山东省高中会考数学题学业水平考试(有答案)

合集下载

2020年山东省普通高中学业水平合格考试数学试卷

2020年山东省普通高中学业水平合格考试数学试卷

2020年山东省普通高中学业水平合格考试数学试卷一、本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合A ={1, 3, 5},B ={2, 3},则A ∪B =( ) A.{3} B.{1, 5} C.(1, 2, 5)∩{1, 2, 5} D.{1, 2, 3, 5}2. 函数f(x)=cos (12x +π6)的最小正周期为( )A.π2B.πC.2πD.4π3. 函数f(x)=√x −1+ln (4−x)的定义域是( ) A.(1, +∞) B.[1, 4) C.(1, 4] D.(4, +∞)4. 下列函数中,既是偶函数又在(0, +∞)上是减函数的是( ) A.y =−x 3 B.y =1C.y =|x|D.y =1x 25. 已知直线l 过点P(2, −1),且与直线2x +y −l =0互相垂直,则直线l 的方程为( ) A.x −2y =0 B.x −2y −4=0 C.2x +y −3=0 D.2x −y −5=06. 已知函数f(x)={2x,x ≤0x 32,x >0 ,则f(−1)+f(1)=( )A.0B.1C.32D.27. 已知向量a →与b →的夹角为π3,且|a →|=3,|b →|=4,则a →⋅b →=( ) A.6√3 B.6√2C.4√3D.68. 某工厂抽取100件产品测其重量(单位:kg ).其中每件产品的重量范围是[40, 42].数据的分组依据依次为[40, 40, 5),[40, 5, 41),[41, 41, 5),[41, 5, 42),据此绘制出如图所示的频率分布直方图,则重量在[40, 41)内的产品件数为( )A.30B.40C.60D.809.sin 110∘ cos 40∘−cos 70∘sin 40∘= ( ) A.12B.√32C.−12D.−√3210. 在平行四边形ABCD 中,AB →+BD →−AC →=( ) A.DC →B.BA →C.BC →D.BD →11. 某产品的销售额y (单位:万元)与月份x 的统计数据如表.用最小二乘法求出y 关于x 的线性回归方程为y =7x +a ,则实数a =( )C.4D.10.512. 下列结论正确的是( ) A.若a <b ,则a 3<b 3 B.若a >b ,则2a <2b C.若a <b ,则a 2<b 2 D.若a >b ,则ln a >ln b13. 圆心为M(1, 3),且与直线3x −4y −6=0相切的圆的方程是( ) A.(x −1)2+(y −3)2=9 B.(x −1)2+(y −3)2=3 C.(x +1)2+(y +3)2=9D.(x +1)2+(y +3)2=314. 已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是( )A.事件“都是红色卡片”是随机事件B.事件“都是蓝色卡片”是不可能事件C.事件“至少有一张蓝色卡片”是必然事件D.事件“有1张红色卡片和2张蓝色卡片”是随机事件15. 若直线(a −1)x −2y +1=0与直线x −ay +1=0垂直,则实数a =( ) A.−1或2 B.−1C.13D.316. 将函数y =sin x 的图象上所有的点的横坐标缩短到原来的13倍(纵坐标不变),再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为( ) A.y =sin (3x −π4)B.y =sin (3x −π12)C.y =sin (13x −π4) D.y =sin (13x −π12)17. 3名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.14 B.23C.12D.3418. 如图,在正方体ABCD −A 1B 1C 1D 1中,下列判断正确的是( )A.A 1D ⊥C 1CB.BD 1⊥ADC.A 1D ⊥ACD.BD 1 ⊥AC19. 已知向量a →,b →不共线,若AB →=a →+2b →,BC →=−3a →+7b →,CD →=4a →−5b →,则( )A.A ,B ,C 三点共线B.A ,B ,D 三点共线C.A ,C ,D 三点共线D.B ,C ,D 三点共线20. 在三棱锥P −ABC 中,PA ,PB ,PC 两两垂直,且PA =1,PB =PC =2,则该三棱锥的外接球体的体积为( ) A.9π2B.27π2C.9πD.36π二、填空题:本大题共5小题,每小题3分,共15分.某校田径队共有男运动员45人,女运动员36人.若采用分层抽样的方法在全体运动员中抽取18人进行体质测试,则抽到的女运动员人数为________.已知α为第二象限角,若sin α=35,则tan α的值为________.已知圆锥底面半径为1,高为√3,则该圆锥的侧面积为________.已知函数f(x)=x 2+x +a 在区间(0, 1)内有零点,则实数a 的取值范围为________.若P 是圆C 1:(x −4)2+(y −5)2=9上一动点,Q 是圆C 2:(x +2)2+(y +3)2=4上一动点,则|PQ|的最小值是________.三、解答题:本题共3小题,共25分.如图,在四棱锥P −ABCD 中,四边形ABCD 是平行四边形,E 、F 分别是AB 、PC 中点,求证:EF // 面PAD .在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =6,cos B =13. (1)若sin A =35,求b 的值;(2)若c =2,求b 的值及△ABC 的面积S .已知函数f(x)=ax+log3(9x+1)(a∈R)为偶函数.(1)求a的值;(2)当x∈[0, +∞)时,不等式f(x)−b≥0恒成立,求实数b的取值范围.参考答案与试题解析2020年山东省普通高中学业水平合格考试数学试卷一、本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【考点】并集及其运算【解析】进行并集的运算即可.【解答】∵A={1, 3, 5},B={2, 3},∴A∪B={1, 2, 3, 5}.2.【答案】D【考点】三角函数的周期性及其求法【解析】根据三角函数的周期公式直接进行计算即可.【解答】由三角函数的周期公式得T=2π12=4π,3.【答案】B【考点】函数的定义域及其求法【解析】根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】解:∵函数f(x)=√x−1+ln(4−x),∴{x−1≥0,4−x>0.解得1≤x<4.∴函数f(x)的定义域是[1, 4).故选B.4.【答案】D【考点】奇偶性与单调性的综合【解析】结合基本初等函数的单调性及奇偶性对选项分别进行判断即可.【解答】由幂函数的性质可知,y=−x3,y=1x为奇函数,不符合题意,y=|x|为偶函数且在(0, +∞)上单调递增,不符号题意,y=1x2为偶函数且在(0, +∞)上单调递减,符合题意.5.【答案】B【考点】直线的一般式方程与直线的垂直关系【解析】根据题意设出直线l的方程,把点P(2, −1)代入方程求出直线l的方程.【解答】根据直线l与直线2x+y−l=0互相垂直,设直线l为x−2y+m=0,又l过点P(2, −1),∴2−2×(−1)+m=0,解得m=−4,∴直线l的方程为x−2y−4=0.6.【答案】C【考点】求函数的值函数的求值【解析】推导出f(−1)=2−1=12,f(1)=132=1,由此能求出f(−1)+f(1)的值.【解答】∵函数f(x)={2x,x≤0x32,x>0,∴f(−1)=2−1=12,f(1)=132=1,∴f(−1)+f(1)=12+1=32.故选:C.7.【答案】D【考点】平面向量数量积的性质及其运算 【解析】进行数量积的运算即可. 【解答】∵ 向量a →与b →的夹角为π3,且|a →|=3,|b →|=4, ∴ a →⋅b →=|a →||b →|cos π3=3×4×12=6.8. 【答案】 B【考点】频率分布直方图 【解析】由频率分布直方图得重量在[40, 41)内的频率为0.4.由此能求出重量在[40, 41)内的产品件数. 【解答】由频率分布直方图得:重量在[40, 41)内的频率为:(0.1+0.7)×0.5=0.4. ∴ 重量在[40, 41)内的产品件数为0.4×100=40. 9. 【答案】 A【考点】求两角和与差的正弦 【解析】利用诱导公式以及两角和的正弦函数化简求解即可. 【解答】解:sin 110∘ cos 40∘−cos 70∘sin 40∘ =sin 70∘ cos 40∘−cos 70∘sin 40∘ =sin (70∘−40∘) =sin 30∘=12. 故选A . 10. 【答案】 B【考点】向量加减法的应用 【解析】利用平面向量加法法则直接求解. 【解答】在平行四边形ABCD 中,AB →+BD →−AC →=AB →+BD →+CA →=CD →=BA →.11.【答案】 B【考点】求解线性回归方程 【解析】由已知求得样本点的中心坐标,代入线性回归方程即可求得实数a . 【解答】 x ¯=3+4+5+64=4.5,y ¯=25+30+40+454=35,∴ 样本点的中心坐标为(4.5, 35),代入y =7x +a ,得35=7×4.5+a ,即a =3.5. 12. 【答案】 A【考点】不等式的基本性质 【解析】利用函数的单调性、不等式的性质即可判断出正误. 【解答】A .a <b ,可得a 3<b 3,正确;B .a >b ,可得2a >2b ,因此B 不正确;C .a <b ,a 2与b 2大小关系不确定,因此不正确;D .由a >b ,无法得出ln a >ln b ,因此不正确. 13.【答案】 A【考点】 圆的切线方程 圆的标准方程【解析】由题意可知,圆的半径即为圆心M 到直线的距离,根据点到直线的距离公式即可求解. 【解答】由题意可知,圆的半径r =|3−12−6|5=3,故所求的圆的方程为(x −1)2+(y −3)2=9. 14. 【答案】 C【考点】 随机事件 【解析】利用随机事件的定义直接求解. 【解答】袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片, 在A 中,事件“都是红色卡片”是随机事件,故A 正确; 在B 中,事件“都是蓝色卡片”是不可能事件,故B 正确; 在C 中,事件“至少有一张蓝色卡片”是随机事件,故C 错误;在D 中,事件“有1张红色卡片和2张蓝色卡片”是随机事件,故D 正确. 15.【答案】 C【考点】直线的一般式方程与直线的垂直关系 【解析】根据题意,分析可得(a −1)+2a =0,解可得a 的值,即可得答案. 【解答】根据题意,若直线(a −1)x −2y +1=0与直线x −ay +1=0垂直, 必有(a −1)+2a =0,解可得a =13; 16.【答案】 A【考点】函数y=Asin (ωx+φ)的图象变换 【解析】由题意利用函数y =A sin (ωx +φ)的图象变换规律,得出结论. 【解答】将函数y =sin x 的图象上所有的点的横坐标缩短到原来的13倍(纵坐标不变),可得y =sin 3x 的图象; 再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为y =sin 3(x −π12)=sin (3x −π4), 17.【答案】 D【考点】古典概型及其概率计算公式 【解析】求得3位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可. 【解答】3位同学各自在周六、周日两天中任选一天参加公益活动,共有23=8种情况, 周六、周日都有同学参加公益活动,共有23−2=8−2=6种情况, ∴ 所求概率为68=34. 18.【答案】 D【考点】空间中直线与直线之间的位置关系 【解析】直接可以看出A ,B ,C 均不成立,用线线垂直来推线面垂直进而得到线线垂直. 【解答】因为AC ⊥BD ,AC ⊥DD 1;BD ∩DD 1=D ; BD ⊆平面DD 1B 1B ,DD 1⊆平面DD 1B 1B , ∴ AC ⊥平面DD 1B 1B ; BD 1⊆平面DD 1B 1B ; ∴ AC ⊥BD 1; 即D 对. 19.【答案】 B【考点】平行向量(共线) 【解析】BD →=BC →+CD →=(−3a →+7b →)+(4a →−5b →)=a →+2b →=AB →,从而BD →∥AB →,进而A ,B ,D 三点共线. 【解答】向量a →,b →不共线,AB →=a →+2b →,BC →=−3a →+7b →,CD →=4a →−5b →,∴ BD →=BC →+CD →=(−3a →+7b →)+(4a →−5b →)=a →+2b →=AB →, ∴ BD →∥AB →,∴ A ,B ,D 三点共线. 20. 【答案】 A【考点】球的表面积和体积 【解析】由题意将此三棱锥放在长方体中,可得长方体的长宽高,再由长方体的对角线等于外接球的直径求出外接球的体积. 【解答】由三棱锥中PA ,PB ,PC 两两垂直,且PA =1,PB =2,PC =2将此三棱锥放在长方体中,由题意知长方体的长宽高分别是:1,2,2.设外接球的半径为R ,则2R =√12+22+22=3所以R =32, 所以外接球的体积V =43πR 3=92π,二、填空题:本大题共5小题,每小题3分,共15分.【答案】 8【考点】 分层抽样方法 【解析】根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率值,利用每个个体被抽到的概率乘以女运动员的数目,得到女运动员要抽取得人数. 【解答】∵ 某校田径队共有男运动员45人,女运动员36人, ∴ 这支田径队共有45+36=81人,用分层抽样的方法从该队的全体运动员中抽取一个容量为18的样本, ∴ 每个个体被抽到的概率是1881=29,∵ 女运动员36人,∴ 女运动员要抽取36×29=8人, 【答案】−34【考点】同角三角函数间的基本关系 【解析】由条件利用同角三角函数的基本关系求得cos α 的值,从而求得tan α的值. 【解答】∵ α为第二象限角sin α=35, ∴ cos α=−45,则tan α=sin αcos α=−34, 【答案】 2π【考点】柱体、锥体、台体的侧面积和表面积 【解析】由已知求得母线长,代入圆锥侧面积公式求解. 【解答】由已知可得r =1,ℎ=√3,则圆锥的母线长l =√12+(√3)2=2.∴ 圆锥的侧面积S =πrl =2π. 【答案】 (−2, 0) 【考点】函数零点的判定定理 【解析】由零点存在性定理得f(0)f(1)=a(a +2)<0,求出即可. 【解答】函数f(x)=x 2+x +a 在区间(0, 1)内有零点, f(0)=a ,f(1)=2+a ,由零点存在性定理得f(0)f(1)=a(a +2)<0,得−2<a <0, 经验证a =−2,a =0均不成立, 故答案为:(−2, 0) 【答案】 5【考点】圆与圆的位置关系及其判定 【解析】分别找出两圆的圆心坐标,以及半径r 和R ,利用两点间的距离公式求出圆心间的距离d ,根据大于两半径之和,得到两圆的位置是外离,又P 在圆C 1上,Q 在圆C 2上,则|PQ|的最小值为d −(r +R),即可求出答案. 【解答】圆C 1:(x −4)2+(y −5)2=9的圆心C 1(4, 5),半径r =3, 圆C 2:(x +2)2+(y +3)2=4的圆心C 2(−2, −3),半径r =2, d =|C 1C 2|=√(4+2)2+(5+3)2=10>2+3=r +R , 所以两圆的位置关系是外离, 又P 在圆C 1上,Q 在圆C 2上,则|PQ|的最小值为d −(r +R)=10−(2+3)=5, 三、解答题:本题共3小题,共25分. 【答案】证明:取PD 的中点G ,连接FG 、AG . 因为PF =CF ,PG =DG , 所以FG // CD ,且FG =12CD .又因为四边形ABCD 是平行四边形,且E 是AB 的中点.所以AE // CD ,且AE =12CD . 所以FG // AE ,且FG =AE ,所以四边形EFGA 是平行四边形, 所以EF // AG .又因为EF⊄平面PAD,AG⊂平面PAD,所以EF // 平面PAD.【考点】直线与平面平行【解析】取PD的中点G,连接FG、AG,由PF=CF,PG=DG,所以FG // CD,且FG=12CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE // CD,且AE=12CD.证得四边形EFGA是平行四边形,所以EF // AG,由线面平行的判定定理即可得证.【解答】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,所以FG // CD,且FG =12CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE // CD,且AE=12CD.所以FG // AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF // AG.又因为EF⊄平面PAD,AG⊂平面PAD,所以EF // 平面PAD.【答案】由cos B=13可得sin B=2√23,由正弦定理可得,asin A =bsin B,所以b=a sin Bsin A =6×2√2335=20√23,由余弦定理可得,cos B=13=a2+c2−b22ac=36+4−b22×2×6,解可得,b=4√2,S=12ac sin B=12×6×2×2√23=4√2.【考点】正弦定理余弦定理【解析】(1)先根据同角平方关系求出sin B,然后结合正弦定理即可求解,(2)结合余弦定理及三角形的面积公式即可求解.【解答】由cos B=13可得sin B=2√23,由正弦定理可得,asin A=bsin B,所以b=a sin Bsin A=6×2√2335=20√23,由余弦定理可得,cos B=13=a2+c2−b22ac=36+4−b22×2×6,解可得,b=4√2,S=12ac sin B=12×6×2×2√23=4√2.【答案】根据题意可知f(x)=f(−x),即ax+log3(9x+1)=−ax+log3(9−x+1),整理得log39x+19−x+1=−2ax,即−2ax=log39x=2x,解得a=1;由(1)可得f(x)=x+log3(9x+1),因为f(x)−b≥0对x∈[0, +∞)恒成立,即x+log3(9x+1)≥b对x∈[0, +∞)恒成立,因为函数g(x)=x+log3(9x+1)在[0, +∞)上是增函数,所以g(x)min=g(0)=log32,则b≤log32.【考点】函数奇偶性的性质与判断函数恒成立问题【解析】(1)根据偶函数性质f(x)=f(−x),化简整理可求得a的取值;(2)根据条件可知x+log3(9x+1)≥b对x∈[0, +∞)恒成立,求出函数g(x)=x+log3(9x+1)在[0, +∞)上的最小值即可【解答】根据题意可知f(x)=f(−x),即ax+log3(9x+1)=−ax+log3(9−x+1),整理得log39x+19−x+1=−2ax,即−2ax=log39x=2x,解得a=1;由(1)可得f(x)=x+log3(9x+1),因为f(x)−b≥0对x∈[0, +∞)恒成立,(9x+1)≥b对x∈[0, +∞)恒成立,即x+log3(9x+1)在[0, +∞)上是增函数,因为函数g(x)=x+log32,所以g(x)min=g(0)=log32.则b≤log3。

山东普通高中会考数学真题及答案A

山东普通高中会考数学真题及答案A

山东普通高中会考数学真题及答案A一、选择题(每小题3分,共75分)1.(3分)已知集合A={0,1},B={﹣1,1,3},那么A∩B等于()A.{0} B.{1} C.{0,1} D.{0,1,3} 2.(3分)平面向量,满足=2,如果=(1,2),那么等于()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣4)D.(2,4)3.(3分)如果直线y=kx﹣1与直线y=3x平行,那么实数k的值为()A.﹣1 B.C.D.34.(3分)如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A.﹣4 B.﹣2 C.2 D.45.(3分)如果函数f(x)=a x(a>0,且a≠1)的图象经过点(2,9),那么实数a等于()A.2 B.36.(3分)某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为()A.60 B.90 C.100 D.110(3分)已知直线l经过点O(0,0),且与直线x﹣y﹣3=0垂直,那么直线l的方程是()7.A.x+y﹣3=0 B.x﹣y+3=0 C.x+y=0 D.x﹣y=0 8.(3分)如图,在矩形ABCD中,E为CD中点,那么向量等于()A.B.C.D.9.(3分)实数的值等于()A.1 B.2 C.3 D.410.(3分)函数y=x2,y=x3,,y=lgx中,在区间(0,+∞)上为减函数的是()A.y=x2B.y=x3C.D.y=lgx11.(3分)某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A.0.1 B.0.2 C.0.3 D.0.712.(3分)如果正△ABC的边长为1,那么•等于()A.B.C.1 D.213.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=10,A=45°,B=30°,那么b等于()A.B.C.D.14.(3分)已知圆C:x2+y2﹣2x=0,那么圆心C到坐标原点O的距离是()A.B.C.1 D.15.(3分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB =1,那么该四棱柱的体积为()A.1 B.2 C.4 D.816.(3分)函数f(x)=x3﹣5的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)17.(3分)在sin50°,﹣sin50°,sin40°,﹣sin40°四个数中,与sin130°相等的是()A.sin50°B.﹣sin50°C.sin40°D.﹣sin40°18.(3分)把函数y=sin x的图象向右平移个单位得到y=g(x)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.19.(3分)函数的最小值是()A.﹣1 B.0 C.1 D.220.(3分)在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③平行于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中正确命题的序号是()A.①B.②C.③D.④21.(3分)北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如表:各区域1月份PM2.5浓度(单位:微克/立方米)表区域PM2.5浓度区域PM2.5浓度区域PM2.5浓度怀柔27 海淀34 平谷40密云31 延庆35 丰台42门头沟32 西城35 大兴46顺义32 东城36 开发区46昌平32 石景山37 房山47朝阳34 通州39从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克/立方米的概率是()A.B.C.D.22.(3分)已知,那么=()A.B.C.D.23.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果,那么△ABC的最大内角的余弦值为()A.B.C.D.24.(3分)北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()A.2013年以来,每年参观总人次逐年递增B.2014年比2013年增加的参观人次不超过50万C.2012年到2017年这六年间,2017年参观总人次最多D.2012年到2017年这六年间,平均每年参观总人次超过160万25.(3分)阅读下面题目及其证明过程,在横线处应填写的正确结论是()如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,BC⊥AC求证:BC⊥PA证明:因为平面PAC⊥平面ABC平面PAC∩平面ABC=ACBC⊥AC,BC⊂平面ABC所以______.因为PA⊂平面PAC.所以BC⊥PAA.AB⊥底面PAC B.AC⊥底面PBC C.BC⊥底面PAC D.AB⊥底面PBC 二、解答题(共4小题,满分25分)26.(7分)已知函数(Ⅰ)A=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)函数f(x)的最小正周期T=(将结果直接填写在答题卡的相应位置上)(Ⅲ)求函数f(x)的最小值及相应的x的值.27.(7分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,D,E,分别为PB,PC的中点.(Ⅰ)求证:BC∥平面ADE;(Ⅱ)求证:BC⊥平面PAB.28.(6分)已知圆O:x2+y2=r2(r>0)经过点A(0,5),与x轴正半轴交于点B.(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)圆O上是否存在点P,使得△PAB的面积为15?若存在,求出点P的坐标;若不存在,说明理由.29.(5分)种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表电力线安全距离(单位:m)水平距离垂直距离≤1KV≥1 ≥13KV~10KV≥3 ≥335KV~110KV≥3.5 ≥4154KV~220KV≥4 ≥4.5 330KV≥5 ≥5.5500KV≥7 ≥7现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的时间x(年)与它的高度y(m)满足关系式(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)如果这棵行道树的正上方有35kV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?(Ⅲ)假如这棵行道树的正上方有500kV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m?参考答案与解析一、选择题(每小题3分,共75分)1.(3分)已知集合A={0,1},B={﹣1,1,3},那么A∩B等于()A.{0} B.{1} C.{0,1} D.{0,1,3}【考点】1E:交集及其运算.菁优网版权所有【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用交集定义直接求解.【解答】解:∵集合A={0,1},B={﹣1,1,3},∴A∩B={1}.故选:B.【点评】本题考查交集的求法,考查交集定义、不等式等基础知识,考查运算求解能力,是基础题.2.(3分)平面向量,满足=2,如果=(1,2),那么等于()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣4)D.(2,4)【考点】96:平行向量(共线).菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用数乘向量运算法则直接求解.【解答】解:∵平面向量,满足=2,=(1,2),∴=2(1,2)=(2,4).故选:D.【点评】本题考查向量的求法,考查数乘向量运算法则等基础知识,考查运算求解能力,是基础题.3.(3分)如果直线y=kx﹣1与直线y=3x平行,那么实数k的值为()A.﹣1 B.C.D.3【考点】II:直线的一般式方程与直线的平行关系.菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5B:直线与圆.【分析】利用两条直线相互平行的充要条件即可得出.【解答】解:∵直线y=kx﹣1与直线y=3x平行,∴k=3,经过验证满足两条直线平行.故选:D.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于基础题.4.(3分)如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A.﹣4 B.﹣2 C.2 D.4【考点】3K:函数奇偶性的性质与判断.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,由函数的图象可得f(﹣1)的值,结合函数的奇偶性可得f(1)的值,即可得答案.【解答】解:根据题意,由函数的图象可得f(﹣1)=2,又由函数为奇函数,则f(1)=﹣f(﹣1)=﹣2,故选:B.【点评】本题考查函数的奇偶性的性质,关键是掌握函数单调性的性质,属于基础题.5.(3分)如果函数f(x)=a x(a>0,且a≠1)的图象经过点(2,9),那么实数a等于()A.2 B.3【考点】4B:指数函数的单调性与特殊点.菁优网版权所有【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】由题意代入点的坐标,即可求出a的值.【解答】解:指数函数f(x)=a x(a>0,a≠1)的图象经过点(2,9),∴9=a2,解得a=3,故选:B.【点评】本题考查了指数函数的图象和性质,属于基础题.6.(3分)某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为()A.60 B.90 C.100 D.110【考点】B3:分层抽样方法.菁优网版权所有【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】根据分层抽样的定义和题意知,抽样比例是,根据样本的人数求出应抽取的人数【解答】解:根据分层抽样的定义和题意,则高中学生中抽取的人数 600×=60(人).故选:A.【点评】本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在所求的层中抽取的个体数目.(3分)已知直线l经过点O(0,0),且与直线x﹣y﹣3=0垂直,那么直线l的方程是()7.A.x+y﹣3=0 B.x﹣y+3=0 C.x+y=0 D.x﹣y=0【考点】IJ:直线的一般式方程与直线的垂直关系.菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5B:直线与圆.【分析】由题意可求出直线l的斜率,由点斜式写出直线方程化简即可.【解答】解:∵直线l与直线x﹣y﹣3=0垂直,∴直线l的斜率为﹣1,则y﹣0=﹣(x﹣0),即x+y=0故选:C.【点评】本题考查了直线方程的求法,属于基础题.8.(3分)如图,在矩形ABCD中,E为CD中点,那么向量等于()A.B.C.D.【考点】9H:平面向量的基本定理.菁优网版权所有【专题】35:转化思想;5A:平面向量及应用.【分析】直接利用向量的线性运算求出结果.【解答】解:在矩形ABCD中,E为CD中点,所以:,则:=.故选:A.【点评】本题考查的知识要点:向量的线性运算的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.(3分)实数的值等于()A.1 B.2 C.3 D.4【考点】41:有理数指数幂及根式;4H:对数的运算性质.菁优网版权所有【专题】33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】直接利用有理指数幂及对数的运算性质求解即可.【解答】解:=2+0=2.故选:B.【点评】本题考查了有理指数幂及对数的运算性质,是基础题.10.(3分)函数y=x2,y=x3,,y=lgx中,在区间(0,+∞)上为减函数的是()A.y=x2B.y=x3C.D.y=lgx【考点】3E:函数单调性的性质与判断.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,依次分析4个函数在区间(0,+∞)的单调性,综合即可得答案.【解答】解:根据题意,函数y=x2,为二次函数,在区间(0,+∞)为增函数;y=x3,为幂函数,在区间(0,+∞)为增函数;,为指数函数,在区间(0,+∞)上为减函数;y=lgx中,在区间(0,+∞)为增函数;故选:C.【点评】本题考查函数单调性的判定,关键是掌握常见函数的单调性,属于基础题.11.(3分)某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A.0.1 B.0.2 C.0.3 D.0.7【考点】C2:概率及其性质.菁优网版权所有【专题】38:对应思想;4R:转化法;5I:概率与统计.【分析】根据互斥事件概率加法公式即可得到其发生的概率的大小.【解答】解:由于中一等奖,中二等奖,为互斥事件,故中奖的概率为0.1+0.1=0.2,故选:B.【点评】此题考查概率加法公式及互斥事件,是一道基础题.12.(3分)如果正△ABC的边长为1,那么•等于()A.B.C.1 D.2【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】38:对应思想;4R:转化法;5A:平面向量及应用.【分析】根据向量的数量积的运算性质计算即可.【解答】解:∵正△ABC的边长为1,∴•=||•||cos A=1×1×cos60°=,故选:B.【点评】本题考查了向量的数量积的运算,是一道基础题.13.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=10,A=45°,B=30°,那么b等于()A.B.C.D.【考点】HP:正弦定理.菁优网版权所有【专题】38:对应思想;4R:转化法;58:解三角形.【分析】根据正弦定理直接代入求值即可.【解答】解:由正弦定理==,得=,解得:b=5,故选:B.【点评】本题考查了正弦定理的应用,考查解三角形问题,是一道基础题.14.(3分)已知圆C:x2+y2﹣2x=0,那么圆心C到坐标原点O的距离是()A.B.C.1 D.【考点】J2:圆的一般方程.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;5B:直线与圆.【分析】根据题意,由圆的一般方程分析可得圆心C的坐标,进而由两点间距离公式,计算可得答案.【解答】解:根据题意,圆C:x2+y2﹣2x=0,其圆心C为(1,0),则圆心C到坐标原点O的距离d==1;故选:C.【点评】本题考查圆的一般方程,涉及两点间距离公式,属于基础题.15.(3分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB =1,那么该四棱柱的体积为()A.1 B.2 C.4 D.8【考点】LF:棱柱、棱锥、棱台的体积.菁优网版权所有【专题】11:计算题;31:数形结合;4O:定义法;5F:空间位置关系与距离.【分析】该四棱柱的体积为V=S正方形ABCD×AA1,由此能求出结果.【解答】解:∵在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB=1,∴该四棱柱的体积为V=S正方形ABCD×AA1=12×2=2.故选:B.【点评】本题考查该四棱柱的体积的求法,考查四棱柱的性质等基础知识,考查运算求解能力,是基础题.16.(3分)函数f(x)=x3﹣5的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【考点】52:函数零点的判定定理.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;49:综合法;51:函数的性质及应用.【分析】求得f(1)f(2)<0,根据函数零点的判定定理可得函数f(x)的零点所在的区间.【解答】解:由函数f(x)=x3﹣5可得f(1)=1﹣5=﹣4<0,f(2)=8﹣5=3>0, 故有f(1)f(2)<0,根据函数零点的判定定理可得,函数f(x)的零点所在区间为(1,2),故选:A.【点评】本题主要考查函数的零点的判定定理的应用,属于基本知识的考查.17.(3分)在sin50°,﹣sin50°,sin40°,﹣sin40°四个数中,与sin130°相等的是()A.sin50°B.﹣sin50°C.sin40°D.﹣sin40°【考点】GF:三角函数的恒等变换及化简求值.菁优网版权所有【专题】35:转化思想;56:三角函数的求值.【分析】利用诱导公式化简可得答案.【解答】解:由sin130°=sin(180°﹣50°)=sin50°.∴与sin130°相等的是sin50°故选:A.【点评】题主要考察了诱导公式的应用,属于基本知识的考查.18.(3分)把函数y=sin x的图象向右平移个单位得到y=g(x)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.菁优网版权所有【专题】35:转化思想;49:综合法;57:三角函数的图象与性质.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.【解答】解:把函数y=sin x的图象向右平移个单位得到y=g(x)=sin(x﹣)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为y=2sin(x﹣),故选:A.【点评】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.19.(3分)函数的最小值是()A.﹣1 B.0 C.1 D.2【考点】3H:函数的最值及其几何意义.菁优网版权所有【专题】33:函数思想;48:分析法;51:函数的性质及应用.【分析】分别讨论两段函数的单调性和最值,即可得到所求最小值.【解答】解:当x>﹣1时,f(x)=x2的最小值为f(0)=0;当x≤﹣1时,f(x)=﹣x递减,可得f(x)≥1,综上可得函数f(x)的最小值为0.故选:B.【点评】本题考查分段函数的最值求法,注意分析各段的单调性和最值,考查运算能力,属于基础题.20.(3分)在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③平行于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中正确命题的序号是()A.①B.②C.③D.④【考点】2K:命题的真假判断与应用.菁优网版权所有【专题】38:对应思想;48:分析法;5F:空间位置关系与距离.【分析】由线面平行的性质可判断①;由线面垂直的性质定理可判断②;由两个平面的位置关系可判断③;由面面平行的判定定理可判断④.【解答】解;对于①,平行于同一个平面的两条直线互相平行或相交或异面,故①错误;对于②,垂直于同一个平面的两条直线互相平行,故②正确;对于③,平行于同一条直线的两个平面互相平行或相交,故③错误;对于④,垂直于同一个平面的两个平面互相平行或相交,故④错误.故选:B.【点评】本题考查空间线线和面面的位置关系的判断,考查平行和垂直的判断和性质定理的运用,属于基础题.21.(3分)北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如表:各区域1月份PM2.5浓度(单位:微克/立方米)表区域PM2.5浓度区域PM2.5浓度区域PM2.5浓度怀柔27 海淀34 平谷40密云31 延庆35 丰台42门头沟32 西城35 大兴46顺义32 东城36 开发区46昌平32 石景山37 房山47朝阳34 通州39从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克/立方米的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.菁优网版权所有【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】由表可知从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,根据概率公式计算即可.【解答】解:从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,则2018年1月份PM2.5的浓度小于36微克/立方米的概率是,故选:D.【点评】本题主要考查频率分布表、古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等22.(3分)已知,那么=()A.B.C.D.【考点】GP:两角和与差的三角函数.菁优网版权所有【专题】35:转化思想;36:整体思想;56:三角函数的求值.【分析】直接利用同角三角函数关系式的应用求出结果.【解答】解:知,那么,则:=sin==, 故选:D.【点评】本题考查的知识要点:三角函数关系式的恒等变变换,主要考查学生的运算能力和转化能力,属于基础题型.23.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果,那么△ABC的最大内角的余弦值为()A.B.C.D.【考点】HR:余弦定理.菁优网版权所有【专题】38:对应思想;4O:定义法;58:解三角形.【分析】先判断△ABC的最大内角为A,再利用余弦定理计算cos A的值.【解答】解:△ABC中,,∴△ABC的最大内角为A,且cos A===.故选:A.【点评】本题考查了余弦定理的应用问题,是基础题.24.(3分)北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()A.2013年以来,每年参观总人次逐年递增B.2014年比2013年增加的参观人次不超过50万C.2012年到2017年这六年间,2017年参观总人次最多D.2012年到2017年这六年间,平均每年参观总人次超过160万【考点】F4:进行简单的合情推理.菁优网版权所有【专题】11:计算题;31:数形结合;44:数形结合法;5I:概率与统计.【分析】由从2012年到2017年每年参观人数的折线图,得2012年到2017年这六年间,2017年参观总人次最多.【解答】解:由从2012年到2017年每年参观人数的折线图,得:在A中,2013年以来,2015年参观总人次比2014年参观人次少,故A错误;在B中,2014年比2013年增加的参观人次超过50万,故B错误;在C中,2012年到2017年这六年间,2017年参观总人次最多,故C正确;在D中,2012年到2017年这六年间,平均每年参观总人次不超过160万,故D错误.【点评】本题考查命题真假的判断,考查折线图的应用,考查运算求解能力,考查数形结合思想,是基础题.25.(3分)阅读下面题目及其证明过程,在横线处应填写的正确结论是()如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,BC⊥AC求证:BC⊥PA证明:因为平面PAC⊥平面ABC平面PAC∩平面ABC=ACBC⊥AC,BC⊂平面ABC所以______.因为PA⊂平面PAC.所以BC⊥PAA.AB⊥底面PAC B.AC⊥底面PBC C.BC⊥底面PAC D.AB⊥底面PBC 【考点】LW:直线与平面垂直.菁优网版权所有【专题】38:对应思想;4R:转化法;5F:空间位置关系与距离.【分析】根据面面垂直的性质定理判断即可.【解答】解:根据面面垂直的性质定理判定得:BC⊥底面PAC,故选:C.【点评】本题考查了面面垂直的性质定理,考查数形结合思想,是一道基础题.二、解答题(共4小题,满分25分)26.(7分)已知函数(Ⅰ)A= 2 ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)函数f(x)的最小正周期T=2π(将结果直接填写在答题卡的相应位置上)(Ⅲ)求函数f(x)的最小值及相应的x的值.【考点】HW:三角函数的最值.菁优网版权所有【专题】33:函数思想;4O:定义法;57:三角函数的图象与性质.【分析】(Ⅰ)由f(0)=1求得A的值;(Ⅱ)由正弦函数的周期性求得f(x)的最小正周期;(Ⅲ)由正弦函数的图象与性质求得f(x)的最小值以及对应x的值.【解答】解:(Ⅰ)函数由f(0)=A sin=A=1,解得A=2;(Ⅱ)函数f(x)=2sin(x+),∴f(x)的最小正周期为T=2π;(Ⅲ)令x+=2kπ﹣,k∈Z;x=2kπ﹣,k∈Z;此时函数f(x)取得最小值为﹣2.故答案为:(Ⅰ)2,(Ⅱ)2π.【点评】本题考查了正弦函数的图象与性质的应用问题,是基础题.27.(7分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,D,E,分别为PB,PC的中点.(Ⅰ)求证:BC∥平面ADE;(Ⅱ)求证:BC⊥平面PAB.【考点】LS:直线与平面平行;LW:直线与平面垂直.菁优网版权所有【专题】14:证明题;31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】(Ⅰ)由D、E分别为PB、PC的中点,得DE∥BC,由此能证明BC∥平面ADE.(Ⅱ)推导出PA⊥BC,AB⊥BC,由此能证明BC⊥平面PAB.【解答】证明:(Ⅰ)在△PBC中,∵D、E分别为PB、PC的中点,∴DE∥BC,∵BC⊄平面ADE,DE⊂平面ADE,∴BC∥平面ADE.(Ⅱ)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB.【点评】本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.28.(6分)已知圆O:x2+y2=r2(r>0)经过点A(0,5),与x轴正半轴交于点B.(Ⅰ)r= 5 ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)圆O上是否存在点P,使得△PAB的面积为15?若存在,求出点P的坐标;若不存在,说明理由.【考点】J9:直线与圆的位置关系.菁优网版权所有【专题】34:方程思想;4R:转化法;5B:直线与圆.【分析】(Ⅰ)直接由已知条件可得r;(Ⅱ)存在.由(Ⅰ)可得圆O的方程为:x2+y2=25,依题意,A(0,5),B(5,0),求出|AB|=,直线AB的方程为x+y﹣5=0,又由△PAB的面积,可得点P到直线AB的距离为,设点P(x0,y0),解得x0+y0=﹣1或x0+y0=11(显然此时点P不在圆上,故舍去),联立方程组,求解即可得答案.【解答】解:(Ⅰ)r=5;(Ⅱ)存在.∵r=5,∴圆O的方程为:x2+y2=25.依题意,A(0,5),B(5,0),∴|AB|=,直线AB的方程为x+y﹣5=0,又∵△PAB的面积为15,∴点P到直线AB的距离为,设点P(x0,y0),∴,解得x0+y0=﹣1或x0+y0=11(显然此时点P不在圆上,故舍去),联立方程组,解得或.∴存在点P(﹣4,3)或P(3,﹣4)满足题意.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,是中档题.29.(5分)种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表电力线安全距离(单位:m)水平距离垂直距离≤1KV≥1 ≥13KV~10KV≥3 ≥335KV~110KV≥3.5 ≥4154KV~220KV≥4 ≥4.5330KV≥5 ≥5.5500KV≥7 ≥7现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的时间x(年)与它的高度y(m)满足关系式(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)如果这棵行道树的正上方有35kV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?(Ⅲ)假如这棵行道树的正上方有500kV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m?【考点】5C:根据实际问题选择函数类型.菁优网版权所有【专题】11:计算题;33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】(Ⅰ)将x=2,y=2代入计算即可,(Ⅱ)函数解析式为y=,令y=20﹣4=16,解得x=10,问题得以解决, (Ⅲ)根据指数函数的性质可得y=<30,问题得以解决【解答】解:(Ⅰ)r=,故答案为:(Ⅱ)根据题意,该树木的高度为16米时需要及时修剪这颗行道数,函数解析式为y=,令y=20﹣4=16,解得x=10,故这棵行道树自然生长10年必须修剪;(Ⅲ)因为>0,所以1+28×>1,所以y=<30,所以该电力线距离地面至少37米,这这棵行道树一直自然生长,始终不会影响电力线段安全.【点评】本题考查了函数在实际生活中的应用,考查了分析问题解决问题的能力,属于中档题.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/7/25 12:12:34;用户:qgjyuser10448;邮箱:qgjyuser10448.21957750;学号:21985455。

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.若,则一定成立的不等式是A.B.C.D.2.等差数列中,若,则等于A.3B.4C.5D.63.在中,a=15,b=10,A=60°,则=A.B.C.D.4.等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是A.90B.100C.145D.1905.在中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且a=1,等于A. B. C. D.26.不等式的解集为,不等式的解集为,不等式的解集是,那么等于A.-3B.1C.-1D.37.已知两个正数、的等差中项是5,则、的等比中项的最大值为A. 10B. 25 C 50 D. 1008.已知圆的半径为4,为该圆的内接三角形的三边,若,则三角形的面积为A.B.C.D.9.当时,不等式恒成立,则的最大值和最小值分别为A.2,-1B.不存在,2C.2,不存在D.-2,不存在10.已知x、y满足约束条件则目标函数z=(x+1)2+(y-1)2的最大值是A.10B.90C.D.211.已知等比数列满足,且,则当时,A.B.C.D.12.已知方程的四个实根组成以为首项的等差数列,则A.2 C. D.二、填空题1.等差数列的前项和为,若,则2.若关于x的不等式的解集为,则实数a的取值范围是3.设等比数列的公比,前项和为,则4.在中,角的对边分别是,已知,则的形状是三角形.三、解答题1.已知集合,(Ⅰ)当时,求(Ⅱ)若,求实数的取值范围.2.在△ABC中,角A、B、C的对边分别为a、b、c,且(Ⅰ)求角A的大小;(Ⅱ)若,求△ABC的面积.3.如图,海中小岛A周围40海里内有暗礁,一船正在向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?4.已知点(1,2)是函数的图象上一点,数列的前项和.(Ⅰ)求数列的通项公式(Ⅱ)若,求数列的前项和.5.运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元(Ⅰ)求这次行车总费用y关于x的表达式(Ⅱ)当x为何值时,这次行车的总费用最低,并求出最低费用的值6.已知数列中,,,(Ⅰ)证明数列是等比数列,并求出数列的通项公式(Ⅱ)记,数列的前项和为,求使的的最小值山东高二高中数学水平会考答案及解析一、选择题1.若,则一定成立的不等式是A.B.C.D.【答案】C【解析】本题考查的是不等式的性质。

山东省学业水平考试数学试题(2015-2017会考)附答案

山东省学业水平考试数学试题(2015-2017会考)附答案
y k ( x 1) 2 代入y 2 x 2得2x2 kx k 2 0 k k2 k k2 A( 1, 2k 2), 用 k 换k 得B ( 1, 2k 2) 2 2 2 2 k k k2 A( x1, y1 ), B( x2 , y2 ), 则x1 1 , x1 1, y1 k ( x1 1) 2 2k 2 2 2 2 k AB k k 1 ( 1) 4k 2 2 2 4 (定值) 2 k k k 2k 2 ( 2k 2) 2 2
22.已知 tan 2, 则 tan( ) 的值是___________ 4
23.一个四棱锥的三视图如图所示,其中主(正)视图和左(侧)视图都是边长为 2 的正 三角形,那么该四棱锥的底面积为__________
8
x 2 24.已知实数 x,y 满足约束条件 y 2 , 则目标函数 z x 2 y x y 2 0 的最小值是 ______
9
山东省普通高中学业水平考试数学试题 参考答案
1~5 DABAC 21. 12 22. 6~10 BBDDA 11~15 CAACD 16~20 BCDBC -3 23. 4 24. 2 25.
2

26 f ( x)的定义域是( , 2), 零点是x 2 27. (1) an n, (2) S100 5050 28.解(1) 设直线MA的斜率为k , 则MB的斜率为-k,则直线MA的方程为
1 1 a b
11.设 a, b, c R, 且a b ,则下列不等式正确的是( A. a 2 b 2 B. ac 2 bc 2 C. a c b c D.
13.甲、乙、丙 3 人站成一排,则甲恰好在中间的概率为( A.

山东省高中学业水平考试(合格考)模拟卷(一)

山东省高中学业水平考试(合格考)模拟卷(一)

山东省高中学业水平考试(合格考)数学模拟卷(一) 2021.11.16一、选择题题(本大题共20个小题,每小题3分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={1,2,3},B ={-1,0,1},则A ∩B =( ) A .∅B .{1}C .{0,1,2,3}D .{-1,0,1,2,3}2.函数()πcos 26f x x ⎛⎫=+ ⎪⎝⎭,x ∈R 的最小正周期是( )A .2πB .πC .π2 D .π43.函数y = )A .1,2⎛⎫+∞ ⎪⎝⎭B .()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭C .()1,22,2⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭4.已知平面向量()1,2a =,()2,b m =-,且//a b , 则m 的值为( ) A .1-B .4-C .1D .45.“直线l 与平面α没有公共点”是“直线l 与平面α平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.已知函数()335f x x x =+-,则零点所在的区间可以为( ) A .()0,1 B .()1,2 C .()1,0- D .()2,1-- 7.袋子中有6个相同的球,分別标有数字1,2,3,4,5,6,从中随机取出两个球,则取出球的数字之和是8的概率为( ) A .16B .536C .115D .2158.已知条件甲:05x <<,条件乙:323x -<-<,那么甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.若向量(1,2)a =,(3,2)b =-,则(2)a a b ⋅+=( )A .3B .-3C .8D .13 10.抽样统计甲射击运动员10次的训练成绩分别为86,85,88,86,90,89,88,87,85,92,则这10次成绩的80%分位数为( )11.已知i 是虚数单位,则复数i 212i-=+( ) A .iB .i -C .43i 55--D .43i 55-+12.若角α的终边经过点()1,2P -,则sin α的值为( ) A 25B 5C .5D .2513.现将函数π()sin 26f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位,再将所得的图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()g x 的图象,则函数()g x 的解析式为( )A .π()sin 43g x x ⎛⎫=- ⎪⎝⎭B .()sin g x x =C .π()sin 12g x x ⎛⎫=- ⎪⎝⎭D .()sin 6πg x x ⎛⎫=- ⎪⎝⎭14.已知m ,n 是不同的直线,α,β是不同的平面,则下列条件能使n α⊥成立的是( )A . ,n αββ⊥⊂B .//,n αββ⊥C .,//n αββ⊥D .//,m n m α⊥15.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为14人,则样本中的中年职工人数为( ) A .10B .30C .50D .7016.下列函数中,既是奇函数,又在(0,+∞)上单调递增的函数是( )A .y x =-B .y x =-C .21y x =-D .2y x=-17.设 1.20.43log 1,log 2,2a b c ===,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >> D .c b a >> 18.如图,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N )为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运( ) A .3年 B .4年 C .5年 D .6年19.甲射击命中目标的概率是12,乙射击命中目标的概率是13,丙射击命中目标的概率是14.现在三人同时射击同一目标,则目标被击中的概率为( )A .34B .23C .45D .71020.长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .7π2B .56πC .14πD .16π 二、填空题:(本大题共5小题,每小题3分,共15分)21.已知函数()()21mf x m m x =+-是幂函数,且在()0,∞+上是减函数,则实数m 的值为______.22.已知单位向量a ,b ,若1a b +=,则a 与b 的夹角余弦的值为_________. 23.函数1(2)2y x x x =+>-的最小值是___________. 24.已知复数z 满足()1i 17i z +=-(i 是虚数单位),则z =__________. 25.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为豪的发现.该圆柱的体积与球的体积之比为______.三、解答题(本大题共3小题,共25分.解答应写出文字说明、证明过程或演算步骤)26.(本小题满分8分)已知对数函数()log (0,1)a f x x a a =>≠的图象经过点(9,2). (1)求函数()f x 的解析式;(2)如果不等式(1)1f x +<成立,求实数x 的取值范围.27.(本小题满分8分)如图,已知△ABC中,AB,∠ABC=45°,∠ACB=60°.(1)求AC的长;(2)若CD=5,求AD的长.28.(本小题满分9分)如图,四棱锥P ABCD-的底面是边长为2的菱形,PD⊥底面ABCD.(1)求证:AC⊥平面PBD;(2)若2-的PD=,直线PB与平面ABCD所成的角为45°,求四棱锥P ABCD体积.合格考模拟卷(一)参考答案1.B 【详解】因为集合A ={1,2,3},B ={-1,0,1},所以{}1A B =.故选:B. 2.B 【详解】根据三角函数的周期公式得函数的最小正周期为22T ππ==. 3.D 【详解】由题设可得210x -≥,故12x,故函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:D . 4.B 【详解】因为()1,2a =,()2,b m =-,且//a b 所以122m ⨯=-⨯,解得4m =-. 5.C 【详解】若直线l 与平面α没有公共点,那直线l 与平面α只能平行,故充分条件成立;若直线l 与平面α平行,则直线l 与平面α没有公共点,故必要性也成立,所以“直线l 与平面α没有公共点”是“直线l 与平面α平行”的充分必要条件.6.B 【详解】显然函数()335f x x x =+-在R 上单调递增,(2)(1)(0)(1)10f f f f -<-<<=-<,而(2)90f =>,所以零点所在的区间可以为(1,2).故选:B7.D 【详解】基本事件共有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15种,其中数字和为8的基本事件有2种,所以取出球的数字之和是8的概率为215,故选:D. 8.A 【详解】由题意得:条件乙:15x -<<.∵0515x x <<⇒-<<,但1505x x -<<⇒<<,∴甲是乙的充分不必要条件,故选:A9.A 【详解】由题意,向量(1,2)a =,(3,2)b =-,则2(7,2)a b +=-,所以(2)743a a b ⋅+=-=.故选:A.10.D 【详解】甲射击运动员10次的训练成绩从小到大分别为:85,85,86,86, 87,88,88,89,90,92. 1080%8⨯=,这10次成绩的80%分位数为899089.52+=. 11.A 【详解】()()()()i 212i i 2i 224i 5ii 12i 12i 12i 145---+-+====++-+,故选:A.12.D 【详解】∵角α的终边经过点()1,2P -,∴1x =,2y =-,OP =,∴sinα==.故选:D . 13.D 【详解】将函数()sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位,可得sin 2sin 2366y x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭的图象,再将sin 26y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()g x 的图象,所以()sin 6g x x π⎛⎫=- ⎪⎝⎭.14.B 【详解】A 选项,,n αββ⊥⊂,可能n 是两个平面的交线,不能得到n α⊥,A 错误. B 选项,//,n αββ⊥,则n α⊥,B 正确. C 选项,,//n αββ⊥,可能n ⊂α,C 错误. D 选项,//,m n m α⊥,可能n ⊂α,D 错误.故选:B15.A 【详解】由题意知,青年职工人数:中年职工人数:老年职工人数=350:250:150=7:5:3.由样本中的青年职工为14人,可得中年职工人数为10. 16.D 【详解】选项A ,函数y x =-是奇函数,在(0,+∞)上单调递减,故A 不满足. 选项B ,对于函数y x =-,f (-x )=-|-x |=-|x |=f (x ),所以y =-|x |是偶函数,故B 不满足;选项C ,21y x =-是偶函数,在(0,+∞)上单调递减,故C 不满足;选项D ,2y x=-是奇函数,在(0,+∞)上单调递增,故D 满足.17.D 【详解】因0.4log 10=,则0a =,函数3log y x =在(0,)+∞上单调递增,123<<,于是有3330log 1log 2log 31=<<=,即01b <<,函数2x y =在R 上单调递增,1.20>,则 1.20221>=,即1c >,所以,,a b c 的大小关系是c b a >>.故选:D18.C 【详解】由题意可设y =a (x -6)2+11,又曲线过(4,7),∴ 7=a (4-6)2+11,∴ a =-1.即y =-x 2+12x -25,∴ y x =12-(x +25x)≤12-=2,当且仅当x =5时取等号. 故选C .19.A 【详解】由题可知,目标不被击中的概率是12312344⨯⨯=,所以目标被击中的概率为114-=34,故选:A20.C 【详解】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩,=, ∴2414S R ππ球==.故选:C 21.2-【详解】由函数()f x 是幂函数,则211m m +-=,解得2m =-或1m =, 又因为()f x 在()0,∞+上是减函数,所以2m =-;故答案为:2-22.12-【详解】因为a ,b 为单位向量,所以1a =,1b =,所以222222cos 1a b a a b b θ+=+⋅+=+=,解得1cos 2θ=-.故答案为:12-.23.4【详解】当2x >时,122242y x x =-++≥=-, 当且仅当122x x -=-,即3x =时取等号. 故答案为:4. 24.34i --【详解】因为()1i 17i z +=-,所以()()()()2217i 1i 17i 68i34i 1i 1i 1i 11z -----====--++-+. 25.32【详解】设球的半径为R ,则圆柱的底面半径为R ,高为2R ,23π22πV R R R =⨯=圆柱,34π3V R =球,332π342π3V R V R ==圆柱球,故答案为:3226.(1)3()log f x x =; (2)12x -<<.【详解】(1)因为函数过点(9,2),所以log 92a =,即29a =,因为0a >,所以3a =. 所以函数()f x 的解析式为()3log f x x =;(2)()()31log 1f x x +=+. 由()11f x +<可得()3log 11x +<,即()33log 1log 3x +<, 即1013x x +>⎧⎨+<⎩,即12x -<<. 所以实数x 的取值范围是12x -<<. 27.(1)3,(2)7【详解】(1)如图所示,在△ABC 中,由正弦定理得,sin sin AC ABABC ACB=∠∠,则sin 45sin 23sin sin 60AB ABC AC ACB ︒⋅∠===∠︒,(2)因为∠ACB =60°,所以120ACD ∠=︒, 在ACD △中,由余弦定理得,7AD ===. 28.(1)证明见解析;(2【详解】(1)证明:因为四边形ABCD 是菱形,所以AC ⊥BD , 又因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD ⊥AC , 又PD BD D ⋂=,故AC ⊥平面PBD ;(2)因为PD ⊥平面ABCD ,所以∠PBD 是直线PB 与平面ABCD 所成的角, 于是∠PBD =45°,因此BD =PD =2.又AB = AD =2, 所以菱形ABCD 的面积为sin 6023S AB AD =⋅⋅=故四棱锥P - ABCD 的体积13V S PD =⋅=.。

2022年山东省及普通高中学业水平考试会考数学试题及答案

2022年山东省及普通高中学业水平考试会考数学试题及答案

山东省12月一般高中学业水平考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。

满分100分,考试限定用时90分钟。

答卷前,考生务必将自己旳姓名、考籍号、座号填写在试卷和答题卡规定旳位置。

考试结束后,将本试卷和答题卡一并交回。

第I 卷(共60分)注意事项:每题选出答案后,用2B 铅笔把答题卡上对应题目旳答案标号涂黑。

如需改动,用橡皮擦洁净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上无效。

一、选择题(本大题共20个小题,每题3分,共60分. 在每题给出旳四个选项中,只有一项是符合题目规定旳) l. 已知集合{}1,2A =,{}2,3B =,则A B =A. {}2B. {}1,2C. {}2,3D. {}1,2,3 2. 图象过点(0,1)旳函数是A. 2xy = B. 2log y x = C. 12y x = D. 2y x =3. 下列函数为偶函数旳是A. sin y x =.B. cos y x =C. tan y x =D. sin 2y x = 4. 在空间中,下列结论对旳旳是A.三角形确定一种平面B.四边形确定一种平面C.一种点和一条直线确定一种平面D.两条直线确定一种平面5. 已知向量(1,2),(1,1)a b =-=,则a b = A. 3 B.2 C. 1 D. 06. 函数()sin cos f x x x =旳最大值是 A.14B.12C.3D. 1 7. 某学校用系统抽样旳措施,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一种号码,若抽到旳是3号,则从11~20中应抽取旳号码是 A. 14 B. 13 C. 12 D. 11 8. 圆心为(3,1),半径为5旳圆旳原则方程是A. 22(3)(1)5x y +++=B. 22(3)(1)25x y +++=C. 22(3)(1)5x y -+-=D. 22(3)(1)25x y -+-=49. 某校100名学生数学竞赛成绩旳频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内旳人数为 A. 20 B. 15 C. 10 D. 610. 在等比数列{}n a 中,232,4a a ==,则该数列旳前4项和为 A. 15 B. 12 C. 10 D. 6 11. 设,,a b c R ∈,且a b >,则下列不等式成立旳是A. 22a b >B. 22ac bc >C. a c b c +>+D. 11a b< 12. 已知向量(1,2),(2,)a b x =-=,若//a b ,则x 旳值是 A. 4- B. 1- C. 1 D. 4113. 甲、乙、丙3人站成一排,则甲恰好站在中间旳概率为 A.13 B. 12 C. 23 D. 1614. 已知函数()2sin()(0)f x x ωϕω=+>旳部分图象如图所示,则ω旳值为A. 1 2 C. 3 D.215 已知实数020.31log 3,(),log 22a b c ===,则,,a b c 旳大小关系为 A. b c a << B. b a c << C. c a b << D. c b a << 16. 如图,角α旳终边与单位圆交于点M ,M 旳纵坐标为45,则cos α=A.35B.35- C.45 D. 45- 17. 甲、乙两队举行足球比赛,甲队获胜旳概率为13,则乙队不输旳概率为 A.56B.34 C. 23D. 1318. 如图,四面体ABCD 旳棱DA ⊥平面ABC ,090ACB ∠=, 则四面体旳四个面中直角三角形旳个数是 A. 1 B.2 C. 3 D. 419.在ABC ∆中,角,,A B C 旳对边分别是,,a b c . 若222c a ab b =++,则C = A. 0150 B. 0120 C. 060 D. 030 20. 如图所示旳程序框图,运行对应旳程序,则输出a 旳值是 值为 A.12 B. 13 C. 14 D. 152第II 卷(共40分)注意事项:1. 第II 卷共8个小题,共40分。

山东高一高中数学水平会考带答案解析

山东高一高中数学水平会考带答案解析

山东高一高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.下列指定的对象,不能构成集合的是A.一年中有31天的月份B.平面上到点的距离等于1的点C.满足方程的D.某校高一(1)班性格开朗的女生2.函数的定义域为A.B.C.R D.3.下列三个图象中,能表示y是x的函数图象的个数是A.0B.1C.2D.34.下列函数中为偶函数的是A.B.C.D.5.函数f(x)=7+a x-3(a>0,a≠1)的图象恒过定点P,则定点P的坐标为A.(3,3)B.(3,2)C.(3,8)D.(3,7)6.,,的大小关系为A.B.C.D.7.f(x)是定义在R上的减函数,则不等式的解集为A.(0 ,+∞)B.(0 , 2)C.(2 ,+∞)D.(-∞,2)8.若集合 {0,a2,a+b}={1,a,},则a2012 +b2011的值为A.0B.1C.-1D.±19.设函数,则的表达式是A.B.C.D.10.已知函数(其中)的图象如下面右图所示,则函数的图象是11.根据表格中的数据,可以断定方程(0)的一个根所在的区间是A.(-1,0) B.(0,1) C.(1,2) D.(2,3)12.设映射是集合到集合的映射,若对于实数,在中不存在对应的元素,则实数的取值范围是A. B.C. D.二、填空题1.已知全集2.函数y=-(x-2)x的递增区间是____________,递减区间是3.已知,若,则4.已知f(x)是定义在∪上的奇函数,当时,f(x)的图象如右图所示,那么f(x)的值域是三、解答题1.计算:(1)(2)2.已知, .(1)求和;(2)若记符号,在图中把表示“集合”的部分用阴影涂黑,求.3.已知函数.(I)判断函数的奇偶性并证明;(II)若,证明:函数在区间上是增函数.4.已知函数.(1)当时,求函数f(x)的最大值和最小值;(2)求实数的取值范围,使在区间上是单调函数5.某微机培训机构打算购进一批微机桌和鼠标垫,市场价微机桌每张为150元,鼠标垫每个为5元,该培训机构老板联系了两家商场甲和乙,由于用货量大,这两家商场都给出了优惠条件商场甲:买一赠一,买一张微机桌,赠一个鼠标垫商场乙:打折,按总价的95%收款该培训机构需要微机桌60张,鼠标垫个(),如果两种商品只能在一家购买,请你帮助该培训机构老板选择在哪一家商场买更省钱?6.已知指数函数满足:g(3)=8,定义域为的函数是奇函数.(1)确定的解析式;(2)求m,n的值;(3)若对任意的,不等式恒成立,求实数的取值范围山东高一高中数学水平会考答案及解析一、选择题1.下列指定的对象,不能构成集合的是A.一年中有31天的月份B.平面上到点的距离等于1的点C.满足方程的D.某校高一(1)班性格开朗的女生【答案】D【解析】本题主要考查的是集合元素的性质。

2020年山东省普通高中学业水平合格考试数学试卷

2020年山东省普通高中学业水平合格考试数学试卷

2020年山东省普通高中学业水平合格考试数学试卷一、本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合A ={1, 3, 5},B ={2, 3},则A ∪B =( ) A.{3} B.{1, 5}C.(1, 2, 5)∩{1, 2, 5}D.{1, 2, 3, 5}2. 函数f(x)=cos(12x +π6)的最小正周期为( ) A.π2B.πC.2πD.4π3. 函数f(x)=√x −1+ln(4−x)的定义域是( ) A.(1, +∞) B.[1, 4) C.(1, 4] D.(4, +∞)4. 下列函数中,既是偶函数又在(0, +∞)上是减函数的是( )A.y =−x 3B.y =1C.y =|x|D.y =1x5. 已知直线l 过点P(2, −1),且与直线2x +y −l =0互相垂直,则直线l 的方程为( ) A.x −2y =0 B.x −2y −4=0 C.2x +y −3=0 D.2x −y −5=06. 已知函数f(x)={2x ,x ≤0x 32,x >0,则f(−1)+f(1)=( )A.0B.1C.32 D.27. 已知向量a →与b →的夹角为π3,且|a →|=3,|b →|=4,则a →⋅b →=( )A.6√3B.6√2C.4√3D.68. 某工厂抽取100件产品测其重量(单位:kg ).其中每件产品的重量范围是[40, 42].数据的分组依据依次为[40, 40, 5),[40, 5, 41),[41, 41, 5),[41, 5, 42),据此绘制出如图所示的频率分布直方图,则重量在[40, 41)内的产品件数为( )A.30B.40C.60D.80sin 110∘ cos40∘−cos70∘sin40∘=()A.1 2B.√32C.−12D.−√3210. 在平行四边形ABCD中,AB→+BD→−AC→=()A.DC→B.BA→C.BC→D.BD→11. 某产品的销售额y(单位:万元)与月份x的统计数据如表.用最小二乘法求出y关于x的线性回归方程为y^=7x+a^,则实数a^=()12. 下列结论正确的是()A.若a<b,则a3<b3B.若a>b,则2a<2bC.若a<b,则a2<b2D.若a>b,则lna>lnb13. 圆心为M(1, 3),且与直线3x−4y−6=0相切的圆的方程是()A.(x−1)2+(y−3)2=9B.(x−1)2+(y−3)2=3C.(x+1)2+(y+3)2=9D.(x+1)2+(y+3)2=314. 已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是()A.事件“都是红色卡片”是随机事件B.事件“都是蓝色卡片”是不可能事件C.事件“至少有一张蓝色卡片”是必然事件D.事件“有1张红色卡片和2张蓝色卡片”是随机事件15. 若直线(a−1)x−2y+1=0与直线x−ay+1=0垂直,则实数a=()A.−1或2B.−1C.13D.316. 将函数y=sinx的图象上所有的点的横坐标缩短到原来的13倍(纵坐标不变),再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为()A.y=sin(3x−π)B.y=sin(3x−π)17. 3名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.1 4B.23C.12D.3418. 如图,在正方体ABCD−A1B1C1D1中,下列判断正确的是()A.A1D⊥C1CB.BD1⊥ADC.A1D⊥ACD.BD1 ⊥AC19. 已知向量a→,b→不共线,若AB→=a→+2b→,BC→=−3a→+7b→,CD→=4a→−5b→,则()A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线20. 在三棱锥P−ABC中,PA,PB,PC两两垂直,且PA=1,PB=PC=2,则该三棱锥的外接球体的体积为()A.9π2B.27π2C.9πD.36π二、填空题:本大题共5小题,每小题3分,共15分.某校田径队共有男运动员45人,女运动员36人.若采用分层抽样的方法在全体运动员中抽取18人进行体质测试,则抽到的女运动员人数为________.已知α为第二象限角,若sinα=35,则tanα的值为________.已知圆锥底面半径为1,高为√3,则该圆锥的侧面积为________.已知函数f(x)=x2+x+a在区间(0, 1)内有零点,则实数a的取值范围为________.若P是圆C1:(x−4)2+(y−5)2=9上一动点,Q是圆C2:(x+2)2+(y+3)2=4上一动点,则|PQ|的最小值是________.三、解答题:本题共3小题,共25分.如图,在四棱锥P−ABCD中,四边形ABCD是平行四边形,E、F分别是AB、PC中点,求证:EF // 面PAD.在△ABC中,a,b,c分别是角A,B,C的对边,且a=6,cosB=1.3(1)若sinA=3,求b的值;5(2)若c=2,求b的值及△ABC的面积S.已知函数f(x)=ax+log3(9x+1)(a∈R)为偶函数.(1)求a的值;(2)当x∈[0, +∞)时,不等式f(x)−b≥0恒成立,求实数b的取值范围.参考答案与试题解析2020年山东省普通高中学业水平合格考试数学试卷一、本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【考点】并集及其运算【解析】进行并集的运算即可.【解答】∵A={1, 3, 5},B={2, 3},∴A∪B={1, 2, 3, 5}.2.【答案】D【考点】三角函数的周期性及其求法【解析】根据三角函数的周期公式直接进行计算即可.【解答】由三角函数的周期公式得T=2π12=4π,3.【答案】B【考点】函数的定义域及其求法【解析】根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】解:∵函数f(x)=√x−1+ln(4−x),∴{x−1≥0,4−x>0.解得1≤x<4.∴函数f(x)的定义域是[1, 4).故选B.4.【答案】D【考点】奇偶性与单调性的综合【解析】【解答】由幂函数的性质可知,y=−x3,y=1x为奇函数,不符合题意,y=|x|为偶函数且在(0, +∞)上单调递增,不符号题意,y=1x2为偶函数且在(0, +∞)上单调递减,符合题意.5.【答案】B【考点】直线的一般式方程与直线的垂直关系【解析】根据题意设出直线l的方程,把点P(2, −1)代入方程求出直线l的方程.【解答】根据直线l与直线2x+y−l=0互相垂直,设直线l为x−2y+m=0,又l过点P(2, −1),∴2−2×(−1)+m=0,解得m=−4,∴直线l的方程为x−2y−4=0.6.【答案】C【考点】求函数的值函数的求值【解析】推导出f(−1)=2−1=12,f(1)=132=1,由此能求出f(−1)+f(1)的值.【解答】∵函数f(x)={2x,x≤0x32,x>0,∴f(−1)=2−1=12,f(1)=132=1,∴f(−1)+f(1)=12+1=32.故选:C.7.【答案】D【考点】平面向量数量积的性质及其运算【解析】进行数量积的运算即可.【解答】∴ a →⋅b →=|a →||b →|cos π3=3×4×12=6.8.【答案】 B【考点】频率分布直方图 【解析】由频率分布直方图得重量在[40, 41)内的频率为0.4.由此能求出重量在[40, 41)内的产品件数. 【解答】由频率分布直方图得:重量在[40, 41)内的频率为:(0.1+0.7)×0.5=0.4. ∴ 重量在[40, 41)内的产品件数为0.4×100=40. 9.【答案】 A【考点】求两角和与差的正弦 【解析】利用诱导公式以及两角和的正弦函数化简求解即可. 【解答】解:sin 110∘ cos40∘−cos70∘sin40∘ =sin 70∘ cos40∘−cos70∘sin40∘ =sin (70∘−40∘) =sin30∘=12. 故选A . 10.【答案】 B【考点】向量加减法的应用 【解析】利用平面向量加法法则直接求解. 【解答】在平行四边形ABCD 中,AB →+BD →−AC →=AB →+BD →+CA →=CD →=BA →. 11.【答案】 B【考点】求解线性回归方程由已知求得样本点的中心坐标,代入线性回归方程即可求得实数a^.【解答】x=3+4+5+64=4.5,y=25+30+40+454=35,∴样本点的中心坐标为(4.5, 35),代入y^=7x+a^,得35=7×4.5+a^,即a^=3.5.12.【答案】A【考点】不等式的基本性质【解析】利用函数的单调性、不等式的性质即可判断出正误.【解答】A.a<b,可得a3<b3,正确;B.a>b,可得2a>2b,因此B不正确;C.a<b,a2与b2大小关系不确定,因此不正确;D.由a>b,无法得出lna>lnb,因此不正确.13.【答案】A【考点】圆的切线方程圆的标准方程【解析】由题意可知,圆的半径即为圆心M到直线的距离,根据点到直线的距离公式即可求解.【解答】由题意可知,圆的半径r=|3−12−6|5=3,故所求的圆的方程为(x−1)2+(y−3)2=9.14.【答案】C【考点】随机事件【解析】利用随机事件的定义直接求解.【解答】袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,在A中,事件“都是红色卡片”是随机事件,故A正确;在B中,事件“都是蓝色卡片”是不可能事件,故B正确;在C中,事件“至少有一张蓝色卡片”是随机事件,故C错误;在D中,事件“有1张红色卡片和2张蓝色卡片”是随机事件,故D正确.15.C【考点】直线的一般式方程与直线的垂直关系 【解析】根据题意,分析可得(a −1)+2a =0,解可得a 的值,即可得答案. 【解答】根据题意,若直线(a −1)x −2y +1=0与直线x −ay +1=0垂直, 必有(a −1)+2a =0,解可得a =13;16.【答案】 A【考点】函数y=Asin (ωx+φ)的图象变换 【解析】由题意利用函数y =Asin(ωx +φ)的图象变换规律,得出结论. 【解答】将函数y =sinx 的图象上所有的点的横坐标缩短到原来的13倍(纵坐标不变),可得y =sin3x 的图象;再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为y =sin3(x −π12)=sin(3x −π4), 17.【答案】 D【考点】古典概型及其概率计算公式 【解析】求得3位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可. 【解答】3位同学各自在周六、周日两天中任选一天参加公益活动,共有23=8种情况, 周六、周日都有同学参加公益活动,共有23−2=8−2=6种情况, ∴ 所求概率为68=34. 18.【答案】 D【考点】空间中直线与直线之间的位置关系 【解析】直接可以看出A ,B ,C 均不成立,用线线垂直来推线面垂直进而得到线线垂直. 【解答】因为AC ⊥BD ,AC ⊥DD 1;BD ∩DD 1=D ;∴ AC ⊥平面DD 1B 1B ; BD 1⊆平面DD 1B 1B ; ∴ AC ⊥BD 1; 即D 对. 19.【答案】 B【考点】平行向量(共线) 【解析】BD →=BC →+CD →=(−3a →+7b →)+(4a →−5b →)=a →+2b →=AB →,从而BD →∥AB →,进而A ,B ,D 三点共线. 【解答】向量a →,b →不共线,AB →=a →+2b →,BC →=−3a →+7b →,CD →=4a →−5b →,∴ BD →=BC →+CD →=(−3a →+7b →)+(4a →−5b →)=a →+2b →=AB →,∴ BD →∥AB →,∴ A ,B ,D 三点共线. 20.【答案】 A【考点】球的体积和表面积 【解析】由题意将此三棱锥放在长方体中,可得长方体的长宽高,再由长方体的对角线等于外接球的直径求出外接球的体积. 【解答】由三棱锥中PA ,PB ,PC 两两垂直,且PA =1,PB =2,PC =2将此三棱锥放在长方体中,由题意知长方体的长宽高分别是:1,2,2.设外接球的半径为R ,则2R =√12+22+22=3所以R =32, 439二、填空题:本大题共5小题,每小题3分,共15分.【答案】8【考点】分层抽样方法【解析】根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率值,利用每个个体被抽到的概率乘以女运动员的数目,得到女运动员要抽取得人数.【解答】∵ 某校田径队共有男运动员45人,女运动员36人,∴ 这支田径队共有45+36=81人,用分层抽样的方法从该队的全体运动员中抽取一个容量为18的样本,∴ 每个个体被抽到的概率是1881=29,∵ 女运动员36人,∴ 女运动员要抽取36×29=8人,【答案】−34【考点】同角三角函数间的基本关系【解析】由条件利用同角三角函数的基本关系求得cosα 的值,从而求得tanα的值.【解答】∵ α为第二象限角sinα=35,∴ cosα=−45,则tanα=sinαcosα=−34, 【答案】2π【考点】柱体、锥体、台体的侧面积和表面积【解析】由已知求得母线长,代入圆锥侧面积公式求解.【解答】由已知可得r =1,ℎ=√3,则圆锥的母线长l =√12+(√3)2=2.∴ 圆锥的侧面积S =πrl =2π.【答案】(−2, 0)【考点】函数零点的判定定理【解析】由零点存在性定理得f(0)f(1)=a(a +2)<0,求出即可.【解答】函数f(x)=x 2+x +a 在区间(0, 1)内有零点,f(0)=a,f(1)=2+a,由零点存在性定理得f(0)f(1)=a(a+2)<0,得−2<a<0,经验证a=−2,a=0均不成立,故答案为:(−2, 0)【答案】5【考点】圆与圆的位置关系及其判定【解析】分别找出两圆的圆心坐标,以及半径r和R,利用两点间的距离公式求出圆心间的距离d,根据大于两半径之和,得到两圆的位置是外离,又P在圆C1上,Q在圆C2上,则|PQ|的最小值为d−(r+R),即可求出答案.【解答】圆C1:(x−4)2+(y−5)2=9的圆心C1(4, 5),半径r=3,圆C2:(x+2)2+(y+3)2=4的圆心C2(−2, −3),半径r=2,d=|C1C2|=√(4+2)2+(5+3)2=10>2+3=r+R,所以两圆的位置关系是外离,又P在圆C1上,Q在圆C2上,则|PQ|的最小值为d−(r+R)=10−(2+3)=5,三、解答题:本题共3小题,共25分.【答案】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,CD.所以FG // CD,且FG=12又因为四边形ABCD是平行四边形,且E是AB的中点.CD.所以AE // CD,且AE=12所以FG // AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF // AG.又因为EF平面PAD,AG⊂平面PAD,所以EF // 平面PAD.【考点】直线与平面平行【解析】取PD的中点G,连接FG、AG,由PF=CF,PG=DG,所以FG // CD,且FG=1CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE // CD,且AE= 21CD.证得四边形EFGA是平行四边形,所以EF // AG,由线面平行的判定定理即可得2证.【解答】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,所以FG // CD,且FG=12CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE // CD,且AE=12CD.所以FG // AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF // AG.又因为EF平面PAD,AG⊂平面PAD,所以EF // 平面PAD.【答案】由cosB=13可得sinB=2√23,由正弦定理可得,asinA =bsinB,所以b=asinBsinA =6×2√2335=20√23,由余弦定理可得,cosB=13=a2+c2−b22ac=36+4−b22×2×6,解可得,b=4√2,S=12acsinB=12×6×2×2√23=4√2.【考点】正弦定理余弦定理【解析】(1)先根据同角平方关系求出sinB,然后结合正弦定理即可求解,(2)结合余弦定理及三角形的面积公式即可求解.【解答】由cosB=13可得sinB=2√23,由正弦定理可得,asinA =bsinB,所以b=asinBsinA =6×2√2335=20√23,由余弦定理可得,cosB=13=a2+c2−b22ac=36+4−b22×2×6,解可得,b=4√2,S=12acsinB=12×6×2×2√23=4√2.【答案】根据题意可知f(x)=f(−x),即ax+log3(9x+1)=−ax+log3(9−x+1),整理得log39x+19+1=−2ax,即−2ax=log39x=2x,解得a=1;由(1)可得f(x)=x+log3(9x+1),因为f(x)−b≥0对x∈[0, +∞)恒成立,即x+log3(9x+1)≥b对x∈[0, +∞)恒成立,因为函数g(x)=x+log3(9x+1)在[0, +∞)上是增函数,所以g(x)min=g(0)=log32,则b≤log32.【考点】函数奇偶性的性质与判断函数恒成立问题【解析】(1)根据偶函数性质f(x)=f(−x),化简整理可求得a的取值;(2)根据条件可知x+log3(9x+1)≥b对x∈[0, +∞)恒成立,求出函数g(x)=x+ log3(9x+1)在[0, +∞)上的最小值即可【解答】根据题意可知f(x)=f(−x),即ax+log3(9x+1)=−ax+log3(9−x+1),整理得log39x+19−x+1=−2ax,即−2ax=log39x=2x,解得a=1;由(1)可得f(x)=x+log3(9x+1),因为f(x)−b≥0对x∈[0, +∞)恒成立,即x+log3(9x+1)≥b对x∈[0, +∞)恒成立,因为函数g(x)=x+log3(9x+1)在[0, +∞)上是增函数,所以g(x)min=g(0)=log32,则b≤log32.。

山东省学业水平考试数学试题(两次汇编)夏季冬季(含夏季答案)

山东省学业水平考试数学试题(两次汇编)夏季冬季(含夏季答案)

山东省2021年夏季普通高中学业程度考试 学生姓名: 考试成绩 : 总分值:100分 考试时间:90分钟一、选择题〔本大题共20个小题,每题3分,共60分〕1.集合{}4,2,1=A ,{}84,2,=B ,那么=B A 〔 〕A .{4}B .{2}C .{2,4}D .{1,2,4,8}2.周期为π的函数是〔 〕A .y =sinxB .y =cosxC .y =tan 2xD .y =sin 2x3.在区间()∞+,0上为减函数的是〔 〕A .2x y =B .21x y =C .xy ⎪⎭⎫ ⎝⎛=21D .x y ln = 4.假设角α的终边经过点()2,1-,那么=αcos 〔 〕 A .55-B .55C .552-D .552 5.把红、黄两张纸牌随机分给甲、乙两个人,每人分得一张,设事件P 为“甲分得黄牌〞,设事 件Q 为“乙分得黄牌〞,那么〔 〕A .P 是必然事件B .Q 是不可能事件C .P 与Q 是互斥但是不对立事件D .P 与Q 是互斥且对立事件6.在数列{}n a 中,假设n n a a 31=+,21=a ,那么=4a 〔 〕A .108B .54C .36D .187.采用系统抽样的方法,从编号为1~50的50件产品中随机抽取5件进展检验,那么所选取的5件产品的编号可以是〔 〕A .1,2,3,4,5B .2,4,8,16,32C .3,13,23,33,43D .5,10,15,20,258.()+∞∈,0,y x ,1=+y x ,那么xy 的最大值为〔 〕A .1B .21C .31D .41 9.在等差数列{}n a 中,假设95=a ,那么=+64a a 〔 〕A .9B .10C .18D .2010.在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,假设︒=60A ,︒=30B ,3=a ,那么=b 〔 〕A .3B .233C .32D .33 11.向量()3,2-=a ,()6,4-=b ,那么a 与b 〔 〕A .垂直B .平行且同向C .平行且反向D .不垂直也不平行12.直线012=+-y ax 与直线012=-+y x 垂直,那么=a 〔 〕A .1B .-1C .2D .-213.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,假设222c bc b a +-=,那么角A 为〔 〕A .6πB .3πC .32πD .3π或32π 14.在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如下图,假设低于60分 的有12人,那么该班学生人数是〔 〕A .35B .40C .45D .5015.△ABC 的面积为1,在边AB 上任取一点P ,那么△PBC 的面积大于的概率是〔 〕A .41B .21C .43D .32 16.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+1142y x y x ,那么y x z -=的最小值是〔 〕A .-1B .21-C .0D .1 17.以下结论正确的选项是〔 〕A .平行于同一个平面的两条直线平行B .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行C .与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外两条平行直线中的一条与这个平面平行,那么另一条也与这个平面平行18.假设圆柱的底面半径是1,其侧面展开是一个正方形,那么这个圆柱的侧面积是〔 〕A .24πB .23πC .22πD .2π19.方程x x -=33的根所在区间是〔 〕 A .〔-1,0〕B .〔0,1〕C .〔1,2〕D .〔2,3〕20.运行如下图的程序框图,假如输入的x 值是-5,那么输出的结果是〔 〕A .-5B .0C .1D .2二、填空题〔本大题共5个小题,每题3分,共15分〕21.函数)1lg()(-=x x f 的定义域为.22.向量a ,b2=,a 与b 的夹角θ为32π,假设1-=⋅b a ,=. 23.从集合{}3,2=A ,{}3,21,=B 中各任取一个数,那么这两个数之和等于4的概率是. 24.数列{n a }的前n 项和为n n S n 22+=,那么该数列的通项公式=n a .25.三棱锥P -ABC 的底面是直角三角形,侧棱⊥PA 底面ABC ,P A =AB =AC =1,D 是BC 的中点, PD 的长度为.三、解答题〔本大题共3个小题,共25分〕26.〔本小题总分值8分〕函数1cos sin )(+=x x x f .求:〔1〕)4(πf 的值;〔2〕函数)(x f 的最大值. 27.〔本小题总分值8分〕n mx x x f ++=22)(〔m ,n 为常数〕是偶函数,且f (1)=4. 〔1〕求)(x f 的解析式;〔2〕假设关于x 的方程kx x f =)(有两个不相等的实数根,务实数k 的取值范围.28.〔本小题总分值9分〕直线l :y =kx +b ,(0<b <1)和圆O :122=+y x 相交于A ,B 两点. 〔1〕当k =0时,过点A ,B 分别作圆O 的两条切线,求两条切线的交点坐标;〔2〕对于任意的实数k ,在y 轴上是否存在一点N ,满足ONB ONA ∠=∠?假设存在,恳求出此 点坐标;假设不存在,说明理由.山东省2021年夏季普通高中学业程度考试 参考答案:1-20BDCADBCDCACABBCBDABC21、()∞+,122、123、3124、2n+125、26 26、〔1〕23;〔2〕最大值为23. 27、〔1〕22)(2+=x x f ;〔2〕22>k 或22-<k .28、〔1〕⎪⎭⎫ ⎝⎛b 10,;〔2〕存在;⎪⎭⎫ ⎝⎛b 10,. 山东省2021年冬季普通高中学业程度考试数学试题第I 卷〔共60分〕一、选择题:本大题共20个小题,每题3分,共60分. 在每题给出的四个选项中,只有一项为哪一项符合题目要求的 .l. 集合{}1,1A =-,全集{}1,0,1U =-,那么U C A =A. 0B. {}0C. {}1,1-D. {}1,0,1-2. 六位同学参加知识竞赛,将每位同学答对题目的个数制成如下图的茎叶图,那么这组数据的众数是A. 19B. 20 1 8 9 9C. 21D. 22 2 0 1 23. 函数ln(1)y x =-的定义域是A. {|1}x x <B. {|1}x x ≠C. {|1}x x >D. {|1}x x ≥4. 过点(1,0)且与直线y x =平行的直线方程为A. 1y x =--B. 1y x =-+C. 1y x =-D. 1y x =+5. 某班有42名同学,其中女生30人,在该班中用分层抽样的方法抽取14名同学,应该取男生的人数为 A. 4 B. 6 C. 8 D. 106. 与向量(3,2)=-a 垂直的向量是A. (3,2)-B. (23)-,C. (2,3)D. (3,2)7. 0000sin 72cos 48cos72sin 48=+A. 2-B. 2C. 12-D. 12 8. 为得到函数3sin()12=-y x π的图象,只需将函数3sin =y x 的图象上所有的点A. 向左平移4π个单位B. 向右平移4π个单位C. 向左平移12π个单位D. 向右平移12π个单位 9. 向量a 与b 满足||3a =,||4b =,a 与b 的夹角为23π,那么a b = A. 6- B. 6C. -D. 10. 函数2cos 1([0,2])=+∈y x x π的单调递减区间为1 1A. [0,2]πB. [0,]πC. [,2]ππD. 3[,]22ππ11. ,(0,)16∈+∞=,x y xy ,假设+x y 的最小值为A. 4B. 8C. 16D. 3212. ()f x 为R 上的奇函数,当0>x 时,()1=+f x x ,那么(1)-=fA. 2B. 1C. 0D. 2-13. 某人连续投篮两次,事件“至少投中一次〞的互斥事件是A. 恰有一次投中B. 至多投中一次C. 两次都中D. 两次都不中14. tan 2=θ,那么tan 2θ的值是 A.43 B.45C. 23-D. 43- 15. 在长度为4米的笔直竹竿上,随机选取一点挂一盏灯笼,该点与竹竿两端的间隔 都大于1米的概率A. 12B. 13C. 14D. 1616. 在∆ABC 中,角,,A B C 的对边分别为,,a b c ,面积为5,4==c A π,那么b的值为A.2B. C. 4D. 17. 设,x y 满足约束条件1,0,10,≤⎧⎪≥⎨⎪-+≥⎩x y x y 那么2=+z x y 的最大值为A. 4B.2C. 1-D. 2-218. 在ABC ∆中,角,,A B C 的对边分别是7,,,7,1,cos 7===-a b c b c A .那么a 的值为A. 6B.6C. 10D.1019. 执行右图所示的程序框图,那么输出S 的值是值为A. 4B. 7C. 9D. 1620. 在等差数列{}n a 中,37=20=4-,a a ,那么前11项和为A. 22B. 44C. 66D. 88第II 卷〔共40分〕二、填空题:本大题共5个小题,每题3分,共1 5分.21. 函数sin 3=x y 的最小正周期为_______.22. 底面半径为1,母线长为4的圆柱的体积等于_______.23. 随机抛掷一枚骰子,那么掷出的点数大于4的概率是_______.24. 等比数列1,2,4,,-从第3项到第9项的和为_______.25. 设函数2,0,()3,0,⎧<=⎨+≥⎩x x f x x x 假设(())4=f f a ,那么实数=a _______.三、解答题:本大题共3个小题,共25分.26.〔本小题总分值8分〕如图,在三棱锥-A BCD 中,,==AE EB AF FD .求证://BD 平面EFC .27.〔本小题总分值8分〕圆心为(2,1)C 的圆经过原点,且与直线10-+=x y 相交于,A B 两点,求AB 的长.28.〔本小题总分值9分〕定义在R 上的二次函数2()3=++f x x ax ,且()f x 在[1,2]上的最小值是8.(1)务实数a 的值;(2)设函数()=x g x a ,假设方程()()=g x f x 在(,0)-∞上的两个不等实根为12,x x , 证明:12()162+>x x g。

山东省高中会考数学模拟试题两份带答案

山东省高中会考数学模拟试题两份带答案

B 至少一个白球;至少一个黑球
C 至少一个白球;一个白球一个黑球
D 至少一个白球,红球、黑球各一个
9、已知 sin cos 1 ,0 ,则sin cos 的值是
3
A
2
8
1
B
4
பைடு நூலகம்
2
2
B 2个
D 0个
B 四棱柱
0
0或1
C
3
深的入精贯习神彻中部和落纪选。要实委拔深锋求中机任入队,为央关用学员”特的和、工习装的别情省组中作《、标本是形、织央坚条中统准质“和市原组守例源国一和九处委则织为、》,共思条使个分关、部人遵等标 弘产想件命严规于优《做守法准 扬党行章;,禁定从良关事党规和 党地动党学进止。严作于的章制条 的方个,规习一、治风加基县、度件 优委全认。党步九党动,强准处维,。 良员面真着规明个的实牢换和级护学认 传会”学,眼确一重效记届底以党习教真 统工战习充明要“律大;入风线上章市育学 和作略习中分确掌四”决要党气。党,委、习 作条布近、展基握个纪策在充誓监员坚加全理《 风例局平五示本廉服律部学分词督领定强体论中 ;》、总中共标洁从要,署,发的导理领党武国 深《贯全全产准自”求做。关挥牢通(干想导员装共 刻中彻市会党、律的,合键机记知川部(区信班学。,产 汲国落X精人树准要重格在关党》委要二X域念子习根进党 取共实年神的立则求点党系做党的和办学)中;思党据一廉 违产五在,优行规掌员统。组宗中〔深学心认想章省步洁 纪党大全进良为定掌握”先要织旨央2一系全 关”真政,委坚自 违党0发体一风规的握“学深战,、1层列体 于提学治要办定律 法组6展党步貌范“四习〕入斗深省,讲党 在供习建深公理准 反工理题员巩和,四的个教1学堡入委系话员 全坚党设入4厅想则 面作念学中固时组个领廉育号习垒领、统。讲 体强的领个印信》 典条,习开拓代织必导洁实)贯作会市学着定党保历实会专。发念《 型例实讨展精和须干”施和彻用党委习眼理课 员证史施党题的,中(现一”论“党神引部方《习和员有领加想, 中。意的组《提国 的试X、学 制,的;导“必四案中近党条关悟强X信支 开学见性织关高共 教行二总习 度按党群要广四须个〉共事平员件严党理念部 展习等质讨于党产 训)、体讨 要照章众带大个具自的X业总先和肃章论,书 “革制、论照在性党 ,》主X要论 求“党路着坚备觉通“书锋义换,武学明记命度市宗,入全觉纪 自《要求” ,四规线问员持的知十记模务届深习确给 党先文委旨每党省悟律 觉内。 党个、教题逐”六,》三头开系范、纪刻教政支 章辈件办、个志党;处 讲政容,以 小讲学育条项(五落展列作权律把育治部 党和,公指专愿员要分 政领带党 组(系实,逐掌基X”于实“重用利握动方党 规先学室导题谈中坚条 治导X头组 每课一列践针句握本发“全两要,“委员向、进关思集理开持例 、干观严中 月”)讲活对通各条展七面学讲领明两办部”讲 学典于想中想展学》 讲,守心 底要学话动问读类件良定个从一话导确个〔署、党 系型印学、“用等 规温在政组求党,和题违好共有严做,带先2,“课 列发奋习谈学结党 矩入推0关治形 织,做“改章纪开产之治”全头合1以坚,用〈斗讨信党合内 、讲动6键纪式 一开合三,行局党”学面、格〕华党持邀好关目论念章、法 守话志改时律, 次展格严进明和人“责习贯以党2民支根请红于标不,党创规 纪愿革8刻和定 党三一确“性理五任教彻上号族部本党色在、得对规先, 律做和发保站政期 员组实步做决锻想个。育落率)优为宗校教全少照、争尊 ,合入展持得治组 集班”坚合胜,炼信必实下,三秀单旨教育市于入学优崇格党稳公出规织 中子学专持格全向和念须基党,结、,传位师资党1党系,誓定仆,矩集 学成习题问党天面党道,”础的为合主站统开敢、员讲誓列进章员词实情危,中 习员教题。小的德牢等十协我要稳美展于专中规词讲一”,践怀险带学 。到育导的康理修固重八调”局(措政德一担家开矩找话步学交中精,时头习 支联(成向、论养树要大推中实三施治,次当学展、标,强习流建神牢候, 部系以果建和,立论进奋际)全立筑主作者“有(准做化教思功,记豁固每区下;注成路心党述十“发,开面场牢题为给学国纪一、合宗育想立推共得树次 季县简要重线存的,八四有现展从,拒党”特律)找格旨实体业动产出立确 度X称突活方敬意认届为制“严把腐日、员章X色,开差党观施会。X党,和定 召“出述针畏识真三、定四局治理防活“干党X社讲展距员念方。《员在贯1开两正县,政、践中加建如个带个党想变动坚部规会道“。”案党永X彻一学面(处领策手党行、快功下讲头专等信的,守讲、X主德两党学干委远落次党一二级会看握员“四发立实党事讲题方念防组纪党学义、重支习部会是实全中做)以贯齐戒意三展业施课党开新面时线织律课系道有温部教要读的劳五体央”开上穿,尺识严、。方”“课展要的时;党底,列路品两书育讲本工动大党决学展其认,三科案。十,交中求深处始员线鼓讲全、行对记方话)作人发员定习“中真廉强实学习党三局流国,刻处终重励话体“,照作案精》方民展会,教三领的贯洁化”发系支五党研特坚内体保温树普党建五讲”学》神为法的理议2育个导马彻从党要展列部”组讨0理 情色持涵现入立通员位奉主习。基1》普念,)干克省政的求、讲要规书6。念 怀社以和为干党清要与一献题动本纳通,分县部思委、宗和话结划记按怎 、会知要行事志风员坚全体、党员教入一带别处要主、从旨好谐,合开给照么 务主促求动创愿正、持面”有日,材学员头围级义市严意干发要专局“办 实义行。的业、气学建总作活领,习,攻绕以做立委治识部展重起三、 思要力重”做成体为动导深内密坚“上结场决家,标。点步会新 想“知着量开温3结小的布。干入容切克坚党合观策,积准学、一战 作四行重;拓入(合康要局合4部学。联难员,月点部带极,习“课略 风个合学坚进党三,社求、格带习深系、干对底方署头践带《决怎 。全一习定取誓)坚会和“党头《入群敢部照前法,弘行头习胜么 要面,领正的词做相内四员重习领众于要习,做扬社坚近全干 深”做会确精,合适容个。近会,担以近结领政社会定平面” 入战讲习的气对格应;全引平关全当《平合会治主理总小学 领略政近神党、重面导总于心,习总贯上主义想书康习 会布治平,员有点”党书改全带近书穿的义核信记、研 我局、总方平。效学战员记革意平记其明核心念系建讨 国、有书向常着服习略强系发为谈关中白心价列成; 发五信记,时眼务习布化列展人治的人价值重区注 展大念来经候党国近局政重稳民国坚;值要域重 战发,川常看和家平、治要定服理定践体讲中同 略展视主得国治总五意讲、务政信行系话心X机理察动出家书大识话内;》X仰党和读遇念重向,事和记发,读工政加《追的中本、要党业“对展保本作外强习求宗(中社讲的五四理持(“交党近、旨2会话央新位川念政02存国平历,10主和看发一工、治61凭防总年史6义系齐展体年作全本、、书版担核列对”版的面色留治记)当心重党建)系深史党重》意价要员设》列化、治要,识值指的,改资国讲重、观示X要革政治话点真X和将、、事军文领挚全毛育业的章会为面泽人发重选理民从东”展要编想严同的体论(信治志作系领念党用。导、等结中全方合国体面起梦党来、员,学加快

山东省2018-2019学年12月普通高中学业水平考试数学试题+Word版含答案

山东省2018-2019学年12月普通高中学业水平考试数学试题+Word版含答案
山东省 2018-2019 学年 12 月普通高中学业水平考试
数学试题
一、选择题(本大题共 20 个小题,每小题 3 分,共 60 分)
1.已知全集 U {a,b,c},集合 A {a},则 Cu A
A. {a,b}
B. {a,c}
C. {b,c}
D. {a,b,c}
2.已知

A.第一象限
C. 40
D. 50
13.已知

,则
的值为
A. -2
B. 1 4
C. 2
1
D.
2
14.△ABC 中,角 A,B,C 所对的边分别是 a,b,c,若 a=1,b=2, sinA 1 ,则 sinB 的值是 4
A. 1 4
B. 1 2
C. 3 4
D. √ 2 4
15.已知偶函数 在区间
上的解析式为
A.
B.
C.
7.在区间[-2,4]内随机取一个实数,则该实数为负数的概率是
2
A.
3
1
B.
2
1
C.
3
8.过点 A(0,2),且斜率为-1 的直线方程式
D.
1
D.
4
A.
B.
C.
D.
9.不等式
的解集是
A.
B.
C.
D.
10.已知圆 : A. (-2,3),16
,则圆 的圆心坐标和半径分别为
27.(本小题满分 8 分) 已知函数

的值;
⑵ 的单调递增区间.
.求:
28.(本小题满分 9 分)
已知函数 ⑴当函数 ⑵讨论函数
存在零点时,求 的取值范围; 在区间 内零点的个数.

2019年山东省普通高中学业水平考试数学试题(带答案)

2019年山东省普通高中学业水平考试数学试题(带答案)

2019年山东省普通高中学业水平考试数学试题(带答案)2019年山东省普通高中学业水平考试数学试题(带答案)一、选择题(共20小题,每小题3分,共60分)1.已知集合 $A=\{2,4,8\}$,$B=\{1,2,4\}$,则 $A\capB=$()A。

{4} B。

{2} C。

{2,4} D。

{1,2,4,8}2.周期为 $\pi$ 的函数是()A。

$y=\sin x$ B。

$y=\cos x$ C。

$y=\tan 2x$ D。

$y=\sin2x$3.在区间 $(1,2)$ 上为减函数的是()A。

$y=x$ B。

$y=x^2$ C。

$y=\frac{1}{x}$ D。

$y=\ln x$4.若角 $\alpha$ 的终边经过点 $(-1,2)$,则 $\cos\alpha=$()A。

$-\frac{5}{13}$ B。

$\frac{5}{13}$ C。

$-\frac{1}{13}$ D。

$\frac{1}{13}$5.把红、黄两张纸牌随机分给甲、乙两个人,每人分得一张,设事件 $P$ 为“甲分得黄牌”,设事件 $Q$ 为“乙分得黄牌”,则()A。

$P$ 是必然事件 B。

$Q$ 是不可能事件 C。

$P$ 与$Q$ 是互斥但不对立事件 D。

$P$ 与 $Q$ 是互斥且对立事件6.在数列 $\{a_n\}$ 中,若 $a_{n+1}=3a_n$,$a_1=2$,则$a_4=$()A。

18 B。

36 C。

54 D。

1087.采用系统抽样的方法,从编号为1~50的50件产品中随机抽取5件进行检验,则所选取的5件产品的编号可以是()A。

1,2,3,4,5 B。

2,4,8,16,32 C。

3,13,23,33,43 D。

5,10,15,20,258.已知 $x,y\in (0,+\infty)$,且 $x+y=1$,则 $xy$ 的最大值为()A。

1 B。

$\frac{1}{3}$ C。

$\frac{1}{4}$ D。

山东高二水平数学会考试卷及答案解析

山东高二水平数学会考试卷及答案解析

山东高二水平数学会考试卷及答案解析:___________ ___________ ___________ 班级姓名:分数:题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题条件,条件,则是的().1.p q.充分不必要条件.必要不充分条件充要条件.既不充分又不必要条件A B D【答案】A【解析】,,试题分析:的充分不必要条件.考点:四种条件的判定.已知等差数列的前项和为,满足2.n()A.B.C.D.【答案】D【解析】,又.试题分析:,所以,那么n考点:等差数列的前项和.3.x=0下列函数中,在处的导数不等于零的是().D.A.B.C y=【答案】A【解析】x=01,试题分析:因为,,所以,,所以,在处的导数为故选A。

考点:导数计算。

点评:简单题,利用导数公式加以验证。

4.设,若,则等于()A.e2B.e C.D.ln2【答案】B【解析】试题分析:因为,所以所以,解得考点:本小题主要考查函数的导数计算.点评:导数计算主要依据是导数的四则运算法则,其中乘法和除法运算比较麻烦,要套准公式,仔细计算.5.曲线的直角坐标方程为()A.B.C.D.【答案】B【解析】试题分析:化为考点:极坐标方程点评:极坐标与直角坐标的关系为6.是虚数单位,复数( )A.B.C.D.【答案】A【解析】试题分析:考点:复数运算点评:复数运算中7.关于直线与平面,有下列四个命题:①若,且,则;②若且,则;③若且,则;④若,且,则.其中真命题的序号是()A.①②B.③④C.①④D.②③【答案】D【解析】试题分析:直线m//平面α,直线n//平面β,当α∥β时,直线m,n有可能平行,也有可能异面,所以①不正确;∵,α⊥β,所以,故②正确;据此结合选项知选D.考点:本题主要考查空间直线与平面的位置关系。

点评:熟练掌握空间直线与平面之间各种关系的几何特征是解答本题的关键。

2020年山东省普通高中学业水平等级数学试卷(附详解)

2020年山东省普通高中学业水平等级数学试卷(附详解)

2020年山东省普通高中学业水平等级数学试卷1. 设集合A ={x ∈N|−1≤x ≤3},B ={y|y =x 2,x ∈R},则A ∩B =( )A. {0,1,2,3}B. {1,2,3}C. [1,3]D. [0,3]2. 已知a 、b 都是实数,那么“a <b <0”是“1a >1b ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 设函数f(x)=tan x2,若a =f(log 32),b =f(log 1512),c =f(20.2),则( )A. a <b <cB. b <c <aC. c <a <bD. b <a <c4. 已知P 为等边三角形所在平面内的一个动点,满足BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ (λ∈R),若|AB ⃗⃗⃗⃗⃗ |=2,则AP ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ )=( ) A. 2√3 B. 3C. 6D. 与λ有关的数值5. 17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36°的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC 中,BC AC=√5−12.根据这些信息,可得sin234°=( )A. 1−2√54B. −3+√58C. −√5+14D. −4+√586. 已知(1+λx)n 展开式中第三项的二项式系数与第四项的二项式系数相同,(1+λx)n =a 0+a 1x +a 2x 2+⋯+a n x n ,若a 1+a 2+⋯+a n =242,则(x +λx )4展开式中常数项( )A. 32B. 24C. 4D. 87. 在棱长为1的正四面体A −BCD 中,E 是BD 上一点,BE ⃗⃗⃗⃗⃗ =3ED ⃗⃗⃗⃗⃗ ,过E 作该四面体的外接球的截面,则所得截面面积的最小值为( )A. π8B. 3π16C. π4D. 5π168. 若定义在R 上的函数f(x)的导函数为f′(x),且满足f’(x)>f(x)+9e x ,f(3)=27e 3,则不等式f(x)9>xe x 的解集是( )A. (3,+∞)B. (−∞,3)C. (−3,+∞)D. (−∞,−3)9. 已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设c n =a b n ,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( )A. 8B. 9C. 10D. 1110. 已知函数f(x)=13x 3+12ax 2+bx +c 有两个极值点x 1,x 2,若f(x 1)=x 1,则关于x 的方程f 2(x)+af(x)+b =0的不同实根个数为( )A. 2B. 3C. 4D. 511. 如图,在棱长为a 的正方体ABCD −A 1B 1C 1D 1中,P 为A 1D 1的中点,Q 为A 1B 1上任意一点,E 、F 为CD 上两点,且EF 的长为定值,则下面四个值中不是定值的是( )A. 点P 到平面QEF 的距离B. 直线PQ 与平面PEF 所成的角C. 三棱锥P −QEF 的体积D. △QEF 的面积12. 函数f(x)图象上不同两点A(x 1,y 1),B(x 2,y 2)处的切线的斜率分别是k A ,k B ,|AB|为A ,B 两点间距离,定义φ(A,B)=|k A −k B ||AB|为曲线f(x)在点A 与点B 之间的“曲率”,其中正确命题为( )A. 存在这样的函数,该函数图象上任意两点之间的“曲率”为常数B. 函数f(x)=x 3−x 2+1图象上两点A 与B 的横坐标分别为1,2,则“曲率”φ(A,B)>√3C. 函数f(x)=ax2+b(a>0,b∈R)图象上任意两点A、B之间的“曲率”φ(A,B)≤2aD. 设A(x1,y1),B(x2,y2)是曲线f(x)=e x上不同两点,且x1−x2=1,若t⋅φ(A,B)<1恒成立,则实数t的取值范围是(−∞,1)13.已知复数z=1+3i1−i,则复数z−的虚部为______.14.函数f(x)=alnxx 的图象在点(e2,f(e2))处的切线与直线y=−1e4x平行,则f(x)的极值点是______.15.设x>0,y>0,若xln2,ln√2,yln2成等差数列,则1x +9y的最小值为______.16.过点M(0,1)的直线l交椭圆x28+y24=1于A,B两点,F为椭圆的右焦点,△ABF的周长最大为______,此时△ABF的面积为______.17.在△ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(a+b−c)=3ab.(Ⅰ)求角C的值;(Ⅱ)若c=2,且△ABC为锐角三角形,求a+b的取值范围.18.已知数列{a n}前n项和S n满足S n=2a n−2(n∈N∗),{b n}是等差数列,且a3=b4−2b1,b6=a4.(1)求{a n}和{b n}的通项公式:(2)求数列{(−1)n b n2}的前2n项和T2n⋅19. 在四棱锥P −ABCD 中,AB//CD ,AB =2CD =2BC =2AD =4,∠DAB =60°,AE =BE ,△PAD 为正三角形,且平面PAD ⊥平面ABCD . (1)求二面角P −EC −D 的余弦值;(2)线段PC 上是否存在一点M ,使得异面直线DM 和PE 所成的角的余弦值为√68?若存在,指出点M 的位置;若不存在,请说明理由.20. 已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)左顶点M(−2,0),离心率为√22. (1)求椭圆Γ的方程;(2)过N(1,0)的直线AB 交椭圆Γ于A 、B 两点,当MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ 取得最大值时,求△MAB 面积.21.设函数f(x)=x2−alnx.(1)讨论函数f(x)的单调性;(2)当a=2时,,e]上的最大值和最小值;①求函数f(x)在[1e,e],使得f(x1)+f(x2)+⋯+f(x n−1)≤f(x n)成立,②若存在x1,x2,…,x n∈[1e求n的最大值.22.某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间[0,30]内,按[0,5],(5,10],(10,15],(15,20],(20,25],(25,30]分成6组,其频率分布直方图如图所示.(1)估计该社区居民最近一年来网购消费金额的中位数;(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的2×2列联表,并判断有多大把握认为“网购迷与性别有关系”;(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不影响.统计最近一年来两人网购的总次数与支付方式,所得数据如表所示:将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为ξ,求ξ的数学期望.附:观测值公式:K2=(a+b+c+d)(ad−bc)2(a+b)(c+d)(a+c)(b+d)临界值表:P(K20.010.050.0250.0100.0050.001≥k0)k0 2.706 3.841 5.024 6.6357.87910.828答案和解析1.【答案】A【解析】解:因为A={x∈N|−1≤x≤3}={0,1,2,3},B={y|y=x2,x∈R}={y|y≥0},所以A∩B={0,1,2,3},故选:A.对集合A用列举法进行表示,对集合B用不等式描述集合元素特征,然后根据集合交集的运算法则,求出A∩B.本题考查了集合交集的运算、集合的表示方法.本题易错的地方是认为自然数集不包括零.解决集合问题的关键是对集合元素属性特征的认识.2.【答案】A【解析】【分析】本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键,属于基础题目.根据不等式的性质结合充分条件和必要条件的定义进行判断.【解答】解:若1a >1b,则1a−1b=b−aab>0,若a<b<0,则1a >1b成立,当a>0,b<0时,满足1a >1b,但a<b<0不成立,故“a<b<0”是“1a >1b”的充分不必要条件,故选A.3.【答案】D【解析】解:f(x)在(0,π)上单调递增; log 32=1log 23,log 1512=1log 25,且log 25>log 23>1;∴0<1log25<1log 23<1;∴0<log 1512<log 32<1; 又1<20.2<2;∴0<log 1512<log 32<20.2<π;∴b <a <c . 故选:D .容易看出f(x)在(0,π)上单调递增,且可得出log 32=1log 23,log 1512=1log 25,且1<20.2<2,从而得出0<log 1512<log 32<20.2<π,这样根据f(x)的单调性即可得出a ,b ,c 的大小关系.考查正切函数的单调性,增函数的定义,对数函数的单调性,对数的换底公式.4.【答案】C【解析】解:由BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ (λ∈R), 即点P 在直线BC 上, 取BC 的中点为D , 则AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗⃗ , 由向量的投影的几何意义有:AP ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=2|AD ⃗⃗⃗⃗⃗⃗ |2=2×(√3)2=6, 故选:C .由向量的投影的几何意义得:点P 在直线BC 上,取BC 的中点为D ,则AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗⃗ ,由向量的投影的几何意义有:AP ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=2|AD ⃗⃗⃗⃗⃗⃗ |2=2×(√3)2=6,得解: 本题考查了向量的投影的几何意义,属中档题.5.【答案】C【解析】【分析】由已知求得∠ACB=72°,可得cos72°的值,再由二倍角的余弦及三角函数的诱导公式求解sin234°.本题考查三角函数的恒等变换,考查解读信息与应用信息的能力,是中档题.【解答】解:由图可知,∠ACB=72°,且cos72°=12BCAC=√5−14.∴cos144°=2cos272°−1=−√5+14.则sin234°=sin(144°+90°)=cos144°=−√5+14.故选:C.6.【答案】B【解析】解:(1+λx)n展开式中第三项的二项式系数与第四项的二项式系数相同,则C n2=C n3,求得n=5,令x=0,则a0=1令x=1,则a0+a1+a2+⋯+a n=(1+λ)5=242+1=243,解得λ=2,则(x+2x)4的展开式的通项公式为T r+1=C4r2r x4−2r,令4−2r=0,解得r=2,故(x+2x)4的展开式中的常数项为C4222=24故选:B.先求出n的值,再求出λ的值,写出展开式的通项公式即可求出.本题考查二项式定理的运用,考查学生的计算能力,正确运用二项式定理是关键.7.【答案】B【解析】解:将四面体ABCD 放置于正方体中,如图所示,可得正方体的外接球就是四面体ABCD 的外接球, ∵正四面体ABCD 的棱长为1,∴正方体的棱长为√22,可得外接球半径R 满足2R =√12+12+12=√62,R =√64.E 是BD 上一点,BE⃗⃗⃗⃗⃗ =3ED ⃗⃗⃗⃗⃗ ,当球心O 到截面的距离最大时,截面圆的面积达最小值, 此时球心O 到截面的距离等于OE , ∵cos∠ODB =1√62=√63,OD=√64,DE =14, ∴OE 2=(√64)2+(14)2−2×√64×14×√63=316,则所得截面半径最小值为√616−316=√316.∴所得截面面积的最小值为π×(√316)2=3π16.故选:B .根据题意,将四面体ABCD 放置于如图所示的正方体中,则正方体的外接球就是四面体ABCD 的外接球.因此利用题中数据算出外接球半径R ,当球心O 到截面的距离最大时,截面圆的面积达最小值,再利用球的截面圆性质可算出截面面积的最小值.本题给出正四面体的外接球,求截面圆的面积最小值.着重考查了正方体的性质、球内接多面体和球的截面圆性质等知识,属于中档题.8.【答案】A【解析】解:∵f′(x)>f(x)+9e x , ∴f′(x)−f(x)e x −9>0,∴[f(x)e x−9x]′>0,令g(x)=f(x)e x−9x ,则g(x)在R 上单调增函数,∵f(3)=27e 3,g(3)=f(3)e 3−27=0,∴f(x)9>xe x 等价于f(x)e x−9x >0,即g(x)>g(3),其解集为:(3,+∞).故选:A.构造函数g(x),通过研究g(x)的单调性,结合原函数的性质和函数值,即可求解.本题考查函数单调性,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.9.【答案】AB【解析】解:由题意,a n=1+2(n−1)=2n−1,b n=2n−1,c n=a bn=2⋅2n−1−1=2n−1,则数列{c n}为递增数列,其前n项和T n=(21−1)+(22−1)+(23−1)+⋯+(2n−1)=(21+22+⋯+2n)−n=2(1−2n)1−2−n=2n+1−2−n.当n=9时,T n=1013<2019;当n=10时,T n=2036>2019.∴n的取值可以是8,9.故选:AB.由已知分别写出等差数列与等比数列的通项公式,求得数列{c n}的通项公式,利用数列的分组求和可得数列{c n}的前n项和T n,验证得答案.本题考查等差数列与等比数列的通项公式与前n项和,考查数列的函数特性,是基础题.10.【答案】B【解析】解:∵函数f(x)=13x3+12ax2+bx+c有两个极值点x1,x2,不妨假设x1<x2,∴f′(x)=x2+ax+b=0有两个不相等的实数根,∴Δ=a2−4b>0.由于方程f2(x)+af(x)+b=0的判别式△′=Δ=a2−4b>0,故此方程有两解为f(x)=x1或f(x)=x2.由于函数y=f(x)的图象和直线y=x1的交点个数即为方程f(x)=x1的解个数;由于函数y=f(x)的图象和直线y=x2的交点个数,即为方程f(x)=x2的解个数.根据f(x1)=x1,画出图形,如图所示:由于函数y=f(x)的图象和直线y=x1的交点个数为2,函数y=f(x)的图象和直线y= x2的交点个数为1,可得关于x的方程f(x)=x1或f(x)=x2共有3个不同的实数根,即关于x的方程f2(x)+af(x)+b=0的不同实根个数为3.故选:B.由题意可得x1、x2是f′(x)=x2+ax+b=0的两个不相等的实数根,可得Δ=a2−4b>0,从而得到关于x的方程f2(x)+af(x)+b=0有2个不等实数根,数形结合可得答案.本题综合考查了函数零点的概念,函数的极值及方程解得个数等基础知识,考查了数形结合的思想方法、推理能力、分类讨论的思想方法、计算能力、分析问题和解决问题的能力.11.【答案】B【解析】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P到平面QEF即×√2a为定值;到对角面A1B1CD的距离=14⋅√2a⋅|EF|为定D.∵点Q到直线CD的距离是定值√2a,|EF|为定值,∴△QEF的面积=12值;C.由A.D可知:三棱锥P−QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.A.由于平面QEF即为对角面A1B1CD,点P为A1D1的中点,可得:点P到平面QEF即到对×√2a为定值;角面A1B1CD的距离=14⋅√2a⋅|EF| D.由于点Q到直线CD的距离是定值√2a,|EF|为定值,因此△QEF的面积=12为定值;C.由A.D可知:三棱锥P−QEF的体积为定值;B.用排除法即可得出.本题综合考查了正方体的性质、三棱锥的体积、点到平面的距离、异面直线所成的角等基础知识与基本技能方法,考查了推理能力和空间想象能力,属于难题.12.【答案】AC【解析】解:对于A,当函数f(x)=kx+b(k≠0)时,f′(x)=k,φ(A,B)=|k A−k B||AB|=|k−k||AB|=0,故A正确;对于B,由题意得A(1,1),B(2,5),f′(x)=3x2−2x,∴φ(A,B)=|k A−k B||AB|=√1+16=√17<√3,故B错误;对于C,f′(x)=2ax,∴φ(A,B)=|k A−k B||AB|=12√(x1−x2)2+(ax1−ax1)2=√1+a2(x1+x2)2≤2a,故C正确;对于D,由f(x)=e x,得f′(x)=e x,由A(x1,y1),B(x2,y2)为曲线y=e x上两点,且x1−x2=1,可得φ(A,B)=|k A−k B||AB|=x1x2√(x1−x2)2+(e x1−e x2)2,由√1(e x1−e x2)2+1>1,可得t≤1,故D错误.故选:AC.考虑一次函数,求出导数,可得φ(A,B)=0,即可判断A;求出A,B的坐标,求得φ(A,B),即可判断B;求出f(x)的导数,运用不等式的性质,可得φ(A,B)≤2a,即可判断C;求出函数的导数,运用新定义求得φ(A,B),由恒成立思想,即可得t的范围,即可判断D.本题考查命题真假的判断,考查新定义的理角与运用,考查导数的运用、切线的斜率、不等式恒成立等基础知识,考查运算求解能力,是中档题.13.【答案】−2【解析】解:由z=1+3i1−i =(1+3i)(1+i)(1−i)(1+i)=−2+4i2=−1+2i,得z−=−1−2i,∴复数z−的虚部为−2.故答案为:−2.利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案. 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.14.【答案】x =e【解析】解:f′(x)=a(1−lnx)x 2,故f′(e 2)=−ae 4=−1e 4,解得:a =1, 故f(x)=lnx x,f′(x)=1−lnx x 2,令f′(x)=0,解得:x =e , 经检验x =e 是函数的极值点, 故答案为:x =e .求出函数的导数,根据f′(e 2)=−ae 4=−1e 4,求出a 的值,从而求出f(x)的解析式,求出函数的导数,解关于导函数的方程,求出函数的极值点即可. 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.15.【答案】16【解析】解:由题意可得2ln √2=(x +y)ln2, 所以x +y =1,则1x +9y =(1x +9y )(x +y)=10+yx +9x y≥10+6=16,当且仅当yx =9xy且x +y =1即x =14,y =34时取等号,此时取得最小值16. 故答案为:16结合等比数列的性质可得x +y =1,然后结合基本不等式即可求解.本题主要考查了等比数列的性质及基本不等式在求解最值中的应用,属于基础试题.16.【答案】8√2 4√103【解析】解:设椭圆x 28+y 24=1右焦点为F(2,0),F 1(−2,0),则AF =4√2−AF 1,BF 1=4√2−BF 1,所以AF +BF +AB =8√2+AB −(AF 1+BF 1), 显然AF 1+BF 1≥AB ,当且仅当A ,B ,F 1共线时等号成立, 所以当直线l 过点F 1时,△ABF 的周长取最大值8√2,此时直线方程为y −1=12x ,即x −2y −2=0.{x −2y −2=0x 2+2y 2=8,可得:3y 2+4y −2=0,设A(x 1,y 1), B(x 2,y 2),y 1+y 2=43,y 1y 2=−23,|y 1−y 2|=√(43)2+4×23=2√103.△ABF 的面积为:12×4×2√103=4√103, 故答案为:8√2;4√103.根据椭圆的定义和性质可得右焦点为F(2,0),当且仅当A ,B ,F 1共线,周长最长,再根据两点式即可求出直线方程.Q 求和求解AB 的纵坐标,转化求解三角形的面积即可. 本题考查了直线和椭圆的位置关系,以及椭圆的几何性质,属于中档题.17.【答案】解:(Ⅰ)△ABC 中,(a +b +c)(a +b −c)=3ab ,∴a 2+b 2−c 2=ab , 由余弦定理得,cosC =a 2+b 2−c 22ab=12;又∵C ∈(0,π), ∴C =π3;(Ⅱ)由c =2,C =π3,根据正弦定理得, asinA=bsinB =csinC =2sin π3=4√33, ∴a +b =4√33(sinA +sinB) =4√33[sinA +sin(2π3−A)] =2√3sinA +2cosA=4sin(A +π6);又∵△ABC 为锐角三角形, ∴{0<A <π20<2π3−A <π2, 解得π6<A <π2; ∴π3<A +π6<2π3,∴2√3<4sin(A +π6)≤4, 综上,a +b 的取值范围是(2√3,4].【解析】(Ⅰ)化简(a +b +c)(a +b −c)=3ab ,利用余弦定理求得C 的值;(Ⅱ)由正弦定理求出a +b 的解析式,利用三角恒等变换化简,根据题意求出A 的取值范围,从而求出a +b 的取值范围.本题考查了三角恒等变换与正弦、余弦定理的应用问题,是中档题.18.【答案】解:(1)S n =2a n −2,当n =1时,得a 1=2, 当n ≥2时,S n−1=2a n−1−2, 作差得a n =2a n−1,(n ≥2)所以数列{a n }是以2为首项,公比为2的等比数列, 所以a n =2n .设等差数列{b n }的公差为d , 由a 3=b 4−2b 1,b 6=a 4, 所以8=3d −b 1,16=5d +b 1, 所以3=d ,b 1=1, 所以b n =3n −2.(2)T 2n =(−b 12+b 22)+(−b 32+b 42)+⋯+(−b 2n−12+b 2n 2)=3(b 1+b 2)+3(b 3+b 4)+⋯+3(b 2n−1+b 2n ),=3(b 1+b 2)+3(b 3+b 4)+⋯+3(b 2n−1+b 2n )=3(b 1+b 2+⋯+b 2n ) 又因为b n =3n −2, 所以T 2n =3×2n(b 1+b 2n )2=3n[1+3×(2n)−2]=18n 2−3n .【解析】(1)根据由S n 求a n 的方法可求{a n }的通项公式,由题意可得{b n }为等差数列,由条件求其公差d ,可得结果;(2)由T 2n =(−b 12+b 22)+(−b 32+b 42)+⋯+(−b 2n−12+b 2n 2)=3(b 1+b 2)+3(b 3+b 4)+⋯+3(b 2n−1+b 2n )=3(b 1+b 2+⋯+b 2n ),即可求出答案.本题考查了数列的通项公式和求和公式,考查了运算能力和转化能力,考查了转化与化归能力,属于中档题.19.【答案】解:(1)设O 是AD 中点,△PAD 为正三角形,则PO ⊥AD ,平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,又AD =AE =2,∠DAB =60°, ∴△ADE 为正三角形,OE ⊥AD ,以O 为原点,OA 为x 轴,OE 为y 轴,OP 为z 轴,建立空间直角坐标系,如图,则P(0,0,√3),E(0,√3,0),C(−2,√3,0),设平面PEC 法向量为n⃗ =(x,y,z),PC ⃗⃗⃗⃗⃗ =(−2,√3,−√3),PE ⃗⃗⃗⃗⃗ =(0,√3,−√3), 则{n ⃗ ⋅PC⃗⃗⃗⃗⃗ =−2x +√3y −√3z =0n ⋅PE ⃗⃗⃗⃗⃗ =√3y −√3z =0,取y =1,得n⃗ =(0,1,1), 平面EDC 的法向量m ⃗⃗⃗ =(0,0,1), cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m|⃗⃗⃗⃗⃗⃗⃗ |n|⃗⃗⃗⃗⃗ =√22, ∴二面角P −EC −D 的余弦值为√22.(2)设PM ⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ (0≤λ≤1),则PM ⃗⃗⃗⃗⃗⃗ =(−2λ,√3λ,−√3λ), DM ⃗⃗⃗⃗⃗⃗⃗ =DP ⃗⃗⃗⃗⃗ +PM ⃗⃗⃗⃗⃗⃗ =(1−2λ,√3λ,√3−√3λ),PE⃗⃗⃗⃗⃗ =(0,√3,−√3),所以|cos <DM ⃗⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >|=|DM ⃗⃗⃗⃗⃗⃗⃗ ⋅PE ⃗⃗⃗⃗⃗|DM|⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |PE|⃗⃗⃗⃗⃗⃗⃗⃗⃗|=√6√10λ2−10λ+4=√68, 所以λ=13或λ=23,所以存在点M 为线段PC 的三等分点.【解析】本题考查了二面角的余弦值的求法和满足条件的点是否存在的判断与求法,考查了空间中线线、线面、面面间的位置关系等基础知识,考查了运算求解能力和空间想象力,考查了数形结合思想与方程思想,属于难题.(1)设O 是AD 中点,△PAD 为正三角形,则PO ⊥AD ,PO ⊥平面ABCD ,推导出OE ⊥AD ,以O 为原点,OA 为x 轴,OE 为y 轴,OP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角P −EC −D 的余弦值.(2)设PM ⃗⃗⃗⃗⃗⃗ =λPC⃗⃗⃗⃗⃗ (0≤λ≤1),根据|cos <DM ⃗⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >|=√68,求出λ即可判断M 的位置.20.【答案】解:(1)由已知a =2,c a =√22可得c =√2,∴a 2−b 2=2,即4−b 2=2, ∴b 2=2, ∴椭圆方程为x 24+y 22=1.(2)当直线AB 与点x 轴重合时,点M 与点A 重合,此时MA ⃗⃗⃗⃗⃗⃗ =0⃗ , ∴MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ =0,当直线AB 与x 轴不重合时,设直线AB 的方程为x =ty +1,设A(x 1,y 1),B(x 2,y 2), 由{x =ty +1x 24+y 22=1得(t 2+2)y 2+2ty −3=0,显然△>0,∴y 1+y 2=−2t t 2+2,y 1y 2=−3t 2+2, ∴MA⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ =(x 1+2)(x 2+2)+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2=(t 2+1)y 1y 2+3t(y 1+y 2)+9,=(t 2+1)−3t 2+2+3t ⋅−2tt 2+2+9,=−9t 2−3t 2+2+9 =15t 2+2≤152,∴MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ 取得最大值为152, 此时t =0,直线l 为x =1,此时A(1,√62),B(1,−√62),∴|AB|=√6,|MN|=3,∴S =12|MN|⋅|AB|=12×3×√6=3√62【解析】(1)由已知a =2,ca=√22可得c =√2,由a 2−b 2=2,可得b 2=2,即可求出椭圆方程,(2)当直线AB 与x 轴不重合时,设直线AB 的方程为x =ty +1,设A(x 1,y 1),B(x 2,y 2),根据韦达定理和向量的数量积,可求出MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ 取得最大值为152,此时t =0,直线l 为x =1,即可求出三角形的面积本题主要考查椭圆的几何性质、标准方程以及直线与椭圆的位置关系,属于中档题目.21.【答案】解:(1)函数f(x)=x 2−alnx ,可得f′(x)=2x −a x =2x 2−ax, 故当a ≤0时,f′(x)≥0,所以函数f(x)在(0,+∞)上单调递增; 当a >0时,令f′(x)>0,得x >√2a2,所以函数f(x)在(√2a 2,+∞)上单调递增;令f′(x)<0,得x <√2a 2,所以函数f(x)在(0,√2a 2)上单调递减. 综上,当a ≤0时,函数f(x)在(0,+∞)上单调递增; 当a >0时,函数f(x)在(√2a 2,+∞)上单调递增,在(0,√2a2)上单调递减. (2)①当a =2时,由(1)知,函数f(x)在[1e ,1)上单调递减,在(1,e]上单调递增.故f(x)min =f(1)=1,又因为f(1e )=1e 2+2<3,5.29=2.72−2<f(e)=e 2−2<2.82−2=5.84, 故f(x)max =f(e)=e 2−2,②由于,e 2−2=f(e)≥f(x n )≥f(x 1)+f(x 2)+⋯+f(x n−1)≥(n −1)f(1)=n −1, 故n ≤e 2−1<7.由于x ∈[1e ,e]时,f(x)∈[1,e 2−2], 取x 1=x 2=x 3=x 4=x 5=1,则f(x 1)+f(x 2)+⋯+f(x 5)=5<e 2−2, 故n 的最大值为6.【解析】(1)求出f′(x)=2x −ax=2x 2−a x,通过当a ≤0时,当a >0时,判断函数的单调性即可.(2)①当a =2时,利用函数的导数,求出f(x)min =f(1)=1,f(x)max =f(e)=e 2−2, ②推出n 2≤e 2−1<7.取x 1=x 2=x 3=x 4=x 5=1,推出结果即可.本题考查函数的导数的应用,考查函数的最值以及函数的单调区间的求法,考查计算能力.22.【答案】解:(1)依题意,因为0.01×5+0.02×5+0.04×5=0.35<0.5,而0.01×5+0.02×5+0.04×5+0.06×5=0.65>0.5, 所以中位数位于[15,20)之间, 所以中位数为15+0.5−0.350.06=17.5.(2)依题意,消费金额在20千元以上的频率为:0.04×5+0.03×5=0.35, 所以“网购迷”人数为100×0.35=35人,非网购迷的人数为100−35=65人. 所以补全的列联表如下:所以K 2=(a+b+c+d)(ad−bc)2(a+b)(c+d)(a+c)(b+d)=100(15×20−45×20)260×40×35×65≈6.593.所以有97.5%的把握认为“网购迷与性别有关系”;(3)根据统计数据,甲使用支付宝的概率为4080=12,乙使用支付宝的概率为6090=23, 甲、乙两人在下周内各自网购2次,两人采用支付宝支付的次数之和ξ所有可能的取值为0,1,2,3,4,P(ξ=0)=(1−12)2(1−23)2=136,P(ξ=1)=C 21×(12)2×(1−23)2+(12)2C 21×23×(1−23)=16,P(ξ=2)=(12)2×(1−23)2+C 21(12)2×C 21×23×(1−23)+(12)2×(23)2=1336, P(ξ=3)=C 21×(12)2×(23)2+(12)2×C 21×23×(1−23)=13,第21页,共21页 P(ξ=4)=(12)2×(23)2=19.所以随机变量ξ的分布列为:所以ξ的数学期望E(ξ)=16+2×1336+3×13+4×19=73.【解析】本题考查了频率分布直方图的识别和应用,独立性经验,离散型随机变量的分布列和期望.主要考查分析解决问题的能力和计算能力,属于中档题.(1)根据中位数在中间位置,即该数前的数出现频率为0.5,结合频率分布直方图估计即可;(2)根据题意,补充完整列联表,根据表中数据,计算出K 2的值,查临界值表判断即可;(3)根据统计数据,甲使用支付宝的概率为4080=12,乙使用支付宝的概率为6090=23,甲、乙两人在下周内各自网购2次,两人采用支付宝支付的次数之和ξ所有可能的取值为0,1,2,3,4,分别计算出各个取值对应的概率,即可得到随机变量ξ的分布列,求出期望即可.。

山东高一高中数学水平会考带答案解析

山东高一高中数学水平会考带答案解析

山东高一高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.设集合集合,则集合A.{1,3,1,2,4,5}B.C.D.2.若幂函数在上是增函数,则A.>0B.<0C.="0"D.不能确定3.下列四个图象中,是函数图象的是A.(1)B.(1)、(3)、(4)C.(1)、(2)、(3)D.(3)、(4)4.与为同一函数的是()A.B.C.D.5.的值等于()A.B.C.D.6.下列函数中,值域是(0,+∞)的是()A.B.C.D.7.设, 用二分法求方程内近似解的过程中, 计算得到则方程的根落在区间()A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定8.下列各式错误的是()A.B.C.D.9.设函数满足,且在上递增,则在上的最小值是()A.B.C.D.10.已知集合,集合满足,则集合有( )个A.1B.2C.3D.411.已知二次函数有两个不同的零点,则m的取值范围是()A.B.C.D.12.已知函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,那么不等式-3<f(x+1)<1的解集的补集是()A.(-1,2)B.(1,4)C.(―∞,-1)∪[4,+∞)D.(―∞,-1]∪[2,+∞)二、填空题1.已知函数,则2.函数,无论取何值,函数图像恒过一个定点,则定点坐标为 ______3.函数(a>0且a≠1)的反函数的图像经过点(1,4),则a=4.已知,从A到B的对应法则分别是:其中能构成一一映射的是三、解答题1.(本小题满分12分)计算:(1)(2).2.(本小题满分12分)已知集合A={x|x≤a+3},B={x|x<-1或x>5}(1)若;(2)若,求a的取值范围3.(本小题满分12分)已知函数(1)当时,求函数的最大值和最小值;(2)求实数的取值范围,使在区间上是单调减函数4.(本小题满分12分)设函数,如果,求的取值范围.5.(本小题满分13分)为了预防甲型流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:(1)求从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室.6.(本小题满分13分)设函数.(1)求证:不论为何实数总为增函数;(2)确定的值,使为奇函数及此时的值域.山东高一高中数学水平会考答案及解析一、选择题1.设集合集合,则集合A.{1,3,1,2,4,5}B.C.D.【答案】B【解析】略2.若幂函数在上是增函数,则A.>0B.<0C.="0"D.不能确定【答案】A【解析】由幂函数性质可知,当时在上是增函数;当时,在上是减函数。

最新山东省高中会考数学题学业水平考试(有答案)

最新山东省高中会考数学题学业水平考试(有答案)
小饰品店往往会给人零乱的感觉,采用开架陈列就会免掉这个麻烦。“漂亮女生”像是个小超市,同一款商品色彩丰富地挂了几十个任你挑,拿上东西再到收银台付款。这也符合女孩子精挑细选的天性,更保持了店堂长盛不衰的人气。
根本不知道□
(5)资金问题
调研要解决的问题:
调研提纲:ห้องสมุดไป่ตู้
木质、石质、骨质、琉璃、藏银……一颗颗、一粒粒、一片片,都浓缩了自然之美,展现着千种风情、万种诱惑,与中国结艺的朴实形成了鲜明的对比,代表着欧洲贵族风格的饰品成了他们最大的主题。
可见“体验化消费”广受大学生的欢迎、喜欢,这是我们创业项目是否成功的关键,必须引起足够的注意。
2、价格“适中化”
而手工艺制品是一种价格适中,不仅能锻炼同学们的动手能力,同时在制作过程中也能体会一下我国传统工艺的文化。无论是送给朋友还是亲人都能让人体会到一份浓厚的情谊。它的价值是不用金钱去估价而是用你一颗真诚而又温暖的心去体会的。更能让学生家长所接受。
“碧芝”的成功归于他的唯一,这独一无二的物品就吸引了各种女性的眼光。

最新山东省高中会考数学题学业水平考试(有答案)

最新山东省高中会考数学题学业水平考试(有答案)

山东省2011年高中学业水平考试数学明老师整理本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分100分,考试限定时间90分钟.交卷前,考生务必将自己的姓名、考籍号、座号填写在答题卡的相应位置,考试结束后,讲本试卷和答题卡一并交回.第Ⅰ卷(共45分)注意事项:每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动用像皮擦干净后再选涂其他答案标号,不涂在答题卡上,只涂在试卷上无效.一、选择题:本大题共15小题,每题3分,共45分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.集合{0},{|11}M N x Z x ==∈-<<,则MN 等于A.{-1,1}B.{-1}C.{1}D.{0} 2.下列函数中,其图象过点(0,1)的是A .2xy = B 。

2log y x = C 。

13y x = D.sin y x =3.下列说法正确的是A .三点确定一个平面 B. 两条直线确定一个平面C .过一条直线的平面有无数多个 D. 两个相交平面的交线是一条线段 4.已知向量(2,1),(3,4)a b ==-,则a b -的坐标为A. (-5,3)B.(-1,5)C.(5,-3)D.(1,-5) 5.0cos75cos15sin 75sin15+的值为A.0B. 12C. D.16.已知过点(2,)A m -和(,4)B m 的直线与直线210x y +-=平行,则m 的值为A. -8B. 0C. 2D. 107.高三某班共有学生56人,其中女生24人,现用分层抽样的方法,选取14人参加一项活动,则应选取女生A. 8人B. 7C. 6人D. 5人8.已知一个半球的俯视图是一个半径为4的圆,则它的主(正)视图的面积是A. 2πB. 4πC. 8πD.16π 9.函数2()(1)(310)f x x x x =-+-的零点个数是A. 1B. 2C. 3D. 4 10.已知函数()sin()()2f x x x R π=-∈,下面结论正确的是A. 函数()f x 的最小正周期为2πB. 函数()f x 在区间[0,]2π上是增函数C. 函数()f x 是奇函数D. 函数()f x 的图象关于直线0x =对称11.在ABC ∆中,已知()()3a b c b c a bc +++-=,则角A 等于A. 030 B. 060 C. 0120 D. 015012.如图所示的程序框图,其输出的结果是A. 1B.32 C. 116 D. 251213.不等式组400x y x y +≤⎧⎪≥⎨≥⎪⎩表示的平面区域内横、纵坐标均为整数的点的个数是A.15B.14C. 10D. 9 14.已知变量,x y 有如下观察数据:则y 对x 的回归方程是0.83y x a =+,则其中a 的值为A. 2.64 B .2.84 C. 3.95 D.4.35 15.等比数列的前2项和为2,前4项和为10,则它的前6项和为A. 31B. 32C. 41D. 42第二卷二、填空题:本大题共5题,每题4分,共20分.16.已知函数2()1,0f x x x =+<,若()10f x =,则x = 。

最新山东省高中会考数学题学业水平考试(有答案)

最新山东省高中会考数学题学业水平考试(有答案)
就算你买手工艺品来送给朋友也是一份意义非凡的绝佳礼品哦。而这一份礼物于在工艺品店买的现成的礼品相比,就有价值意义,虽然它的成本比较低但它毕竟它是你花心血花时间去完成的。就像现在最流行的针织围巾,为何会如此深得人心,更有人称它为温暖牌绝大部分多是因为这个原因哦。而且还可以锻炼你的动手能力,不仅实用还有很大的装饰功用哦。
图1-2大学生购买手工艺品可接受价位分布
7、你喜欢哪一类型的DIY手工艺制品?
根本不知道□
10、如果学校开设一家DIY手工艺制品店,你希望_____
培养动手能力□学一门手艺□打ห้องสมุดไป่ตู้时间□兴趣爱好□
根据调查资料分析:大学生的消费购买能力还是有限的,为此DIY手工艺品的消费不能高,这才有广阔的市场。
500元以上1224%
木质、石质、骨质、琉璃、藏银……一颗颗、一粒粒、一片片,都浓缩了自然之美,展现着千种风情、万种诱惑,与中国结艺的朴实形成了鲜明的对比,代表着欧洲贵族风格的饰品成了他们最大的主题。
据统计,上海国民经济持续快速增长。03全年就实现国内生产总值(GDP)6250.81亿元,按可比价格计算,比上年增长11.8%。第三产业的增速受非典影响而有所减缓,全年实现增加值3027.11亿元,增长8%,增幅比上年下降2个百分点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省2008年普通高中学生学业水平考试数学试题
明老师整理
本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分100分,考试限定时间90
分钟.交卷前,考生务必将自己的姓名、考籍号、座号填写在答题卡的相应位置,考试结束后,讲本试卷
和答题卡一并交回.
第Ⅰ卷(共45分)
注意事项:
每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动用像皮擦干净后再选涂
其他答案标号,不涂在答题卡上,只涂在试卷上无效.
一、选择题(本答题共15个小题,每小题3分,共45分,在每小题给出的四个选项中,只有一个符合题
目要求)
1.若全集U={1.,2,3,4},集合M={1,2},N={2,3},则集合C U (M N)= ( )
A.{1,2,3}
B.{2}
C.{1,3,4}
D.{4}
2.若一个几何体的三视图都是三角形,则这个集合体是 ( )
A. 圆锥
B.四棱锥
C.三棱锥
D.三棱台
3.若点P(-1,2)在角θ的终边上,则tan θ等于 ( )
A. -2
B. 55-
C. 2
1- D. 552 4.下列函数中,定义域为R 的是 ( ) A. y=x B. y=log 2X C. y=x 3 D. y=x
1 5.设a >1,函数f (x )=a |x|的图像大致是 ( )
6.为了得到函数y=sin (2x-3
π)(X ∈R )的图像,只需把函数y=sin2x 的图像上所有的点 ( ) A.向右平移3π个单位长度 B.向右平移6
π个单位长度 C.向左平移3π个单位长度 D.向左平移6
π个单位长度 7.若一个菱长为a 的正方形的个顶点都在半径为R 的球面上,则a 与R 的关系是 ( )
A. R=a
B. R=a 2
3 C. R=2a D. R=a 3 8.从1,2,3,4,5这五个数字中任取两数,则所取两数均为偶数,则所取两数均为偶数的概率是 ( )
A. 101
B. 51
C. 52
D. 5
3 9.若点A (-2,-3)、B (0,y )、C (2,5)共线,则y 的值等于 ( )
A. -4
B. -1
C. 1
D. 4
10.在数列{a n }中,a n+1=2a n ,a 1=3,则a 6为 ( )
A. 24
B. 48
C. 96
D. 192
11.在知点P (5a+1,12a )在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是 ( )
A. -1<a <1
B. a <
13
1 C.51-<a <51 D. 131-<a <131 12.设a ,b ,c ,d ∈R ,给出下列命题:
①若ac >bc ,则a >b ;
②若a >b ,c >d ,则a+b >b+d ;
③若a >b ,c >d ,则ac >bd ;
④若ac 2>bc 2,则a >b ;
其中真命题的序号是 ( )
A. ①②
B. ②④
C. ①②④
D. ②③④
13.已知某学校高二年级的一班和二班分别有m 人和n 人(m ≠n )。

某次学校考试中,两班学生的平均分分别为a 和b (a ≠b ),则这两个班学生的数学平均分为 ( )
A. 2b a +
B. ma+nb
C. n m nb ma ++
D. n
m b a ++ 14.如图所示的程序框图中,
若给变量x 输入-2008,
则变量y 的输出值为 ( )
A. -1 B . -2008
C. 1
D. 2008
15.在△ABC 中,若a=25,c=10,A=300,则B 等于 ( )
A. 1050
B. 600或1200
C. 150
D. 1050或150
第Ⅱ卷 (非选择题 共55分)
二、填空题(本大题共5个小题,每小题4分,共20分,把答案填在题中的横线上)
16.函数y=2sin (2
13+x π
)的最小正周期是 。

17.今年某地区有30000名同学参加普通高中学生学业水平考试,为了了解考试成绩,现准备采用系统抽样的方法抽取样本。

已确定样本容量为300,给所有考生编号为1~30000以后,随机抽取的第一个样本号码为97,则抽取的样本中最大的号码数应为 .
18.已知函数f (x )=⎩⎨⎧+0
1x )0()0(<≥x x ,则f (f (-2))= . 19.已知直线a ,b 和平面α,若a ⊥b ,a ⊥α,则b 与α的位置关系是 .
20.若x ,y 满足⎩
⎨⎧≤≤+x y y x 23,则z=3x+4y 的最大值是 。

三、解答题(本小题共5个小题,共35分,解答时应写出文字说明、证明过程或演算步骤)
21.(本小题满分6分)求函数f (x )=2sin (x+
6
π)-2cosx 的最大值。

22. (本小题满分6分)直线L 过直线L 1:x+y-1=0与直线L 2:x-y+1=0的交点,且与直线L 3:3x+5y=7垂直,求直线L 的方程。

23. (本小题满分7分)在盒子里有大小相同,仅颜色不同的5个小球,其中红球3个,黄球2个,现从中任取一球请确定颜色后再放回盒子里,取出黄球则不再取球,且最多取3次,求:
(1)取一次就结束的概率;
(2)至少取到2个红球的概率。

24. (本小题满分8分)等差数列{a n }中,a 1+a 4+a 7=15,a 3+a 6+a 9=3,求该数列前9项和S 9.
25. (本小题满分8分)已知奇函数f (x )=
a b x ++2x 的定义域为R ,且f (1)=2
1. (1)求实数a 、b 的值:
(2)证明函数f (x )在区间(-1,1)上为增函数:
∞,)上有零点。

(3)若g(x=3-x-f(x),证明g(x)在(-+∞
山东省2008年学业水平(会考)考试答案
一、选择题
1.D
2.C
3.A
4.C
5.A
6. B
7.B
8.A
9. C 10. C 11.D 12.B 13. C 14.A 15.D
二、填空题
16、 6 17、 29997 18、 1 19、b α∥或b α⊂ 20、 11
三、解答题
21. 解: x x x x x x f cos sin 3cos 2)cos 21
sin 23
(2)(-=-+=
= 2sin(x -6π
).
∵ -1≤sin(x -6π
)≤1
∴ f (x)max = 2 .
22. 解:联立x+y-1=0与x-y+1=0, 得 x = 0, y = 1 .
∴直线l 1与直线l 2的交点是(0,1).
因为直线l 3的斜率是k 3= 53
-, 且直线l ⊥直线l 3 .
所以,直线l 的斜率是k = 35
.
因此,直线l 的方程是5x – 3y + 3 = 0.
23. 解:(1)设第一次就取到黄球的事件为A , 则P (A )=52
(2)设前两次取到红球,且第三次取到黄球的事件为B,
设前三次均取到红球为事件C, 则B 、C 为互斥事件,
故所求事件的概率为:
P (B ∪C )= P (B )+ P(C)
= 259
5553
33555233=⨯⨯⨯⨯+⨯⨯⨯⨯
24. 解:由 ⎩⎨⎧=++=++3
15963741a a a a a a 得,⎩⎨⎧==1564a a 得 a 1+a 9 = a 4+a 6 = 6
所以,S 9=272
991=+)(a a 25. 解:(1)因为f(X)的定义域为R ,且为奇函数,
所以f(0)=0,即=0,所以b=0,
又f(1)=
21 所以1a 1+=2
1所以a=1 (2)由(1)知f (x )=1x x 2+ 设-1<X 1<X 2<1,
f (x 1)-f (x 2)=-+1x x 2111x x 22
2+ =1)1)(x (x x 222122121221++--+x x x x x =1)1)(x (x )
()(222
1122121++---X X X X X X
=1)
1)(x (x ))(1(x 22211221++--x x x 由 -1<X 1<X 2<1, 得X 2 -X 1>0 , x 1x 2<1 .
∴f(x 1) – f (x 2) < 0 , f (x 1) < f(x 2)
∴ 函数f(x)在区间(-1,1)上为增函数 .
(3)∵ g(x) = 3-x - 1
x x 21+ , ∴ g(0) =1>0 . g(1) =.06
12131<-=- ∴ g(0)g(1) < 0 .
∴ g(x)在(0,1)内至少有一个零点.
因此,函数g(x)在(-∞,+∞)上有零点.。

相关文档
最新文档