2006年重庆市数学中考试题及答案

合集下载

中考数学试卷2006-课标卷答案

中考数学试卷2006-课标卷答案

2006年北京市高级中等学校招生统一考试(课标A 卷)数学试卷参考答案一、选择题1.A2.C3.A4.D5.B6.C7.D8.B二、填空题9.m ≤94 10.211.10 2612.30三、解答题13.解:12320061201+---+-||()() =+-+=+2331213314.解不等式组315260x x -<+>⎧⎨⎩,①②解:由不等式①解得x <2由不等式②解得 x >-3则不等式组的解集为 -<<32x15.解:()()()()x x x x x ++-=+-121211x x x x ++-=-1222222x =3经检验x =3是原方程的解。

所以原方程的解是x =316.证明:因为AB ∥ED ,则∠A =∠D又AF =DC则AC =DF在△ABC 与△DEF 中 AB DE A D AC DF ==⎧⎨⎪⎩⎪∠=∠所以△ABC ≌△DEF所以BC =EF17.解:x x x x x ()()2259-+-- =-+--=-x x x x x 322325949当230x -=时,原式=-=+-=49232302x x x ()()18.解:如图,过点D 作DF ∥AB 交BC 于点F因为AD ∥BC所以四边形ABFD 是平行四边形所以BF =AD =1由DF ∥AB得∠DFC =∠ABC =90°在Rt △DFC 中,∠C =45°,CD =22由 cos C CFCD =求得 CF =2所以 BC =BF +FC =3在△BEC 中,∠BEC =90°s i n C BEBC =求得 BE =322四、解答题19.解:(1)证明:如图,连结OA 。

因为sin B =12所以 ∠B =30°故∠O =60°又OA =OC ,所以△ACO 是等边三角形故∠OAC =60°因为∠CAD =30°所以∠OAD =90°所以 AD 是⊙O 的切线。

2006-2009年重庆中考数学试题及答案

2006-2009年重庆中考数学试题及答案

重庆市2009年初中毕业暨高中招生考试数 学 试 卷参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(ab ac a b --,对称轴公式为abx 2-=一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。

1.-5的相反数是( )A .5B .5-C .51D .51- 2.计算232x x ÷的结果是( )A .xB .x 2C .52x D .62x3.函数31+=x y 的自变量取值范围是( ) A .3->x B .3-<x C .3-≠x D .3-≥x 4.如图,直线CD AB 、相交于点E ,AB DF //,若︒=∠100AEC ,则D ∠等于( )A .70ºB .80ºC .90ºD .100º 5.下列调查中,适宜采用全面调查(普查)方式的是( ) A .调查一批新型节能灯泡的使用寿命B .调查长江流域的水污染情况C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查6.如图,⊙O 是ABC ∆的外接圆,AB 是直径,若︒=∠80BOC ,则A ∠等于( ) A .60º B .50º C .40ºD .30º7.由四个大小相同的正方体组成的集合体如图所示,那么它的左视图是()A BC D8.观察下列图形,则第n 个图形中三角形的个数是( )E F D CBA O CB A第1个第2个第3个……A.22+n B.44+n C.44-n D.n49.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致是()A B C D10.如图,在等腰Rt△ABC中,∠C=90º,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连接DE、DF、EF。

2006年重庆初中毕业生学业暨高中招生考试

2006年重庆初中毕业生学业暨高中招生考试

2006年重庆市初中毕业生学业暨高中招生考试物理试卷(全卷共四个大题满分:100分考试时间:75分钟)注意:凡在同一题号下注有“课改实验区学生做”的题目供课改实验区考生做,注有“非课改实验区学生做”的题目供非课改实验区考生做,没有注明的题目供所有考生做。

一、选择题(本题共10个小题,每小题3分,共30分。

每小题给出的四个选项中,只有一个正确选项,选对的给3分)1. (非课改实验区学生做)在国际单位制中,功这个物理量的单位是()A.焦耳 B.牛顿 C.瓦特 D.帕斯卡(课改实验区学生做)下列器物与电磁波的应用有关的是( )A.无线电收音机 B.磁悬浮列车 C.电磁起重机 D.交流发电机2. (非课改实验区学生做)关于下列装置工作时发生能量转化的说法中,正确的是( )A.汽油机将机械能转化为内能 B.发电机将电能转化为机械能C.电动机将机械能转化为电能 D.干电池将化学能转化为电能(课改实验区学生做)自然界存在多种能为人类提供生活、生产所需能量的能源.在下列几组能源中,其中属于可再生能源的一组是( )A.水能、石油、核燃料 B.风能、煤炭、天然气C.煤炭、石油、天然气 D.风能、水能、太阳能3.日常生活中,惯性现象既有利,也有弊.以下属于利用惯性“有利”的一面是( ) A.赛车在转弯时滑出赛道 B.高速路上汽车限速行驶C.巳跳远运动员跳远时助跑 D.人踩到西瓜皮上会滑倒4.在图1所示的四个现象中,能用光的折射规律解释的是( )A.放大的字 B.水中倒影 C.手影 D.森林中的太阳光5.控制噪声是城市环保的主要项目之一,下列措施中不能..减弱噪声的是( ) A.机动车辆在市内严禁鸣笛 B.在城市街道两旁种草植树C.汽车排气管上安装消声器 D.控制汽车尾气的排放指标6.下列说法中正确的是( )A.物体在发生物态变化时都要吸热 B.热量总是自发地从高温物体传给低温物体C.物质的比热容与物体的质量有关 D.0℃的水结成0℃的冰时,其内能将要增加7.随着人们生活水平的逐步提高,家用电器的不断增多,在家庭电路中,下列说法正确的是( )A.灯与控制它的开关是并联的,与插座是串联的B.使用测电笔时,不能用手接触到笔尾的金属体C.电路中电流过大的原因之一是使用的电器总功率过大D.增加大功率用电器时,只需换上足够粗的保险丝即可8.把凸透镜正对太阳光,可在距凸透镜10 cm处得到一个最小最亮的光斑.若用此透镜来观察邮票上较小的图案,则邮票到透镜的距离应( )A.大于10 cm B.小于10cmC.大于20cm D.在10cm和20cm之间9.下列几种估测中,比较符合实际情况的是( )A.教室内天花板离地面的高度约为8 m B.60W照明电灯正常工作时的电流是1 A C.中学生正常步行时的速度是10m/s D.演奏中华人民共和国国歌用时约50s 10.物理研究中常常用到“控制变量法”、“等效替代法”、“理想化模型”、“类比法”等科学方法。

2006年中考全真模拟试卷参考答案-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-

2006年中考全真模拟试卷参考答案-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-

2006年中考全真模拟试卷参考答案-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-试卷下载---------------------------------------2006年中考全真模拟试卷(一)参考答案一、选择题题号123456789101112答案BACABDDDBCCB二、填空题13、2.4×101114、略(所举事件应在抛两枚骰子的情境下,且不应出现“不可能”等判断性词语)15、2016、∠ACE的度数和线段BD的长17、9018、17元三、解答下列各题19、原式====当x=时原式=20、∠如图见右图∠四边形OCED为菱形证明:∠DE∠OC,CE∠OD∠四边形OCED为平行四边形∠四边形ABCD为矩形∠AC=BD,OA=OC=1/2AC,OB=OD=1/2BD∠OC=OD(2分)∠四边形OCED为平行四边形且OC=OD∠四边形OCED为菱形21、∠68%,74%,78%,69%,70.5%,70.1%∠当n很大时,频率将会接近70%∠获得可乐的概率为30%,圆心角约为360&ordm;×30%=108&ordm;∠模拟实验方案:在一不透明口袋内放置红球3个、蓝球7个,搅均后从中随机摸出一个球,摸出红球获得可乐,摸出蓝球获得铅笔. (本方案仅供参考,其他方案酌情加分)22、∠直线BE垂直平分线段AC;C为BD中点(或C为半圆圆心),点A放在角的一边上,角的另一边与半圆相切,BE经过角的顶点.∠∠BE垂直平分AC∠EA=EC∠EA=EC且EB∠AC∠∠AEB=∠BEC∠EF为半圆切线∠CF∠EF∠CB∠EB,CF∠EF且CB=CF∠∠BEC=∠CEF∠∠AEB=∠BEC=∠CEF23、∠设抛物线解析式为y=a(x-14)2+32/3∠经过点M(30,0)∠a=-1/24∠y=-1/24(x-14)2+32/3当x=0时y=5/2∠y=2.5>2.44∠球不会进球门∠当x=2时,y=14/3∠y=14/3>2.75∠守门员不能在空中截住这次吊射.24、图形不唯一,符合要求即可.25、∠5n+21-8(n-1)>05n+21-8(n-1)<5解得8<n<29/3∠n为整数∠n=9∠物资总吨数=5×9+21=66吨∠设载重量5吨的汽车辆数为x, 载重量8吨的汽车辆数为y, 则5x+8y=66,200x+300y=2600解得x=10y=2∠载重量5吨的汽车10辆, 载重量8吨的汽车2辆.∠设汽车总辆数为y,载重量5吨的汽车辆数为x(x≥0)则y=x+(66-5x)/8=(3x+66)/8由函数解析式知当x最小且使3x+66为8的倍数时y最小∠当x最小=2时y最小=926、(1) (2) D(3) 符合条件的点M存在, 或2006年中考全真模拟试卷(二)参考答案一、选择题题号123456789101112答案BCCABACCCDBA二、填空题13、x≥314、a=12或-12, b为一个完全平方数15、略(形式为y=,k<0)16、∠A=∠D或∠ABC=∠DCB或AC=DB17、内切18、20三、解答下列各题19、因为原式=0与x的取值无关.所以x=2004错抄成x=2040不影响结果.20、四边形AEBC为平行四边形, 证明略.21、(1)由中位数可知,8 5分排在第2 5位以后,从位次讲不能说8 5分是上游;但也不能单纯以位次来判定学习的好差,小刚得8 5分,说明他对这阶段的学习内容掌握较好,从掌握学习内容讲也可以说属于上游.(2)初三(1)班成绩的中位数为8 7分,说明高于8 7分的人数占一半以上,而均分为7 9分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习困难者的帮助.初三(2)班成绩的中位数和均分都为7 9分,标准差又小,说明学生之间差别较小,学习很差的学生少,但学习优异的学生也少,建议采取措施提高优生率.22、(1)A(1,0),B(0,2)易证∠ADC∠∠BOA得AD=OB=2(2)易得抛物线对称轴为直线x=2∠设抛物线解析式为y=a(x-2)2 +k∠过点A(1,0)、B(0,2)∠a+k=0 ,4a+k=2∠a=,k=-,解析式为y=(x-2)2-23、(1) 树状图如下:列表如下:有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E).(2) 因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是(3) 由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得经检验不符合题意,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为x,y台,根据题意,得解得所以希望中学购买了7台A型号电脑.24、∠同学乙的方案较为合理,因为相似的等腰三角形底角和顶角大小不变, 保证了相似三角形的“正度”相等;而同学甲的方案不能保证相似三角形的“正度”相等.∠同学甲的方案可修改为:用式子来表示“正度”,的值越小,表示等腰三角形越接近正三角形(仅供参考, 方案合理即可);∠用式子、、、来表示“正度”,“正度”的值越小,表示等腰三角形越接近正三角形(仅供参考,方案合理即可).25、(1)设存水量y与放水时间x的解析式为y=kx+b把(2,17)、(12,8)代入y=kx+b得解得k=-,b=y=-x+(2≤x≤)(2)由图可得每个同学接水量是0.25升,则前22个同学需接水0.25×22=5.5升存水量y=18-5.5=12.5升∠12.5=-x+∠x=7∠前22个同学接水共需7分钟.(3)当x=10时存水量y=-×10+= ,用去水18-=8.2升8.2÷0.25=32.8∠课间10分钟最多有32人及时接完水.或设课间10分钟最多有z人及时接完水,由题意可得0.25z≤8.2z≤32.826、(1),(2)不变,(3)(),(3)存在,30°、90°、133.2°或346.8°2006年中考全真模拟试卷(三)参考答案题号123456789101112答案ABBBCCDBDBCB二、填空题:13. x(xy +2)(xy -2)14. 1/515. 3a16.17. 三18.(2,5)或(4,4)19、去分母,得20. 说明:本题共有四个命题,其中命题二、命题三是真命题,命题一、命题四是假命题.命题一:在∠ABC和∠DEF中,B、E、C、F在同一直线上,AB=DE,AC = DF,∠ABC=∠DEF。

重庆市2006年初中毕业生学生升高中招生考试

重庆市2006年初中毕业生学生升高中招生考试

重庆市2006年初中毕业生学业暨高中招生考试数学试卷(全卷共四个大题 满分:150分 考试时间:120分钟)注意:凡同一题号下注有“课改实验区考生做”的题目供课改实验区考生做,注有“非课改实验区考生做”的题目供非课改实验区考生做,没有注明的题目供所有考生做.一、选择题:(本大题10个小题,每小题4分,共40分)每个小题都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号中. 1.3的倒数是( ) A.3-B.3C.13D.13-2.计算232(3)x x -·的结果是( ) A.56x - B.56x C.62x - D.62x3.O e 的半径为4,圆心O 到直线l 的距离为3,则直线l 与O e 的位置关系是( ) A.相交 B.相切 C.相离 D.无法确定4.使分式24xx -有意义的x 的取值范围是( ) A.2x = B.2x ≠ C.2x =- D.2x ≠-5.不等式组2030x x ->⎧⎨-<⎩,的解集是( )A.2x > B.3x < C.23x << D.无解6.如图,O e 的直径CD 过弦EF 的中点G ,40EOD ∠=o,则DCF ∠等于( )A.80o B.50o C.40o D.20o 7.(课改实验区考生做)如图是由几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是( ) A.3 B.4 C.5 D.6(非课改实验区考生做)分式方程1421xx x -=+-的解是() A.17x =,21x = B.17x =,21x =- C.17x =-,21x =-D.17x =-,21x =8.观察市统计局公布的“十五”时期重庆市农村居民年人均收入每年比上年增长率的统计图,下列说法中正确的是( )俯视图左视图主视图7题图6题图OC FGDEA.2003年农村居民年人均收入低于2002年B.农村居民年人均收入每年比上年增长率低于9%的有2年 C.农村居民年人均收入最多的是2004年 D.农村居民年人均收入每年比上年的增长率有大有小,但农村居民年人均收入在持续增加9.免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的某种土特产进行春节期间,这三种不同包装的土特产都销售了12000千克,那么本次销售中,这三种包装的土特产获得利润最大的是( ) A.甲 B.乙 C.丙 D.不能确定 10.(课改实验区考生做)现有A B ,两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x ,小明掷B 立方体朝上的数字为y 来确定点()P x y ,,那么他们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A.118B.112C.19D.16(非课改实验区考生做)已知α,β是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( )A.3或1- B.3 C.1 D.3-或1 二、填空题:(本大题10个小题,每小题3分,共30分)请将正确答案直接填写在题中的横线上.11.重庆市某天最高气温是17℃,最低气温是5℃,那么当天的最大温差是 ℃.12.分解因式:24x -= .(年) 2005 2004 2003 2002 2001 8题图13.如图,已知直线12l l ∥,140∠=o ,那么2∠= 度.14.圆柱的底面周长为2π,高为1,则圆柱侧面展开图的面积为 .15.废旧电池对环境的危害十分巨大,一粒钮扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒钮扣电池,且都没有被回收,那么被该班学生一年丢弃的钮扣电池能污染的水用科学计数法表示为 立方米. 16.(课改实验区考生做)如图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于()x y ,的二元一次方程组y ax b y kx =+⎧⎨=⎩,的解是 .2)-= .17.如图所示,A ,B 是4×5网格中的格点,网格中的每个小正方形的边长都是1.请在图中清晰标出使以A ,B ,C为顶点的三角形是等腰三角形的所有格点C的位置.18.按一定规律排列的一列数依次为:1111112310152635,,,,,……,按此规律排列下去,这列数中的第7个数是 .2 1 13题图 1l 2l 17题图BAx16题图b19.如图,矩形AOCB 的两边OC OA ,分别位于x 轴,y 轴上,点B 的坐标为2053B ⎛⎫- ⎪⎝⎭,,D 是AB 边上的一点.将ADO △沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是 .20.如图,ABC △内接于O e ,A ∠所对弧的度数为120o .ABC ACB ∠∠,的平分线分别交AC AB ,于点D E CE BD,,,相交于点F .以下四个结论:①1cos 2BFE ∠=;②BC BD =;③EF FD =;④2BF DF =.其中结论一定正确的序号数是 .三、解答题(本大题6个小题,共60分)下列各题解答时必须给出必要的演算过程或推理步骤. 21.(每小题5分,共10分) (1)计算:102tan 60(51)3--+-+-o ;(2)解方程组:2328y x y x =⎧⎨+=⎩, ①. ②22.(10分)如图,A D F B ,,,在同一直线上,AD BF =,AE BC =,且AE BC ∥. 求证:(1)AEF BCD △≌△;(2)EF CD ∥.20题图 F DE A C BO 19题图yxE DABCOBCFD AE22题图23.(10分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装一部分玩具,该厂同意他们组装240套玩具.这些玩具分为A B C ,,三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空: (1)从上述统计图可知,A 型玩具有 套,B 型玩具有 套,C 型玩具有 套. (2)若每人组装A 型玩具16套与组装C 型玩具12套所花的时间相同,那么a 的值为 ,每人每小时能组装C 型玩具 套. 24.(10分)农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号稻谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.(1)当Ⅱ号稻谷的国家收购价是多少时,在田间管理、土质和面积相同的两块田里分别 种植Ⅰ号,Ⅱ号稻谷的收益相同?(2)去年小王在土质、面积相同的两块田里分别种植Ⅰ号,Ⅱ号稻谷,且进行了相同的 田间管理.收获后,小王把稻谷全部都卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?25.(10分)如图,在梯形ABCD 中,AB DC ∥,90BCD ∠=o , 且1AB =,2BC =,tan 2ADC ∠=. (1)求证:DC BC =;(2)E 是梯形内一点,F 是梯形外一点,且EDC FBC ∠=∠,DE BF =,试判断ECF △的形状,并证明你的结论;(3)在(2)的条件下,当:1:2BE CE =,135BEC ∠=o 时,求sin BFE ∠的值.C型25%B型A型55%2a -项目 套/小时 23题图26.(10分)机械加工需用油进行润滑以减小摩擦,某企业加工一台大型机械设备润滑用油..量.为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油....量.为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量.....进行攻关. (1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量...下降到70千克,用油的 重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量.....是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量...,同时也提高了用油的重复利用率, 并且发现在技术革新前的基础上,润滑用油量...每减少1千克,用油的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗油量.....下降到12千克.问乙车间技术革新后,加工一台大型机械设备的润滑用油量...是多少千克?用油的重复利用率是多少?四、解答题:(本大题2个小题,共20分)下列各题解答时必须给出必要的演算过程或推理步骤.27.(10分)已知:m ,n 是方程2650x x -+=的两个实数根,且m n <, 抛物线2y x bx c =-++的图象经过点A (0m ,),B (0n ,).(1) 求这个抛物线的解析式;(2) 设(1)中的抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C ,D 的坐标和BCD △的面积;(注:抛物线2y ax bx c =++(0)a ≠的顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,); EB FC DA 25题图(3) P 是线段OC 上的一点,过点P 作PH x ⊥轴,与抛物线交于H 点,若直线BC 把PCH △分成面积之比为2:3的两部分,请求出P 点的坐标.28.(10分)如图281-所示,一张三角形纸片ABC ,ACB ∠90=o ,86AC BC ==,.沿斜边AB 的中线CD 把这张纸片剪成11AC D △和22BC D △两个三角形(如图282-所示).将纸片11AC D △沿直线2D B (AB )方向平移(点12A D D B ,,,始终在同一条直线上),当点1D 与点B 重合时,停止平移.在平移的过程中,11C D 与2BC 交于点E ,1AC 与22C D ,2BC 分别交于点F ,P .(1)当11AC D △平移到如图283-所示的位置时,猜想图中1D E 与2D F 的数量关系,并证明你的猜想;(2)设平移距离21D D 为x ,11AC D △与22BC D △重叠部分的面积为y ,请写出y 与x 的函数关系式,以及自变量x 的取值范围;(3)对于(2)中结论是否存在这样的x ,使得重叠部分面积等于原ABC △纸片面积的14?若存在,请求出x 的值;若不存在,请说明理由.27题图 28-1图28-3图28-2图CB DA 2D2C1C B1D AA1D2D1C。

2006-2008年重庆中考数学试题(附解析)

2006-2008年重庆中考数学试题(附解析)

A二00八年重庆市初中毕业生学业暨高中招生考试数 学 试 卷(本卷共四个大题 满分150分 考试时间120分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2ab ac a b --,对称轴公式为abx 2-=一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案代号填在题后的括号中。

1.2的倒数是( )A.21 B.21- C.21± D.2 2.计算23x x ⋅的结果是( )A.6xB.5xC.2x D.x3.不等式042≥-x 的解集在数轴上表示正确的是( )A B C D 4.数据2,1,0,3,4的平均数是( ) A.0 B.1 C.2 D.35.如图,AB 是⊙O 的直径,点C 在⊙O 上,则∠ACB 的度数为( ) A.30° B.45° C.60° D.90°6.如图是由4个大小相同的正方体搭成的几何体,其主视图是( )7.计算28-的结果是( )A.6B.6C.2D.28.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )-220正面6题图l 2l 1l 321A.2∶3B.4∶9C.2∶3D.3∶29.今年5月12日,四川汶川发生强烈地震后,我市立即抽调骨干医生组成医疗队赶赴灾区 进行抗震救灾。

某医院要从包括张医生在内的4名外科骨干医生中,随机地抽调2名医 生参加抗震救灾医疗队,那么抽调到张医生的概率是( ) A.21 B.31 C.41 D.61 10.如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出 发,以1cm/s 的速度向点C 运动,点N 从点B 同 时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动,则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图像大致是( )二、填空题:(本大题10个小题,每小题3分,共30分)在每小题中,请将答案直接填在题后的横线上.11.方程062=-x 的解为 12.分解因式:=-ay ax13.截止2008年5月28日12时,全国共接受国内外社会各界为地震灾区人民捐赠款物约为3480000万元。

重庆市2001-2012年中考数学试题分类解析专题9:三角形

重庆市2001-2012年中考数学试题分类解析专题9:三角形

一、选择题1. (重庆市2001年4分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是【 】.A .带①去B .带②去C .带③去D .带①和②去2. (重庆市2002年4分)如图,⊙O 为△ABC 的内切圆,∠C=90度,OA 的延长线交BC 于点D ,AC=4,CD=1,则⊙O 的半径等于【 】A54 B45 C43 D65【答案】A 。

【考点】三角形的内切圆与内心,相似三角形的判定和性质。

【分析】设圆O 与AC 的切点为M ,圆的半径为r ,如图,连接OM 。

∵∠C=90°,∴CM=r。

∵△AOM∽△ADC,∴OM:CD=AM :AC ,即r:1=(4-r):4,解得r=45。

故选A。

3. (重庆市2003年4分)如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为【】A.152B.154C.3 D.834. (重庆市2003年4分)如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为【】A.1个 B.2个 C.3个 D.4个5. (重庆市2003年4分)如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=15,则AD 的长是【 】A B .2 C .1 D .6. (重庆市2004年4分)如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射后照射到B 点,若入射角为α (入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α的值为【 】A 、311 B 、113 C 、119 D 、9117. (重庆市2004年4分)秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处踩板离地面2米(左右对称),则该秋千所荡过的圆弧长为【 】A 、π米B 、π2米C 、π34米 D 、π23米8. (重庆市大纲卷2005年4分)如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则DMN S ∆∶ANMES 四边形等于【 】A 、1∶5 B、1∶4 C、2∶5 D、2∶7 【答案】A 。

历年全国中考数学试题及答案(完整详细版)

历年全国中考数学试题及答案(完整详细版)

班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。

历年重庆市初三数学中考真题试题

历年重庆市初三数学中考真题试题

2021年重庆市中考数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣22.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.54.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.B.C.D.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A (2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.4010.(4分)为践行“绿水青山就是某某银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.612.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+()﹣1=.14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的首基落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己首基落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把首基给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲首基的时间忽略不计).则乙回到公司时,甲距公司的路程是米.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2021和2021是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函y=x﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣3|+b≤x﹣3的解集.24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.25.(10分)如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=CM+2CE.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.2021年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣2【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:∵﹣2<﹣1<0<2,∴比﹣1小的数是﹣2,故选:D.【点评】本题考查了有理数的大小比较,注意:正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小.2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.5【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.【点评】此题主要考查了相似三角形的性质,正确得出对应边之间关系是解题关键.4.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°【分析】由切线的性质得出∠BAC=90°,求出∠ABC=40°,由等腰三角形的性质得出∠ODB=∠ABC=40°,再由三角形的外角性质即可得出结果.【解答】解:∵AC是⊙O的切线,∴AB⊥AC,∴∠BAC=90°,∵∠C=50°,∴∠ABC=40°,∵OD=OB,∴∠ODB=∠ABC=40°,∴∠AOD=∠ODB+∠ABC=80°;故选:C.【点评】本题考查了切线的性质,等腰三角形的性质、直角三角形两锐角互余、三角形的外角性质,熟练运用切线的性质是本题的关键.5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【分析】根据矩形的判定方法判断即可.【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题熟练掌握矩形的判定方法是解题的关键.6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.【点评】本题考查了二次根式的乘法和无理数的估算,熟练掌握二次根式的计算法则是关键.7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.B.C.D.【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 【分析】根据题意一一计算即可判断.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.【点评】本题考查代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A (2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.40【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E(x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x﹣2)2+42=x2,求出x,得到E点坐标,代入y=,利用待定系数法求出k.【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20.故选:B.【点评】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E点坐标是解题的关键.10.(4分)为践行“绿水青山就是某某银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米【分析】如图,根据已知条件得到=1:2.4=,设CF=5k,AF=12k,根据勾股定理得到AC==13k=26,求得AF=10,CF=24,得到EF=6+24=30,根据三角函数的定义即可得到结论.【解答】解:如图,∵=1:2.4=,∴设CF=5k,AF=12k,∴AC==13k=26,∴k=2,∴AF=10,CF=24,∵AE=6,∴EF=6+24=30,∵∠DEF=48°,∴tan48°===1.11,∴DF=33.3,∴CD=33.3﹣10=23.3,答:古树CD的高度约为23.3米,故选:C.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6【分析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【解答】解:由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴a≥﹣3,且a=﹣3,a=﹣1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.【点评】本题综合考查了含参一元一次不等式,含参分式方程得问题,需要考虑的因素较多,属于易错题.12.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM=,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+()﹣1= 3 .【分析】根据零指数幂和负整数指数幂计算可得.【解答】解:原式=1+2=3,故答案为:3.【点评】本题主要考查零指数幂和负整数指数幂,解题的关键是掌握a﹣p=(a≠0,p为正整数)及a0=1(a≠0).14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 2.56×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于25600000有8位,所以可以确定n=8﹣1=7.【解答】解:25600000=2.56×107.故答案为:2.56×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.【分析】先画树状图展示所有30种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有30种等可能的结果数,其中两次都摸到红球的结果数为6,所以两次都摸到红球的概率为=.故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为2﹣π.(结果保留π)【分析】根据菱形的性质得到AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.【点评】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的首基落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己首基落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把首基给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲首基的时间忽略不计).则乙回到公司时,甲距公司的路程是6000 米.【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【解答】解:由题意可得,甲的速度为:4000÷(12﹣2﹣2)=500米/分,乙的速度为:=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12﹣2)﹣500×2+500×4=6000(米),故答案为:6000.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是3:20 .【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【解答】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意可得,由①得x=③,将③代入②,z=y,∴贝母的面积与该村种植这三种中药材的总面积之比=,故答案为3:20.【点评】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷【分析】(1)根据完全平方公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(x+y)2﹣y(2x+y)=x2+2xy+y2﹣2xy﹣y2=x2;(2)(a+)÷====.【点评】本题考查分式的混合运算、完全平方公式、单项式乘多项式,解答本题的关键是明确它们各自的计算方法.20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.【点评】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)a=(1﹣20%﹣10%﹣)×100=40,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平方数,∴b==94;∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×=468人,答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点评】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2021和2021是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.【解答】解:(1)2021不是“纯数”,2021是“纯数”,理由:当n=2021时,n+1=2021,n+2=2021,∵个位是9+0+1=10,需要进位,∴2021不是“纯数”;当n=2021时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不。

06年重庆数学中考(含答案)

06年重庆数学中考(含答案)

重庆市2006年初中毕业生学业暨高中招生考试一、选择题:1.3的倒数是( )A.-3B.3C.13D.13-2.计算232(3)x x ⋅-的结果是( )A.56x -B.56xC.62x -D.62x3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D. 无法确定 4.使分式24xx -有意义的x 的取值范围是( )A. 2x =B.2x ≠C.2x =-D.2x ≠-5.不等式组2030x x ->⎧⎨-<⎩的解集是( )A.2x >B.3x <C.23x <<D.无解 6.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于( )A.80°B. 50°C. 40°D. 20°7.(课改)如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是.( ) A.3 B.4 C. 5 D. 6 (非课改)分式方程1421x x x -=+-的解是( )A.127,1x x ==B. 127,1x x ==-C. 127,1x x =-=-D. 127,1x x =-=8.观察市统计局公布的“十五”时期重庆市农村居民人均 收入每年比上一年增长率的统计图,下列说法正确的是( )A.2003年农村居民人均收入低于2002年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时2004年D.农村居民人均收入每年比上一年的增 长率有大有小,但农村居民人均收入在持续增加9.免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的耨中土特产进行加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:O CFGDE俯视图左视图主视图时间:(年)20052004200320022001装的土特产获得利润最大是( )A.甲B. 乙C.丙D. 不能确定10.(课改)现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A.118B.112C.19D.16(非课改)已知αβ、是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( )A. 3或-1B.3C. 1D. –3或1二、填空题:11.重庆市某天的最高气温是17℃,最低气温是5℃,那么当天的最大温差是 ℃. 12.分解因式:24x -=13.如图,已知直线12l l ∥,∠1=40°,那么∠2=度. 14.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为 .15.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为立方米. 16.(课改区)如图,已知函数y ax b =+和y kx =的图象交于点P , 则根据图象可得,关于y ax b y kx=+⎧⎨=⎩的二元一次方程组的解是 2)-=17.如图所示,A 、B 是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.BA18.按一定的规律排列的一列数依次为:111111,,,,,2310152635┅┅,按此规律排列下去,这列数中的第7个数是 . 19.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (20,53-),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是 20.如图,△ABC 内接于⊙O ,∠A 所对弧的度数为120°. ∠ABC 、∠ACB 的角平分线分别交于AC 、AB 于点D 、E ,CE 、BD 相交于点 F.以下四个结论:①1cos 2B F E ∠=;②B C B D =;③EF FD =;④2BF D F =.其中结论一定正确的序号数是 三、解答题:(本大题6个小题,共60分) 21.(每小题5分,共10分) (1)计算:12tan 601)--︒++(2)解方程组:2328y x y x =⎧⎨+=⎩22.如图,A 、D 、F 、B 在同一直线上,AD=BF,AE=BC,且 AE ∥BC. 求证:(1)△AEF ≌△BCD ;(2) EF ∥CD.23.(10分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示: 若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有 套,B 型玩具有 套,C 型玩具有 套.(2)若每人组装A 型玩具16套与组装C 型玩具12套所画的时间相同,那么a 的值为 ,每人每小时能组装C 型玩具 套.BC FD AE82a-2aCBA项目套/小时↑→24.(10分)农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间管理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?25.如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2.(1) 求证:DC=BC;(2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值.26.机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?四、解大题:27.已知:m n 、是方程2650x x -+=的两个实数根,且m n <,抛物线2y x bx c =-++的图像经过点A(,0m )、B(0n ,).E BFC D A(1) 求这个抛物线的解析式;(2) 设(1)中抛物线与x 轴的另一交点为C,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线2y ax bx c =++(0)a ≠的顶点坐标为(24(,)24b ac b aa--)(3) P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.28.如图28-1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图28-2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P. (1) 当11AC D ∆平移到如图28-3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想;(2) 设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3) 对于(2)中的结论是否存在这样的x 的值;若不存在,请说明理由.CBDA 28-1图12228-3图C 2D 2C 1BD 1A28-2图答案:一选择题:1—5 CAABC 6—10 DBDCB 二、填空题:11.12;12.(2)(2)x x +-;13.40;14.2π;15.4310⨯;16.(课改)42x y =-⎧⎨=-⎩,(非课改);17. 如图,18.150;19.12y x=-;20.①②.三.21.(1)32;(2)12x y =⎧⎨=⎩22.(1)因为AE ∥BC,所以∠A=∠B.又因AD=BF,所以AF=AD+DF=BF+FD=BD又因AE=BC,所以△AEF ≌△BCD.(2)因为△AEF ≌△BCD,所以∠EFA=∠CDB.所以EF ∥CD. 23.(1) 132,48,60,(2) 4,6, 24.(1)由题意,得1.62120%=-(元);(2)设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =(千克)(120%) 1.811700x x x +-==(千克)答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; (2)小王去年卖给国家的稻谷共为11700千克.25.(1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2.又tan ∠ADC=2,所以212D M ==.即DC=BC.(2)等腰三角形.证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC所以,,CE CF ECD BCF =∠=∠.所以,90EC F BC F BC E EC D BC E BC D ∠=∠+∠=∠+∠=∠=︒ 即△ECF 是等腰直角三角形.(3)设B E k =,则2C E C F k ==,所以EF =. 因为135B E C ∠=︒,又45C E F ∠=︒,所以90B E F ∠=︒. 所以3BF k ==28-2图BA所以1sin 33k B F E k∠==.26.(1)由题意,得70(160%)7040%28⨯-=⨯=(千克) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --= 解得:1275,10x x ==-(舍去)(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.27.(1)解方程2650,x x -+=得125,1x x == 由m n <,有1,5m n ==所以点A 、B 的坐标分别为A (1,0),B (0,5). 将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++. 得105b c c -++=⎧⎨=⎩解这个方程组,得45b c =-⎧⎨=⎩所以,抛物线的解析式为245y x x =--+(2)由245y x x =--+,令0y =,得2450x x --+= 解这个方程,得125,1x x =-=所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9). 过D 作x 轴的垂线交x 轴于M. 则1279(52)22D M C S ∆=⨯⨯-=12(95)142M D B O S =⨯⨯+=梯形,1255522B O C S ∆=⨯⨯=所以,2725141522B C D D M C B O C M D B O S S S S ∆∆∆=+-=+-=梯形.(3)设P 点的坐标为(,0a )因为线段BC 过B 、C 两点,所以BC 所在的值线方程为5y x =+.那么,PH 与直线BC 的交点坐标为(,5)E a a +,PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+. 由题意,得①32E H E P =,即23(45)(5)(5)2a a a a --+-+=+解这个方程,得32a =-或5a =-(舍去)②23E H E P =,即22(45)(5)(5)3a a a a --+-+=+解这个方程,得23a =-或5a =-(舍去)P 点的坐标为3(,0)2-或2(,0)3-.28.(1)12D E D F =.因为1122C D C D ∥,所以12C AFD ∠=∠. 又因为90A C B ∠=︒,CD 是斜边上的中线,所以,D C D A D B ==,即112221C D C D BD AD === 所以,1C A ∠=∠,所以2AFD A ∠=∠ 所以,22AD D F =.同理:11BD D E =.又因为12AD BD =,所以21AD BD =.所以12D E D F =(2)因为在R t A B C ∆中,8,6AC BC ==,所以由勾股定理,得10.AB = 即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x == 在22BC D ∆中,2C 到2BD 的距离就是A B C ∆的A B 边上的高,为245.设1B E D ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x -=.所以24(5)25x h -=.121112(5)225B E D S B D h x ∆=⨯⨯=-又因为1290C C ∠+∠=︒,所以290FPC ∠=︒. 又因为2C B ∠=∠,43sin ,cos 55B B ==.所以234,55P C x P F x ==,22216225F C P S P C P F x ∆=⨯=而2212221126(5)22525B C D B E D F C P A B C y S S S S x x ∆∆∆∆=--=---所以21824(05)255y x x x =-+≤≤ (3) 存在.当14A B C y S ∆=时,即218246255x x -+=整理,得2320250.x x -+=解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原A B C ∆面积的14.。

2006年中考数学试题分类汇编--数与式

2006年中考数学试题分类汇编--数与式

2006 年中考数学试题分类汇编 -- 数与式一、选择题 :1.( 邵阳市)1 )的相反数为 (A .151B. 5C. 5D. 552. ( 仙桃市 )8的绝对值是 ( )A.8B. 8C. 8D.183. ( 宜昌市 ) 假如 a 与 2 互为倒数,则以下结论正确的为(). (A)a =1(B)a=- 2(C)a=-1(D)a= 2224. ( 福州市 )-2 的相反效是 ( )A.2B.-2C.1D.-1225. ( 杭州市 ) 已知 a 与 1 互为倒数,则知足条件的实数a 的个数是 ( )22aA . 0B . 1C . 2D . 36.( 北京市 ) -5 的相反数是 ()A 、5 B、- 5C 、1D 、1557.( 贵阳市 ) 2 的绝对值等于()( A )1(B ) 2( C ) 2(D )1228、( 济宁市 )5的相反数是()A.5B. 5C.1 D.1559. ( 海南省 ) 计算 2-3 的结果是 ( )A . 5B.-5 C. 1D.-110. ( 济宁市 )(8)2006 (8)2005 能被以下数整除的是()A. 3B. 5C.7D.911. ( 杭州市 ) 1 (2) ( 1 ) 2 ( )22A .- 2B . 0C . 1D . 212. ( 长春市 ) 计算1 2 的值是()(A )1.(B ) .(C ) 2.( D ) 2 .113. ( 绍兴卷 ) 冬天的一天,室内温度是 8℃,室外温度是- 2℃,则室内外温度相差( )A 、 4℃B 、6℃C、 10℃D 、16℃14. ( 荆门市 ) 点 A 在数轴上表示 +2, 从点 A 沿数轴向左平移3 个单位到点 B, 则点 B 所表示的实数是 ()(A)3(B)-1(C)5(D)-1或 3.15. ( 仙桃市 ) 抽烟有害健康 .5 月 31 日是世界无烟日,今年世界无烟日到临之际,中国国家卫生部宣布了我国抽烟的人数约为3.5 亿,占世界抽烟人数的1.用科学记数法表示全世3界抽烟人数约为 ( )A. 105 10 9B.10.5 108C.1.05 109 D. 1.05 101016.( 宜昌市 ) 宜昌市 2005 年财政总收入达到 105.5 亿元.用科学记数法 ( 保存三位有效数字 )表示 105.5 亿元约为 () 元 .(A) 1.055 ×10 10( B ) 1. 06 10( C ) 1. 05 ×10 11( D ) 1. 06 10×1110×17. ( 海南省 ) 今年 1 至 4 月份,我省旅行业向来保持优秀的发展势头,旅行收入累计达5163000000 元 ,用科学记数法表示是 ( )A. 5163 ×106 元B. 5.163 ×108 元C. 5.163 ×109 元D. 5.163 ×1010 元18. ( 福州市 ) 用科学记数法表示 180 000 的结果是 ()A. 18 ×104B.1.8 ×105C.0.18 ×105D. 1.8 10×619. ( 武汉市 ) 同位素的半衰期( half - life )表示衰变一半样品所需的时间。

2024年重庆市中考数学真题试卷及答案解析(b卷)

2024年重庆市中考数学真题试卷及答案解析(b卷)
(1)请直接写出 y1 , y2 分别关于 x 的函数表达式,并注明自变量 x 的取值范围; (2)在给定的平面直角坐标系中画出函数 y1 , y2 的图象;请分别写出函数 y1 , y2 的一条性质; (3)结合函数图象,直接写出 y1 y2 时 x 的取值范围.(近似值保留一位小数,误差不超过 0.2 ) 24. 如图, A , B , C , D 分别是某公园四个景点, B 在 A 的正东方向, D 在 A 的正北方向,且在 C 的北 偏西 60 方向,C 在 A 的北偏东 30 方向,且在 B 的北偏西15 方向,AB 2 千米.(参考数据: 2 1.41 ,
2 (3)若点 D 在点 B 的右侧,连接 AD ,点 F 是 AD 的中点,且 AF AC .点 P 是直线 AC 上一动点,连 接 FP ,将 FP 绕点 F 逆时针旋转 60 得到 FQ ,连接 BQ ,点 R 是直线 AD 上一动点,连接 BR ,QR .在 点 P 的运动过程中,当 BQ 取得最小值时,在平面内将 BQR 沿直线 QR 翻折得到△TQR ,连接 FT .在
1
的解均为负整数,则所有满足条件的整数 a 的值之和是________.
17. 如图, AB 是 O 的直径, BC 是 O 的切线,点 B 为切点.连接 AC 交 O 于点 D ,点 E 是 O 上
一点,连接 BE ,DE ,过点 A 作 AF ∥ BE 交 BD 的延长线于点 F .若 BC 5 ,CD 3 ,F ADE ,
15. 如图,在 ABC 中, AB AC , A 36 , BD 平分 ABC 交 AC 于点 D .若 BC 2 ,则 AD 的
长度为________.
16.
若关于
x
的一元一次不等式组

2006年全国中考数学压轴题全析全解

2006年全国中考数学压轴题全析全解

2006年全国中考数学压轴题全析全解1、(2006重庆)如图1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P.(1) 当11AC D ∆平移到如图3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想;(2) 设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3)对于(2)中的结论是否存在这样的x 的值,使重叠部分的面积等于原ABC ∆面积的14. 若存在,求x 的值;若不存在,请说明理由.[解](1)12D E D F =.因为1122C D C D ∥,所以12C AFD ∠=∠.又因为90ACB ∠=︒,CD 是斜边上的中线,所以,DC DA DB ==,即112221C D C D BD AD === 所以,1C A ∠=∠,所以2AFD A ∠=∠ 所以,22AD D F =.同理:11BD D E =.CBDA 图1122图3C 2D 2C 1BD 1A图2PCQB又因为12AD BD =,所以21AD BD =.所以12D E D F =(2)因为在Rt ABC ∆中,8,6AC BC ==,所以由勾股定理,得10.AB = 即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x == 在22BC D ∆中,2C 到2BD 的距离就是ABC ∆的AB 边上的高,为245. 设1BED ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x-=. 所以24(5)25x h -=.121112(5)225BED S BD h x ∆=⨯⨯=- 又因为1290C C ∠+∠=︒,所以290FPC ∠=︒.又因为2C B ∠=∠,43sin ,cos 55B B ==. 所以234,55PC x PF x == ,22216225FC P S PC PF x ∆=⨯=而2212221126(5)22525BC D BED FC P ABC y S S S S x x ∆∆∆∆=--=--- 所以21824(05)255y x x x =-+≤≤ (3) 存在. 当14ABC y S ∆=时,即218246255x x -+= 整理,得2320250.x x -+=解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原ABC ∆面积的142、(2006浙江金华)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D .(1)求直线AB 的解析式; (2)若S 梯形OBCD,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P,O,B 为顶点的 三角形与△OBA 相似.若存在,请求出所有符合条件 的点P 的坐标;若不存在,请说明理由.[解] (1)直线AB 解析式为:y=33-x+3.(2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x (舍去) ∴ C(2,33) 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S . 由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33. ∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,33). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1. ∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30°过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23. ∵ 在Rt △P MO 中,∠OPM =30°, ∴ OM =21OP =43;PM =3OM =433.∴3P (43,433).方法二:设P(x ,33-x+3),得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABOC=OBOA =3.∴33-x+3=3x ,解得x =43.此时,3P (43,433).④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°. ∴ PM =33OM =43. ∴ 4P (43,43)(由对称性也可得到点4P 的坐标). 当∠OPB =Rt ∠时,点P 在x轴上,不符合要求. 综合得,符合条件的点有四个,分别是:1P (3,33),2P (1,3),3P (43,433),4P (43,43).3、(2006山东济南)如图1,已知Rt ABC △中,30CAB ∠=,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P .(1)求PA 的长;(2)以点A 为圆心,AP 为半径作⊙A ,试判断BE 与⊙A 是否相切,并说明理由; (3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作⊙A ;以点C 为圆心,R 为半径作⊙C .若r 和R 的大小是可变化的,并且在变化过程中保持⊙A 和⊙C 相.切.,且使D 点在⊙A 的内部,B 点在⊙A 的外部,求r 和R 的变化范围.CABD[解](1) 在Rt ABC △中,305CAB BC ∠==,, 210AC BC ∴==.AE BC ∥,APE CPB ∴△∽△. ::3:1PA PC AE BC ∴==. :3:4PA AC ∴=,3101542PA ⨯==. (2)BE 与⊙A 相切.在Rt ABE △中,AB =15AE =,tanAE ABE AB ∴∠===60ABE ∴∠= . 又30PAB ∠=,9090ABE PAB APB ∴∠+∠=∴∠=,, BE ∴与⊙A 相切.(3)因为5AD AB ==,r 的变化范围为5r <<当⊙A 与⊙C 外切时,10R r +=,所以R 的变化范围为105R -<<;当⊙A 与⊙C 内切时,10R r -=,所以R 的变化范围为1510R <<+ 4、(2006山东烟台)如图,已知抛物线L 1: y=x 2-4的图像与x 有交于A 、C 两点, (1)若抛物线l 2与l 1关于x 轴对称,求l 2的解析式;(2)若点B 是抛物线l 1上的一动点(B 不与A 、C 重合),以AC 为对角线,A 、B 、C 三点为顶点的平行四边形的第四个顶点定为D ,求证:点D 在l 2上;(3)探索:当点B 分别位于l 1在x 轴上、下两部分的图像上时,平行四边形ABCD 的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由。

南开中学初2006级05-06学年中考模拟试题——数学

南开中学初2006级05-06学年中考模拟试题——数学

重庆南开中学初2006级中考模拟数学试题满分150分,考试时间120分钟一、选择题:(本大题10个小题,每小题4分,共40分)1、按照“神州号”飞船环境控制与生命保障系统的设计指标,“神州六号”飞船返回舱的温度为214,则该返回舱的最低温度为()±C CA、0CB、17CC、21CD、25C2、我国18岁以下的未成年人大约有367000000人,此数据用科学计数法可表示为()A、6⨯D、936.71036710⨯3.6710⨯C、8⨯B、636.7103、要在一块矩形的空地上修建一个既是轴对称图形,又是中心对称图形的花坛,下列图案中不符合设计要求的是()4、下列化简中,正确的是()A、32a a a-÷-=-B、235()()-⋅=a a aC、224a a a+=D、236-=()a a5、如右图,在直角坐标系中,A B C∆的外心坐标是()A、(2,0)B、(0,4)C、(0,3)D、(1,0)6、在同一直角坐标系中,函数y kx k =-与(0)k y k x=≠的图象大致是( )7、(课改实验区学生做)下列事件中属于不确定事件的是( ) A .一个奇数与一个偶数的和为偶数B .你任意画一个三角形,三个内角的和同刚好为180C .亮亮的生日是2月31号D .小李骑车去买东西,经过某个十字路口时遇到红灯(非课改实验区学生做)已知2x <,的结果是( )A 、2x -B 、2x +C 、2x --D 、2x - 8、一组数据1,3,2,0,1-,1的方差等于( )A 、53B 、43C 、83D 、19、方程组2351x y x y -=-⎧⎨+=-⎩的近似解是( )A 、0.571.86x y =⎧⎨=⎩ B 、0.571.86x y =-⎧⎨=⎩ C 、0.571.86x y =⎧⎨=-⎩ D 、0.571.86x y =-⎧⎨=-⎩10、一块含30 角的直角三角形(如图),它的斜边8A B cm=,里面空心D E F ∆的各边与A B C ∆的对应边平行,且各对应边的距离都是1cm ,那么D E F ∆的周长是( )A、5cm B、6cm C、(6cm+-D、(3cm二、填空题:(本大题10个小题,每小题3分,共30分)11、一元二次方程2310--=的两根是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市2006年初中毕业生学业暨高中招生考试一、选择题:1.3的倒数是( )A.-3B.3C.13 D.13- 2.计算232(3)x x ⋅-的结果是( )A.56x - B.56x C.62x - D.62x3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D. 无法确定 4.使分式24xx -有意义的x 的取值范围是( ) A. 2x = B.2x ≠ C.2x =- D.2x ≠-5.不等式组2030x x ->⎧⎨-<⎩的解集是( )A.2x >B.3x <C.23x <<D.无解 6.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于( )A.80°B. 50°C. 40°D. 20°7.(课改)如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是.( ) A.3 B.4 C. 5 D. 6 (非课改)分式方程1421x x x -=+-的解是( ) A.127,1x x == B. 127,1x x ==- C. 127,1x x =-=- D. 127,1x x =-=8.观察市统计局公布的“十五”时期重庆市农村居民人均 收入每年比上一年增长率的统计图,下列说法正确的是( )A.2003年农村居民人均收入低于2002年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时2004年D.农村居民人均收入每年比上一年的增 长率有大有小,但农村居民人均收入在持续增加9.免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的耨中土特产进行加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:OCFG DE俯视图左视图主视图时间:(年)人均收入每年比上年增长率(%)11.913.35.66.44.2→↑200520042003200220011512963质量(克/袋) 销售价(元/袋) 包装成本费用(元/袋) 甲 400 4.8 0.5 乙 300 3.6 0.4 丙2002.50.3春节期间,这三种不同的包装的土特产都销售了1200千克,那么本次销售中,这三种包装的土特产获得利润最大是( )A.甲B. 乙C.丙D. 不能确定10.(课改)现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A.118 B.112C.19D.16(非课改)已知αβ、是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是( )A. 3或-1B.3C. 1D. –3或1二、填空题:11.重庆市某天的最高气温是17℃,最低气温是5℃,那么当天的最大温差是 ℃. 12.分解因式:24x -=13.如图,已知直线12l l ∥,∠1=40°,那么∠2= 度. 14.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为 .15.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为立方米. 16.(课改区)如图,已知函数y axb =+和y kx =的图象交于点P, 则根据图象可得,关于y ax by kx=+⎧⎨=⎩的二元一次方程组的解是 (非课改)化简:1(232)23-+-=17.如图所示,A 、B 是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C的位置.BA18.按一定的规律排列的一列数依次为:111111,,,,,2310152635┅┅,按此规律排列下去,这列数中的第7个数是 . 19.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (20,53-),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是 20.如图,△ABC 内接于⊙O ,∠A 所对弧的度数为120°. ∠ABC 、∠ACB 的角平分线分别交于AC 、AB 于点D 、E ,CE 、BD 相交于点 F.以下四个结论:①1cos 2BFE ∠=;②BC BD =;③EF FD =;④2BF DF =.其中结论一定正确的序号数是 三、解答题:(本大题6个小题,共60分) 21.(每小题5分,共10分)(1)计算:12tan 60(51)3--︒+-+-;(2)解方程组:2328y xy x =⎧⎨+=⎩22.如图,A 、D 、F 、B 在同一直线上,AD=BF,AE=BC,且 AE ∥BC.求证:(1)△AEF ≌△BCD ;(2) EF ∥CD.23.(10分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示: 若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有 套,B 型玩具有 套,C 型玩具有 套. (2)若每人组装A 型玩具16套与组装C 型玩具12套所画的时间相同,那么a 的值为 ,每人每小时能组装C 型玩具 套.FDE ACBB C F D A E82a-2aCB A 项目套/小时↑→C 型25%B 型A 型55%24.(10分)农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间管理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?25.如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2.(1) 求证:DC=BC;(2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形状,并证明你的结论;(3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值.26.机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?四、解大题:27.已知:m n 、是方程2650x x -+=的两个实数根,且m n <,抛物线2y x bx c =-++的图像经过点A(,0m )、B(0n ,).EB FCD A(1) 求这个抛物线的解析式;(2) 设(1)中抛物线与x 轴的另一交点为C,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线2y ax bx c =++(0)a ≠的顶点坐标为(24(,)24b ac b a a--) (3) P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.28.如图28-1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图28-2所示).将纸片11AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2BC 交于点E,1AC 与222C D BC 、分别交于点F 、P. (1) 当11AC D ∆平移到如图28-3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想;(2) 设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,请写出y 与x 的函数关系式,以及自变量的取值范围;(3) 对于(2)中的结论是否存在这样的x 的值;若不存在,请说明理由.CB D A 28-1图P E F A D 1B C 1D 2C 228-3图 C 2D 2C 1B D 1A 28-2图答案:一选择题:1—5 CAABC 6—10 DBDCB 二、填空题:11.12;12.(2)(2)x x +-;13.40;14.2π;15.4310⨯;16.(课改)42x y =-⎧⎨=-⎩,(非课改)3-;17. 如图, 18.150;19.12y x=-;20.①②. 三.21.(1)32;(2)12x y =⎧⎨=⎩ 22.(1)因为AE ∥BC,所以∠A=∠B.又因AD=BF,所以AF=AD+DF=BF+FD=BD 又因AE=BC,所以△AEF ≌△BCD.(2)因为△AEF ≌△BCD,所以∠EFA=∠CDB.所以EF ∥CD. 23.(1) 132,48,60,(2) 4,6, 24.(1)由题意,得1.62120%=-(元);(2)设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =(千克)(120%) 1.811700x x x +-==(千克)答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; (2)小王去年卖给国家的稻谷共为11700千克. 25.(1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2.又tan ∠ADC=2,所以212DM ==.即DC=BC. (2)等腰三角形.证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC所以,,CE CF ECD BCF =∠=∠.所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=︒ 即△ECF 是等腰直角三角形.(3)设BE k =,则2CE CF k ==,所以22EF k =. 因为135BEC ∠=︒,又45CEF ∠=︒,所以90BEF ∠=︒. 所以22(22)3BF k k k =+=-2图C 3C 2C 1BA所以1sin 33k BFE k ∠==. 26.(1)由题意,得70(160%)7040%28⨯-=⨯=(千克) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --= 解得:1275,10x x ==-(舍去)(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.27.(1)解方程2650,x x -+=得125,1x x == 由m n <,有1,5m n ==所以点A 、B 的坐标分别为A (1,0),B (0,5). 将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++. 得105b c c -++=⎧⎨=⎩解这个方程组,得45b c =-⎧⎨=⎩所以,抛物线的解析式为245y x x =--+(2)由245y x x =--+,令0y =,得2450x x --+=解这个方程,得125,1x x =-=所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9). 过D 作x 轴的垂线交x 轴于M.则1279(52)22DMC S ∆=⨯⨯-= 12(95)142MDBO S =⨯⨯+=梯形,1255522BOC S ∆=⨯⨯=所以,2725141522BCD DMC BOC MDBO S S S S ∆∆∆=+-=+-=梯形. (3)设P 点的坐标为(,0a )因为线段BC 过B 、C 两点,所以BC 所在的值线方程为5y x =+.那么,PH 与直线BC 的交点坐标为(,5)E a a +,PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.由题意,得①32EH EP =,即23(45)(5)(5)2a a a a --+-+=+ 解这个方程,得32a =-或5a =-(舍去)②23EH EP =,即22(45)(5)(5)3a a a a --+-+=+解这个方程,得23a =-或5a =-(舍去)P 点的坐标为3(,0)2-或2(,0)3-.28.(1)12D E D F =.因为1122C D C D ∥,所以12C AFD ∠=∠. 又因为90ACB ∠=︒,CD 是斜边上的中线,所以,DC DA DB ==,即112221C D C D BD AD === 所以,1C A ∠=∠,所以2AFD A ∠=∠ 所以,22AD D F =.同理:11BD D E =.又因为12AD BD =,所以21AD BD =.所以12D E D F =(2)因为在Rt ABC ∆中,8,6AC BC ==,所以由勾股定理,得10.AB = 即1211225AD BD C D C D ====又因为21D D x =,所以11225D E BD D F AD x ====-.所以21C F C E x == 在22BC D ∆中,2C 到2BD 的距离就是ABC ∆的AB 边上的高,为245. 设1BED ∆的1BD 边上的高为h ,由探究,得221BC D BED ∆∆∽,所以52455h x-=. 所以24(5)25x h -=.121112(5)225BED S BD h x ∆=⨯⨯=- 又因为1290C C ∠+∠=︒,所以290FPC ∠=︒.又因为2C B ∠=∠,43sin ,cos 55B B ==. 所以234,55PC x PF x == ,22216225FC P S PC PF x ∆=⨯=而2212221126(5)22525BC D BED FC P ABC y S S S S x x ∆∆∆∆=--=--- 所以21824(05)255y x x x =-+≤≤ (3) 存在.当14ABC y S ∆=时,即218246255x x -+= 整理,得2320250.x x -+=解得,125,53x x ==.即当53x =或5x =时,重叠部分的面积等于原ABC ∆面积的14.。

相关文档
最新文档