的原子或原子团;H2N-C-HH-C-NH2羧基、氨基、R基和1个氢原子; R R③氨基酸是手性分子,有L-氨基酸和D-氨基酸之分;标准氨基酸均为L-氨基酸;3.氨基酸的分类:L-氨基酸D-氨基酸①非极性疏水R基氨基酸②极性不带电荷R基氨基酸③带正电荷R基氨基酸④带负电荷R基氨基酸4.氨基酸的性质:①紫外吸收特征蛋白质的肽键结构对220nm以下的紫外线有强吸收,其所含的色氨酸和络氨酸对280nm的紫外线有强吸收;②两性解离与等电点氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的静电荷为零;此时溶液的PH值称为氨基酸的等电点;③茚三酮反应5.蛋白质的分类:根据组成成分分为单纯蛋白质和缀合蛋白质;根据构象分为纤维状蛋白质和球状蛋白质;6.蛋白质的分子结构:分为一级结构、二级结构、三级结构和四级结构后三种结构称为蛋白质的空间结构;7.肽分为寡肽2-10个氨基酸组成和多肽更多氨基酸构成;8.一些重要的肽:抗氧化剂:谷胱甘肽GSH是由谷氨酸、半胱氨酸和甘氨酸通过肽键连接构成的三肽;激素:抗利尿激素、血管紧张素Ⅱ、催产素、促肾上腺皮质素、内啡肽、脑啡肽;9.蛋白质的一级结构:蛋白质的一级结构:蛋白质分子内氨基酸的排列顺序;包括二硫键的位置;10.蛋白质的二级结构:蛋白质的二级结构:指多肽链主链的局部构象,不涉及侧链的空间排布;二级结构的种类:①肽单元与肽平面②α-螺旋③β折叠④β转角⑤无规卷曲⑥超二级结构超二级结构:指二级结构单元进一步聚集和组合在一起,形成规则的二级结构聚集体;作用:降低了蛋白质分子的内能,使之更加稳定;11.蛋白质的三级结构:蛋白质的三级结构:一条完整的蛋白质多肽链在二级结构基础上进一步折叠形成的特定的空间结构;维持蛋白质三级结构的化学键是疏水作用、氢键、部分离子键和少量共价键如二硫键;由一条肽链构成的蛋白质只有形成三级结构才可能具有生物活性;12.蛋白质的四级结构:蛋白质的四级结构:多亚基蛋白的亚基按特定的空间排布结合在一起形成的空间结构;13.维持蛋白质构象的化学键:蛋白质的天然构象是由多种化学键共同维持的,这些化学键包括肽键、二硫键、氢键、疏水作用、离子键和范德华力;后四种化学键属于非共价键;14.蛋白质的理化性质:实验一般性质:①蛋白质含有肽键和芳香族氨基酸,所以对紫外线有吸收;②蛋白质是两性电解质,所以有等电点; ③蛋白质还能发生呈色反应;15.沉降系数:沉降速度与离心加速度相对重力之比为一常数;该常数称为~ ;第五章核酸化学信使RNA—把遗传信息从DNA带给核糖体,指导蛋白质合成;核糖核酸RNA转移RNA—在蛋白质合成过程中转运氨基酸,同时把核酸翻译成蛋白质语言;核酸核糖体RNA—是核糖体的结构成分,而核糖体是合成蛋白质的机器;脱氧核糖核酸DNA——遗传的物质基础;核酸的结构单位是核苷酸,是核酸的水解产物;磷酸——核酸是含磷酸最多的生物大分子;核苷酸的组成戊糖——核酸的戊糖包括核糖和脱氧核糖;碱基——包括两种嘌呤碱基A、G和两种嘧啶碱基C、T ;糖苷键——碱基与戊糖以N-β-糖苷键连接;核苷酸的结构磷酸酯键——磷酸与戊糖以磷酸酯键连接;酸酐键——磷酸通过酸酐键连接第二、第三个磷酸;核苷酸的功能:①合成核酸②为生命活动提供能量③参与其他物质合成④构成酶的辅助因子⑤调节代谢ATP——为生命活动提供能量UTP——参与糖原的合成CTP——参与磷脂合成腺苷酸构成酶的辅助因子核酸的分子结构:一级结构:指核酸的碱基组成和碱基序列;分子结构二级结构:核酸中由部分核苷酸形成的有规律、稳定的空间结构;三级结构:在二级结构的基础上,DNA双螺旋进一步盘曲形成三级结构;一、核酸的一级结构——研究核酸的核苷酸序列;核苷酸以3’,5’—磷酸二酯键连接构成核酸;核酸有方向性,5’端为头,3’端为尾;核酸是核苷酸的缩聚物;根据长度将核苷酸分为:寡核苷酸长度<50 nt和多核苷酸;nt:单链核酸长度单位,1nt为1个核苷酸二、核酸的二级结构不同的生物DNA的碱基组成具有以下规律,称为C hargaff法则:①DNA的碱基组成有物种差异,没有组织差异,即不同物种DNA的碱基组成不同,同一个体不同组织DNA的碱基组成相同.②DNA的碱基组成不随个体的年龄、营养和环境改变而改变;③不同物种DNA的碱基组成均存在以下关系:A = T , G = C , A + G = C + T .C hargaff法则是研究DNA二级结构及DNA复制机制的基础;DNA二级结构的特点:①DNA是由两股反向平行互补构成的双链结构;主链位于外侧,碱基侧链位于内侧;②两条链由碱基之间的氢键相连:A + G = C + T ;③在双螺旋中,碱基平面与螺旋轴垂直;④碱基之间的氢键维系双链结构的横向稳定性;碱基平面之间的碱基堆积力维系双螺旋结构的纵向稳定性;三、核酸的三级结构——主要研究DNA和染色体的超级结构.1.真核生物的细胞核DNA与RNA、蛋白质构成染色体,其结构更复杂;2.如果把真核生物DNA形成双螺旋结构看成是DNA的一级压缩,那么DNA的二级压缩就是形成核小体;3.核小体由DNA与组蛋白构成;各两个亚基构成核小体的八聚体核;四、RNA的种类和分子结构碱基互补配对的原则是A对U、G对C.1.mRNA的特点:种类多、寿命短、含量少;2.真核生物大多数mRNA的5’端有一个帽子m7GpppNmp,3'端有一段聚腺苷酸尾或PolyA尾; 帽子结构既能抵抗RNA 5’外切酶的水解;又是蛋白质合成过程中起始因子的识别标记;在组成和结构上都有以下特点:①大小为73-93 nt②含有较多的稀有碱基③ 3'端含有CCA-OH序列;5’端大多是鸟苷酸;④二级结构呈三叶草形⑤三级结构成倒“L”形.4.rRNA是细胞内含量最多的RNA,与蛋白质构成核糖体;原核生物核糖体有三种rRNA,真核生物核糖体有四种rRNA;5.核酶:是由活细胞合成的、具有催化作用的RNA;核酸的理化性质碱基使核酸具有特殊的紫外线吸收光谱,吸收峰在260nm附近;名词解释DNA的变性:指双链DNA解旋、解链,形成无规线团,从而发生性质改变如黏度下降、沉降速度加快等;导致DNA变性的理化因素:高温和化学试剂酸、碱、乙醇、尿素等;DNA的复性:缓慢降低温度,恢复生理条件,变性DNA单链会自发互补结合,重新形成原来的双螺旋结构;又称退火;DNA片段越大复性越慢,DNA浓度越高复性越快;增色反应:DNA变性导致其紫外线吸收增加;减色反应:DNA复性导致变性DNA恢复其天然构象时,其紫外吸收减少;解链温度:使DNA变性解链达到50%时的温度;又称变性温度、熔解温度、熔点;核酸分子杂交:不同来源的核酸链因存在互补序列而形成互补双链的结构的过程;是分子生物学的核心技术;第六章酶1.新陈代谢:生物体内的全部化学反应的总称;包括物质代谢和能量代谢;2.生物催化剂:酶——是由活细胞合成的、具有催化作用的蛋白质;核酶——是由活细胞合成的、具有催化作用的核酸;单纯酶——仅由氨基酸构成,如尿素酶、蛋白酶、淀粉酶、脂酶和核糖核酸酶等3.酶结合酶蛋白质部分非蛋白质部分全酶4.只有全酶才具有催化活性,脱辅基酶蛋白单独存在时没有催化活性;5.辅助因子金属离子:K+、Na+、Zn2+等;B族维生素的活性形式;辅助因子根据与脱辅基酶蛋白的结合程度等分为:辅酶和辅基;辅助因子的作用——承担着传递电子、原子或基团的作用;①通常一种脱辅酶蛋白必须与特定的辅助因子结合,才能成为有活性的全酶白②一种辅助因子可与不同的脱辅基酶蛋白结合,组成具有不同特异性的全酶; 此决定酶的特异性6.酶的活性中心又称活性部位:是酶蛋白构象的一个特定区域,由必需基团构成,能与底物特异地结合,并催化底物生成产物;酶促反应:由酶催化进行的化学反应; 底物S ,生成产物P7.酶的必需基团——那些与酶活性密切相关的基团;结合基团:与底物结合,使底物与一定构象的酶形成复合物,又称中间产物;-催化基团:改变底物中某些化学键的稳定性,使底物发生反应生成产物;对于单纯酶来说,活性中心内的必需基团完全来自酶蛋白的氨基酸侧链,如组氨酸的咪唑基、丝氨酸的羟基半胱氨酸的的巯基和天冬氨酸的羧基等;对结合酶来说,活性中心内的必需基团还有一个来源,即辅助因子;实际上,辅助因子是指参与构成活性中心的非氨基酸成分;8.酶按分子结构分为:单体酶、寡聚酶、多酶体系和多功能酶又称串联酶;9.酶促反应的特点:酶和一般催化剂的共有特点:①只催化热力学上允许的化学反应; ②可以提高化学反应的速度,但不改变化学平衡; ③它们的催化机制都是降低化学反应的活化能; ④很少量就可以有效催化反应;①酶的催化效率极高绝对特异性——一种酶对一种底物酶的②酶具有很高的特异性相对特异性——一种酶对一类酶或一种化学键特点③酶蛋白容易失活立体异构特异性——一种酶对两种立体异构体中的一种④酶活性可以调节酶和一般催化剂之所以能提高化学反应速度,是因为它们能降低化学反应的活化能——中间产物学说;10.酶原与酶原的激活:酶原:有些酶在细胞内刚合成或初分泌时只是酶的无活性前体,必须水解掉一个或几个特定肽段,使酶蛋白构象发生改变,从而表现出酶的活性;酶的这种无活性前体称为酶原;酶原的激活:酶原向酶转化的过程;酶原的激活实际上是形成暴露酶的活性中心的过程;酶原的生理意义:①酶原适于酶的安全转运; ②酶原适于酶的安全储存;11.同工酶:是指能催化相同的化学反应,但酶蛋白的分子组成、分子结构和理化性质乃至免疫学性质和电泳行为都不相同的一组酶,是生命在长期进化过程中基因分化的产物;12.酶促反应动力学影响酶促反应的因素:酶浓度E、底物浓度S、温度、PH值、抑制剂、激活剂;根据抑制剂与酶作用方式的不同,抑制剂对酶的抑制作用分为可逆性抑制作用和不可逆性抑制作用;根据抑制剂与底物的竞争关系,可以将可逆性抑制作用分为:竞争性抑制作用、非竞争性抑制作用和反竞争性抑制作用;13.酶的分类:课本P7814.1个酶活性国际单位:在25℃、最适PH值、最适底物浓度时,每分钟催化1μmol底物反应所需的酶量;15.酶的比活性:1mg酶蛋白所具有的酶活性单位;第七章维生素维生素是维持生命正常代谢所必需的一类小分子有机化合物,是人体重要的营养物质之一;1.维生素的特点:①维生素既不是构成机体组织结构的原料,也不是供能物质,但在代谢过程中发挥着重要作用,它们大多数参与构成酶的辅助因子;②种类多,化学结构各异,本质上都属于小分子有机化合物;③维生素的需要量很少,但多数不能在体内合成或合成量不足,必须从食物中摄取;④维生素摄取不足会造成代谢障碍,但若应用不当或长期过量摄取,也会出现中毒症状;2.维生素的分类:根据溶解性分水溶性维生素:维生素C和B族维生素核黄素、泛酸、生物素等维生素脂溶性维生素:维生素A、维生素D、维生素E和维生素K ;3.水溶性维生素的共同特点:①易溶于水,不溶或微溶于有机溶剂; ②机体储存量很少,必须随时从食物中摄取;③摄入过多部分可以随尿液排出体外,不会导致积累而引起中毒;B族维生素通常都以构成酶的辅助因子的方式参与代谢;5.脂溶性维生素的共同特点:①不溶于水,易溶于脂肪及有机溶剂; ②在食物中常与脂类共存;③随脂肪的吸收不足而相应其吸收减少; ④可以在肝脏内储存,摄入过多会出现中毒症状;第一节概述生命活动需要能量供应,所需的能量来自生物氧化;生物氧化是指糖类、脂类和蛋白质等营养物质在体内氧化分解、最终生成CO2和H2O并释放能量满足生命活动需要的过程;又称组织呼吸或细胞呼吸; 生物氧化的特点:在温和条件进行连续的酶促反应,通过脱羧基反应产生CO2,能量逐步释放并得到有效利用;生物氧化的过程:第一阶段:营养物质氧化生成乙酰CoA.第二阶段:乙酰基进入三羧酸循环氧化生成CO2;第三阶段:前两阶段释放出的电子经呼吸链传递给O2生成H2O,传递电子的过程驱动合成ATP; CO2生成方式:根据是否伴有氧化反应分为:单纯脱羧和氧化脱羧;根据脱掉的羧基在底物分子结构中的位置分为:α-脱羧和β-脱羧;第二节呼吸链呼吸链是起递氢或递电子作用的酶或辅酶按一定顺序排列在线粒体内膜上,组成的递氢或递电子体系;又称电子传递链;其功能是将营养物质氧化释放的电子传递给O2生成H2O;呼吸链的组成成分包括Q 、Cyt c和四种具有传递电子功能的复合体,这些成分含有递氢体和递电子体;递氢体包括NAD、FMN、FAD和Q,递电子体包括铁硫蛋白、Cyt a 、Cyt b 和Cyt c ;呼吸链成分的排列顺序1. NADH氧化呼吸链NADH 复合体I Q 复合体III Cyt c 复合体IV O22. 琥珀酸氧化呼吸链琥珀酸复合体IIQ复合体IIICyt c 复合体IVO2细胞液NADH的氧化细胞液NADH通过3-磷酸甘油穿梭和苹果酸-天冬氨酸穿梭将电子送入呼吸链:3-磷酸甘油穿梭主要在肌肉及神经组织中进行,每传递一对电子推动合成两个ATP;苹果酸-天冬氨酸穿梭主要在心肌和肝脏内进行,每传递一对电子推动合成三个ATP;第三节生物氧化与能量代谢ATP的合成底物水平磷酸化——在生物氧化过程中,底物因脱氢、脱水等反应而使能量在分子内重新分布,形成高能磷酸基团,然后将高能磷酸基团转移给ADP,生成A TP的过程;氧化磷酸化——在生物氧化过程中,营养物质释放的电子经呼吸链传递给O2生成H2O,所释放的自由能推动ADP磷酸化生成ATP的过程;是合成ATP的主要方式;氧化磷酸化的影响因素有呼吸链抑制剂、解偶联剂、ADP、甲状腺激素和线粒体DNA ;研究氧化磷酸化最常见的方法是测定线粒体的磷、氧消耗量的比值,即磷/ 氧比值;在能量代谢中,ATP是许多生命活动的直接供能者;ATP的合成与利用构成ATP循环;ATP循环是生物体内能量转换的基本方式;第九章糖代谢物质代谢是指生物体与周围环境不断地进行物质交换的过程;包括消化吸收、中间代谢和排泄三阶段; 第一节糖的生理功能①糖是人体主要的供能物质:主要是糖原和葡萄糖;②糖也是人体的重要组成成分之一:③糖与蛋白质形成的糖蛋白是具有重要生理功能的物质;第二节血糖通过各种途径进入血液的葡萄糖称为血糖;血糖的来源和去路氧化供能主要途径食物糖消化吸收合成肝糖原、肌糖原肝糖原分解转化成核糖、脂肪、氨基酸非糖物质糖异生过高时随尿液排出不超过~ L血糖的调节机制肝脏调节——肝脏是维持血糖浓度的最主要器官;肾脏调节——肾脏对糖具有很强的重吸收能力;神经调节——交感神经和副交感神经;激素调节——胰岛β细胞胰岛素| 胰岛α细胞胰高血糖素和肾上腺皮质肾上腺素第三节糖的分解代谢④糖醛酸途径UDP-乳酸+能量①糖酵解途径③磷酸戊糖途径NADPH +磷酸戊糖乙酰CO2 + H2O + 能量②有氧氧化途径一、糖酵解途径1.葡萄糖生成1,6 - 二磷酸果糖:一分子葡萄糖生成1,6 - 二磷酸果糖消耗两分子ATP.,6 - 二磷酸果糖分解成两分子3-磷酸甘油醛:一分子1,6 - 二磷酸果糖生成两分子3-磷酸甘油醛; 磷酸甘油醛转化成丙酮酸:两分子3-磷酸甘油醛生成丙酮酸的同时产生四分子ATP.4.丙酮酸还原成乳酸:乳酸是葡萄糖无氧代谢的最终产物;全过程:葡萄糖 + 2Pi + 2ADP 2乳酸 + 2ATP + 2H2O糖酵解的生理意义糖酵解是在相对缺氧时机体补充能量的一种有效方式;某些组织在有氧时也通过糖酵解供能; 磷酸二羟丙酮是甘油的合成原料;糖酵解的中间产物是其他物质的合成原料3-磷酸甘油酸是丝氨酸、甘氨酸和半胱氨酸的合成原料;丙酮酸是丙氨酸和草酰乙酸的合成原料;二、糖的有氧氧化途径葡萄糖氧化分解生成丙酮酸丙酮酸氧化脱羧生成乙酰CoA①乙酰CoA与草酰乙酸缩合成柠檬酸. ②柠檬酸异构成异柠檬酸.三羧酸循环③异柠檬酸氧化脱羧生成α-酮戊二酸④α-酮戊二酸氧化脱羧生成琥珀酰CoA .⑤琥珀酰CoA生成琥珀酸. ⑥草酰乙酸再生.三羧酸循环的意义:1. 三羧酸循环是糖类、脂类和蛋白质分解代谢的共同途径;2. 三羧酸循环是糖类、脂类和蛋白质代谢联系的枢纽;三、磷酸戊糖途径反应过程见课本P125图9-8生理意义:磷酸戊糖途径所生成的5-磷酸核糖和NADPH是生命物质的合成原料;5-磷酸核糖——为核酸的生物合成提供核糖;提供NADPH + H+作为供氢体,参与多种代谢反应;NADPH ①为脂肪酸和胆固醇等物质的合成提供氢;还原②作为谷胱甘肽还原酶的辅酶,参与GSSG GSH ;四、糖醛酸途径葡萄糖6-磷酸葡萄糖1-磷酸葡萄糖UDP-葡萄糖UDP-葡萄醛酸第四节糖原代谢和糖异生一、糖原合成1. 6-磷酸葡萄糖的生成2. 1-磷酸葡萄糖的生成3. UDP-葡萄糖的生成4. 糖原的合成二、糖原分解1. 1-磷酸葡萄糖的生成2. 6-磷酸葡萄糖的生成磷酸葡萄糖的水解4.极限糊精的水解糖原的合成与分解是维持血糖正常水平的重要途径;三、糖异生由非糖物质合成葡萄糖的过程,称为糖异生;主要在肝脏内进行,在肾皮质中也可以进行,但较弱;糖异生的反应过程1.丙酮酸羧化支路2.1,6-二磷酸果糖水解成6-磷酸果糖3.6-磷酸葡萄糖水解生成葡萄糖糖异生的生理意义① 在饥饿时维持血糖水平的相对稳定 ② 参与食物氨基酸的转化与储存 ③ 参与乳酸的回收利用 第五节 糖代谢紊乱低血糖:空腹时血糖浓度低于L 称为 ~ ; 高血糖:空腹时血糖浓度超过L 称为 ~ ;饮食性糖尿:进食大量糖; 不糖 糖尿 情感性糖尿:情绪激动,交感神经兴奋,肾上腺素分泌增加;属尿肾糖尿:肾脏疾患导致肾小管重吸收能力减弱; 于 病 糖尿病的症状:“三多一少”多食、多饮、多尿和体重减轻 糖尿病患者会出现下列糖代谢紊乱:① 糖酵解和有氧氧化减弱 ② 糖原合成减少③ 糖原分解增加 ④ 糖异生作用加强 ⑤ 糖转化为脂肪减少葡萄糖耐量:人体处理所给予葡萄糖的能力;又称耐糖现象;是临床上检查糖代谢的常用方法; 正常人体耐糖曲线的特点:空腹血糖浓度正常,进食葡萄糖后血糖浓度升高;在1小时内达到高峰,但不超过肾糖阈; 而后血糖浓度迅速降低,在2-3小时内回落到正常水平; 课本P 133 图9-14第十章 脂类代谢第一节 脂类的分布和生理功能 一、 脂类的分布脂肪:分布在皮下、腹腔大网膜、肠系膜等处,这些部位称为脂库; 储存脂、可变脂 类脂:类脂是构成生物膜的组成成分; 基本脂或固定脂 二、 脂类的生理功能脂肪:① 维持体温 ② 减少器官间的摩擦 ③ 人体重要的营养物质和能源;类脂:① 构成生物膜的重要成分 ② 参与细胞识别及信号传导 ③合成多种活性物质 第二节 脂类的消化和吸收小肠是食物脂类的消化吸收场所;消化脂类的酶来自胰腺,主要有胰脂肪酶、磷脂酶A 2和胆固醇酯酶; 脂类的吸收场所主要是十二指肠下部和空肠上部; 第三节 血脂血浆中的脂类统称为血脂;血脂包括甘油三酯、磷脂、胆固醇酯、胆固醇和脂肪酸; 血脂的来源和去路:食物脂类的消化吸收氧化供能体内合成脂类进入脂库储存脂库动员释放构成生物膜转化为其他物质血浆脂蛋白; 电泳分类法: α脂蛋白 前β脂蛋白 β脂蛋白 乳糜微粒 超速离心分类法: HDL LDL VLDL CM 脂类:包括甘油三酯、磷脂、胆固醇和胆固醇酯等;血浆蛋白的组成 载体蛋白:是指血浆脂蛋白中的蛋白质成分,分为apoA 、apoB 、apoC 、apoD 、。

生物化学重点

生物化学重点

第一章蛋白质的结构和功能第八章核苷酸代谢第二章核酸的结构与功能第九章物质代谢的联系第三章酶第十章 DNA的生物合成第四章糖代谢第十一章 RNA的生物合成第五章脂类代谢第十二章蛋白质的生物合成第六章生物氧化维生素第十三章基因表达的调控第七章氨基酸代谢第十七章肝的生物化学蛋白质的结构与功能1.蛋白质的含氮量很接近,平均为16%。

2.酸性氨基酸:天冬氨酸、谷氨酸。

碱性氨基酸:赖氨酸、精氨酸、组氨酸。

3. 氨基酸的理化性质:(1)氨基酸的两性解离性质;(2)分子中含有共轭双键的氨基酸具有紫外吸收性质。

吸收峰280nm;(3)氨基酸与茚三酮水合物共加热,生成的蓝紫色化合物4. 在某一pH环境溶液中,氨基酸解离生成的阳郭子及阴离子的趋势相同,成为兼性离子。

此时环境的pH值称为该氨基酸的等电点(pI)5.肽的相关概念(1)寡肽:10个以内氨基酸组成的肽链。

(2)多肽:大于10分子氨基酸组成的肽链。

(3)蛋白质:大于50分子氨基酸组成的肽链。

(4)氨基酸残基:肽链中因脱水缩合而基团不全的氨基酸分子。

6.肽单元:参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,组成肽单元。

7. 蛋白质分子四级结构的比较。

一级结构二级结构三级结构四级结构定义从N-端至C-端的氨基酸的排列顺序蛋白质主链的局部空间结构、不涉及氨基酸残基侧链构象整条肽链中所有原子在三维空间的排布位置各亚基间的空间排布表现形式-α-螺旋、β-折叠(片层)、β-转角、无规卷曲结构域、模体(超二级结构)亚基聚合维系键肽键(主要)二硫键(次要) 氢键非共价键(疏水键、盐键、氢键、范德华力)亚基间的非共价键。

8. 蛋白质一级结构与空间结构的关系:一级结构是空间构象的基础,具有相似一级结构的多肽或蛋白质,其空间构象及功能也相似。

9. 蛋白质空间结构与功能的关系:蛋白质空间结构由一级结构决定,其空间结构与功能密切相关。

10. 变构效应:蛋白质分子的亚基与配体结合后,引起蛋白质的构象发生变化的现象11. 蛋白质重要的理化性质及相关概念①.蛋白质的等电点:当蛋白质在某一pH溶液中时,蛋白质解离成正、负离子的趋势相等,成为兼性离子,带有的净电荷为零,此时溶液的pH值称为蛋白质的等电点。

生物化学重点复习点

生物化学重点复习点

●绪论●生物化学定义研究任务目的●第一章糖第一节单糖一、葡萄糖的分子结构构象:指一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的空间排布。

一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。

构型:指一个分子由于其中各原子特有的固定的空间排列,而使该分子所具有的特定的立体化学形式。

构型改变要求共价键的断裂和重新形成。

不对称碳原子:连接四个不同原子或基团的碳原子。

镜像对映体:旋光异构现象和旋光度:异头物:二、单糖的分类糖:含多羟基的醛或酮的化合物醛糖:含醛基酮糖:含酮基三、单糖的物理性质和化学性质『一』物理性质『二』化学性质四、重要的单糖第二节寡糖一、双糖1、麦芽糖:两个葡萄糖以α(1-4)糖苷键缩合2、蔗糖:由α-D-葡萄糖和β-D -果糖各一分子以α,β(1-2)糖苷键型缩合。

3、乳糖:由α-D-葡萄糖和β-D -半乳糖各一分子以β(1-4)糖苷键型缩合。

第三节多糖1、淀粉支链淀粉直链淀粉2、糖原3、纤维素●第二章脂类定义生物功能第一节脂酰甘油类定义一、脂肪酸二、甘油三酯的类型三、甘油三酯的理化性质皂化和皂化值酸败和酸值卤化和碘值●第三章蛋白质第一节蛋白质通论一、蛋白质的化学组成:平均含氮量16%,是凯氏定氮法的基础平均分子量110第二节蛋白质的基本结构单位-氨基酸一、氨基酸的分类蛋白质氨基酸:20种α氨基酸:脯氨酸为亚氨基酸,其余都是。

旋光性:除甘氨酸外,都有旋光性各类氨基酸:二、氨基酸的酸碱性质广义酸碱:酸,质子供体。

碱,质子受体。

等电点:PI=1/2(PK1+PK2)在等电点以上的任何PH,氨基酸带净负电荷,并由此在电场中将向正级移动,在低于等电点的任一PH,氨基酸将带净正电荷,在电场中将向负极移动。

三、氨基酸的化学反应:Sanger反应Edman降解印三酮反应四、氨基酸的分析分离离子交换层析第三节蛋白质的共价结构(一级结构)一、肽和肽键的结构肽单位肽键共价主链肽平面同源蛋白质二、N末端和C末端氨基酸残基的测定Sanger反应DNS(丹蟥酰氯法)Edman降解第四节蛋白质的二级结构和纤维状蛋白质二级结构:多肽链中有规则重复的构象。

生物化学重点知识

生物化学重点知识

第二章蛋白质的结构与功能一、名词解释1.生物化学:生物化学是研究生物体的化学组成以及生物体内发生的各种化学变化的学科2.肽键:一个氨基酸的α–羧基与另一个氨基酸的α–氨基脱水缩合而成的酰胺键(–CO–NH–)称为肽键3.蛋白质的等电点:当蛋白质溶液处于某一PH时,蛋白质分子解离成阴阳离子的趋势相等,净电荷为零,呈兼性离子状态,此时溶液的PH称为该蛋白质的等电点4.蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构5.二级结构:蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象6.亚基:四级结构中每一条具有独立三级结构的多肽链称为亚基(本章考的最多的名词解释)二、问答1.蛋白质的基本组成单位是什么?其结构特点是什么?基本组成单位:氨基酸结构特点:组成蛋白质的20种氨基酸都属于α–氨基酸(脯氨酸除外)组成蛋白质的20种氨基酸都属于L–氨基酸(甘氨酸除外)2.什么是蛋白质的变性?在某些物理或化学因素作用下,蛋白质分子中的次级键断,特定的空间结构被破坏,从而导致蛋白质理化性质改变和生物学活性丧失的现象,称为蛋白质的变性3.什么是蛋白质的二级结构?它主要有哪几种?维持二级结构稳定的化学键是什么?蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象种类:α–螺旋、β–折叠、β–转角、无规卷曲维持蛋白质二级结构稳定的化学键是氢键重点:蛋白质的基本组成单位:氨基酸氨基酸的结构通式维持蛋白质一级结构稳定的是肽键二级结构稳定的化学键是氢键三级结构稳定的是疏水键α–螺旋是蛋白质中最常见最典型含量最丰富的二级结构形式由一条多肽链构成的蛋白质,只有具有三级结构才能发挥生物活性。

如果蛋白质只由一条多肽链构成,则三级结构为其最高级结构只有完整的四级结构才具有生物学功能,亚基单独存在一般不具有生物学功能胰岛素虽然由两条多肽链组成,但肽链间通过共价键(二硫键)相连,这种结构不属于四级结构蛋白质的变构现象例子:老年痴呆症、舞蹈病、疯牛病蛋白质分子表面的水化膜和同种电荷是维持蛋白质亲水胶体稳定的两个因素(填空题)凝固的前提是发生变性,凝固的蛋白质一定发生变性加热使蛋白质变性并凝聚成块状称为凝固第三章核酸的结构与功能一、名词解释1.核苷酸:核苷分子中戊糖的自由羟基与磷酸通过磷酸酯键连接而形成的化合物。

生物化学重点知识点总结

生物化学重点知识点总结

蛋白质的结构与功能第一章蛋白质的结构与功能1.20种基本氨基酸中,除甘氨酸外,其余都是L-α-氨基酸.2.支链氨基酸(人体不能合成:从食物中摄取):缬氨酸亮氨酸异亮氨酸3.两个特殊的氨基酸:脯氨酸:唯一一个亚氨基酸甘氨酸:分子量最小,α-C原子不是手性C原子,无旋光性.4.色氨酸:分子量最大5.酸性氨基酸:天冬氨酸和谷氨酸碱性氨基酸:赖氨酸、精氨酸和组氨酸6.侧链基团含有苯环:苯丙氨酸、酪氨酸和色氨酸7.含有—OH的氨基酸:丝氨酸、苏氨酸和酪氨酸8.含有—S的氨基酸:蛋氨酸和半胱氨酸9.在近紫外区(220—300mm)有吸收光能力的氨基酸:酪氨酸、苯丙氨酸、色氨酸10.肽键是由一个氨基酸的α—羧基与另一个氨基酸的α—氨基脱水缩合形成的酰胺键11.肽键平面:肽键的特点是N原子上的孤对电子与碳基具有明显的共轭作用。

使肽键中的C-N键具有部分双键性质,不能自由旋转,因此。

将C、H、O、N原子与两个相邻的α-C原子固定在同一平面上,这一平面称为肽键平面12.合成蛋白质的20种氨基酸的结构上的共同特点:氨基都接在与羧基相邻的α—原子上13.是天然氨基酸组成的是:羟脯氨酸、羟赖氨酸,但两者都不是编码氨基酸14.蛋白质二级结构的主要形式:①α—螺旋②β—折叠片层③β—转角④无规卷曲。

α—螺旋特点:以肽键平面为单位,α—C为转轴,形成右手螺旋,每3.6个氨基酸残基螺旋上升一圈,螺径为0.54nm,维持α-螺旋的主要作用力是氢键15.举例说明蛋白质结构与功能的关系①蛋白质的一级结构决定它的高级结构②以血红蛋白为例说明蛋白质结构与功能的关系:镰状红细胞性贫血患者血红蛋白中有一个氨基酸残基发生了改变。

可见一个氨基酸的变异(一级结构的改变),能引起空间结构改变,进而影响血红蛋白的正常功能。

但一级结构的改变并不一定引起功能的改变。

③以蛋白质的别构效应和变性作用为例说明蛋白质结构与功能的关系:a.别构效应,某物质与蛋白质结合,引起蛋白质构象改变,导致功能改变。

生物化学复习重点

生物化学复习重点

⽣物化学复习重点⽣物化学复习重点第⼀章蛋⽩质1.蛋⽩质的元素组成:C、H、O、N、S及其他微量元素,蛋⽩质含氮量:16%公式:每克样品含氮量×6.25×100=100克样品蛋⽩质含量(克%)2.氨基酸通式特点:α-L -氨基酸,只有⽢氨酸没有⼿性(旋光性),脯氨酸为亚氨基酸。

3.氨基酸分类:(1)、酸性氨基酸:⼀氨基⼆羧基氨基酸,有天冬氨酸、⾕氨酸,带负电荷(2)、碱性氨基酸:⼆氨基⼀羧基氨基酸,有赖氨酸、精氨酸、组氨酸,带正电荷(3)、中性氨基酸:⼀氨基⼀羧基氨基酸,有⽢氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、⾊氨酸、酪氨酸、脯氨酸、天冬酰胺、⾕氨酰胺、丝氨酸、苏氨酸。

不带电荷。

(4)含S氨基酸:甲硫氨酸、半胱氨酸(5)含羟基氨基酸:丝氨酸、苏氨酸(6)芳⾹族氨基酸:苯丙氨酸、⾊氨酸、酪氨酸(7)含酰胺基氨基酸:天冬酰胺、⾕氨酰胺4.氨基酸的等电点PI:氨基酸所带正负电荷相等时的溶液pH。

pI=(pK1,+pK2,)/25.氨基酸紫外吸收:280nm,苯丙氨酸、⾊氨酸、酪氨酸有紫外吸收6.蛋⽩质的⼀级结构(Primary structure):它是指蛋⽩质中的氨基酸按照特定的排列顺序通过肽键连接起来的多肽链结构。

肽键:⼀个氨基酸的a-COOH 和相邻的另⼀个氨基酸的a-NH2脱⽔形成共价键。

7.蛋⽩质⼆级结构的概念:多肽链在⼀级结构的基础上,按照⼀定的⽅式有规律的旋转或折叠形成的空间构象。

其实质是多肽链在空间的排列⽅式蛋⽩质⼆级结构主要类型有:a-螺旋、β-折叠、β-转⾓维持⼆级结构的作⽤⼒:氢键a-螺旋(a-Helix)⼜称为3.613螺旋,Φ= -57。

,Ψ= -47。

结构要点:(1)、多个肽键平⾯通过α-碳原⼦旋转,主链绕⼀条固定轴形成右⼿螺旋。

(2)、每3.6个氨基酸残基上升⼀圈,相当于0.54nm。

(3)、相邻两圈螺旋之间借肽键中C=O和N-H形成许多链内氢健,即每⼀个氨基酸残基中的NH和前⾯相隔三个残基的C=O 之间形成氢键,这是稳定α-螺旋的主要键。

生物化学重点知识

生物化学重点知识

生物化学是研究生物体内生物分子的结构、功能和代谢过程的学科。

以下是一些生物化学中的重点知识:
1. 生物大分子:生物化学研究的主要对象包括碳水化合物、脂类、蛋白质和核酸等生物大分子。

它们在生物体内发挥着重要的结构和功能作用。

2. 酶:酶是生物体内催化反应的蛋白质,可以降低活化能,加速生物化学反应的进行。

酶在生物体内参与代谢、信号传导、免疫等多个生理过程。

3. 代谢途径:生物体内的代谢途径包括糖酵解、三羧酸循环、氧化磷酸化、脂肪酸代谢等。

这些途径将营养物质转化为能量和生物体内所需的物质。

4. DNA和RNA:DNA是遗传信息的载体,RNA参与基因表达调控。

DNA复制、转录和翻译是细胞内重要的生物化学过程。

5. 蛋白质结构与功能:蛋白质的结构决定了其功能。

蛋白质通过折叠成特定的空间结构来实现其生物学功能,如酶活性、结构支持等。

6. 细胞膜结构与运输:细胞膜是细胞的重要组成部分,具有选择性
通透性。

细胞膜上的载体蛋白质参与物质的跨膜运输。

7. 信号转导:细胞内外的信号转导是生物体内重要的调控机制,包括激素信号、神经递质信号等的传递与响应。

以上是生物化学中的一些重点知识,深入了解这些知识可以帮助理解生物体内生命活动的分子基础和机制。

生物化学在解释疾病发生机制、药物作用以及生物技术等领域有着重要的应用。

生物化学重点整理

生物化学重点整理

血红蛋白:球状蛋白,寡聚蛋白. 含四个亚基,2个α亚基和2个β亚基。 α链:141个残基;β链:146个残基。分子量65000。 含四个血红素辅基。亲水性侧链基团在分子表面,疏水性基 团在分子内部
球状蛋白质三维结构的特征:
含多种二级结构单元; 有明显的折叠层次; 是紧密的球状或椭球状实体; 分子表面有一空穴(活性部位);
问答题
1、简述蛋白质a-螺旋和B-折叠的结构特点。 2、按照R基团的化学结构将20种常见氨基酸分类并写出其结构式。 3、简述肌红蛋百和血红蛋白的结构特点,以此为例试述蛋白质空 间结构和功能的关系。
4、试述5种蛋白质分离纯化的方法及原理。
5、试述5种测定蛋白质含量的方法及原理。
名词解释
等电点(pI)、 肽、 一级结构 二级结构 三级结构 四级结 构 超二级结构 结构域 蛋白质变性与复性
超二级结构(p220) (super-secondary structure)
蛋白质分子中,特别是球状蛋白质中,由若干相邻的二级 结构单元(即α—螺旋、β—折叠片和β—转角等)彼此相互作 用组合在一起,形成有规则、在空间上能辨认的二级结构组合 体,充当三级结构的构件单元,称超二级结构。
类型:αα; βαβ单元; ββ单元; #43;β-回折域;
无规则卷曲+α-螺旋结构域
四、 球状蛋白质与三级结构
三级结构(tertiary structure)是指球状蛋白质的多肽键在二级结构的 基础上,通过侧链基团的相互作用进一步卷曲折叠,借助次级键维系使二 级结构相互配置而形成特定的构象 , 三级结构的形成使肽链中所有的原子 都达到空间上的重新排布。
第七节 蛋白质的分离、纯化(P300)
是蛋白质工程和基因工程重组蛋白纯化的主要内容之一 ,是蛋白质生物活性物质的生产、应用及研究领域不可缺失 的重要环节。 蛋白质分离、纯化指:将蛋白质从混合物、生物体、培 养基或包涵体中取出,再与杂质分开,获得与预定目的要求 相适应有一定纯度的蛋白质产品过程。

生物化学重点

生物化学重点

生物化学C一、酶:1、定义:酶、酶的活性中心答:酶是生物体内活细胞产生的对特异底物起高效催化的蛋白质。

必需基团在酶分子的一级结构上可能相距很远,但在空间结构形成过程中彼此靠近,形成具有特定空间结构的区域称为酶的活性中心。

2、何为必需基团?必需基团如何分类(酶由哪些必需基团组成)? 说出各基团的作用。

答:酶分子中与其催化活性密切相关的基团。

参与其组成的必需基团常有组氨酸残基的咪迷基、丝氨酸残基的经基、半胱氨酸残基的硫基及谷氨酸残基的γ-羧基等。

组成活性中心的必需基团中,结合底物并形成酶与底物复合物的必需需基团为结合基团,催化底物发生化学反应转变为产物的必需基团为催化基团3、同工酶的定义,同工酶在临床上有哪些应用?答:同工酶指能够催化相同化学反应,但酶蛋白的分子结构、理化性质、免疫学性质及电泳行为都不相同的一组酶。

正常情况下,血清中LDH活性极低,主要是细胞渗出产生的。

当某一组织器官发生病变时,该组织所富含的同工酶便会太量释放入血,引起血清LDH同工酶谱发生改变。

采用琼脂糖凝胶电泳法研究LDH 同工酶,可以观察到肝细胞受损患者血清LDH,的含量显著升高;而急性心肌梗死发生时,患者血清LDH,的含量显著上升。

因此,同工酶电泳图谱分析,可更加特异地诊断疾病。

4、何为酶促反应动力学?影响酶促反应速度的因素有哪些?答:底物浓度、酶浓度、温度、pH、激活剂和抑制剂是影响酶促反应速成的主要因素,它们对酶促反应速度的影响属于酶促反应动力。

影响因素有底物浓度、酶浓度、温度、ph、激活剂、抑制剂。

5、何为酶的不可逆抑制作用和竞争性抑制作用,分别举例说明(以有机磷农药中毒、磺胺药抑菌的生化机制说明)。

答:抑制剂以共价键与酶的活性中心内的必需基团结合,进而使酶适性收到抑制,这类抑制作用称为不可逆抑制。

例如;解磷定PAM能与有机磷化合物结合,是胆碱酯酶中丝氨酸的-OH游离出来,使酶活性得以恢复。

如黄胺类药物的抑菌作用。

细菌的生长繁殖有赖于核酸的合成,磺胺类药物敏感菌不能利用环境中的叶酸,只能以菌体内的对氨基苯甲酸(PABA)二氢喋呤和谷氨酸为原料,在二氢叶酸合成酶的催化下合成二氢叶酸(FH),进而再还原为四氢叶酸。

生物化学重点

生物化学重点

生物化学名词解释:1、从头合成:利用磷酸核糖、氨基酸、一碳单位及二氧化碳等简单物质为原料,经过一系列酶促反应,合成嘌呤核苷酸或嘧啶核苷酸的过程;2、呼吸链:线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合物,课通过链锁的氧化还原将代谢物脱下的电子最终传递给氧生成水,这一系列酶和辅酶称为呼吸链和电子传递链;3、糖酵解无氧氧化:在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程;4、酶原和酶原激活:有些酶在细胞分泌合成或初分泌,或在其发挥催化功能前只是酶的无话性亲体,称酶原;酶原向酶的转化过程称为酶原激活;5、补救合成:利用体内游离的嘌呤或嘌呤核苷酸,经过简单地反应过程,合成嘌呤核苷酸,称为补救合成或重新利用途径;6、酶的活性中心:酶的必需集团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异的结合并将底物转化为产物,这一区域称为酶的活性中心或活性部位;7、翻译:蛋白质生物合成也成翻译,是细胞内以mRNA为模板,按照mRNA分子中由核苷酸组成的密码信息合成蛋白质的过程;8、酶的共价修饰调节:酶蛋白肽链上某些残基在不同催化单向反映以酶的催化下发生可逆的共价修饰,从而引起酶活性的改变,这种调节称为酶的化学修饰调节又称共价修饰调节;9、中心法则:10、DNA的二级结构:DNA的二级结构是反向平行,右手螺旋的互补双链;11、氧化磷酸化:由代谢物脱下的氢,经线粒体氧化呼吸链电子传递释放能量,偶联驱动ADP 磷酸化生成ATP的过程;12、竞争性抑制作用:有些抑制剂与酶底物结构相似,可与底物竞争酶的活性中心,从而阻碍酶和底物结合生成中间产物;13、蛋白质变性:在某些物理和化学因素作用下,蛋白质特定的空间构象被破坏,即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失;14、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板按碱基配对规律,合成与模板互补的子链;子代细胞DNA的一股单链从亲代完整地接受过来,另一股单链则完全重新合成,两个子细胞的DNA都和亲代DNA碱基序列一致;15、生物转化:非营养物质、毒物、药物通过抗氧化酶和胆汁酸代谢分解不不是放ATP的过程;16、一碳单位:指某些氨基酸在分解代谢过程中产生的含有一个碳原子的基团,包括甲基、甲稀基、甲烃基、甲酰基、亚氨甲基等;17、转氨基作用:在转氨基酶的催化下,可逆地把α-氨基酸的氨基转移给α-酮酸,结果是氨基酸脱去氨基生成相应的α-酮酸,而原来的α-酮酸则转变成另一种氨基酸;18、维生素:是维持人体正常生理功能所必需的营养素,是人体内不能合成或合成量甚少,必需由事物供给的一组低分子有机化合物;19、蛋白质的一级结构:蛋白质分子中,从N-端至C-端的氨基酸排列顺序;20、必须氨基酸:人体内有八种氨基酸体内需要而又不能自身合成,必需由事物提供的氨基酸;21、多肽链:22、生物氧化:物质在生物体内氧化称为生物氧化,主要是糖、脂肪、蛋白质等供能物质在体内分解时逐步释放能量,并最终生成二氧化碳和水的过程;23、核算变性:某些理化因素PH、温度、离子强度等会导致DNA双链互补碱基对之间的氢键发生断裂,使双链DNA解离为单链;24、蛋白质的等电点:当蛋白质溶液出于某一pH时,蛋白质解离呈正、负离子的趋势相同,称为兼性离子,静电荷为零;此时溶液的pH称为蛋白质的等电点;简答题:1、请说明糖代谢与蛋白质代谢之间的关系;组成人体蛋白质的20种氨基酸,除生酮氨酸亮、赖外,通专转氨或者脱氧作用生成相应α酮酸都可转变成某些糖代谢的中间代谢产物,如丙氨酸、草酰胺酸、α-酮戊二酸等;可通过糖异生途径转变为糖;而糖的中间产物仅能在体内转变成12种非必须氨基酸;2、请从核酸的和合成来说明“只要食物中不缺乏蛋白质,就不会缺乏核酸”这个观点;食物中的核酸进入人体后被人体消化吸收之后不能作为原料被利用,核酸在体内的合成有两条途径:从头合成和补救合成,从头合成为主要;而从头合成是以磷酸核糖、氨基酸、一碳单位及二氧化碳等简单原料合成的,而蛋白质可以分解成氨基酸,而氨基酸可以通过各种途径形成糖类和一碳单位;有糖则不会缺乏磷酸核糖和二氧化碳;有了核酸的原料,那么在体内有酶的参与可以合成核酸;所只要食物中不缺乏蛋白质,就不会缺乏核酸;3、叙述胆色素的正常代谢过程;可用简图表示;4、请用图说明胰高血糖素进行细胞信号传导的具体途径;5、什么是竞争性抑制剂举例说明竞争性抑制剂在医药上十分重要;有些抑制剂与酶底物结构相似,可与底物竞争酶的活性中心,从而阻碍酶和底物结合生成中间产物;这种抑制作用成为竞争一直作用;对磺胺类药物敏感的细菌在生长繁殖时,不能直接利用环境的叶酸,而在菌体酶催化下,以对氨基苯甲酸为底物合成二氢叶酸;而磺胺类药物的化学结构与对氨基苯甲酸相似,是二氢叶酸合成酶的竞争性抑制剂抑制二氢叶酸合成;细菌以生长繁殖受阻,人类能直接利用叶酸,所磺胺类药物不影响人类核酸的合成;6、酮体是如何产生的酮体的产生利用有何意义①图②酮体在肝外组织生成心、肾、脑、骨骼肌意义:是肝输出能源的一种形式,是机脑组织尤其是脑组织的重要形式,有利于维持血糖水平恒定,节省蛋白质的消耗;7、什么是酶原和酶原激活,其生理意义如何有些酶在细胞分泌合成或初分泌,或在其发挥催化功能前只是酶的无话性亲体,称酶原;酶原向酶的转化过程称为酶原激活;意义:①消化管内蛋白酶以酶原形式分泌,不仅保护消化器官本身不受酶的水解破坏,而且保证酶在其特定的部位与环境发挥其催化作用;②酶原还可以视为酶的储存形式,如凝血和纤溶蛋白溶解酶类似酶原形式在血液循环中运行,一旦需要便不失时机地转化为有活性酶,发挥其对机体的保护作用;8、脑组织中谷氨酸若转变成尿素的主要代谢过程如何可用简图表示并说明其生理意义; 通过谷氨酰胺把谷氨酸运至肝或肾;谷氨酸在肝或肾内通过L-谷氨酸脱氢酶催化脱去氨基;脱下的氨基通过鸟氨酸循环形成尿素;图:略意义:解除氨的毒性;9、试说明体内谷氨酸转变为葡萄糖的过程;①丙酮酸经丙酮酸羟化支路,变为磷酸烯醇式丙酮酸;②1,6-二磷酸果糖转变为6-磷酸果糖;③6-磷酸葡萄糖水解为葡萄糖;10、简述肝如何调节血糖浓度;11、给动物以丙酮酸,它在体内可转变成那些物质并指出转变的代谢途径名称;12、试述糖代谢和脂肪代谢之间的关系;13、说明变构调节概念,并举出两个例子;14、说出RNA的5中功能;①mRNA是蛋白质生物合成的直接模板;②mRNA是氨基酸的运载工具及蛋白质生物合成的适配器;③rRNA与多种蛋白质组成核糖体,参与蛋白质的生物合成;④snmRNA在RNA转录后加工中起重要作用;⑤端体酶RNA与染色体末端的复制有关;也有参与基因表达的调控的RNA;15、说明三种氨基酸在体内的作用,与糖和脂肪作比较,为什么说氨基酸不足是一种好的供能物质①谷氨酸通过谷氨酸脱氢酶的催化生成Y-氢基丁酸是一直性神经递质,对中枢神经有抑制作用;②组氨酸经组氨酸生成5-羟色胺,脑中的5-羟色胺是一种神经递质,具有一直作用,影响传导,同时具有强烈的血管收缩作用;③色氨酸经组氨酸脱羧酶催化生成组胺是一种血管收缩剂,可以增加毛细血管的通透性;糖和脂肪的分解产物在体内的生理作用除供能作用以外,没有很大的作用,而氨基酸的生理作用很大,对全身各大系统器官的影响很大,如果缺少它,机体不能有序运转,且一种都不能缺,而糖和脂肪的影响没有那么大,所氨基酸不是一种好的供能物质;16、细胞内cAMP是如何生成的17、说明氢键在生物大分子蛋白质和核酸结构中的作用;氢键是蛋白质二级,三级,四级即高级结构中的结合力,使之形成与稳定,氢键又是维持DNA双螺旋结构的稳定的因素之一;18、说出氢键的三种功能或作用;①氢键是蛋白质二级,三级,四级即高级结构中的结合力,维持蛋白质的稳定;②是维持DNA双螺旋结构稳定的因素之一;③由于氢键的作用,NH3、H2O和HF具有反常高的熔点和沸点;19、说明共价调节概念和变构调节概念,并各举出1个例子;内源、外源性小分子化合物作为变构效应剂可与蛋白质分子活性中心;例子:①果糖2,6-二磷酸FBP对6-磷酸果糖激酶的变构激活或聚解;②原聚体与多聚体相互转化从而引起酶的活性改变,如乙酰CoA羧化酸21、说明转氨基概念,写出转氨基的结构反式,并举出两个转氨基的例子;在转氨基酶的催化下,可逆地把α-氨基酸的氨基转移给α-酮酸,结果是氨基酸脱去氨基生成相应的α-酮酸,而原来的α-酮酸则转变成另一种氨基酸;例子:略22、说明非竞争抑制的概念和变构调节的概念,并与结构调节作比较,指出两者的相似之处;23、试计算1个葡萄糖分子彻底氧化产生几个ATP分子,必须给出计算过程,必须同时说明底物水平磷酸化和氧化磷酸化各产生几个ATP。

生物化学重点

生物化学重点

生物化学重点第一章绪论1.生物化学的定义生物化学是研究生命体化学组成及化学变化规律的一门科学。

2.生物体的化学组成生物体的化学组成有水分、盐类、碳氢化合物等。

其中的碳氢化合物包括糖类、脂类、蛋白质、核酸及维生素,激素等。

3.生物化学发展经历了哪些阶段生物化学发展经历的三个阶段:1)叙述生物化学阶段,2)动态生物化学阶段,3)机能生物化学阶段。

4.我国现代生化学家最突出的贡献我国近代生物化学主要研究成果:人工合成蛋白质方面1965年,人工合成具有生物活性的蛋白质:结晶牛胰岛素。

1972年,用X光衍射法测定了猪胰岛素分子的空间结构。

1979年12月27日,人工合成酵母丙氨酸转运核糖核酸半分子。

1981年,人工合成酵母丙氨酸转运核糖核酸全分子。

第二章蛋白质构建分子—氨基酸*1.二十种蛋白质标准氨基酸【R 基决定了蛋白质的性质】七种氨基酸(Arg,Lys,His,Asp,Glu,CysandTyr)易形成离子化的侧链*2.蛋白质中的氨基酸都是L-型。

(Gly甘氨酸除外)氨基酸侧链含有.3.20种氨基酸按照酸碱性的分类。

中性氨基酸:包括8种非极性氨基酸和7种非解离的极性氨基酸,共15种。

酸性氨基酸:即天冬氨酸和谷氨酸。

解离后,分子带负电荷。

碱性氨基酸:即赖氨酸、精氨酸和组氨酸。

解离后,分子携带正电荷。

4. 氨基酸的等电点及其实际意义(用途)*等电点:当调节氨基酸溶液的pH值,使氨基酸的氨基与羧基的解离度完全相等时,则氨基酸所带净电荷为0,在电场中既不向阴极移动也不向阳极移动,此时氨基酸所处溶液的pH值称该氨基酸的等电点,即pI值。

意义:由于在等电点时,氨基酸的溶解度最小,易沉淀。

利用这一性质,可以分离制备某些氨基酸。

利用各种氨基酸的等电点不同,可通过电泳法、离子交换法等方法进行混合氨基酸的分离和制备。

实验证明在等电点时,氨基酸主要以两性离子形式存在,但也有少量的而且数量相等的正、负离子形式,还有极少量的中性分子。

生物化学重点

生物化学重点

1.生物化学:是从分子水平研究生物体的化学组成及其在生命活动过程中化学变化的一门学科,又称生命的化学。

2.糖:是一类多羟基醛或多羟基酮及其缩聚物或衍生物的统称。

3.皂化反应:脂肪在碱性条件下水解生成甘油和脂肪酸盐的反应称为皂化反应。

4.皂化值:水解1g脂肪所消耗氢氧化钾的毫克数称为皂化值。

5.氨基酸的等电点:通过向溶液里加酸或加碱,使氨基酸的羧基和氨基的电离倾向相等,即氨基酸呈电中性,此时溶液的pH值称为氨基酸的等电点。

6.肽单元:与肽键相连的6个原子始终处在同一平面上构成刚性的“肽键平面”。

7.蛋白质的一级结构:是指多肽链中氨基酸组成与排列顺序。

8.蛋白质的二级结构:是指蛋白质分子中由于肽键平面的相对旋转构成的局部空间构象。

9.超二级结构:是指2个或3个二级结构肽段在空间上可以进一步聚集和组合在一起,如αα、βββ、βαβ等,又叫模体。

10.蛋白质的三级结构:是指在二级结构上,多肽链中相距较远的侧链通过相互作用进一步盘绕成特定的空间结构,其包括了主链和侧链所有原子的空间排布。

11.分子病:在蛋白质的一级结构中,有时只要有一个氨基酸残基发生改变,也会导致蛋白质功能的改变,从而导致疾病的发生,这种由于蛋白质分子中的氨基酸变异或缺失而产生的疾病称分子病。

12.别构效应:由于蛋白质分子构象的改变而导致蛋白质功能也随之发生改变的现象称为别构效应。

13.协同效应:当一个亚基与其配体结合后,能影响分子中另一亚基与配体的结合能力,称为协同效应。

14.双缩脲反应:凡是2个或2个以上肽键的化合物均能与碱性硫酸铜反应,呈现紫红色,称为双缩脲反应。

15.DNA的一级结构:DNA分子中脱氧(核糖)核苷酸残基的排列顺序。

16.增色效应:DNA变性使其双链解开、碱基对暴露而导致紫外吸收值增高,称为增色效应。

17.核酸分子杂交:不同来源的核酸链如果存在互补碱基序列则易形成互补杂交双链,这一过程称为核酸分子杂交。

18.别构调节:某些小分子物质能与酶分子活性中心以外的某一部位特异结合,引起酶蛋白空间构象变化,从而改变酶活性,这种调节称为酶的别构调节。

生物化学考试重点笔记(完整版)

生物化学考试重点笔记(完整版)

第一章蛋白质的结构与功能第一节蛋白质的分子组成一、组成蛋白质的元素1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。

2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。

3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮克数×6.25×100二、氨基酸——组成蛋白质的基本单位(一)氨基酸的分类1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2):天冬氨酸(Asp ) 谷氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg) 组氨酸( His)(二)氨基酸的理化性质1. 两性解离及等电点等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。

此时溶液的pH值称为该氨基酸的等电点。

2. 紫外吸收(1)色氨酸、酪氨酸的最大吸收峰在280 nm 附近。

(2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。

3. 茚三酮反应氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。

由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法三、肽(一)肽1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。

2、肽是由氨基酸通过肽键缩合而形成的化合物。

生物化学重点的重点

生物化学重点的重点

名词解释:1必须氨基酸:指人(脊椎动物)自己不能合成需要的氨基酸,只能从事物中获取的氨基酸。

2非必需氨基酸:指人自己能由简单的前体合成不需要从食物中获取的氨基酸。

3狭义酸碱催化:在水溶液中通过高反应性的质子和氢离子进行的催化。

4广义酸碱催化:在水溶液中,通过氢离子和氢氧根或者能提供氢离子和氢氧根的供体进行的催化5等离子点:在某一PH值,溶液所带正电荷和负电荷q恰好相等,即静电荷为零。

6盐溶:低浓度的中性盐可以增加蛋白质的溶解度的现象。

7盐析:高浓度的中性盐可以使蛋白质从溶液中析出来的现象。

8同工酶:催化相同的化学反应,但是蛋白质分子结构,理化性质和生化性质催在差异的酶9多酶体系:由多种酶以非共价键结合成的体系成为多酶体系。

10单体酶:由一条肽链构成的酶称为单体酶。

11寡聚酶:由多条肽链以非共价键结合而成的酶成为寡聚酶。

12活性中心:酶分子可以直接和底物结合,并可以催化底物形成过滤态,进而生成底物,与酶活力直接相关的区域称为活性中心,或者活性部位。

13半衰期:由二分之一底物变成二分之一产物所用的时间。

14序列反应:底物和酶结合和产物释放有一定顺序,产物不能在底物完全结合前释放的反应叫做序列反应。

15有序反应:底物有序结合在酶上的反应。

16随机反应:两底物随机与酶结合的反应成为随机反应。

17乒乓反应:所有底物都与酶结合前,就释放产物的基因转移反应。

18抑制作用:使酶的活性降低或者丧失,但不引起蛋白质变性的作用。

19抑制剂:能够引起抑制作用的化合物。

20竞争性抑制作用:通过增加底物的浓度可以逆转的一种酶抑制类型。

竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。

这种抑制使Km增大Vm不变。

21非竞争抑制作用:抑制剂不仅与有利酶结合,也可以与酶---底物复合物结合的一种酶促反应抑制作用,这种抑制作用可以使Km不变而Vm减小。

22反竞争抑制作用:抑制剂只能结合与底物结合过的酶的结合的反应抑制作用。

(完整版)生物化学重点总结

(完整版)生物化学重点总结

第一章蛋白质的结构与功能一、名词解释肽键:一个氨基酸的a—-羧基与另一个氨基酸的a--氨基脱水缩合所形成的结合键,称为肽键。

等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。

蛋白质的一级结构:是指多肽链中氨基酸的排列顺序。

三、填空题1,组成体内蛋白质的氨基酸有20种,根据氨基酸侧链(R)的结构和理化性质可分为①非极性侧链氨基酸;②极性中性侧链氨基酸:;③碱性氨基酸:赖氨酸、精氨酸、组氨酸;④酸性氨基酸:天冬氨酸、谷氨酸. 3,紫外吸收法(280 nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子含有色氨酸,苯丙氨酸,或酪氨酸。

5,蛋白质结构中主键称为肽键,次级键有氢键、离子键、疏水作用键、范德华力、二硫键等,次级键中属于共价键的有范德华力、二硫键第二章核酸的结构与功能一、名词解释DNA的一级结构:核酸分子中核苷酸从5’-末端到3’-末端的排列顺序即碱基排列顺序称为核酸的一级结构.DNA双螺旋结构:两条反向平行DNA链通过碱基互补配对的原则所形成的右手双螺旋结构称为DNA的二级机构.三、填空题1,核酸可分为 DNA 和 RNA 两大类,前者主要存在于真核细胞的细胞核和原核细胞拟核部位,后者主要存在于细胞的细胞质部位2,构成核酸的基本单位是核苷酸,由戊糖、含氮碱基和磷酸 3个部分组成6,RNA中常见的碱基有腺嘌呤、鸟嘌呤,尿嘧啶和胞嘧啶7,DNA常见的碱基有腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶四、简答题1,DNA与RNA 一级结构和二级结构有何异同?4,叙述DNA双螺旋结构模式的要点.DNA双螺旋结构模型的要点是:1,DNA是一平行反向的双链结构,脱氧核糖基和磷酸骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相交接触。

腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键(A=T),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(G≡C),碱基平面与线性分子的长轴相垂直。

一条链的走向是5’→3',另一条链的走向就一定是3’→5’;2,DNA是一右手螺旋结构;3,DNA双螺旋结构稳定的维系横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。

生物化学复习重点

生物化学复习重点

生物化学复习重点第二章糖类化学一、名词解释糖:糖俗称碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。

补充知识:糖主要可分为以下四大类:① 单糖:葡萄糖、果糖② 寡糖:二糖、三糖等③ 多糖:淀粉、糖原、纤维素④ 结合糖:糖与非糖物质的结合物糖脂:是糖与脂类的结合物。

糖蛋白:是寡糖链与蛋白质的结合物,以蛋白质为主,其性质更接近蛋白质。

蛋白聚糖:又称为粘蛋白、粘多糖, 是由糖胺聚糖与多肽链共价相连构成的分子,其性质与多糖更为接近。

第三章蛋白质一、名词解释蛋白质一级结构:多肽链中氨基酸的排列顺序。

主要化学键:肽键★ ;二硫键也属于一级结构的研究范畴。

肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键称为肽键,新生成的物质称为肽。

亚基:具有四级结构的蛋白质中,每一条具有独立三级结构的多肽链为亚基。

亚基之间的结合力主要是氢键和离子键。

必需氨基酸:不能在体内合成,必需由食物提供的氨基酸称为必需氨基酸,包括赖、色、苯丙、甲硫(蛋)、苏、亮、异亮和缬氨酸等8 种。

(记忆口诀:假设来写一本书)氨基酸的等电点:在一定pH 值的溶液中,氨基酸分子所带正、负电荷相等,此时溶液的pH值称为氨基酸的等电点(pI)。

通过改变溶液的pH 可使氨基酸分子中弱碱性或弱酸性基团的解离状态发生改变(这种改变是可逆的)。

蛋白质变性:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失的现象。

*变性的本质:非共价键和二硫键被破坏,蛋白质的一级结构不发生改变。

*变性的理化因素---如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等。

*蛋白质变性后的性质改变:溶解度降低、粘度增加、结晶能力消失、生物活性丧失及易受蛋白酶水解。

*应用举例:1、应用变性因素进行消毒与灭菌。

2、预防蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。

蛋白质的复性---蛋白质变性的可逆性*蛋白质变性后,绝大多数情况下是不能复性的;*如变性程度浅,蛋白质分子的构象未被严重破坏;或者蛋白质具有特殊的分子结构,并经特殊处理去除变性因素后,则可以复性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下列过程分别发生在哪些亚细胞结构内完成:a.糖酵解:胞浆 b.丙酮酸氧化脱羧:线粒体 c.TCA:线粒体 d.氧化磷酸化:线粒体内膜 e.糖异生:肝、肾细胞的胞浆及线粒体 f.磷酸戊糖途径(己糖磷酸支路):胞液g.脂肪酸的β氧化:胞质溶液和线粒体h.16碳的软脂酸合成:胞浆 i.尿素循环中的氨甲基磷酸合成:线粒体 j.鸟氨酸循环中的精氨酸合成:胞浆(除Gly之外,其余蛋白氨基酸都具有手性碳原子,都有旋光性。

AA同时具有两性,氨基酸性,羧基碱性。

凯氏定氮法:粗蛋白质含量=蛋白氮×6.25在等电点时,AA溶解度最小。

蛋白质功能直接由其高级结构(构象)决定。

蛋白质的一级结构决定高级结构(构象),因此最终决定了蛋白质的功能。

)合成代谢(同化作用):指生物体从外界摄取物质,并把它们转变成自身物质的过程。

通常是将生物小分子合成为生物大分子。

需要能量。

分解代谢(异化作用):指生物体内原有的物质经一系列变化最终变成排泄物排出体外的过程。

通常将生物大分子分解为生物小分子。

放出能量。

合成氨基酸的主要途径:1. α—酮酸还原氨化2. 转氨作用3.氨基酸的相互转化电子传递链又称呼吸链:代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶。

电子传递有严格顺序,只能从氧化还原势较低的载体传递到氧化还原势较高的载体。

Km等于酶促反应速度达最大值一半时的底物浓度。

Km是酶的特征常数,经常表示酶与底物的亲和力。

Km值越大,亲和力越小。

米氏常数: Km的值是当反应速度为最大反应速度的一半时所对应的底物浓度。

所以Km的单位为浓度单位(1 )Km是酶的一个特征性常数,只与酶的性质有关,与酶的浓度无关(2 )如酶能催化几种不同的底物,对每种底物都有一个特定的Km 值,其中Km 值最小的称该酶的最适底物。

(3 )Km除了与底物类别有关,还与pH、温度有关,所以Km是一个物理常数,是对一定的底物、一定的pH、一定的温度而言的。

(4 )当k2 >>k3,Km可表示酶和底物的亲和力,Km值越大,亲和力越小。

酶的比活力:每毫克蛋白质中含有的酶单位数(U/mg)比活力=活力U/mg蛋白=总活力U/总蛋白数mg 代表酶的纯度:比活力愈大,纯度愈高。

纯化倍数=每次比活力/第一次比活力回收率(产率)=(每次总活力/每一次总活力)×100%底物浓度对反应速度的影响:底物越多,速度越快。

米氏方程: v=V max·[S]/(K m+[S])酶浓度对反应速度的影响:速度与浓度成正比。

温度对反应速度的影响:随着温度的升高,反应速度会加快。

随着温度的升高,酶蛋白会失活,使反应速度下降Ph对反应速度的影响:在最适pH 条件下,酶活性最高,即酶反应速率最大。

低于或高于最适pH 值,酶反应速率均会下降。

抑制剂对反应速度的影响:某些抑制剂的化学结构与底物相似,与底物竞争酶的活性中心并与之结合,从而减少了酶与底物的结合,因而降低酶反应速度。

这种作用称为竞争性抑制作用。

温度、Ph不是特征性常数。

必需氨基酸有:赖氨酸Lys,色氨酸Trp,苯丙氨酸Phe,四硫氨酸Met,苏氨酸Thr,亮氨酸Leu,异亮氨酸Ile,缬氨酸Val。

(半必需AA:精氨酸Arg,组氨酸His)20种氨基酸:甘氨酸Gly , 丙氨酸Ala , 缬氨酸Val , 亮氨酸Leu , 异亮氨酸Ile , 丝氨酸Ser , 苏氨酸Thr , 半胱氨酸Cys , 甲硫氨酸(蛋氨酸)Met , 天冬氨酸Asp , 谷氨酸Glu , 天冬酰胺Asn , 谷氨酰胺Gln , 赖氨酸Lys , 精氨酸Arg , 苯丙氨酸Phe , 酪氨酸Tyr , 组氨酸His , 色氨酸Trp , 脯氨酸Pro催化作用高效专一地催化机体内几乎所有的反应酶运输作用专一运输各种小分子和离子如血红蛋白调节作用调节机体代谢活动如胰岛素、钙调蛋白、阻遏蛋白运动作用负责机体的运动如肌动蛋白、肌球蛋白防御作用防御异体侵入机体如免疫球蛋白、病毒外壳蛋白营养作用作为氨基酸的贮库,用于生长发育所需或某些物质与蛋白质结合而被贮存如卵清蛋白、酪蛋白、麦醇溶蛋白、铁蛋白结构蛋白作为构建机体某部分的材料如a-角蛋白、胶原蛋白同工酶:同一个体的不同组织或同一组织、同一细胞,具有不同分子形成但却能催化相同的化学反应的一组酶,称之为同工酶。

催化活性相同而酶蛋白的分子结构,理化性质及免疫学性质不同酶原的激活:活体内合成出来的酶,有时不具有生物活性,经过蛋白水解酶专一作用后,构象发生变化,形成活性中心,变成有活性的酶。

这个不具活性的蛋白质称为酶原,这个过程称为酶原的激活。

酶原的激活实际上是酶的活性中心形成或暴露的过程,该过程不可逆。

蛋白质的结构及与功能的关系:<1>每一种蛋白质都具有特定的结构,也具有特定的功能。

<2>蛋白质的结构决定了蛋白质的功能。

<3>蛋白质的功能直接由其高级结构(构象)决定。

如蛋白质的变性现象。

<4>蛋白质的一级结构决定高级结构(构象),因此,最终决定了蛋白质的功能。

蛋白质的分离纯化的技术原理及方法:纯化方法的依据:蛋白质的基本性质,如:1)溶解性:盐析等2)分子大小和形状:凝胶过滤(分子筛过滤),透析,超离心,超滤等3)电荷(酸碱性质):电泳,离子交换层析,等电聚焦等4)吸附性质:吸附层析,疏水互作层析5)特异生物学亲和力:亲和层析(1)根据蛋白质分子大小不同的分离方法:a.透析和超滤b. 超速离心c.凝胶过滤(2)根据蛋白质溶解度的差异进行分离的方法:a.等电点沉淀 b.盐溶、盐析 c.丙酮沉淀 d.重金属盐沉淀:(3)根据蛋白质电荷不同的分离方法:a.电泳b.离子交换层析盐析,是应用中性盐加入蛋白质溶液,破坏蛋白质的水化膜,使蛋白质聚集而沉淀;透析,是利用仅能通透小分子化合物的半透膜,使大分子蛋白质和小分子化合物分离,达到浓缩蛋白质或去除盐类小分子的目的;超离心,在离心力作用下,可沉降,由于蛋白质其密度与形态各不相同,可将不同密度的蛋白质加以分离;电泳,在一定的PH溶液中带电荷,为带电颗粒,在电场中向相反的电极方向泳顽固,由于蛋白质的质量和电荷量不同,其在电场中的泳动速率也不同,分离成泳动速率快慢不等的条带;离子交换层析,与层析柱内离子交换树脂颗粒表面的相反电荷相吸引,用盐溶液洗脱,带电量小的蛋白质先被洗脱,随着盐浓度增加,带电量多的也被洗脱,分部收集洗脱蛋白质溶液;分子筛层析,根据蛋白质颗粒大小而进行分离的方法,不同分子量蛋白质在层析柱内的滞留时间不同,流出层析柱的先后不同,可将蛋白质按分子量大小而分离。

酶的概念:酶是由活细胞产生的、具有催化功能的生物大分子。

酶的分类与命名: 正确的底物名称(包括构型),反应性质和一个酶字。

1.氧化还原酶类2.转移酶类3.水解酶类4.裂解酶类5.异构酶类 6.合成酶类。

DNA的双螺旋结构:由两条反向平等的多核苷酸链围绕同一个中心轴形成的右手螺旋。

脱氧核糖和磷酸间隔排列构成螺旋骨架,碱基位于螺旋是内侧;碱基间有严格的配对关系并通过氢键相连,即A与T之间形成两个氢键,G与C之间形成三个氢键。

每两个碱基处于同一平面,此平面与螺旋的中心轴垂直;螺旋直径为2.0nm,螺距为3.4nm,每旋转一周含10个碱基对,相邻的碱基平面之间为0.34nm,双螺旋表面有深沟和浅沟(大沟和小沟)。

深沟是蛋白质识别DNA碱基序列的基础;碱基之间的氢键维持双螺旋结构的横向稳定,碱基平面间的疏水性堆积力维持纵向稳定。

mRNA的结构与功能:5′-帽子5′-非密码区密码区3′-非密码区5′-cap的功能:(1) 防止mRNA被核酸酶降解。

(2) 为mRNA翻译活性所必需。

(3) 与蛋白质合成的正确起始有关。

polyA的功能: (1) 保护mRNA,免受核酸外切酶的作用。

(2) 与翻译有关,没有polyA翻译活性降低。

(3) 与mRNA从细胞核转移到细胞质有关。

DNA的复性与分子杂交: 是指变性核酸在适当的条件下,两条多核苷酸链重新缔合成为双螺旋结构,核酸的理化性质和生物功能得到全部或部分恢复的过程。

杂化双链可以在不同的DNA与DNA之间形成,也可以在DNA和RNA分子间或者RNA与RNA分子间形成。

这种现象称为核酸分子杂交。

竞争性抑制的特点:·竞争性抑制剂往往是酶的底物类似物或反应产物。

·抑制剂与酶的结合部位与底物与酶的结合部位相同。

·抑制剂浓度越大,则则抑制作用越大;但增加底物浓度可使抑制程度减小。

·动力参数:Km值增大,Vm值不变。

反竞争性抑制的特点:·反竞争性抑制剂的化学结构不一定与底物的分子结构类似;·抑制剂与底物可同时与酶的不同部位结合;·必须有底物存在,抑制剂才能对酶产生抑制作用,抑制程度随底物浓度的增加而增加;·动力学参数:Km减小,Vm降低。

非竞争性抑制的特点:·非竞争性性抑制剂的化学结构不一定与底物的分子结构类似。

·底物和抑制剂分别独立地与酶的不同部位相结合。

·抑制剂对酶与底物的结合无影响,故底物浓度的改变对抑制程度无影响。

·动力学参数:Km值不变,Vm值降低。

磺胺药物及其作用机理:是最早发现也是最常见的化学疗剂。

磺胺类药物及其作用机理:磺胺类药物可以抑制细菌的生长繁殖,治疗细菌引起的各种疾病。

磺胺类药物是对氨基苯磺酰胺或其衍生生物,它是对氨基苯甲酸的结构类似物,竞争性抑制二氢叶酸合成酶。

动物体内的叶酸可以食物中获取,细菌体内的叶酸只能在二氢叶酸合成酶作用下,利用对氨基苯甲酸合成。

如果动物体内含有大量的对氨基苯磺酰胺,可与对氨基苯甲酸竞争二氢叶酸合成酶的活动中心,抑制细菌二氢叶酸的合成。

酶的调节:降低活化能。

别构酶的特征:a.调节部位可以与调节剂相结合,使酶构象发生改变,从而改变酶的催化能力。

b.其酶促反应动力学不符合米氏方程,酶促反应曲线为S型(正协同)或双曲(负协同)别构酶对酶促反应影响的因粗线条及绘图分析。

辅酶:与蛋白酶结构疏松,可用透析或超滤方法除去。

辅基:与蛋白酶结构紧密,不能用透析或超滤方法除去。

传递电子维生素A:(视黄醇、抗干眼病维生素):夜盲症、干眼病、生长停滞和不育。

头痛、恶心腹泻、肝脾大;孕妇:胎儿畸形。

维生素D:(抗佝偻病维生素、钙化醇):佝偻病、软骨病维生素E:(生育酚、抗不育症维生素):抗氧化作用:保持E-SH不被氧化,从而保持酶活性;可使细胞膜上不饱和脂肪酸免于氧化而被破坏,可防止细胞破裂溶血,血延长红细胞寿命。

抗衰老、抗动物不育症、促进血红素合成。

维生素K:(凝血维生素):凝血因子合成障碍。

相关文档
最新文档