山东省高中会考数学题学业水平考试(有答案)

合集下载

2020年山东省普通高中学业水平合格考试数学试卷

2020年山东省普通高中学业水平合格考试数学试卷

2020年山东省普通高中学业水平合格考试数学试卷一、本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合A ={1, 3, 5},B ={2, 3},则A ∪B =( ) A.{3} B.{1, 5} C.(1, 2, 5)∩{1, 2, 5} D.{1, 2, 3, 5}2. 函数f(x)=cos (12x +π6)的最小正周期为( )A.π2B.πC.2πD.4π3. 函数f(x)=√x −1+ln (4−x)的定义域是( ) A.(1, +∞) B.[1, 4) C.(1, 4] D.(4, +∞)4. 下列函数中,既是偶函数又在(0, +∞)上是减函数的是( ) A.y =−x 3 B.y =1C.y =|x|D.y =1x 25. 已知直线l 过点P(2, −1),且与直线2x +y −l =0互相垂直,则直线l 的方程为( ) A.x −2y =0 B.x −2y −4=0 C.2x +y −3=0 D.2x −y −5=06. 已知函数f(x)={2x,x ≤0x 32,x >0 ,则f(−1)+f(1)=( )A.0B.1C.32D.27. 已知向量a →与b →的夹角为π3,且|a →|=3,|b →|=4,则a →⋅b →=( ) A.6√3 B.6√2C.4√3D.68. 某工厂抽取100件产品测其重量(单位:kg ).其中每件产品的重量范围是[40, 42].数据的分组依据依次为[40, 40, 5),[40, 5, 41),[41, 41, 5),[41, 5, 42),据此绘制出如图所示的频率分布直方图,则重量在[40, 41)内的产品件数为( )A.30B.40C.60D.809.sin 110∘ cos 40∘−cos 70∘sin 40∘= ( ) A.12B.√32C.−12D.−√3210. 在平行四边形ABCD 中,AB →+BD →−AC →=( ) A.DC →B.BA →C.BC →D.BD →11. 某产品的销售额y (单位:万元)与月份x 的统计数据如表.用最小二乘法求出y 关于x 的线性回归方程为y =7x +a ,则实数a =( )C.4D.10.512. 下列结论正确的是( ) A.若a <b ,则a 3<b 3 B.若a >b ,则2a <2b C.若a <b ,则a 2<b 2 D.若a >b ,则ln a >ln b13. 圆心为M(1, 3),且与直线3x −4y −6=0相切的圆的方程是( ) A.(x −1)2+(y −3)2=9 B.(x −1)2+(y −3)2=3 C.(x +1)2+(y +3)2=9D.(x +1)2+(y +3)2=314. 已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是( )A.事件“都是红色卡片”是随机事件B.事件“都是蓝色卡片”是不可能事件C.事件“至少有一张蓝色卡片”是必然事件D.事件“有1张红色卡片和2张蓝色卡片”是随机事件15. 若直线(a −1)x −2y +1=0与直线x −ay +1=0垂直,则实数a =( ) A.−1或2 B.−1C.13D.316. 将函数y =sin x 的图象上所有的点的横坐标缩短到原来的13倍(纵坐标不变),再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为( ) A.y =sin (3x −π4)B.y =sin (3x −π12)C.y =sin (13x −π4) D.y =sin (13x −π12)17. 3名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.14 B.23C.12D.3418. 如图,在正方体ABCD −A 1B 1C 1D 1中,下列判断正确的是( )A.A 1D ⊥C 1CB.BD 1⊥ADC.A 1D ⊥ACD.BD 1 ⊥AC19. 已知向量a →,b →不共线,若AB →=a →+2b →,BC →=−3a →+7b →,CD →=4a →−5b →,则( )A.A ,B ,C 三点共线B.A ,B ,D 三点共线C.A ,C ,D 三点共线D.B ,C ,D 三点共线20. 在三棱锥P −ABC 中,PA ,PB ,PC 两两垂直,且PA =1,PB =PC =2,则该三棱锥的外接球体的体积为( ) A.9π2B.27π2C.9πD.36π二、填空题:本大题共5小题,每小题3分,共15分.某校田径队共有男运动员45人,女运动员36人.若采用分层抽样的方法在全体运动员中抽取18人进行体质测试,则抽到的女运动员人数为________.已知α为第二象限角,若sin α=35,则tan α的值为________.已知圆锥底面半径为1,高为√3,则该圆锥的侧面积为________.已知函数f(x)=x 2+x +a 在区间(0, 1)内有零点,则实数a 的取值范围为________.若P 是圆C 1:(x −4)2+(y −5)2=9上一动点,Q 是圆C 2:(x +2)2+(y +3)2=4上一动点,则|PQ|的最小值是________.三、解答题:本题共3小题,共25分.如图,在四棱锥P −ABCD 中,四边形ABCD 是平行四边形,E 、F 分别是AB 、PC 中点,求证:EF // 面PAD .在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a =6,cos B =13. (1)若sin A =35,求b 的值;(2)若c =2,求b 的值及△ABC 的面积S .已知函数f(x)=ax+log3(9x+1)(a∈R)为偶函数.(1)求a的值;(2)当x∈[0, +∞)时,不等式f(x)−b≥0恒成立,求实数b的取值范围.参考答案与试题解析2020年山东省普通高中学业水平合格考试数学试卷一、本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【考点】并集及其运算【解析】进行并集的运算即可.【解答】∵A={1, 3, 5},B={2, 3},∴A∪B={1, 2, 3, 5}.2.【答案】D【考点】三角函数的周期性及其求法【解析】根据三角函数的周期公式直接进行计算即可.【解答】由三角函数的周期公式得T=2π12=4π,3.【答案】B【考点】函数的定义域及其求法【解析】根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】解:∵函数f(x)=√x−1+ln(4−x),∴{x−1≥0,4−x>0.解得1≤x<4.∴函数f(x)的定义域是[1, 4).故选B.4.【答案】D【考点】奇偶性与单调性的综合【解析】结合基本初等函数的单调性及奇偶性对选项分别进行判断即可.【解答】由幂函数的性质可知,y=−x3,y=1x为奇函数,不符合题意,y=|x|为偶函数且在(0, +∞)上单调递增,不符号题意,y=1x2为偶函数且在(0, +∞)上单调递减,符合题意.5.【答案】B【考点】直线的一般式方程与直线的垂直关系【解析】根据题意设出直线l的方程,把点P(2, −1)代入方程求出直线l的方程.【解答】根据直线l与直线2x+y−l=0互相垂直,设直线l为x−2y+m=0,又l过点P(2, −1),∴2−2×(−1)+m=0,解得m=−4,∴直线l的方程为x−2y−4=0.6.【答案】C【考点】求函数的值函数的求值【解析】推导出f(−1)=2−1=12,f(1)=132=1,由此能求出f(−1)+f(1)的值.【解答】∵函数f(x)={2x,x≤0x32,x>0,∴f(−1)=2−1=12,f(1)=132=1,∴f(−1)+f(1)=12+1=32.故选:C.7.【答案】D【考点】平面向量数量积的性质及其运算 【解析】进行数量积的运算即可. 【解答】∵ 向量a →与b →的夹角为π3,且|a →|=3,|b →|=4, ∴ a →⋅b →=|a →||b →|cos π3=3×4×12=6.8. 【答案】 B【考点】频率分布直方图 【解析】由频率分布直方图得重量在[40, 41)内的频率为0.4.由此能求出重量在[40, 41)内的产品件数. 【解答】由频率分布直方图得:重量在[40, 41)内的频率为:(0.1+0.7)×0.5=0.4. ∴ 重量在[40, 41)内的产品件数为0.4×100=40. 9. 【答案】 A【考点】求两角和与差的正弦 【解析】利用诱导公式以及两角和的正弦函数化简求解即可. 【解答】解:sin 110∘ cos 40∘−cos 70∘sin 40∘ =sin 70∘ cos 40∘−cos 70∘sin 40∘ =sin (70∘−40∘) =sin 30∘=12. 故选A . 10. 【答案】 B【考点】向量加减法的应用 【解析】利用平面向量加法法则直接求解. 【解答】在平行四边形ABCD 中,AB →+BD →−AC →=AB →+BD →+CA →=CD →=BA →.11.【答案】 B【考点】求解线性回归方程 【解析】由已知求得样本点的中心坐标,代入线性回归方程即可求得实数a . 【解答】 x ¯=3+4+5+64=4.5,y ¯=25+30+40+454=35,∴ 样本点的中心坐标为(4.5, 35),代入y =7x +a ,得35=7×4.5+a ,即a =3.5. 12. 【答案】 A【考点】不等式的基本性质 【解析】利用函数的单调性、不等式的性质即可判断出正误. 【解答】A .a <b ,可得a 3<b 3,正确;B .a >b ,可得2a >2b ,因此B 不正确;C .a <b ,a 2与b 2大小关系不确定,因此不正确;D .由a >b ,无法得出ln a >ln b ,因此不正确. 13.【答案】 A【考点】 圆的切线方程 圆的标准方程【解析】由题意可知,圆的半径即为圆心M 到直线的距离,根据点到直线的距离公式即可求解. 【解答】由题意可知,圆的半径r =|3−12−6|5=3,故所求的圆的方程为(x −1)2+(y −3)2=9. 14. 【答案】 C【考点】 随机事件 【解析】利用随机事件的定义直接求解. 【解答】袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片, 在A 中,事件“都是红色卡片”是随机事件,故A 正确; 在B 中,事件“都是蓝色卡片”是不可能事件,故B 正确; 在C 中,事件“至少有一张蓝色卡片”是随机事件,故C 错误;在D 中,事件“有1张红色卡片和2张蓝色卡片”是随机事件,故D 正确. 15.【答案】 C【考点】直线的一般式方程与直线的垂直关系 【解析】根据题意,分析可得(a −1)+2a =0,解可得a 的值,即可得答案. 【解答】根据题意,若直线(a −1)x −2y +1=0与直线x −ay +1=0垂直, 必有(a −1)+2a =0,解可得a =13; 16.【答案】 A【考点】函数y=Asin (ωx+φ)的图象变换 【解析】由题意利用函数y =A sin (ωx +φ)的图象变换规律,得出结论. 【解答】将函数y =sin x 的图象上所有的点的横坐标缩短到原来的13倍(纵坐标不变),可得y =sin 3x 的图象; 再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为y =sin 3(x −π12)=sin (3x −π4), 17.【答案】 D【考点】古典概型及其概率计算公式 【解析】求得3位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可. 【解答】3位同学各自在周六、周日两天中任选一天参加公益活动,共有23=8种情况, 周六、周日都有同学参加公益活动,共有23−2=8−2=6种情况, ∴ 所求概率为68=34. 18.【答案】 D【考点】空间中直线与直线之间的位置关系 【解析】直接可以看出A ,B ,C 均不成立,用线线垂直来推线面垂直进而得到线线垂直. 【解答】因为AC ⊥BD ,AC ⊥DD 1;BD ∩DD 1=D ; BD ⊆平面DD 1B 1B ,DD 1⊆平面DD 1B 1B , ∴ AC ⊥平面DD 1B 1B ; BD 1⊆平面DD 1B 1B ; ∴ AC ⊥BD 1; 即D 对. 19.【答案】 B【考点】平行向量(共线) 【解析】BD →=BC →+CD →=(−3a →+7b →)+(4a →−5b →)=a →+2b →=AB →,从而BD →∥AB →,进而A ,B ,D 三点共线. 【解答】向量a →,b →不共线,AB →=a →+2b →,BC →=−3a →+7b →,CD →=4a →−5b →,∴ BD →=BC →+CD →=(−3a →+7b →)+(4a →−5b →)=a →+2b →=AB →, ∴ BD →∥AB →,∴ A ,B ,D 三点共线. 20. 【答案】 A【考点】球的表面积和体积 【解析】由题意将此三棱锥放在长方体中,可得长方体的长宽高,再由长方体的对角线等于外接球的直径求出外接球的体积. 【解答】由三棱锥中PA ,PB ,PC 两两垂直,且PA =1,PB =2,PC =2将此三棱锥放在长方体中,由题意知长方体的长宽高分别是:1,2,2.设外接球的半径为R ,则2R =√12+22+22=3所以R =32, 所以外接球的体积V =43πR 3=92π,二、填空题:本大题共5小题,每小题3分,共15分.【答案】 8【考点】 分层抽样方法 【解析】根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率值,利用每个个体被抽到的概率乘以女运动员的数目,得到女运动员要抽取得人数. 【解答】∵ 某校田径队共有男运动员45人,女运动员36人, ∴ 这支田径队共有45+36=81人,用分层抽样的方法从该队的全体运动员中抽取一个容量为18的样本, ∴ 每个个体被抽到的概率是1881=29,∵ 女运动员36人,∴ 女运动员要抽取36×29=8人, 【答案】−34【考点】同角三角函数间的基本关系 【解析】由条件利用同角三角函数的基本关系求得cos α 的值,从而求得tan α的值. 【解答】∵ α为第二象限角sin α=35, ∴ cos α=−45,则tan α=sin αcos α=−34, 【答案】 2π【考点】柱体、锥体、台体的侧面积和表面积 【解析】由已知求得母线长,代入圆锥侧面积公式求解. 【解答】由已知可得r =1,ℎ=√3,则圆锥的母线长l =√12+(√3)2=2.∴ 圆锥的侧面积S =πrl =2π. 【答案】 (−2, 0) 【考点】函数零点的判定定理 【解析】由零点存在性定理得f(0)f(1)=a(a +2)<0,求出即可. 【解答】函数f(x)=x 2+x +a 在区间(0, 1)内有零点, f(0)=a ,f(1)=2+a ,由零点存在性定理得f(0)f(1)=a(a +2)<0,得−2<a <0, 经验证a =−2,a =0均不成立, 故答案为:(−2, 0) 【答案】 5【考点】圆与圆的位置关系及其判定 【解析】分别找出两圆的圆心坐标,以及半径r 和R ,利用两点间的距离公式求出圆心间的距离d ,根据大于两半径之和,得到两圆的位置是外离,又P 在圆C 1上,Q 在圆C 2上,则|PQ|的最小值为d −(r +R),即可求出答案. 【解答】圆C 1:(x −4)2+(y −5)2=9的圆心C 1(4, 5),半径r =3, 圆C 2:(x +2)2+(y +3)2=4的圆心C 2(−2, −3),半径r =2, d =|C 1C 2|=√(4+2)2+(5+3)2=10>2+3=r +R , 所以两圆的位置关系是外离, 又P 在圆C 1上,Q 在圆C 2上,则|PQ|的最小值为d −(r +R)=10−(2+3)=5, 三、解答题:本题共3小题,共25分. 【答案】证明:取PD 的中点G ,连接FG 、AG . 因为PF =CF ,PG =DG , 所以FG // CD ,且FG =12CD .又因为四边形ABCD 是平行四边形,且E 是AB 的中点.所以AE // CD ,且AE =12CD . 所以FG // AE ,且FG =AE ,所以四边形EFGA 是平行四边形, 所以EF // AG .又因为EF⊄平面PAD,AG⊂平面PAD,所以EF // 平面PAD.【考点】直线与平面平行【解析】取PD的中点G,连接FG、AG,由PF=CF,PG=DG,所以FG // CD,且FG=12CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE // CD,且AE=12CD.证得四边形EFGA是平行四边形,所以EF // AG,由线面平行的判定定理即可得证.【解答】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,所以FG // CD,且FG =12CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE // CD,且AE=12CD.所以FG // AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF // AG.又因为EF⊄平面PAD,AG⊂平面PAD,所以EF // 平面PAD.【答案】由cos B=13可得sin B=2√23,由正弦定理可得,asin A =bsin B,所以b=a sin Bsin A =6×2√2335=20√23,由余弦定理可得,cos B=13=a2+c2−b22ac=36+4−b22×2×6,解可得,b=4√2,S=12ac sin B=12×6×2×2√23=4√2.【考点】正弦定理余弦定理【解析】(1)先根据同角平方关系求出sin B,然后结合正弦定理即可求解,(2)结合余弦定理及三角形的面积公式即可求解.【解答】由cos B=13可得sin B=2√23,由正弦定理可得,asin A=bsin B,所以b=a sin Bsin A=6×2√2335=20√23,由余弦定理可得,cos B=13=a2+c2−b22ac=36+4−b22×2×6,解可得,b=4√2,S=12ac sin B=12×6×2×2√23=4√2.【答案】根据题意可知f(x)=f(−x),即ax+log3(9x+1)=−ax+log3(9−x+1),整理得log39x+19−x+1=−2ax,即−2ax=log39x=2x,解得a=1;由(1)可得f(x)=x+log3(9x+1),因为f(x)−b≥0对x∈[0, +∞)恒成立,即x+log3(9x+1)≥b对x∈[0, +∞)恒成立,因为函数g(x)=x+log3(9x+1)在[0, +∞)上是增函数,所以g(x)min=g(0)=log32,则b≤log32.【考点】函数奇偶性的性质与判断函数恒成立问题【解析】(1)根据偶函数性质f(x)=f(−x),化简整理可求得a的取值;(2)根据条件可知x+log3(9x+1)≥b对x∈[0, +∞)恒成立,求出函数g(x)=x+log3(9x+1)在[0, +∞)上的最小值即可【解答】根据题意可知f(x)=f(−x),即ax+log3(9x+1)=−ax+log3(9−x+1),整理得log39x+19−x+1=−2ax,即−2ax=log39x=2x,解得a=1;由(1)可得f(x)=x+log3(9x+1),因为f(x)−b≥0对x∈[0, +∞)恒成立,(9x+1)≥b对x∈[0, +∞)恒成立,即x+log3(9x+1)在[0, +∞)上是增函数,因为函数g(x)=x+log32,所以g(x)min=g(0)=log32.则b≤log3。

山东普通高中会考数学真题及答案A

山东普通高中会考数学真题及答案A

山东普通高中会考数学真题及答案A一、选择题(每小题3分,共75分)1.(3分)已知集合A={0,1},B={﹣1,1,3},那么A∩B等于()A.{0} B.{1} C.{0,1} D.{0,1,3} 2.(3分)平面向量,满足=2,如果=(1,2),那么等于()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣4)D.(2,4)3.(3分)如果直线y=kx﹣1与直线y=3x平行,那么实数k的值为()A.﹣1 B.C.D.34.(3分)如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A.﹣4 B.﹣2 C.2 D.45.(3分)如果函数f(x)=a x(a>0,且a≠1)的图象经过点(2,9),那么实数a等于()A.2 B.36.(3分)某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为()A.60 B.90 C.100 D.110(3分)已知直线l经过点O(0,0),且与直线x﹣y﹣3=0垂直,那么直线l的方程是()7.A.x+y﹣3=0 B.x﹣y+3=0 C.x+y=0 D.x﹣y=0 8.(3分)如图,在矩形ABCD中,E为CD中点,那么向量等于()A.B.C.D.9.(3分)实数的值等于()A.1 B.2 C.3 D.410.(3分)函数y=x2,y=x3,,y=lgx中,在区间(0,+∞)上为减函数的是()A.y=x2B.y=x3C.D.y=lgx11.(3分)某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A.0.1 B.0.2 C.0.3 D.0.712.(3分)如果正△ABC的边长为1,那么•等于()A.B.C.1 D.213.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=10,A=45°,B=30°,那么b等于()A.B.C.D.14.(3分)已知圆C:x2+y2﹣2x=0,那么圆心C到坐标原点O的距离是()A.B.C.1 D.15.(3分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB =1,那么该四棱柱的体积为()A.1 B.2 C.4 D.816.(3分)函数f(x)=x3﹣5的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)17.(3分)在sin50°,﹣sin50°,sin40°,﹣sin40°四个数中,与sin130°相等的是()A.sin50°B.﹣sin50°C.sin40°D.﹣sin40°18.(3分)把函数y=sin x的图象向右平移个单位得到y=g(x)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.19.(3分)函数的最小值是()A.﹣1 B.0 C.1 D.220.(3分)在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③平行于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中正确命题的序号是()A.①B.②C.③D.④21.(3分)北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如表:各区域1月份PM2.5浓度(单位:微克/立方米)表区域PM2.5浓度区域PM2.5浓度区域PM2.5浓度怀柔27 海淀34 平谷40密云31 延庆35 丰台42门头沟32 西城35 大兴46顺义32 东城36 开发区46昌平32 石景山37 房山47朝阳34 通州39从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克/立方米的概率是()A.B.C.D.22.(3分)已知,那么=()A.B.C.D.23.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果,那么△ABC的最大内角的余弦值为()A.B.C.D.24.(3分)北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()A.2013年以来,每年参观总人次逐年递增B.2014年比2013年增加的参观人次不超过50万C.2012年到2017年这六年间,2017年参观总人次最多D.2012年到2017年这六年间,平均每年参观总人次超过160万25.(3分)阅读下面题目及其证明过程,在横线处应填写的正确结论是()如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,BC⊥AC求证:BC⊥PA证明:因为平面PAC⊥平面ABC平面PAC∩平面ABC=ACBC⊥AC,BC⊂平面ABC所以______.因为PA⊂平面PAC.所以BC⊥PAA.AB⊥底面PAC B.AC⊥底面PBC C.BC⊥底面PAC D.AB⊥底面PBC 二、解答题(共4小题,满分25分)26.(7分)已知函数(Ⅰ)A=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)函数f(x)的最小正周期T=(将结果直接填写在答题卡的相应位置上)(Ⅲ)求函数f(x)的最小值及相应的x的值.27.(7分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,D,E,分别为PB,PC的中点.(Ⅰ)求证:BC∥平面ADE;(Ⅱ)求证:BC⊥平面PAB.28.(6分)已知圆O:x2+y2=r2(r>0)经过点A(0,5),与x轴正半轴交于点B.(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)圆O上是否存在点P,使得△PAB的面积为15?若存在,求出点P的坐标;若不存在,说明理由.29.(5分)种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表电力线安全距离(单位:m)水平距离垂直距离≤1KV≥1 ≥13KV~10KV≥3 ≥335KV~110KV≥3.5 ≥4154KV~220KV≥4 ≥4.5 330KV≥5 ≥5.5500KV≥7 ≥7现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的时间x(年)与它的高度y(m)满足关系式(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)如果这棵行道树的正上方有35kV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?(Ⅲ)假如这棵行道树的正上方有500kV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m?参考答案与解析一、选择题(每小题3分,共75分)1.(3分)已知集合A={0,1},B={﹣1,1,3},那么A∩B等于()A.{0} B.{1} C.{0,1} D.{0,1,3}【考点】1E:交集及其运算.菁优网版权所有【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用交集定义直接求解.【解答】解:∵集合A={0,1},B={﹣1,1,3},∴A∩B={1}.故选:B.【点评】本题考查交集的求法,考查交集定义、不等式等基础知识,考查运算求解能力,是基础题.2.(3分)平面向量,满足=2,如果=(1,2),那么等于()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣4)D.(2,4)【考点】96:平行向量(共线).菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用数乘向量运算法则直接求解.【解答】解:∵平面向量,满足=2,=(1,2),∴=2(1,2)=(2,4).故选:D.【点评】本题考查向量的求法,考查数乘向量运算法则等基础知识,考查运算求解能力,是基础题.3.(3分)如果直线y=kx﹣1与直线y=3x平行,那么实数k的值为()A.﹣1 B.C.D.3【考点】II:直线的一般式方程与直线的平行关系.菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5B:直线与圆.【分析】利用两条直线相互平行的充要条件即可得出.【解答】解:∵直线y=kx﹣1与直线y=3x平行,∴k=3,经过验证满足两条直线平行.故选:D.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于基础题.4.(3分)如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A.﹣4 B.﹣2 C.2 D.4【考点】3K:函数奇偶性的性质与判断.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,由函数的图象可得f(﹣1)的值,结合函数的奇偶性可得f(1)的值,即可得答案.【解答】解:根据题意,由函数的图象可得f(﹣1)=2,又由函数为奇函数,则f(1)=﹣f(﹣1)=﹣2,故选:B.【点评】本题考查函数的奇偶性的性质,关键是掌握函数单调性的性质,属于基础题.5.(3分)如果函数f(x)=a x(a>0,且a≠1)的图象经过点(2,9),那么实数a等于()A.2 B.3【考点】4B:指数函数的单调性与特殊点.菁优网版权所有【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】由题意代入点的坐标,即可求出a的值.【解答】解:指数函数f(x)=a x(a>0,a≠1)的图象经过点(2,9),∴9=a2,解得a=3,故选:B.【点评】本题考查了指数函数的图象和性质,属于基础题.6.(3分)某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为()A.60 B.90 C.100 D.110【考点】B3:分层抽样方法.菁优网版权所有【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】根据分层抽样的定义和题意知,抽样比例是,根据样本的人数求出应抽取的人数【解答】解:根据分层抽样的定义和题意,则高中学生中抽取的人数 600×=60(人).故选:A.【点评】本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在所求的层中抽取的个体数目.(3分)已知直线l经过点O(0,0),且与直线x﹣y﹣3=0垂直,那么直线l的方程是()7.A.x+y﹣3=0 B.x﹣y+3=0 C.x+y=0 D.x﹣y=0【考点】IJ:直线的一般式方程与直线的垂直关系.菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5B:直线与圆.【分析】由题意可求出直线l的斜率,由点斜式写出直线方程化简即可.【解答】解:∵直线l与直线x﹣y﹣3=0垂直,∴直线l的斜率为﹣1,则y﹣0=﹣(x﹣0),即x+y=0故选:C.【点评】本题考查了直线方程的求法,属于基础题.8.(3分)如图,在矩形ABCD中,E为CD中点,那么向量等于()A.B.C.D.【考点】9H:平面向量的基本定理.菁优网版权所有【专题】35:转化思想;5A:平面向量及应用.【分析】直接利用向量的线性运算求出结果.【解答】解:在矩形ABCD中,E为CD中点,所以:,则:=.故选:A.【点评】本题考查的知识要点:向量的线性运算的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.(3分)实数的值等于()A.1 B.2 C.3 D.4【考点】41:有理数指数幂及根式;4H:对数的运算性质.菁优网版权所有【专题】33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】直接利用有理指数幂及对数的运算性质求解即可.【解答】解:=2+0=2.故选:B.【点评】本题考查了有理指数幂及对数的运算性质,是基础题.10.(3分)函数y=x2,y=x3,,y=lgx中,在区间(0,+∞)上为减函数的是()A.y=x2B.y=x3C.D.y=lgx【考点】3E:函数单调性的性质与判断.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,依次分析4个函数在区间(0,+∞)的单调性,综合即可得答案.【解答】解:根据题意,函数y=x2,为二次函数,在区间(0,+∞)为增函数;y=x3,为幂函数,在区间(0,+∞)为增函数;,为指数函数,在区间(0,+∞)上为减函数;y=lgx中,在区间(0,+∞)为增函数;故选:C.【点评】本题考查函数单调性的判定,关键是掌握常见函数的单调性,属于基础题.11.(3分)某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A.0.1 B.0.2 C.0.3 D.0.7【考点】C2:概率及其性质.菁优网版权所有【专题】38:对应思想;4R:转化法;5I:概率与统计.【分析】根据互斥事件概率加法公式即可得到其发生的概率的大小.【解答】解:由于中一等奖,中二等奖,为互斥事件,故中奖的概率为0.1+0.1=0.2,故选:B.【点评】此题考查概率加法公式及互斥事件,是一道基础题.12.(3分)如果正△ABC的边长为1,那么•等于()A.B.C.1 D.2【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】38:对应思想;4R:转化法;5A:平面向量及应用.【分析】根据向量的数量积的运算性质计算即可.【解答】解:∵正△ABC的边长为1,∴•=||•||cos A=1×1×cos60°=,故选:B.【点评】本题考查了向量的数量积的运算,是一道基础题.13.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=10,A=45°,B=30°,那么b等于()A.B.C.D.【考点】HP:正弦定理.菁优网版权所有【专题】38:对应思想;4R:转化法;58:解三角形.【分析】根据正弦定理直接代入求值即可.【解答】解:由正弦定理==,得=,解得:b=5,故选:B.【点评】本题考查了正弦定理的应用,考查解三角形问题,是一道基础题.14.(3分)已知圆C:x2+y2﹣2x=0,那么圆心C到坐标原点O的距离是()A.B.C.1 D.【考点】J2:圆的一般方程.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;5B:直线与圆.【分析】根据题意,由圆的一般方程分析可得圆心C的坐标,进而由两点间距离公式,计算可得答案.【解答】解:根据题意,圆C:x2+y2﹣2x=0,其圆心C为(1,0),则圆心C到坐标原点O的距离d==1;故选:C.【点评】本题考查圆的一般方程,涉及两点间距离公式,属于基础题.15.(3分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB =1,那么该四棱柱的体积为()A.1 B.2 C.4 D.8【考点】LF:棱柱、棱锥、棱台的体积.菁优网版权所有【专题】11:计算题;31:数形结合;4O:定义法;5F:空间位置关系与距离.【分析】该四棱柱的体积为V=S正方形ABCD×AA1,由此能求出结果.【解答】解:∵在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB=1,∴该四棱柱的体积为V=S正方形ABCD×AA1=12×2=2.故选:B.【点评】本题考查该四棱柱的体积的求法,考查四棱柱的性质等基础知识,考查运算求解能力,是基础题.16.(3分)函数f(x)=x3﹣5的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【考点】52:函数零点的判定定理.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;49:综合法;51:函数的性质及应用.【分析】求得f(1)f(2)<0,根据函数零点的判定定理可得函数f(x)的零点所在的区间.【解答】解:由函数f(x)=x3﹣5可得f(1)=1﹣5=﹣4<0,f(2)=8﹣5=3>0, 故有f(1)f(2)<0,根据函数零点的判定定理可得,函数f(x)的零点所在区间为(1,2),故选:A.【点评】本题主要考查函数的零点的判定定理的应用,属于基本知识的考查.17.(3分)在sin50°,﹣sin50°,sin40°,﹣sin40°四个数中,与sin130°相等的是()A.sin50°B.﹣sin50°C.sin40°D.﹣sin40°【考点】GF:三角函数的恒等变换及化简求值.菁优网版权所有【专题】35:转化思想;56:三角函数的求值.【分析】利用诱导公式化简可得答案.【解答】解:由sin130°=sin(180°﹣50°)=sin50°.∴与sin130°相等的是sin50°故选:A.【点评】题主要考察了诱导公式的应用,属于基本知识的考查.18.(3分)把函数y=sin x的图象向右平移个单位得到y=g(x)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.菁优网版权所有【专题】35:转化思想;49:综合法;57:三角函数的图象与性质.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.【解答】解:把函数y=sin x的图象向右平移个单位得到y=g(x)=sin(x﹣)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为y=2sin(x﹣),故选:A.【点评】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.19.(3分)函数的最小值是()A.﹣1 B.0 C.1 D.2【考点】3H:函数的最值及其几何意义.菁优网版权所有【专题】33:函数思想;48:分析法;51:函数的性质及应用.【分析】分别讨论两段函数的单调性和最值,即可得到所求最小值.【解答】解:当x>﹣1时,f(x)=x2的最小值为f(0)=0;当x≤﹣1时,f(x)=﹣x递减,可得f(x)≥1,综上可得函数f(x)的最小值为0.故选:B.【点评】本题考查分段函数的最值求法,注意分析各段的单调性和最值,考查运算能力,属于基础题.20.(3分)在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③平行于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中正确命题的序号是()A.①B.②C.③D.④【考点】2K:命题的真假判断与应用.菁优网版权所有【专题】38:对应思想;48:分析法;5F:空间位置关系与距离.【分析】由线面平行的性质可判断①;由线面垂直的性质定理可判断②;由两个平面的位置关系可判断③;由面面平行的判定定理可判断④.【解答】解;对于①,平行于同一个平面的两条直线互相平行或相交或异面,故①错误;对于②,垂直于同一个平面的两条直线互相平行,故②正确;对于③,平行于同一条直线的两个平面互相平行或相交,故③错误;对于④,垂直于同一个平面的两个平面互相平行或相交,故④错误.故选:B.【点评】本题考查空间线线和面面的位置关系的判断,考查平行和垂直的判断和性质定理的运用,属于基础题.21.(3分)北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如表:各区域1月份PM2.5浓度(单位:微克/立方米)表区域PM2.5浓度区域PM2.5浓度区域PM2.5浓度怀柔27 海淀34 平谷40密云31 延庆35 丰台42门头沟32 西城35 大兴46顺义32 东城36 开发区46昌平32 石景山37 房山47朝阳34 通州39从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克/立方米的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.菁优网版权所有【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】由表可知从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,根据概率公式计算即可.【解答】解:从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,则2018年1月份PM2.5的浓度小于36微克/立方米的概率是,故选:D.【点评】本题主要考查频率分布表、古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等22.(3分)已知,那么=()A.B.C.D.【考点】GP:两角和与差的三角函数.菁优网版权所有【专题】35:转化思想;36:整体思想;56:三角函数的求值.【分析】直接利用同角三角函数关系式的应用求出结果.【解答】解:知,那么,则:=sin==, 故选:D.【点评】本题考查的知识要点:三角函数关系式的恒等变变换,主要考查学生的运算能力和转化能力,属于基础题型.23.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果,那么△ABC的最大内角的余弦值为()A.B.C.D.【考点】HR:余弦定理.菁优网版权所有【专题】38:对应思想;4O:定义法;58:解三角形.【分析】先判断△ABC的最大内角为A,再利用余弦定理计算cos A的值.【解答】解:△ABC中,,∴△ABC的最大内角为A,且cos A===.故选:A.【点评】本题考查了余弦定理的应用问题,是基础题.24.(3分)北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()A.2013年以来,每年参观总人次逐年递增B.2014年比2013年增加的参观人次不超过50万C.2012年到2017年这六年间,2017年参观总人次最多D.2012年到2017年这六年间,平均每年参观总人次超过160万【考点】F4:进行简单的合情推理.菁优网版权所有【专题】11:计算题;31:数形结合;44:数形结合法;5I:概率与统计.【分析】由从2012年到2017年每年参观人数的折线图,得2012年到2017年这六年间,2017年参观总人次最多.【解答】解:由从2012年到2017年每年参观人数的折线图,得:在A中,2013年以来,2015年参观总人次比2014年参观人次少,故A错误;在B中,2014年比2013年增加的参观人次超过50万,故B错误;在C中,2012年到2017年这六年间,2017年参观总人次最多,故C正确;在D中,2012年到2017年这六年间,平均每年参观总人次不超过160万,故D错误.【点评】本题考查命题真假的判断,考查折线图的应用,考查运算求解能力,考查数形结合思想,是基础题.25.(3分)阅读下面题目及其证明过程,在横线处应填写的正确结论是()如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,BC⊥AC求证:BC⊥PA证明:因为平面PAC⊥平面ABC平面PAC∩平面ABC=ACBC⊥AC,BC⊂平面ABC所以______.因为PA⊂平面PAC.所以BC⊥PAA.AB⊥底面PAC B.AC⊥底面PBC C.BC⊥底面PAC D.AB⊥底面PBC 【考点】LW:直线与平面垂直.菁优网版权所有【专题】38:对应思想;4R:转化法;5F:空间位置关系与距离.【分析】根据面面垂直的性质定理判断即可.【解答】解:根据面面垂直的性质定理判定得:BC⊥底面PAC,故选:C.【点评】本题考查了面面垂直的性质定理,考查数形结合思想,是一道基础题.二、解答题(共4小题,满分25分)26.(7分)已知函数(Ⅰ)A= 2 ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)函数f(x)的最小正周期T=2π(将结果直接填写在答题卡的相应位置上)(Ⅲ)求函数f(x)的最小值及相应的x的值.【考点】HW:三角函数的最值.菁优网版权所有【专题】33:函数思想;4O:定义法;57:三角函数的图象与性质.【分析】(Ⅰ)由f(0)=1求得A的值;(Ⅱ)由正弦函数的周期性求得f(x)的最小正周期;(Ⅲ)由正弦函数的图象与性质求得f(x)的最小值以及对应x的值.【解答】解:(Ⅰ)函数由f(0)=A sin=A=1,解得A=2;(Ⅱ)函数f(x)=2sin(x+),∴f(x)的最小正周期为T=2π;(Ⅲ)令x+=2kπ﹣,k∈Z;x=2kπ﹣,k∈Z;此时函数f(x)取得最小值为﹣2.故答案为:(Ⅰ)2,(Ⅱ)2π.【点评】本题考查了正弦函数的图象与性质的应用问题,是基础题.27.(7分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,D,E,分别为PB,PC的中点.(Ⅰ)求证:BC∥平面ADE;(Ⅱ)求证:BC⊥平面PAB.【考点】LS:直线与平面平行;LW:直线与平面垂直.菁优网版权所有【专题】14:证明题;31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】(Ⅰ)由D、E分别为PB、PC的中点,得DE∥BC,由此能证明BC∥平面ADE.(Ⅱ)推导出PA⊥BC,AB⊥BC,由此能证明BC⊥平面PAB.【解答】证明:(Ⅰ)在△PBC中,∵D、E分别为PB、PC的中点,∴DE∥BC,∵BC⊄平面ADE,DE⊂平面ADE,∴BC∥平面ADE.(Ⅱ)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB.【点评】本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.28.(6分)已知圆O:x2+y2=r2(r>0)经过点A(0,5),与x轴正半轴交于点B.(Ⅰ)r= 5 ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)圆O上是否存在点P,使得△PAB的面积为15?若存在,求出点P的坐标;若不存在,说明理由.【考点】J9:直线与圆的位置关系.菁优网版权所有【专题】34:方程思想;4R:转化法;5B:直线与圆.【分析】(Ⅰ)直接由已知条件可得r;(Ⅱ)存在.由(Ⅰ)可得圆O的方程为:x2+y2=25,依题意,A(0,5),B(5,0),求出|AB|=,直线AB的方程为x+y﹣5=0,又由△PAB的面积,可得点P到直线AB的距离为,设点P(x0,y0),解得x0+y0=﹣1或x0+y0=11(显然此时点P不在圆上,故舍去),联立方程组,求解即可得答案.【解答】解:(Ⅰ)r=5;(Ⅱ)存在.∵r=5,∴圆O的方程为:x2+y2=25.依题意,A(0,5),B(5,0),∴|AB|=,直线AB的方程为x+y﹣5=0,又∵△PAB的面积为15,∴点P到直线AB的距离为,设点P(x0,y0),∴,解得x0+y0=﹣1或x0+y0=11(显然此时点P不在圆上,故舍去),联立方程组,解得或.∴存在点P(﹣4,3)或P(3,﹣4)满足题意.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,是中档题.29.(5分)种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表电力线安全距离(单位:m)水平距离垂直距离≤1KV≥1 ≥13KV~10KV≥3 ≥335KV~110KV≥3.5 ≥4154KV~220KV≥4 ≥4.5330KV≥5 ≥5.5500KV≥7 ≥7现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的时间x(年)与它的高度y(m)满足关系式(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)如果这棵行道树的正上方有35kV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?(Ⅲ)假如这棵行道树的正上方有500kV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m?【考点】5C:根据实际问题选择函数类型.菁优网版权所有【专题】11:计算题;33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】(Ⅰ)将x=2,y=2代入计算即可,(Ⅱ)函数解析式为y=,令y=20﹣4=16,解得x=10,问题得以解决, (Ⅲ)根据指数函数的性质可得y=<30,问题得以解决【解答】解:(Ⅰ)r=,故答案为:(Ⅱ)根据题意,该树木的高度为16米时需要及时修剪这颗行道数,函数解析式为y=,令y=20﹣4=16,解得x=10,故这棵行道树自然生长10年必须修剪;(Ⅲ)因为>0,所以1+28×>1,所以y=<30,所以该电力线距离地面至少37米,这这棵行道树一直自然生长,始终不会影响电力线段安全.【点评】本题考查了函数在实际生活中的应用,考查了分析问题解决问题的能力,属于中档题.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/7/25 12:12:34;用户:qgjyuser10448;邮箱:qgjyuser10448.21957750;学号:21985455。

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考带答案解析

山东高二高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.若,则一定成立的不等式是A.B.C.D.2.等差数列中,若,则等于A.3B.4C.5D.63.在中,a=15,b=10,A=60°,则=A.B.C.D.4.等差数列{}的公差不为零,首项=1,是和的等比中项,则数列的前10项之和是A.90B.100C.145D.1905.在中,角A、B、C所对应的边分别为a、b、c,若角A、B、C依次成等差数列,且a=1,等于A. B. C. D.26.不等式的解集为,不等式的解集为,不等式的解集是,那么等于A.-3B.1C.-1D.37.已知两个正数、的等差中项是5,则、的等比中项的最大值为A. 10B. 25 C 50 D. 1008.已知圆的半径为4,为该圆的内接三角形的三边,若,则三角形的面积为A.B.C.D.9.当时,不等式恒成立,则的最大值和最小值分别为A.2,-1B.不存在,2C.2,不存在D.-2,不存在10.已知x、y满足约束条件则目标函数z=(x+1)2+(y-1)2的最大值是A.10B.90C.D.211.已知等比数列满足,且,则当时,A.B.C.D.12.已知方程的四个实根组成以为首项的等差数列,则A.2 C. D.二、填空题1.等差数列的前项和为,若,则2.若关于x的不等式的解集为,则实数a的取值范围是3.设等比数列的公比,前项和为,则4.在中,角的对边分别是,已知,则的形状是三角形.三、解答题1.已知集合,(Ⅰ)当时,求(Ⅱ)若,求实数的取值范围.2.在△ABC中,角A、B、C的对边分别为a、b、c,且(Ⅰ)求角A的大小;(Ⅱ)若,求△ABC的面积.3.如图,海中小岛A周围40海里内有暗礁,一船正在向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?4.已知点(1,2)是函数的图象上一点,数列的前项和.(Ⅰ)求数列的通项公式(Ⅱ)若,求数列的前项和.5.运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元(Ⅰ)求这次行车总费用y关于x的表达式(Ⅱ)当x为何值时,这次行车的总费用最低,并求出最低费用的值6.已知数列中,,,(Ⅰ)证明数列是等比数列,并求出数列的通项公式(Ⅱ)记,数列的前项和为,求使的的最小值山东高二高中数学水平会考答案及解析一、选择题1.若,则一定成立的不等式是A.B.C.D.【答案】C【解析】本题考查的是不等式的性质。

山东省学业水平考试数学试题(2015-2017会考)附答案

山东省学业水平考试数学试题(2015-2017会考)附答案
y k ( x 1) 2 代入y 2 x 2得2x2 kx k 2 0 k k2 k k2 A( 1, 2k 2), 用 k 换k 得B ( 1, 2k 2) 2 2 2 2 k k k2 A( x1, y1 ), B( x2 , y2 ), 则x1 1 , x1 1, y1 k ( x1 1) 2 2k 2 2 2 2 k AB k k 1 ( 1) 4k 2 2 2 4 (定值) 2 k k k 2k 2 ( 2k 2) 2 2
22.已知 tan 2, 则 tan( ) 的值是___________ 4
23.一个四棱锥的三视图如图所示,其中主(正)视图和左(侧)视图都是边长为 2 的正 三角形,那么该四棱锥的底面积为__________
8
x 2 24.已知实数 x,y 满足约束条件 y 2 , 则目标函数 z x 2 y x y 2 0 的最小值是 ______
9
山东省普通高中学业水平考试数学试题 参考答案
1~5 DABAC 21. 12 22. 6~10 BBDDA 11~15 CAACD 16~20 BCDBC -3 23. 4 24. 2 25.
2

26 f ( x)的定义域是( , 2), 零点是x 2 27. (1) an n, (2) S100 5050 28.解(1) 设直线MA的斜率为k , 则MB的斜率为-k,则直线MA的方程为
1 1 a b
11.设 a, b, c R, 且a b ,则下列不等式正确的是( A. a 2 b 2 B. ac 2 bc 2 C. a c b c D.
13.甲、乙、丙 3 人站成一排,则甲恰好在中间的概率为( A.

山东省高中学业水平考试(合格考)模拟卷(一)

山东省高中学业水平考试(合格考)模拟卷(一)

山东省高中学业水平考试(合格考)数学模拟卷(一) 2021.11.16一、选择题题(本大题共20个小题,每小题3分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={1,2,3},B ={-1,0,1},则A ∩B =( ) A .∅B .{1}C .{0,1,2,3}D .{-1,0,1,2,3}2.函数()πcos 26f x x ⎛⎫=+ ⎪⎝⎭,x ∈R 的最小正周期是( )A .2πB .πC .π2 D .π43.函数y = )A .1,2⎛⎫+∞ ⎪⎝⎭B .()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭C .()1,22,2⎛⎫+∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭4.已知平面向量()1,2a =,()2,b m =-,且//a b , 则m 的值为( ) A .1-B .4-C .1D .45.“直线l 与平面α没有公共点”是“直线l 与平面α平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.已知函数()335f x x x =+-,则零点所在的区间可以为( ) A .()0,1 B .()1,2 C .()1,0- D .()2,1-- 7.袋子中有6个相同的球,分別标有数字1,2,3,4,5,6,从中随机取出两个球,则取出球的数字之和是8的概率为( ) A .16B .536C .115D .2158.已知条件甲:05x <<,条件乙:323x -<-<,那么甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.若向量(1,2)a =,(3,2)b =-,则(2)a a b ⋅+=( )A .3B .-3C .8D .13 10.抽样统计甲射击运动员10次的训练成绩分别为86,85,88,86,90,89,88,87,85,92,则这10次成绩的80%分位数为( )11.已知i 是虚数单位,则复数i 212i-=+( ) A .iB .i -C .43i 55--D .43i 55-+12.若角α的终边经过点()1,2P -,则sin α的值为( ) A 25B 5C .5D .2513.现将函数π()sin 26f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位,再将所得的图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()g x 的图象,则函数()g x 的解析式为( )A .π()sin 43g x x ⎛⎫=- ⎪⎝⎭B .()sin g x x =C .π()sin 12g x x ⎛⎫=- ⎪⎝⎭D .()sin 6πg x x ⎛⎫=- ⎪⎝⎭14.已知m ,n 是不同的直线,α,β是不同的平面,则下列条件能使n α⊥成立的是( )A . ,n αββ⊥⊂B .//,n αββ⊥C .,//n αββ⊥D .//,m n m α⊥15.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为14人,则样本中的中年职工人数为( ) A .10B .30C .50D .7016.下列函数中,既是奇函数,又在(0,+∞)上单调递增的函数是( )A .y x =-B .y x =-C .21y x =-D .2y x=-17.设 1.20.43log 1,log 2,2a b c ===,则,,a b c 的大小关系是( ) A .a b c >> B .a c b >> C .b a c >> D .c b a >> 18.如图,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N )为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运( ) A .3年 B .4年 C .5年 D .6年19.甲射击命中目标的概率是12,乙射击命中目标的概率是13,丙射击命中目标的概率是14.现在三人同时射击同一目标,则目标被击中的概率为( )A .34B .23C .45D .71020.长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .7π2B .56πC .14πD .16π 二、填空题:(本大题共5小题,每小题3分,共15分)21.已知函数()()21mf x m m x =+-是幂函数,且在()0,∞+上是减函数,则实数m 的值为______.22.已知单位向量a ,b ,若1a b +=,则a 与b 的夹角余弦的值为_________. 23.函数1(2)2y x x x =+>-的最小值是___________. 24.已知复数z 满足()1i 17i z +=-(i 是虚数单位),则z =__________. 25.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为豪的发现.该圆柱的体积与球的体积之比为______.三、解答题(本大题共3小题,共25分.解答应写出文字说明、证明过程或演算步骤)26.(本小题满分8分)已知对数函数()log (0,1)a f x x a a =>≠的图象经过点(9,2). (1)求函数()f x 的解析式;(2)如果不等式(1)1f x +<成立,求实数x 的取值范围.27.(本小题满分8分)如图,已知△ABC中,AB,∠ABC=45°,∠ACB=60°.(1)求AC的长;(2)若CD=5,求AD的长.28.(本小题满分9分)如图,四棱锥P ABCD-的底面是边长为2的菱形,PD⊥底面ABCD.(1)求证:AC⊥平面PBD;(2)若2-的PD=,直线PB与平面ABCD所成的角为45°,求四棱锥P ABCD体积.合格考模拟卷(一)参考答案1.B 【详解】因为集合A ={1,2,3},B ={-1,0,1},所以{}1A B =.故选:B. 2.B 【详解】根据三角函数的周期公式得函数的最小正周期为22T ππ==. 3.D 【详解】由题设可得210x -≥,故12x,故函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:D . 4.B 【详解】因为()1,2a =,()2,b m =-,且//a b 所以122m ⨯=-⨯,解得4m =-. 5.C 【详解】若直线l 与平面α没有公共点,那直线l 与平面α只能平行,故充分条件成立;若直线l 与平面α平行,则直线l 与平面α没有公共点,故必要性也成立,所以“直线l 与平面α没有公共点”是“直线l 与平面α平行”的充分必要条件.6.B 【详解】显然函数()335f x x x =+-在R 上单调递增,(2)(1)(0)(1)10f f f f -<-<<=-<,而(2)90f =>,所以零点所在的区间可以为(1,2).故选:B7.D 【详解】基本事件共有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15种,其中数字和为8的基本事件有2种,所以取出球的数字之和是8的概率为215,故选:D. 8.A 【详解】由题意得:条件乙:15x -<<.∵0515x x <<⇒-<<,但1505x x -<<⇒<<,∴甲是乙的充分不必要条件,故选:A9.A 【详解】由题意,向量(1,2)a =,(3,2)b =-,则2(7,2)a b +=-,所以(2)743a a b ⋅+=-=.故选:A.10.D 【详解】甲射击运动员10次的训练成绩从小到大分别为:85,85,86,86, 87,88,88,89,90,92. 1080%8⨯=,这10次成绩的80%分位数为899089.52+=. 11.A 【详解】()()()()i 212i i 2i 224i 5ii 12i 12i 12i 145---+-+====++-+,故选:A.12.D 【详解】∵角α的终边经过点()1,2P -,∴1x =,2y =-,OP =,∴sinα==.故选:D . 13.D 【详解】将函数()sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位,可得sin 2sin 2366y x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭的图象,再将sin 26y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()g x 的图象,所以()sin 6g x x π⎛⎫=- ⎪⎝⎭.14.B 【详解】A 选项,,n αββ⊥⊂,可能n 是两个平面的交线,不能得到n α⊥,A 错误. B 选项,//,n αββ⊥,则n α⊥,B 正确. C 选项,,//n αββ⊥,可能n ⊂α,C 错误. D 选项,//,m n m α⊥,可能n ⊂α,D 错误.故选:B15.A 【详解】由题意知,青年职工人数:中年职工人数:老年职工人数=350:250:150=7:5:3.由样本中的青年职工为14人,可得中年职工人数为10. 16.D 【详解】选项A ,函数y x =-是奇函数,在(0,+∞)上单调递减,故A 不满足. 选项B ,对于函数y x =-,f (-x )=-|-x |=-|x |=f (x ),所以y =-|x |是偶函数,故B 不满足;选项C ,21y x =-是偶函数,在(0,+∞)上单调递减,故C 不满足;选项D ,2y x=-是奇函数,在(0,+∞)上单调递增,故D 满足.17.D 【详解】因0.4log 10=,则0a =,函数3log y x =在(0,)+∞上单调递增,123<<,于是有3330log 1log 2log 31=<<=,即01b <<,函数2x y =在R 上单调递增,1.20>,则 1.20221>=,即1c >,所以,,a b c 的大小关系是c b a >>.故选:D18.C 【详解】由题意可设y =a (x -6)2+11,又曲线过(4,7),∴ 7=a (4-6)2+11,∴ a =-1.即y =-x 2+12x -25,∴ y x =12-(x +25x)≤12-=2,当且仅当x =5时取等号. 故选C .19.A 【详解】由题可知,目标不被击中的概率是12312344⨯⨯=,所以目标被击中的概率为114-=34,故选:A20.C 【详解】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩,=, ∴2414S R ππ球==.故选:C 21.2-【详解】由函数()f x 是幂函数,则211m m +-=,解得2m =-或1m =, 又因为()f x 在()0,∞+上是减函数,所以2m =-;故答案为:2-22.12-【详解】因为a ,b 为单位向量,所以1a =,1b =,所以222222cos 1a b a a b b θ+=+⋅+=+=,解得1cos 2θ=-.故答案为:12-.23.4【详解】当2x >时,122242y x x =-++≥=-, 当且仅当122x x -=-,即3x =时取等号. 故答案为:4. 24.34i --【详解】因为()1i 17i z +=-,所以()()()()2217i 1i 17i 68i34i 1i 1i 1i 11z -----====--++-+. 25.32【详解】设球的半径为R ,则圆柱的底面半径为R ,高为2R ,23π22πV R R R =⨯=圆柱,34π3V R =球,332π342π3V R V R ==圆柱球,故答案为:3226.(1)3()log f x x =; (2)12x -<<.【详解】(1)因为函数过点(9,2),所以log 92a =,即29a =,因为0a >,所以3a =. 所以函数()f x 的解析式为()3log f x x =;(2)()()31log 1f x x +=+. 由()11f x +<可得()3log 11x +<,即()33log 1log 3x +<, 即1013x x +>⎧⎨+<⎩,即12x -<<. 所以实数x 的取值范围是12x -<<. 27.(1)3,(2)7【详解】(1)如图所示,在△ABC 中,由正弦定理得,sin sin AC ABABC ACB=∠∠,则sin 45sin 23sin sin 60AB ABC AC ACB ︒⋅∠===∠︒,(2)因为∠ACB =60°,所以120ACD ∠=︒, 在ACD △中,由余弦定理得,7AD ===. 28.(1)证明见解析;(2【详解】(1)证明:因为四边形ABCD 是菱形,所以AC ⊥BD , 又因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD ⊥AC , 又PD BD D ⋂=,故AC ⊥平面PBD ;(2)因为PD ⊥平面ABCD ,所以∠PBD 是直线PB 与平面ABCD 所成的角, 于是∠PBD =45°,因此BD =PD =2.又AB = AD =2, 所以菱形ABCD 的面积为sin 6023S AB AD =⋅⋅=故四棱锥P - ABCD 的体积13V S PD =⋅=.。

2022年山东省及普通高中学业水平考试会考数学试题及答案

2022年山东省及普通高中学业水平考试会考数学试题及答案

山东省12月一般高中学业水平考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。

满分100分,考试限定用时90分钟。

答卷前,考生务必将自己旳姓名、考籍号、座号填写在试卷和答题卡规定旳位置。

考试结束后,将本试卷和答题卡一并交回。

第I 卷(共60分)注意事项:每题选出答案后,用2B 铅笔把答题卡上对应题目旳答案标号涂黑。

如需改动,用橡皮擦洁净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上无效。

一、选择题(本大题共20个小题,每题3分,共60分. 在每题给出旳四个选项中,只有一项是符合题目规定旳) l. 已知集合{}1,2A =,{}2,3B =,则A B =A. {}2B. {}1,2C. {}2,3D. {}1,2,3 2. 图象过点(0,1)旳函数是A. 2xy = B. 2log y x = C. 12y x = D. 2y x =3. 下列函数为偶函数旳是A. sin y x =.B. cos y x =C. tan y x =D. sin 2y x = 4. 在空间中,下列结论对旳旳是A.三角形确定一种平面B.四边形确定一种平面C.一种点和一条直线确定一种平面D.两条直线确定一种平面5. 已知向量(1,2),(1,1)a b =-=,则a b = A. 3 B.2 C. 1 D. 06. 函数()sin cos f x x x =旳最大值是 A.14B.12C.3D. 1 7. 某学校用系统抽样旳措施,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一种号码,若抽到旳是3号,则从11~20中应抽取旳号码是 A. 14 B. 13 C. 12 D. 11 8. 圆心为(3,1),半径为5旳圆旳原则方程是A. 22(3)(1)5x y +++=B. 22(3)(1)25x y +++=C. 22(3)(1)5x y -+-=D. 22(3)(1)25x y -+-=49. 某校100名学生数学竞赛成绩旳频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内旳人数为 A. 20 B. 15 C. 10 D. 610. 在等比数列{}n a 中,232,4a a ==,则该数列旳前4项和为 A. 15 B. 12 C. 10 D. 6 11. 设,,a b c R ∈,且a b >,则下列不等式成立旳是A. 22a b >B. 22ac bc >C. a c b c +>+D. 11a b< 12. 已知向量(1,2),(2,)a b x =-=,若//a b ,则x 旳值是 A. 4- B. 1- C. 1 D. 4113. 甲、乙、丙3人站成一排,则甲恰好站在中间旳概率为 A.13 B. 12 C. 23 D. 1614. 已知函数()2sin()(0)f x x ωϕω=+>旳部分图象如图所示,则ω旳值为A. 1 2 C. 3 D.215 已知实数020.31log 3,(),log 22a b c ===,则,,a b c 旳大小关系为 A. b c a << B. b a c << C. c a b << D. c b a << 16. 如图,角α旳终边与单位圆交于点M ,M 旳纵坐标为45,则cos α=A.35B.35- C.45 D. 45- 17. 甲、乙两队举行足球比赛,甲队获胜旳概率为13,则乙队不输旳概率为 A.56B.34 C. 23D. 1318. 如图,四面体ABCD 旳棱DA ⊥平面ABC ,090ACB ∠=, 则四面体旳四个面中直角三角形旳个数是 A. 1 B.2 C. 3 D. 419.在ABC ∆中,角,,A B C 旳对边分别是,,a b c . 若222c a ab b =++,则C = A. 0150 B. 0120 C. 060 D. 030 20. 如图所示旳程序框图,运行对应旳程序,则输出a 旳值是 值为 A.12 B. 13 C. 14 D. 152第II 卷(共40分)注意事项:1. 第II 卷共8个小题,共40分。

山东高一高中数学水平会考带答案解析

山东高一高中数学水平会考带答案解析

山东高一高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.下列指定的对象,不能构成集合的是A.一年中有31天的月份B.平面上到点的距离等于1的点C.满足方程的D.某校高一(1)班性格开朗的女生2.函数的定义域为A.B.C.R D.3.下列三个图象中,能表示y是x的函数图象的个数是A.0B.1C.2D.34.下列函数中为偶函数的是A.B.C.D.5.函数f(x)=7+a x-3(a>0,a≠1)的图象恒过定点P,则定点P的坐标为A.(3,3)B.(3,2)C.(3,8)D.(3,7)6.,,的大小关系为A.B.C.D.7.f(x)是定义在R上的减函数,则不等式的解集为A.(0 ,+∞)B.(0 , 2)C.(2 ,+∞)D.(-∞,2)8.若集合 {0,a2,a+b}={1,a,},则a2012 +b2011的值为A.0B.1C.-1D.±19.设函数,则的表达式是A.B.C.D.10.已知函数(其中)的图象如下面右图所示,则函数的图象是11.根据表格中的数据,可以断定方程(0)的一个根所在的区间是A.(-1,0) B.(0,1) C.(1,2) D.(2,3)12.设映射是集合到集合的映射,若对于实数,在中不存在对应的元素,则实数的取值范围是A. B.C. D.二、填空题1.已知全集2.函数y=-(x-2)x的递增区间是____________,递减区间是3.已知,若,则4.已知f(x)是定义在∪上的奇函数,当时,f(x)的图象如右图所示,那么f(x)的值域是三、解答题1.计算:(1)(2)2.已知, .(1)求和;(2)若记符号,在图中把表示“集合”的部分用阴影涂黑,求.3.已知函数.(I)判断函数的奇偶性并证明;(II)若,证明:函数在区间上是增函数.4.已知函数.(1)当时,求函数f(x)的最大值和最小值;(2)求实数的取值范围,使在区间上是单调函数5.某微机培训机构打算购进一批微机桌和鼠标垫,市场价微机桌每张为150元,鼠标垫每个为5元,该培训机构老板联系了两家商场甲和乙,由于用货量大,这两家商场都给出了优惠条件商场甲:买一赠一,买一张微机桌,赠一个鼠标垫商场乙:打折,按总价的95%收款该培训机构需要微机桌60张,鼠标垫个(),如果两种商品只能在一家购买,请你帮助该培训机构老板选择在哪一家商场买更省钱?6.已知指数函数满足:g(3)=8,定义域为的函数是奇函数.(1)确定的解析式;(2)求m,n的值;(3)若对任意的,不等式恒成立,求实数的取值范围山东高一高中数学水平会考答案及解析一、选择题1.下列指定的对象,不能构成集合的是A.一年中有31天的月份B.平面上到点的距离等于1的点C.满足方程的D.某校高一(1)班性格开朗的女生【答案】D【解析】本题主要考查的是集合元素的性质。

2020年山东省普通高中学业水平合格考试数学试卷

2020年山东省普通高中学业水平合格考试数学试卷

2020年山东省普通高中学业水平合格考试数学试卷一、本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合A ={1, 3, 5},B ={2, 3},则A ∪B =( ) A.{3} B.{1, 5}C.(1, 2, 5)∩{1, 2, 5}D.{1, 2, 3, 5}2. 函数f(x)=cos(12x +π6)的最小正周期为( ) A.π2B.πC.2πD.4π3. 函数f(x)=√x −1+ln(4−x)的定义域是( ) A.(1, +∞) B.[1, 4) C.(1, 4] D.(4, +∞)4. 下列函数中,既是偶函数又在(0, +∞)上是减函数的是( )A.y =−x 3B.y =1C.y =|x|D.y =1x5. 已知直线l 过点P(2, −1),且与直线2x +y −l =0互相垂直,则直线l 的方程为( ) A.x −2y =0 B.x −2y −4=0 C.2x +y −3=0 D.2x −y −5=06. 已知函数f(x)={2x ,x ≤0x 32,x >0,则f(−1)+f(1)=( )A.0B.1C.32 D.27. 已知向量a →与b →的夹角为π3,且|a →|=3,|b →|=4,则a →⋅b →=( )A.6√3B.6√2C.4√3D.68. 某工厂抽取100件产品测其重量(单位:kg ).其中每件产品的重量范围是[40, 42].数据的分组依据依次为[40, 40, 5),[40, 5, 41),[41, 41, 5),[41, 5, 42),据此绘制出如图所示的频率分布直方图,则重量在[40, 41)内的产品件数为( )A.30B.40C.60D.80sin 110∘ cos40∘−cos70∘sin40∘=()A.1 2B.√32C.−12D.−√3210. 在平行四边形ABCD中,AB→+BD→−AC→=()A.DC→B.BA→C.BC→D.BD→11. 某产品的销售额y(单位:万元)与月份x的统计数据如表.用最小二乘法求出y关于x的线性回归方程为y^=7x+a^,则实数a^=()12. 下列结论正确的是()A.若a<b,则a3<b3B.若a>b,则2a<2bC.若a<b,则a2<b2D.若a>b,则lna>lnb13. 圆心为M(1, 3),且与直线3x−4y−6=0相切的圆的方程是()A.(x−1)2+(y−3)2=9B.(x−1)2+(y−3)2=3C.(x+1)2+(y+3)2=9D.(x+1)2+(y+3)2=314. 已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是()A.事件“都是红色卡片”是随机事件B.事件“都是蓝色卡片”是不可能事件C.事件“至少有一张蓝色卡片”是必然事件D.事件“有1张红色卡片和2张蓝色卡片”是随机事件15. 若直线(a−1)x−2y+1=0与直线x−ay+1=0垂直,则实数a=()A.−1或2B.−1C.13D.316. 将函数y=sinx的图象上所有的点的横坐标缩短到原来的13倍(纵坐标不变),再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为()A.y=sin(3x−π)B.y=sin(3x−π)17. 3名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.1 4B.23C.12D.3418. 如图,在正方体ABCD−A1B1C1D1中,下列判断正确的是()A.A1D⊥C1CB.BD1⊥ADC.A1D⊥ACD.BD1 ⊥AC19. 已知向量a→,b→不共线,若AB→=a→+2b→,BC→=−3a→+7b→,CD→=4a→−5b→,则()A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线20. 在三棱锥P−ABC中,PA,PB,PC两两垂直,且PA=1,PB=PC=2,则该三棱锥的外接球体的体积为()A.9π2B.27π2C.9πD.36π二、填空题:本大题共5小题,每小题3分,共15分.某校田径队共有男运动员45人,女运动员36人.若采用分层抽样的方法在全体运动员中抽取18人进行体质测试,则抽到的女运动员人数为________.已知α为第二象限角,若sinα=35,则tanα的值为________.已知圆锥底面半径为1,高为√3,则该圆锥的侧面积为________.已知函数f(x)=x2+x+a在区间(0, 1)内有零点,则实数a的取值范围为________.若P是圆C1:(x−4)2+(y−5)2=9上一动点,Q是圆C2:(x+2)2+(y+3)2=4上一动点,则|PQ|的最小值是________.三、解答题:本题共3小题,共25分.如图,在四棱锥P−ABCD中,四边形ABCD是平行四边形,E、F分别是AB、PC中点,求证:EF // 面PAD.在△ABC中,a,b,c分别是角A,B,C的对边,且a=6,cosB=1.3(1)若sinA=3,求b的值;5(2)若c=2,求b的值及△ABC的面积S.已知函数f(x)=ax+log3(9x+1)(a∈R)为偶函数.(1)求a的值;(2)当x∈[0, +∞)时,不等式f(x)−b≥0恒成立,求实数b的取值范围.参考答案与试题解析2020年山东省普通高中学业水平合格考试数学试卷一、本大题共20小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【考点】并集及其运算【解析】进行并集的运算即可.【解答】∵A={1, 3, 5},B={2, 3},∴A∪B={1, 2, 3, 5}.2.【答案】D【考点】三角函数的周期性及其求法【解析】根据三角函数的周期公式直接进行计算即可.【解答】由三角函数的周期公式得T=2π12=4π,3.【答案】B【考点】函数的定义域及其求法【解析】根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】解:∵函数f(x)=√x−1+ln(4−x),∴{x−1≥0,4−x>0.解得1≤x<4.∴函数f(x)的定义域是[1, 4).故选B.4.【答案】D【考点】奇偶性与单调性的综合【解析】【解答】由幂函数的性质可知,y=−x3,y=1x为奇函数,不符合题意,y=|x|为偶函数且在(0, +∞)上单调递增,不符号题意,y=1x2为偶函数且在(0, +∞)上单调递减,符合题意.5.【答案】B【考点】直线的一般式方程与直线的垂直关系【解析】根据题意设出直线l的方程,把点P(2, −1)代入方程求出直线l的方程.【解答】根据直线l与直线2x+y−l=0互相垂直,设直线l为x−2y+m=0,又l过点P(2, −1),∴2−2×(−1)+m=0,解得m=−4,∴直线l的方程为x−2y−4=0.6.【答案】C【考点】求函数的值函数的求值【解析】推导出f(−1)=2−1=12,f(1)=132=1,由此能求出f(−1)+f(1)的值.【解答】∵函数f(x)={2x,x≤0x32,x>0,∴f(−1)=2−1=12,f(1)=132=1,∴f(−1)+f(1)=12+1=32.故选:C.7.【答案】D【考点】平面向量数量积的性质及其运算【解析】进行数量积的运算即可.【解答】∴ a →⋅b →=|a →||b →|cos π3=3×4×12=6.8.【答案】 B【考点】频率分布直方图 【解析】由频率分布直方图得重量在[40, 41)内的频率为0.4.由此能求出重量在[40, 41)内的产品件数. 【解答】由频率分布直方图得:重量在[40, 41)内的频率为:(0.1+0.7)×0.5=0.4. ∴ 重量在[40, 41)内的产品件数为0.4×100=40. 9.【答案】 A【考点】求两角和与差的正弦 【解析】利用诱导公式以及两角和的正弦函数化简求解即可. 【解答】解:sin 110∘ cos40∘−cos70∘sin40∘ =sin 70∘ cos40∘−cos70∘sin40∘ =sin (70∘−40∘) =sin30∘=12. 故选A . 10.【答案】 B【考点】向量加减法的应用 【解析】利用平面向量加法法则直接求解. 【解答】在平行四边形ABCD 中,AB →+BD →−AC →=AB →+BD →+CA →=CD →=BA →. 11.【答案】 B【考点】求解线性回归方程由已知求得样本点的中心坐标,代入线性回归方程即可求得实数a^.【解答】x=3+4+5+64=4.5,y=25+30+40+454=35,∴样本点的中心坐标为(4.5, 35),代入y^=7x+a^,得35=7×4.5+a^,即a^=3.5.12.【答案】A【考点】不等式的基本性质【解析】利用函数的单调性、不等式的性质即可判断出正误.【解答】A.a<b,可得a3<b3,正确;B.a>b,可得2a>2b,因此B不正确;C.a<b,a2与b2大小关系不确定,因此不正确;D.由a>b,无法得出lna>lnb,因此不正确.13.【答案】A【考点】圆的切线方程圆的标准方程【解析】由题意可知,圆的半径即为圆心M到直线的距离,根据点到直线的距离公式即可求解.【解答】由题意可知,圆的半径r=|3−12−6|5=3,故所求的圆的方程为(x−1)2+(y−3)2=9.14.【答案】C【考点】随机事件【解析】利用随机事件的定义直接求解.【解答】袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,在A中,事件“都是红色卡片”是随机事件,故A正确;在B中,事件“都是蓝色卡片”是不可能事件,故B正确;在C中,事件“至少有一张蓝色卡片”是随机事件,故C错误;在D中,事件“有1张红色卡片和2张蓝色卡片”是随机事件,故D正确.15.C【考点】直线的一般式方程与直线的垂直关系 【解析】根据题意,分析可得(a −1)+2a =0,解可得a 的值,即可得答案. 【解答】根据题意,若直线(a −1)x −2y +1=0与直线x −ay +1=0垂直, 必有(a −1)+2a =0,解可得a =13;16.【答案】 A【考点】函数y=Asin (ωx+φ)的图象变换 【解析】由题意利用函数y =Asin(ωx +φ)的图象变换规律,得出结论. 【解答】将函数y =sinx 的图象上所有的点的横坐标缩短到原来的13倍(纵坐标不变),可得y =sin3x 的图象;再将得到的图象向右平移π12个单位,得到的图象对应的函数解析式为y =sin3(x −π12)=sin(3x −π4), 17.【答案】 D【考点】古典概型及其概率计算公式 【解析】求得3位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可. 【解答】3位同学各自在周六、周日两天中任选一天参加公益活动,共有23=8种情况, 周六、周日都有同学参加公益活动,共有23−2=8−2=6种情况, ∴ 所求概率为68=34. 18.【答案】 D【考点】空间中直线与直线之间的位置关系 【解析】直接可以看出A ,B ,C 均不成立,用线线垂直来推线面垂直进而得到线线垂直. 【解答】因为AC ⊥BD ,AC ⊥DD 1;BD ∩DD 1=D ;∴ AC ⊥平面DD 1B 1B ; BD 1⊆平面DD 1B 1B ; ∴ AC ⊥BD 1; 即D 对. 19.【答案】 B【考点】平行向量(共线) 【解析】BD →=BC →+CD →=(−3a →+7b →)+(4a →−5b →)=a →+2b →=AB →,从而BD →∥AB →,进而A ,B ,D 三点共线. 【解答】向量a →,b →不共线,AB →=a →+2b →,BC →=−3a →+7b →,CD →=4a →−5b →,∴ BD →=BC →+CD →=(−3a →+7b →)+(4a →−5b →)=a →+2b →=AB →,∴ BD →∥AB →,∴ A ,B ,D 三点共线. 20.【答案】 A【考点】球的体积和表面积 【解析】由题意将此三棱锥放在长方体中,可得长方体的长宽高,再由长方体的对角线等于外接球的直径求出外接球的体积. 【解答】由三棱锥中PA ,PB ,PC 两两垂直,且PA =1,PB =2,PC =2将此三棱锥放在长方体中,由题意知长方体的长宽高分别是:1,2,2.设外接球的半径为R ,则2R =√12+22+22=3所以R =32, 439二、填空题:本大题共5小题,每小题3分,共15分.【答案】8【考点】分层抽样方法【解析】根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率值,利用每个个体被抽到的概率乘以女运动员的数目,得到女运动员要抽取得人数.【解答】∵ 某校田径队共有男运动员45人,女运动员36人,∴ 这支田径队共有45+36=81人,用分层抽样的方法从该队的全体运动员中抽取一个容量为18的样本,∴ 每个个体被抽到的概率是1881=29,∵ 女运动员36人,∴ 女运动员要抽取36×29=8人,【答案】−34【考点】同角三角函数间的基本关系【解析】由条件利用同角三角函数的基本关系求得cosα 的值,从而求得tanα的值.【解答】∵ α为第二象限角sinα=35,∴ cosα=−45,则tanα=sinαcosα=−34, 【答案】2π【考点】柱体、锥体、台体的侧面积和表面积【解析】由已知求得母线长,代入圆锥侧面积公式求解.【解答】由已知可得r =1,ℎ=√3,则圆锥的母线长l =√12+(√3)2=2.∴ 圆锥的侧面积S =πrl =2π.【答案】(−2, 0)【考点】函数零点的判定定理【解析】由零点存在性定理得f(0)f(1)=a(a +2)<0,求出即可.【解答】函数f(x)=x 2+x +a 在区间(0, 1)内有零点,f(0)=a,f(1)=2+a,由零点存在性定理得f(0)f(1)=a(a+2)<0,得−2<a<0,经验证a=−2,a=0均不成立,故答案为:(−2, 0)【答案】5【考点】圆与圆的位置关系及其判定【解析】分别找出两圆的圆心坐标,以及半径r和R,利用两点间的距离公式求出圆心间的距离d,根据大于两半径之和,得到两圆的位置是外离,又P在圆C1上,Q在圆C2上,则|PQ|的最小值为d−(r+R),即可求出答案.【解答】圆C1:(x−4)2+(y−5)2=9的圆心C1(4, 5),半径r=3,圆C2:(x+2)2+(y+3)2=4的圆心C2(−2, −3),半径r=2,d=|C1C2|=√(4+2)2+(5+3)2=10>2+3=r+R,所以两圆的位置关系是外离,又P在圆C1上,Q在圆C2上,则|PQ|的最小值为d−(r+R)=10−(2+3)=5,三、解答题:本题共3小题,共25分.【答案】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,CD.所以FG // CD,且FG=12又因为四边形ABCD是平行四边形,且E是AB的中点.CD.所以AE // CD,且AE=12所以FG // AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF // AG.又因为EF平面PAD,AG⊂平面PAD,所以EF // 平面PAD.【考点】直线与平面平行【解析】取PD的中点G,连接FG、AG,由PF=CF,PG=DG,所以FG // CD,且FG=1CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE // CD,且AE= 21CD.证得四边形EFGA是平行四边形,所以EF // AG,由线面平行的判定定理即可得2证.【解答】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,所以FG // CD,且FG=12CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE // CD,且AE=12CD.所以FG // AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF // AG.又因为EF平面PAD,AG⊂平面PAD,所以EF // 平面PAD.【答案】由cosB=13可得sinB=2√23,由正弦定理可得,asinA =bsinB,所以b=asinBsinA =6×2√2335=20√23,由余弦定理可得,cosB=13=a2+c2−b22ac=36+4−b22×2×6,解可得,b=4√2,S=12acsinB=12×6×2×2√23=4√2.【考点】正弦定理余弦定理【解析】(1)先根据同角平方关系求出sinB,然后结合正弦定理即可求解,(2)结合余弦定理及三角形的面积公式即可求解.【解答】由cosB=13可得sinB=2√23,由正弦定理可得,asinA =bsinB,所以b=asinBsinA =6×2√2335=20√23,由余弦定理可得,cosB=13=a2+c2−b22ac=36+4−b22×2×6,解可得,b=4√2,S=12acsinB=12×6×2×2√23=4√2.【答案】根据题意可知f(x)=f(−x),即ax+log3(9x+1)=−ax+log3(9−x+1),整理得log39x+19+1=−2ax,即−2ax=log39x=2x,解得a=1;由(1)可得f(x)=x+log3(9x+1),因为f(x)−b≥0对x∈[0, +∞)恒成立,即x+log3(9x+1)≥b对x∈[0, +∞)恒成立,因为函数g(x)=x+log3(9x+1)在[0, +∞)上是增函数,所以g(x)min=g(0)=log32,则b≤log32.【考点】函数奇偶性的性质与判断函数恒成立问题【解析】(1)根据偶函数性质f(x)=f(−x),化简整理可求得a的取值;(2)根据条件可知x+log3(9x+1)≥b对x∈[0, +∞)恒成立,求出函数g(x)=x+ log3(9x+1)在[0, +∞)上的最小值即可【解答】根据题意可知f(x)=f(−x),即ax+log3(9x+1)=−ax+log3(9−x+1),整理得log39x+19−x+1=−2ax,即−2ax=log39x=2x,解得a=1;由(1)可得f(x)=x+log3(9x+1),因为f(x)−b≥0对x∈[0, +∞)恒成立,即x+log3(9x+1)≥b对x∈[0, +∞)恒成立,因为函数g(x)=x+log3(9x+1)在[0, +∞)上是增函数,所以g(x)min=g(0)=log32,则b≤log32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省2008年普通高中学生学业水平考试数学试题
明老师整理
本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分100分,考试限定时间90
分钟.交卷前,考生务必将自己的姓名、考籍号、座号填写在答题卡的相应位置,考试结束后,讲本试卷
和答题卡一并交回.
第Ⅰ卷(共45分)
注意事项:
每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动用像皮擦干净后再选涂
其他答案标号,不涂在答题卡上,只涂在试卷上无效.
一、选择题(本答题共15个小题,每小题3分,共45分,在每小题给出的四个选项中,只有一个符合题
目要求)
1.若全集U={1.,2,3,4},集合M={1,2},N={2,3},则集合C U (M N)= ( )
A.{1,2,3}
B.{2}
C.{1,3,4}
D.{4}
2.若一个几何体的三视图都是三角形,则这个集合体是 ( )
A. 圆锥
B.四棱锥
C.三棱锥
D.三棱台
3.若点P(-1,2)在角θ的终边上,则tan θ等于 ( )
A. -2
B. 55-
C. 2
1- D. 552 4.下列函数中,定义域为R 的是 ( ) A. y=x B. y=log 2X C. y=x 3 D. y=x
1 5.设a >1,函数f (x )=a |x|的图像大致是 ( )
6.为了得到函数y=sin (2x-3
π)(X ∈R )的图像,只需把函数y=sin2x 的图像上所有的点 ( ) A.向右平移3π个单位长度 B.向右平移6
π个单位长度 C.向左平移3π个单位长度 D.向左平移6
π个单位长度 7.若一个菱长为a 的正方形的个顶点都在半径为R 的球面上,则a 与R 的关系是 ( )
A. R=a
B. R=a 2
3 C. R=2a D. R=a 3 8.从1,2,3,4,5这五个数字中任取两数,则所取两数均为偶数,则所取两数均为偶数的概率是 ( )
A. 101
B. 51
C. 52
D. 5
3 9.若点A (-2,-3)、B (0,y )、C (2,5)共线,则y 的值等于 ( )
A. -4
B. -1
C. 1
D. 4
10.在数列{a n }中,a n+1=2a n ,a 1=3,则a 6为 ( )
A. 24
B. 48
C. 96
D. 192
11.在知点P (5a+1,12a )在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是 ( )
A. -1<a <1
B. a <
13
1 C.51-<a <51 D. 131-<a <131 12.设a ,b ,c ,d ∈R ,给出下列命题:
①若ac >bc ,则a >b ;
②若a >b ,c >d ,则a+b >b+d ;
③若a >b ,c >d ,则ac >bd ;
④若ac 2>bc 2,则a >b ;
其中真命题的序号是 ( )
A. ①②
B. ②④
C. ①②④
D. ②③④
13.已知某学校高二年级的一班和二班分别有m 人和n 人(m ≠n )。

某次学校考试中,两班学生的平均分分别为a 和b (a ≠b ),则这两个班学生的数学平均分为 ( )
A. 2b a +
B. ma+nb
C. n m nb ma ++
D. n
m b a ++ 14.如图所示的程序框图中,
若给变量x 输入-2008,
则变量y 的输出值为 ( )
A. -1 B . -2008
C. 1
D. 2008
15.在△ABC 中,若a=25,c=10,A=300,则B 等于 ( )
A. 1050
B. 600或1200
C. 150
D. 1050或150
第Ⅱ卷 (非选择题 共55分)
二、填空题(本大题共5个小题,每小题4分,共20分,把答案填在题中的横线上)
16.函数y=2sin (2
13+x π
)的最小正周期是 。

17.今年某地区有30000名同学参加普通高中学生学业水平考试,为了了解考试成绩,现准备采用系统抽样的方法抽取样本。

已确定样本容量为300,给所有考生编号为1~30000以后,随机抽取的第一个样本号码为97,则抽取的样本中最大的号码数应为 .
18.已知函数f (x )=⎩⎨⎧+0
1x )0()0(<≥x x ,则f (f (-2))= . 19.已知直线a ,b 和平面α,若a ⊥b ,a ⊥α,则b 与α的位置关系是 .
20.若x ,y 满足⎩
⎨⎧≤≤+x y y x 23,则z=3x+4y 的最大值是 。

三、解答题(本小题共5个小题,共35分,解答时应写出文字说明、证明过程或演算步骤)
21.(本小题满分6分)求函数f (x )=2sin (x+
6
π)-2cosx 的最大值。

22. (本小题满分6分)直线L 过直线L 1:x+y-1=0与直线L 2:x-y+1=0的交点,且与直线L 3:3x+5y=7垂直,求直线L 的方程。

23. (本小题满分7分)在盒子里有大小相同,仅颜色不同的5个小球,其中红球3个,黄球2个,现从中任取一球请确定颜色后再放回盒子里,取出黄球则不再取球,且最多取3次,求:
(1)取一次就结束的概率;
(2)至少取到2个红球的概率。

24. (本小题满分8分)等差数列{a n }中,a 1+a 4+a 7=15,a 3+a 6+a 9=3,求该数列前9项和S 9.
25. (本小题满分8分)已知奇函数f (x )=
a b x ++2x 的定义域为R ,且f (1)=2
1. (1)求实数a 、b 的值:
(2)证明函数f (x )在区间(-1,1)上为增函数:
∞,)上有零点。

(3)若g(x=3-x-f(x),证明g(x)在(-+∞
山东省2008年学业水平(会考)考试答案
一、选择题
1.D
2.C
3.A
4.C
5.A
6. B
7.B
8.A
9. C 10. C 11.D 12.B 13. C 14.A 15.D
二、填空题
16、 6 17、 29997 18、 1 19、b α∥或b α⊂ 20、 11
三、解答题
21. 解: x x x x x x f cos sin 3cos 2)cos 21
sin 23
(2)(-=-+=
= 2sin(x -6π
).
∵ -1≤sin(x -6π
)≤1
∴ f (x)max = 2 .
22. 解:联立x+y-1=0与x-y+1=0, 得 x = 0, y = 1 .
∴直线l 1与直线l 2的交点是(0,1).
因为直线l 3的斜率是k 3= 53
-, 且直线l ⊥直线l 3 .
所以,直线l 的斜率是k = 35
.
因此,直线l 的方程是5x – 3y + 3 = 0.
23. 解:(1)设第一次就取到黄球的事件为A , 则P (A )=52
(2)设前两次取到红球,且第三次取到黄球的事件为B,
设前三次均取到红球为事件C, 则B 、C 为互斥事件,
故所求事件的概率为:
P (B ∪C )= P (B )+ P(C)
= 259
5553
33555233=⨯⨯⨯⨯+⨯⨯⨯⨯
24. 解:由 ⎩⎨⎧=++=++3
15963741a a a a a a 得,⎩⎨⎧==1564a a 得 a 1+a 9 = a 4+a 6 = 6
所以,S 9=272
991=+)(a a 25. 解:(1)因为f(X)的定义域为R ,且为奇函数,
所以f(0)=0,即=0,所以b=0,
又f(1)=
21 所以1a 1+=2
1所以a=1 (2)由(1)知f (x )=1x x 2+ 设-1<X 1<X 2<1,
f (x 1)-f (x 2)=-+1x x 2111x x 22
2+ =1)1)(x (x x 222122121221++--+x x x x x =1)1)(x (x )
()(222
1122121++---X X X X X X
=1)
1)(x (x ))(1(x 22211221++--x x x 由 -1<X 1<X 2<1, 得X 2 -X 1>0 , x 1x 2<1 .
∴f(x 1) – f (x 2) < 0 , f (x 1) < f(x 2)
∴ 函数f(x)在区间(-1,1)上为增函数 .
(3)∵ g(x) = 3-x - 1
x x 21+ , ∴ g(0) =1>0 . g(1) =.06
12131<-=- ∴ g(0)g(1) < 0 .
∴ g(x)在(0,1)内至少有一个零点.
因此,函数g(x)在(-∞,+∞)上有零点.。

相关文档
最新文档