2003年考研数学二试题及答案

合集下载

2003年数二真题、标准答案及解析

2003年数二真题、标准答案及解析

2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) x y 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01x dx x02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e x x ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0)(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰;(3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη 十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= -4 . 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) xy 2=的麦克劳林公式中nx 项的系数是 !)2(l n n n.【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中n x 项的系数是.!)0()(n f n 【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',n x x y)2(ln 2,)(= ,于是有nn y )2(l n )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为)1(414-ae aπ . 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 3 .【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B 21. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ B ]【分析】 先用换元法计算积分,再求极限.【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1]1(1{[1)1(1231023-++=++n n n n n n n x n,可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为 (A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ A ]【分析】 将x x y ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(y xϕ. 【详解】将x x y ln =代入微分方程(yxx y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(u u -=ϕ,故 )(y xϕ=.22xy - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(D) 一个极小值点和两个极大值点. (E) 两个极小值点和一个极大值点. (F) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(5)设⎰=401tan πdx x x I ,dx xxI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ B ] 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0.【详解】 因为当 x>0 时,有tanx>x ,于是 1tan >x x ,1tan <x x ,从而有 4t a n 401ππ>=⎰dx x x I ,4tan 42ππ<=⎰dx x x I , 可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B). 【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即).00()0()00(+==-f f f【详解】 xx ax x x ax x f f x x x arcsin lim arcsin )1ln(lim )(lim )00(30300-=-+==----→→→ =113lim 113lim 22022--=----→→x ax x ax x x=.6213lim220a x ax x -=--→ 4sin1lim )(lim )00(200x ax x e x f f ax x x --+==+++→→=.4222lim 41lim 420220+=-+=--+++→→a x a x ae xax x e ax x ax x 令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a .当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u 所确定,求.922=x dx y d【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由tet t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dt dx 4=, 得 ,)ln 21(24ln 212t e t t etdtdx dt dy dx dy +=+== 所以 dtdx dx dy dt d dx y d 1)(22==t t t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e +- 当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===e t t e dx y d t x 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xe x⎰+【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant.【详解】 设t x tan =,则dx x xe x ⎰+232arctan )1(=tdt t t e t 2232sec )tan 1(tan ⎰+=.sin tdt e t ⎰ 又t d e tdt e t t cos sin ⎰⎰-= =)cos cos (tdt e t e t t ⎰-- =tdt e t e t e t t t sin sin cos ⎰-+-, 故.)c o s (s i n 21s i n C t t e t d t e t t +-=⎰因此 dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C xe x x++- 【评注】本题也可用分布积分法: dx x xe x ⎰+232arctan )1(=x de x xarctan 21⎰+=dx x e x xe x x⎰+-+232arctan 2arctan )1(1=x xde x x xe arctan 22arctan 111⎰+-+ =dx x xe x e x xe x x x⎰+-+-+232arctan 2arctan 2arctan )1(11, 移项整理得dx x xe x⎰+232arctan )1(=.12)1(2arctan C x e x x ++-本题的关键是含有反三角函数,作代换t x =arctan 或tant=x.六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0)(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【分析】 将dy dx 转化为dx dy 比较简单,dy dx =y dxdy'=11,关键是应注意: )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-. 然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知 y dy dx '=1,于是有 (22dy dx dy d dyx d ==dy dx y dx d ⋅'1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为.21x x e C e C Y -+=设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y x x -+=+=- 由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为 .s i n 21x e e y x x --=- 【评注】 本题的核心是第一步方程变换.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4则有 .)1(ln 4)(3xx x x +-='ϕ 不难看出,x=1是)(x ϕ的驻点. 当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k-=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点;当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 300k x x x x x x ϕ; +∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ, 故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(3) 求曲线 y=f(x)的方程;(4) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba ⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为)(1x X y y Y -'-=-, 其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=, 故Q 点的坐标为).,0(y x y '+由题设知 0)(21='++y x y y ,即 .02=+xdx ydy 积分得 C y x =+222 (C 为任意常数). 由2122==x y 知C=1,故曲线y=f(x)的方程为 .1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为.cos 12cos 120202dx x dx x l ⎰⎰+=+=ππ 曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,s i n 22,c o s t y t x .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=2022022sin 121cos 21sin ππ, 令u t -=2π,则du u du u s ⎰⎰+=-+=202022cos 121)(cos 121ππ =.4222l l=【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(3) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式;(4) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而.4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u y ϕϕπ上式两边对y 求导,得)()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'=解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数, 由2)0(=ϕ知C=2,故所求曲线方程为.26y e x π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解.十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f a x --+→)2(lim 存在,证明:(2) 在(a,b)内f(x)>0;(3) 在(a,b)内存在点ξ,使)(2)(22ξξf dx x f a b b a =-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'b adx x f a a b f .)(2))((22ξξη 【分析】 (1) 由ax a x f a x --+→)2(lim 存在知,f(a)=0, 利用单调性即可证明f(x)>0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为ax a x f a x --+→)2(lim 存在,故.0)()2(lim ==-+→a f a x f a x 又0)(>'x f ,于是f(x)在(a,b)内单调增加,故).,(,0)()(b a x a f x f ∈=>(2) 设F(x)=2x ,)()()(b x a dt t f x g xa ≤≤=⎰, 则0)()(>='x f x g ,故)(),(x g x F 满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使ξ=''=--=--⎰⎰⎰x x a b a a a dt t f x dt t f dt t f a b a g b g a F b F ))(()()()()()()()(222, 即 )(2)(22ξξf dx x f a b b a =-⎰. (3) 因)()()0()()(a f f f f f -=-=ξξξ,在],[ξa 上应用拉格朗日中值定理,知在),(ξa 内存在一点η,使))(()(a f f -'=ξηξ,从而由(2) 的结论得))((2)(22a f dxx f a b b a -'=-⎰ξηξ, 即有 ⎰-=-'b a dx x f a a b f .)(2))((22ξξη 【评注】 证明(3),关键是用(2)的结论:⎰-=-'b a dx x f a a b f )(2))((22ξξη⇔))((2)(22a f dx x f a b b a-'=-⎰ξηξ ))(()(a f f -'=⇔ξηξ ( 根据(2) 结论 )))(()()(a f a f f -'=-⇔ξηξ,可见对f(x)在区间],[ξa 上应用拉格朗日中值定理即可.十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P 【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P ,则是常识问题.【详解】 矩阵A 的特征多项式为]16)2)[(6(600280222---=------=-λλλλλλa A E=)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-00000012000480246a a A E , 知a=0.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ 当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E , 解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P 十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx ,:3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 由于 ])[(6323232222bc ac ab c b a c b a ba c a cb cb aA ---++++=---= =])()())[((3222a c c b b a c b a -+-+-++,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于 ])([2)(22222b b a a b ac cb b a ++-=-= =0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba c a c bcb a A ---++++-== =])()())[((3222ac c b b a c b a -+-+-++-,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为 ])([2)(22222b b a a b ac cb b a ++-=-= =-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。

2003考研数二真题及解析

2003考研数二真题及解析

2003年全国硕士研究生入学统一考试数学二试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a = .(2) 设函数()y f x =由方程4ln 2y x xy =+所确定,则曲线()y f x =在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵,A B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2) 设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于( ) (A) 1)1(23++e . (B) 1)1(231-+-e . (C) 1)1(231++-e . (D) 1)1(23-+e .(3) 已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为( )(A) .22x y - (B) .22x y (C) .22yx - (D) .22y x(4 ) 设函数()f x 在),(+∞-∞则()f x 有( )(A)一个极小值点和两个极大值点.(B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(5) 设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则( )(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则( ) (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 32ln(1),0arcsin ()6,01,sin 4ax ax x x x f x x e x ax x x x ⎧⎪+<⎪-⎪⎪==⎨⎪+--⎪>⎪⎪⎩ 问a 为何值时,()f x 在0x =处连续;a 为何值时,0x =是()f x 的可去间断点?四 、(本题满分9分)设函数()y y x =由参数方程212ln 112,(1)ut x t t e y du u +⎧=+⎪>⎨=⎪⎩⎰所确定,求.922=x dxyd五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.八 、(本题满分12分)设位于第一象限的曲线()y f x =过点)21,22(,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 ()y f x =的方程;(2) 已知曲线sin y x =在],0[π上的弧长为l ,试用l 表示曲线()y f x =的弧长s .九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m . 根据设 计要求,当以min /33m 的速率向容器内注入 液体时,液面的面积将以2/min m π的速率均 匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(,)a b 内()0f x >; (2) 在(,)a b 内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(,)a b 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a2003年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】4-【详解】 当0→x 时,11(1)1~nx x n +-,sin ~x x ,则241241~1)1(ax ax ---,2~sin x x x由题设已知,当0→x 时,124(1)1ax --与sin x x 是等价无穷小,所以 12242001(1)141lim lim sin 4x x ax ax a x x x →→--===-,从而 4a =-.(2)【答案】0x y -=【分析】为了求曲线在点(1,1)处的切线方程,首先需要求出函数在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】对所给方程两边对x 求导数,将其中的y 视为x 的函数,有y y xy x y '=+'+342将1,1x y ==代入上式,得.1)1(='y 故函数在点(1,1)处的导数为1,即点(1,1)处切线的斜率为1,再利用点斜式得,过点(1,1)处的切线方程为)1(11-⋅=-x y ,即.0=-y x(3)【答案】!)2(ln n n【详解】()y f x =带佩亚诺余项的麦克劳林公式:()2(0)(0)()(0)(0)()2!!n n n f f f x f f x x x x n ο'''=+++++求()y f x =的麦克劳林公式中nx 项的系数相当于先求()y f x =在点0x =处的n 阶导数值)0()(n f,()(0)!n f n 就是麦克劳林公式中nx 项的系数. 2ln 2x y =';2)2(ln 2x y ='';()2(ln 2)n x n y = (归纳法及求导公式)于是有nn y )2(ln )0()(=,故xy 2=的麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn =(4)【答案】)1(414-ae aπ 【详解】方法1:用定积分计算. 极坐标下平面图形的面积公式:θθρβαd S ⎰=)(212,则 θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a)1(414-ae aπ. 方法2:用二重积分计算. D 表示该图形所占的区域,在极坐标下,利用二重积分面积公式:Dd d σρρθ=⎰⎰所以 2220012a e a DS d d rdr e d θππθσθθ===⎰⎰⎰⎰⎰=)1(414-ae aπ.(5)【答案】3【分析】本题的可由矩阵Tαα的秩为1,把其分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.也可设TA αα=求出α,或利用2A 或设123[]T x x x α=,定出α等.【详解】方法1:观察得A 的三个行向量成比列,其比为1:1:1, 故111111111T A αα-⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT方法2:TA αα=, 2()()(1)TTTTTA Aαααααααααα===而 21111113331111113333(2)111111333A A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=----=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦比较(1),(2)式,得3Tαα=.方法3:设123[]T x x x α=211213221223231323111111111Tx x x x x A x x x x x x x x x x αα⎡⎤-⎡⎤⎢⎥⎢⎥===--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ 故 122212321233()T x x x x x x x x x αα⎡⎤⎢⎥==++⎢⎥⎢⎥⎣⎦(A 的主对角元之和)(6)【答案】21【分析】 先化简分解出矩阵B ,再计算行列式B 或者将已知等式变形成含有因子B 的矩阵乘积形式,而其余因子的行列式都可以求出即可.【详解】方法1:由E B A B A =--2,知E A B E A +=-)(2,即E A B E A E A +=-+))((,易知矩阵A E +可逆,于是有 .)(E B E A =-再两边取行列式,得 1=-B E A ,因为2002010100=-=-E A , 所以=B 21.方法2:由E B A B A =--2,得E A B E A E A +=-+))((等式两端取行列式且利用矩阵乘积的行列式=行列式的乘积,得A E A EB A E +-=+约去0A E +≠,得 112B A E ==+.二、选择题 (1)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(2)【答案】()B【详解】dx x xa n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+ (第一类换元法) =3121(1)n n n x n++321111nn n n n ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪+⎝⎭⎝⎭可见 n n na ∞→lim =32lim 111n n n n →∞⎡⎤⎛⎫⎛⎫⎢⎥=+- ⎪ ⎪⎢⎥ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦=321(1)1lim 1(1)11n n n n n -+-+→∞⎡⎤⎛⎫⎢⎥-⎧⎫ ⎪++-⎢⎥⎨⎬ ⎪+⎩⎭⎢⎥⎝⎭⎢⎥⎣⎦(凑重要极限形式) 312(1)1e -=+- (重要极限)所以选项()B 正确(3)【答案】()A 【详解】将x x y ln =代入微分方程y x y x y ϕ⎛⎫'=+ ⎪⎝⎭,其中2ln 1ln x y x -'=,得: )(ln ln 1ln 1ln 2x x xx ϕ+=-,即 21(ln )ln x x ϕ=- 令ln x u =,有21)(uu -=ϕ,以xu y =代入,得 )(y xϕ=.22xy - 故选项()A 正确.(4) 【答案】()C【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定. 【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(5)【答案】()B【详解】令()tan x x x ϕ=-,有2(0)0,()sec 10,0,4x x x πϕϕ⎛⎫'==-> ∈ ⎪⎝⎭,所以当0,4x π⎛⎫∈ ⎪⎝⎭时()x ϕ单调递增,则()0x ϕ>,即tan 0x x >>,tan 1x x >,<1tan xx,由定积分的不等式性质知,44412000tan 14tan x xI dx dx dx I x xππππ=>=>=⎰⎰⎰可见有 21I I >且42π<I .(6)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :rααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).三【详解】函数()f x 在0x =处连续,则要求函数()f x 在0x =处既是左连续又是右连续,即(0)(0)(0).f f f +-==300ln(1)(0)lim ()lim arcsin x x ax f f x x x ---→→+==-30lim arcsin x ax x x-→=-(由于ln(1)(0)x x x +→,所以33ln(1)ax ax +(0)x →)23lim 11x ax -→= (型极限,用洛必达法则)2lim lim x x --→→= (极限的四则运算) =2023lim 12x ax x -→- (1222211(1)1()(0)22x x x x ---=-→)6a =-2001(0)lim ()lim sin4ax x x e x ax f f x x x +++→→+--==2201lim 4ax x e x ax x +→+--= 22014lim ax x e x ax x +→+--=024lim 2ax x ae x a x +→+-= 220024lim 2lim (2)2ax ax x x a e a e ++→→+=+=224a =+ (0) 6.f =所以,0x =为()f x 的连续点⇔(0)(0)f f +-=⇔26624a a -==+,得1-=a ; 所以,0x =为()f x 的可去间断点⇔26246a a -=+≠,即22640,1a a a ++=≠-但 解得2-=a ,此时()f x 在0x =为可去间断点.四【分析】(i)变上限积分求导公式:()()()()()()()()u x v x df t dt f u u x f v v x dx''=-⎰;(ii)参数方程()()x t y t ϕψ=⎧⎨=⎩的一阶导数:1()()dy dy dt dy t dx dx dt dx dt t dtψϕ'=⋅=⋅='; (iii)若()x t ϕ=,()y t ψ=二阶可导,函数的二阶导数公式:2223()()()()()()1()()()()()()()d y d dy d t dtdx dx dx dt t dxt t t t t t t t t t t ψϕψϕψϕψϕψϕϕϕϕ'⎛⎫⎛⎫==⋅ ⎪ ⎪'⎝⎭⎝⎭''''''''''''--=⋅='''【详解】设2()12x t t ϕ==+,12ln 1()ute y t du uψ+==⎰,则 ()4dxt t dtϕ'==;12ln 2222()12ln 12ln 12ln t dy e e t et t dt t t t t t ψ+⋅'==⋅=⋅=+++; 所以 212ln 42(12ln )etdy et dx t t +==+ 所以 2222214()11()2(12ln )44(12ln )44(12ln )e d y d dy d t dt e e t dx dx dx dt t dx t t t t t t ψϕ-''⎛⎫⎛⎫⎛⎫==⋅=⋅=⋅=- ⎪ ⎪ ⎪'+++⎝⎭⎝⎭⎝⎭ 当9x =时,由221t x +=及1t >得2t =, 故2222229.4(12ln )16(12ln 2)t x d y eedx t t ===-=-++五【详解】方法1:第二类换元法. 由于被积函数中含有根号21x +,作积分变量变换tan ()22x t x ππ=-<<,那么3232(1)sec x t +=,2sec dx tdt =,则dx x xe x⎰+232arctan )1(=2322tan sec (1tan )t e ttdt t +⎰23tan sec sec t e t tdt t =⎰ 三角变换公式 tan sec tte dt t=⎰=.sin tdt e t ⎰又t d e tdt e t t cos sin ⎰⎰-==)cos cos (tdt e t e t t ⎰-- 分部积分(cos (sin ))t t e t e d t =--⎰(cos sin sin )t t t e t e t e tdt =--+⎰ 分部积分 =tdt e t e t e t t t sin sin cos ⎰-+-,故.)cos (sin 21sin C t t e tdt e tt+-=⎰由tan ()22x t x ππ=-<<得arctan t x =,因此dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C x e x x++- 方法2:分部积分法dx x xe x ⎰+232arctan )1(=x de xx arctan 21⎰+arctan arctan ()x xd e e ==dx x e xxe x x ⎰+-+232arctan 2arctan )1(1 分部积分=x x de xxxe arctan 22arctan 111⎰+-+arctan arctan ()x xd e e =arctan arctan arctan 322122(1)xxx x e dx x ⎛⎫-⋅ ⎪=-⎪+⎪⎭⎰ 分部积分 =dx x xe xe xxe x x x ⎰+-+-+232arctan 2arctan 2arctan )1(11,移项整理得;dx x xe x ⎰+232arctan )1(=.12)1(2arctan C xe x x ++-六【详解】 (1) 将题中的dy dx 与22d x dy 变换成以x 为自变量y 为因变量的导数dx dy 与22d ydx来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dy dx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21x x e C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为 .sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.七【详解】讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数等价于讨论方程4()ln 4ln 4x x x x k ϕ=-+-在区间(0,)+∞内的零点问题,为此对函数求导,得334ln 44()4(ln 1).x x x x x x xϕ'=-+=-+可以看出1x =是)(x ϕ的驻点,而且当10<<x 时,3ln 0x <,则3ln 10x x -+<,而40x>,有()0x ϕ'<,即)(x ϕ单调减少;当1x >时,3ln 0x >,则3ln 10x x -+>,而40x>,有()0x ϕ'>,即)(x ϕ单调增加,故k -=4)1(ϕ为函数)(x ϕ的惟一极小值即最小值.① 当(1)40k ϕ=->,即当4k <时,()(1)0x ϕϕ≥>,)(x ϕ无零点,两曲线没有交点;② 当(1)40k ϕ=-=,即当4k =时,()(1)0x ϕϕ≥=,)(x ϕ有且仅有一个零点,即两曲线仅有一个交点;③ 当(1)40k ϕ=-<,即当4k >时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 30k x x x x x x ϕ;+∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ由连续函数的介值定理,在区间(0,1)与),1(+∞内各至少有一个零点,又因)(x ϕ在区间(0,1)与),1(+∞内分别是严格单调的,故)(x ϕ分别各至多有一个零点. 总之,)(x ϕ有两个零点.综上所述,当4k <时,两曲线没有交点;当4k =时,两曲线仅有一个交点;当4k >时,两曲线有两个交点.八【详解】(1) 曲线()y f x =在点(,)P x y 处的法线方程为)(1x X y y Y -'-=- 令0X =,则它与y 轴的交点为).,0(yxy '+ 由题意,此点与点(,)P x y 所连的线段被x 轴平分,由中点公式得0)(21='++y xy y ,即.02=+xdx ydy 积分得222x y C +=(C 为任意常数),代入初始条件2122==x y得12C =,故曲线()y f x =的方程为22122x y +=,即.1222=+y x (2) 曲线sin y x =在[0,]π上的弧长为2222.x tl ππππ=+-====⎰⎰⎰弧长公式另一方面,将(1)中所求得的曲线()y f x =写成参数形式,在第一象限中考虑,于是⎪⎩⎪⎨⎧==,sin 22,cos t y t x .20π≤≤t 于是该曲线的弧长为:s ===2)t u du π=-=-= 所以12l =,即s .九【详解】(1) 设在t 时刻,液面的高度为y ,此时液面的面积为2()()A t y πϕ=圆的面积公式,由题设:液面的面积将以min /2m π的速率均匀扩大,可得2()()dA t d y dt dt πϕπ==,即2()1dy dtϕ= 所以2()y t C ϕ=+, 由题意,当0t =时()2y ϕ=,代入求得4C =,于是得2() 4.y t ϕ=+从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为20()()yV t u du πϕ=⎰,由题设:以min /33m 的速率向容器内注入液体,得()20()()3y dV t du du dt dtπϕ==⎰所以 220()33()12.yu du t y πϕϕ==-⎰上式两边对y 求导,得2()6()()y y y πϕϕϕ'=变限积分求导,即()()6d y y dy ϕπϕ= 解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知2C =, 故所求曲线方程为.26ye x π=十【详解】(1) 因为极限ax a x f ax --+→)2(lim 存在,且lim()0x a x a +→-=,故lim (2)0x a f x a +→-=又()f x 在[,]a b 上连续,从而lim (2)()x af x a f a +→-=,则()0f a =. 由于0)(>'x f ,则()f x 在(,)a b 内严格单调增加,所以()f x 在x a =处取最小值,即).,(,0)()(b a x a f x f ∈=>(2) 由要证明的形式知,要用柯西中值定理证明.取2()F x x =,()()xag x f t dt =⎰()a x b ≤≤,则0)()(>='x f x g ,则)(),(x g x F 满足柯西中值定理的条件,于是在(,)a b 内存在点ξ,使222()()()2()()()()()(())baxaaa x Fb F a b a x g b g a f f t dt f t dtf t dt ξξξ='--===-'-⎰⎰⎰ 即)(2)(22ξξf dxx f a b ba=-⎰. (3) 在区间],[ξa 上应用拉格朗日中值定理,得在),(ξa 内存在一点η,使()()()()f f a f a ξηξ'-=-因()0f a =,上式即))(()(a f f -'=ξηξ,代入(2) 的结论得,))((2)(22a f dxx f a b ba-'=-⎰ξηξ即 ⎰-=-'ba dx x f aa b f .)(2))((22ξξη十一【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a . 至于求P ,则是常识问题. 【详解】矩阵A 的特征多项式为]16)2)[(6(628222---=------=-λλλλλλa A E =)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r42021068400000000E A a a --⎡⎤⎡⎤⎢⎥⎢⎥-=--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,所以0a =.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E ,解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P十二【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 232()3()23232323a b ca b c b c a c a b A bc a b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b c a c a b c a b-=++-=-++-1006()6()c b a ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++--- 2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb ba ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点. 方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦所以||0B =.而232323232323a b c a bcB bc a bc a A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a “充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为])([2)(22222b b a a b ac cb b a ++-=-==222[()]0a b a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.。

20035-数二真题、标准答案及解析

20035-数二真题、标准答案及解析

2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) x y 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知x x y ln =是微分方程)(yxx y y ϕ+='的解,则)(y x ϕ的表达式为 (A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01xdx x 02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dy x d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2004年考硕数学(二)真题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)1+∞=⎰_____..(4)设函数(,)z z x y =由方程232x z z e y -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y==的特解为_______. (6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 20tan x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα [](8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[](9)lim n →∞(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln(1)x dx +⎰ [](10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >.(D )对任意的(,0)x δ∈-有()(0)f x f >. [](11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++ [](12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A )11()dx f xy dy -⎰⎰.(B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D )2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[](13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[](14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.[]三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x xe e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim()t S t F t →+∞.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e->-. (20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时. (21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z z x y x y∂∂∂∂∂∂∂. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.2005年考研数学二真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设x x y )sin 1(+=,则|x dy π==______ .(2) 曲线xx y 23)1(+=的斜渐近线方程为______ .(3)=--⎰1221)2(xxxdx______ .(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为______ . (5)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k= ______ . (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A)32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . [ ](11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] (12)设函数,11)(1-=-x xex f 则 (A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处梅花香自苦寒来,岁月共理想,人生气高飞!第 - 11 - 页 共 11 页 的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+302.)()(dx x f x x(18)(本题满分12分) 用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,100='===x x y y 的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值. (21)(本题满分9分) 计算二重积分σd y x D ⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分)确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.。

2003年考研数学二试题及答案

2003年考研数学二试题及答案

2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)设⎰=401tan πdx x x I ,dx xxI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e x x ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分) 计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m. 根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前, 容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2) 在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使 ⎰-=-'ba dx x f aa b f .)(2))((22ξξη 十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a1. 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.【评注】 本题属常规题型,完全类似例题见《数学复习指南》P.38 【例1.62】.2.. 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点,类似例题见《数学复习指南》P.55 【例2.13】和【例2.14】.3.. 【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n fn 【详解】 因为 2ln 2xy =',2)2(ln 2xy ='',n x x y )2(ln 2,)(= ,于是有nn y )2(l n)0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案.4.. 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可.【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21 ==πθ20241a e a )1(414-ae aπ.【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂. 完全类似例题见《数学复习指南》P.200 【例7.38】.5.. 【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=完全类似例题见《数学复习指南》P.389 【例2.11】和《考研数学大串讲》P.162 【例13】.6.. 【分析】 先化简分解出矩阵B ,再取行列式即可.【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算. 完全类似例题见《考研数学大串讲》P.160 【例11】.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见《数学最后冲刺》P.179.8.. 【分析】 先用换元法计算积分,再求极限. 【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n nn n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n 【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.9.. 【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(yx ϕ.【详解】将xxy ln =代入微分方程)(y x x y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(uu -=ϕ,故 )(y x ϕ=.22x y - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.10.. 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.11.. 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0. 【详解】 因为当 x>0 时,有tanx>x ,于是1tan >x x ,1tan <xx,从而有 4t a n 41ππ>=⎰dx x x I , 4tan 402ππ<=⎰dx x x I ,可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B).【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.12.. 【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关.或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。

2003年考研数学二试题及答案

2003年考研数学二试题及答案

超级狩猎者2003年考研数学(二)真题评注一、填空题(本题共 6 小题,每小题 4 分,满分24 分. 把答案填在题中横线上)1 2(1)若x 0 时,(1 ax ) 4 1 与x sin x 是等价无穷小,则a= .(2)设函数y=f(x) 由方程 4xy 2ln x y 所确定,则曲线y=f(x) 在点(1,1)处的切线方程是.(3)xy 2 的麦克劳林公式中nx 项的系数是.a(4)设曲线的极坐标方程为 e (a 0) ,则该曲线上相应于从0 变到2 的一段弧与极轴所围成的图形的面积为.1 1 1T T(5)设为3 维列向量, 1 1 1是的转置. 若,则1 1 1T= .2(6 )设三阶方阵A,B 满足A B A B E,其中 E 为三阶单位矩阵,若1 0 1A 0 2 0 ,则B .2 0 1二、选择题(本题共 6 小题,每小题 4 分,满分24 分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设{a n}, {b }, {c } 均为非负数列,且lim n 0a , limb 1,limc ,则必有n nn nn n n(A) a n b n 对任意n 成立. (B) b n c n 对任意n 成立.lim a c 不存在. (D) 极限lim b n c n 不存在. [ ] (C) 极限n nn nn3n 1 n (2)设a x x dxn 1n 120 lim na 等于, 则极限nn3 31(A) (1 e) 2 1. (B) (1 e )2 1 .3 31(C) (1 e )2 1. (D) (1 e) 2 1. [ ]1超级狩猎者(3)已知yxln xy x x是微分方程y ( ) 的解,则( )x y y的表达式为2y(A ).2x2y (B) .2x2x (C) .2y2x(D) .2y[ ](4)设函数f(x) 在( , ) 内连续,其导函数的图形如图所示,则f(x) 有(A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点.(C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ]yO xtan x x(5)设 4 I 4I dx , dx1 20 0x tan x, 则(A) I1 I 2 1. (B) 1 I1 I 2 .(C) I2 I1 1. (D) 1 I 2 I1. [ ](6)设向量组I:1, 2, , 可由向量组II :1, 2 , , s 线性表示,则r(A) 当r s时,向量组II 必线性相关. (B) 当r s时,向量组II 必线性相关.(C) 当r s时,向量组I 必线性相关. (D) 当r s时,向量组I 必线性相关.[ ] 三、(本题满分10 分)设函数 f (x) ln(1x ,1,xxx0,0,0,xaxe42超级狩猎者问a 为何值时,f(x) 在x=0 处连续;a 为何值时,x=0 是f(x) 的可去间断点?四、(本题满分9分)2x 1 2t ,2d yu 所确定,求. 设函数y=y(x) 由参数方程(t 1)122ln t ey du dxx 91u五、(本题满分9分)arctan xxe计算不定积分dx.32( 21 x )六、(本题满分12分)设函数y=y(x) 在( , ) 内具有二阶导数,且y 0, x x( y) 是y=y(x) 的反函数.2d x dx3(1) 试将x=x(y) 所满足的微分方程(y sin x)( ) 02dy dy变换为y=y(x) 满足的微分方程;(2) 求变换后的微分方程满足初始条件七、(本题满分12分)3y (0) 0, y (0) 的解.24讨论曲线y 4ln x k 与y 4x ln x的交点个数.八、(本题满分12分)2 1设位于第一象限的曲线y=f(x) 过点( , ) ,其上任一点P(x,y) 处的法线与y 轴的2 2交点为Q,且线段PQ 被x 轴平分.(1) 求曲线y=f(x) 的方程;(2) 已知曲线y=sinx 在[0, ]上的弧长为l ,试用l 表示曲线y=f(x) 的弧长s.九、(本题满分10分)有一平底容器,其内侧壁是由曲线x ( y)( y 0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为 2 m.根据设计要求,当以3m3 / min 的速率向容器内注入液体时,液面的面积将以m2 / min 的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与( y) 之间的关系式;(2) 求曲线x ( y) 的方程.3超级狩猎者(注:m 表示长度单位米,min 表示时间单位分.)十、(本题满分10分)设函数f(x) 在闭区间[a,b] 上连续,在开区间(a,b)内可导,且 f (x) 0. 若极限f (2x a)lim 存在,证明:x a xa(1) 在(a,b)内f(x)>0;(2) 在(a,b)内存在点,使2bbf a (2ax)dx2f ( );(3) 在(a,b) 内存在与(2)中相异的点,使2 22 bf ( )(b a ) f ( x)dx.aa十一、(本题满分10分)2 2 0若矩阵 A 8 2 a 相似于对角阵,试确定常数 a 的值;并求可逆矩阵P 使0 0 6P .1 AP1 AP十二、(本题满分8分)已知平面上三条不同直线的方程分别为l : ax 2by 3c 0 ,1l : bx 2cy 3a 0,2l : cx 2ay 3b 0 .3试证这三条直线交于一点的充分必要条件为 a b c 0.4超级狩猎者124(1 ax )1. 【分析】根据等价无穷小量的定义,相当于已知lim 1,反过来求 a. 注x0 x sin x意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】当x 0时,112 2(1 ax ) ax ,4 1~42x sin x ~ x .1122ax(1 ax 4) 14于是,根据题设有lim lim a 1,故a=-4.2x 0 sinx xx 0x 4【评注】本题属常规题型,完全类似例题见《数学复习指南》P.38 【例1.62】.2.. 【分析】先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】等式 4xy 2ln x y 两边直接对x 求导,得y xy 2x4y 3 y ,将x=1,y=1 代入上式,有y (1) 1. 故过点(1,1)处的切线方程为y 1 1 (x1) ,即x y 0.【评注】本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点,类似例题见《数学复习指南》P.55 【例2.13】和【例2.14】.(n)3.. 【分析】本题相当于先求y=f(x) 在点x=0 处的n 阶导数值 f (0) ,则麦克劳林公式中( n)f (0)nx 项的系数是.n!x【详解】因为y 2 ln 2,x 2y 2 (ln 2) ,,( x) xy 2 (ln 2)n,于是有(n) ny (0) ( l n2) ,故麦克劳林公式中(n) nny (0) (ln 2)x 项的系数是.n! n!【评注】本题属常规题型,在一般教材中都可找到答案.5超级狩猎者1 24.. 【分析】利用极坐标下的面积计算公式S ( )d2即可.【详解】所求面积为S1222 ( )d 1222ae d1 a2e4a21 4 a(e4a1)= .【评注】本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂. 完全类似例题见《数学复习指南》P.200 【例7.38】.T5.. 【分析】本题的关键是矩阵的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.1 1 1 1 1T1 1 1 = 1 1 1 1 1 【详解】由,知,于是1 1 1 1 11T1 1 1 1 3.1a1a2【评注】一般地,若n 阶矩阵 A 的秩为1,则必有.A b b b1 2 nan完全类似例题见《数学复习指南》P.389 【例 2.11】和《考研数学大串讲》P.162 【例13】 .6.. 【分析】先化简分解出矩阵B,再取行列式即可.2【详解】由A B A B E 知,2(A E) B A E ,即(A E)( A E)B A E ,易知矩阵A+E 可逆,于是有( A E)B E.再两边取行列式,得 A E B 1,0 00 1 21因为 A 2 , 所以 BE 0 1 02.【评注】本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算. 完全类似例题见《考研数学大串讲》P.160 【例11】.二、选择题(本题共 6 小题,每小题 4 分,满分24 分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)6超级狩猎者7. 【分析 】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除lim a c 是 0型未定式,可能存在也可能不存在,举反例说明即可;极(A),(B) ; 而极限n nnlim b c 属1型,必为无穷大量,即不存在 .限n nn【详解 】 用举反例法,取a n2 n 1,b n1, c n( 1,2, ) ,则可立即排除 n n 2(A),(B),(C) ,因此正确选项为 (D).【评注 】 对于不便直接证明的问题, 经常可考虑用反例, 通过排除法找到正确选项 . 完 全类似方法见《数学最后冲刺》P.179.8.. 【分析 】 先用换元法计算积分,再求极限.【详解 】 因为n31n 1na nx 12nx dxn 31nd x n n1 x(1)=2n3 n 311n2nn=)n ) ]1}(1 x 21{[1( nnn 1,33 nn1lim na =) ] 1} (1 e )1.lim {[ 1 (2 2 可见nnnn1【评注 】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定 积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法 .9.. 【分析 】 将 y x ln x代入微分方程,再令的中间变量为 u ,求出 (u) 的表达式,x 进而可计算出( ) y.【详解 】将yx ln xyx代入微分方程 y( ) ,得 x yln x 11 2x (ln )ln xln x,即 1 (ln x) .2ln x令lnx=u ,有1 x(u) ,故( )2u y2y= .2x应选(A).【评注】本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.10.. 【分析】答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共 4 个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】根据导函数的图形可知,一阶导数为零的点有 3 个,而x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0 左侧一阶导数为正,右侧一阶导数为负,可见x=0 为极大值点,故f(x) 共有两个极小值点和两个极大值点,应选(C).7超级狩猎者【评注】本题属新题型,类似考题2001 年数学一、二中曾出现过,当时考查的是已知f(x) 的图象去推导 f (x) 的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.11.. 【分析】直接计算I1,I2 是困难的,可应用不等式tanx>x, x>0.tan x 【详解】因为当x>0 时,有tanx>x ,于是 1xx, 1tan x,从而有t a n x4I 1 dx ,0 x4x4I 2 dx ,0 tan 4x可见有I1 I 且2 I ,可排除(A),(C),(D) ,故应选(B). 24【评注】本题没有必要去证明I1 1,因为用排除法,(A),(C),(D) 均不正确,剩下的(B) 一定为正确选项.12.. 【分析】本题为一般教材上均有的比较两组向量个数的定理:若向量组I :1, 2 , , 可由向量组II :1, 2 , , s 线性表示,则当r s时,向量组I 必线性相关.r或其逆否命题:若向量组I:1, 2 , , 可由向量组II: 1 , 2 , , s 线性表示,且向量r组I 线性无关,则必有r s. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】用排除法:如0 1 01 , , ,则 1 0 1 02 ,但1, 21 21 , , ,则 1 0 1 02 ,但1, 20 0 1线性无关,排除(A) ;0 1 11 , , ,则1,2 可由 1 线性表示,但 1 线2 11 , , ,则1, 2 可由1 线性表示,但 1 线0 0 0性无关,排除(B) ;1 1 01 , 1 可由1,2 线性表示,但 1 线性无1 2, ,0 0 1关,排除(C). 故正确选项为(D).【评注】本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。

2003考研数二真题及解析

2003考研数二真题及解析

2003年全国硕士研究生入学统一考试数学二试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a = .(2) 设函数()y f x =由方程4ln 2y x xy =+所确定,则曲线()y f x =在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵,A B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2) 设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于( ) (A) 1)1(23++e . (B) 1)1(231-+-e . (C) 1)1(231++-e . (D) 1)1(23-+e .(3) 已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为( )(A) .22x y - (B) .22x y (C) .22yx - (D) .22y x(4 ) 设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示, 则()f x 有( )(A)一个极小值点和两个极大值点.(B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(5) 设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则( )(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,则( ) (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 32ln(1),0arcsin ()6,01,sin 4ax ax x x x f x x e x ax x x x ⎧⎪+<⎪-⎪⎪==⎨⎪+--⎪>⎪⎪⎩ 问a 为何值时,()f x 在0x =处连续;a 为何值时,0x =是()f x 的可去间断点?四 、(本题满分9分)y设函数()y y x =由参数方程212ln 112,(1)ut x t t e y du u +⎧=+⎪>⎨=⎪⎩⎰所确定,求.922=x dxyd五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.八 、(本题满分12分)设位于第一象限的曲线()y f x =过点)21,22(,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 ()y f x =的方程;(2) 已知曲线sin y x =在],0[π上的弧长为l ,试用l 表示曲线()y f x =的弧长s .九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m . 根据设 计要求,当以min /33m 的速率向容器内注入 液体时,液面的面积将以2/min m π的速率均-2 O 2 xyy x =φ(y )匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(,)a b 内()0f x >; (2) 在(,)a b 内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(,)a b 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a2003年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】4-【详解】 当0→x 时,11(1)1~nx x n +-,sin ~x x ,则241241~1)1(ax ax ---,2~sin x x x 由题设已知,当0→x 时,124(1)1ax --与sin x x 是等价无穷小,所以 12242001(1)141lim lim sin 4x x ax ax a x x x →→--===-,从而 4a =-.(2)【答案】0x y -=【分析】为了求曲线在点(1,1)处的切线方程,首先需要求出函数在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】对所给方程两边对x 求导数,将其中的y 视为x 的函数,有y y xy x y '=+'+342将1,1x y ==代入上式,得.1)1(='y 故函数在点(1,1)处的导数为1,即点(1,1)处切线的斜率为1,再利用点斜式得,过点(1,1)处的切线方程为)1(11-⋅=-x y ,即.0=-y x(3)【答案】!)2(ln n n【详解】()y f x =带佩亚诺余项的麦克劳林公式:()2(0)(0)()(0)(0)()2!!n nn f f f x f f x x x x n ο'''=+++++L求()y f x =的麦克劳林公式中nx 项的系数相当于先求()y f x =在点0x =处的n 阶导数值)0()(n f,()(0)!n f n 就是麦克劳林公式中nx 项的系数.2ln 2x y =';2)2(ln 2x y ='';L L ()2(ln 2)n x n y = (归纳法及求导公式)于是有nn y )2(ln )0()(=,故x y 2=的麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn =(4)【答案】)1(414-ae aπ 【详解】方法1:用定积分计算. 极坐标下平面图形的面积公式:θθρβαd S ⎰=)(212,则 θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a)1(414-ae aπ. 方法2:用二重积分计算. D 表示该图形所占的区域,在极坐标下,利用二重积分面积公式:Dd d σρρθ=⎰⎰所以 2220012a e a DS d d rdr e d θππθσθθ===⎰⎰⎰⎰⎰=)1(414-ae aπ.(5)【答案】3【分析】本题的可由矩阵Tαα的秩为1,把其分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.也可设TA αα=求出α,或利用2A 或设123[]T x x x α=,定出α等.【详解】方法1:观察得A 的三个行向量成比列,其比为1:1:1, 故111111111T A αα-⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT方法2:TA αα=, 2()()(1)TTTTTA Aαααααααααα===而 21111113331111113333(2)111111333A A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=----=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦比较(1),(2)式,得3Tαα=.方法3:设123[]T x x x α=211213221223231323111111111Tx x x x x A x x x x x x x x x x αα⎡⎤-⎡⎤⎢⎥⎢⎥===--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦故 122212321233()T x x x x x x x x x αα⎡⎤⎢⎥==++⎢⎥⎢⎥⎣⎦(A 的主对角元之和)(6)【答案】21【分析】 先化简分解出矩阵B ,再计算行列式B 或者将已知等式变形成含有因子B 的矩阵乘积形式,而其余因子的行列式都可以求出即可.【详解】方法1:由E B A B A =--2,知E A B E A +=-)(2,即E A B E A E A +=-+))((,易知矩阵A E +可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为2002010100=-=-E A , 所以=B 21.方法2:由E B A B A =--2,得E A B E A E A +=-+))((等式两端取行列式且利用矩阵乘积的行列式=行列式的乘积,得A E A EB A E +-=+约去0A E +≠,得 112B A E ==+.二、选择题 (1)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(2)【答案】()B【详解】dx x xa n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+ (第一类换元法) =3121(1)n n n x n++321111nn n n n ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪+⎝⎭⎝⎭可见 n n na ∞→lim =32lim 111n n n n →∞⎡⎤⎛⎫⎛⎫⎢⎥=+- ⎪ ⎪⎢⎥ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦=321(1)1lim 1(1)11n n n n n -+-+→∞⎡⎤⎛⎫⎢⎥-⎧⎫ ⎪++-⎢⎥⎨⎬ ⎪+⎩⎭⎢⎥⎝⎭⎢⎥⎣⎦(凑重要极限形式) 312(1)1e -=+- (重要极限)所以选项()B 正确(3)【答案】()A 【详解】将x x y ln =代入微分方程y x y x y ϕ⎛⎫'=+ ⎪⎝⎭,其中2ln 1ln x y x -'=,得: )(ln ln 1ln 1ln 2x x xx ϕ+=-,即 21(ln )ln x x ϕ=- 令ln x u =,有21)(u u -=ϕ,以xu y =代入,得 )(y xϕ=.22xy - 故选项()A 正确.(4) 【答案】()C【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定.y【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧 导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(5)【答案】()B【详解】令()tan x x x ϕ=-,有2(0)0,()sec 10,0,4x x x πϕϕ⎛⎫'==-> ∈ ⎪⎝⎭,所以当0,4x π⎛⎫∈ ⎪⎝⎭时()x ϕ单调递增,则()0x ϕ>,即tan 0x x >>,tan 1x x >,<1tan x x ,由定积分的不等式性质知,44412000tan 14tan x xI dx dx dx I x x ππππ=>=>=⎰⎰⎰可见有 21I I >且42π<I .(6)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).三【详解】函数()f x 在0x =处连续,则要求函数()f x 在0x =处既是左连续又是右连续,即(0)(0)(0).f f f +-==300ln(1)(0)lim ()lim arcsin x x ax f f x x x ---→→+==-30lim arcsin x ax x x-→=-(由于ln(1)(0)x x x +→:,所以33ln(1)ax ax +:(0)x →)223lim 111x ax x -→-= (型极限,用洛必达法则) 2220lim lim 111x x x x --→→=--- (极限的四则运算) =2023lim 12x ax x-→- (1222211(1)1()(0)22x x x x ---=-→:)6a =-2001(0)lim ()lim sin4ax x x e x ax f f x x x +++→→+--==2201lim 4ax x e x ax x +→+--= 22014lim ax x e x ax x +→+--=024lim 2ax x ae x ax +→+-= 220024lim 2lim (2)2ax ax x x a e a e ++→→+=+=224a =+ (0) 6.f =所以,0x =为()f x 的连续点⇔(0)(0)f f +-=⇔26624a a -==+,得1-=a ; 所以,0x =为()f x 的可去间断点⇔26246a a -=+≠,即22640,1a a a ++=≠-但 解得2-=a ,此时()f x 在0x =为可去间断点.四【分析】(i)变上限积分求导公式:()()()()()()()()u x v x df t dt f u u x f v v x dx''=-⎰;(ii)参数方程()()x t y t ϕψ=⎧⎨=⎩的一阶导数:1()()dy dy dt dy t dx dx dt dx dt t dtψϕ'=⋅=⋅='; (iii)若()x t ϕ=,()y t ψ=二阶可导,函数的二阶导数公式:2223()()()()()()1()()()()()()()d y d dy d t dtdx dx dx dt t dxt t t t t t t t t t t ψϕψϕψϕψϕψϕϕϕϕ'⎛⎫⎛⎫==⋅ ⎪ ⎪'⎝⎭⎝⎭''''''''''''--=⋅='''【详解】设2()12x t t ϕ==+,12ln 1()ute y t du uψ+==⎰,则 ()4dxt t dtϕ'==;12ln 2222()12ln 12ln 12ln t dy e e t et t dt t t t t t ψ+⋅'==⋅=⋅=+++; 所以 212ln 42(12ln )etdy et dx t t +==+ 所以 2222214()11()2(12ln )44(12ln )44(12ln )e d y d dy d t dt e e t dx dx dx dt t dx t t t t t t ψϕ-''⎛⎫⎛⎫⎛⎫==⋅=⋅=⋅=- ⎪ ⎪ ⎪'+++⎝⎭⎝⎭⎝⎭ 当9x =时,由221t x +=及1t >得2t =, 故2222229.4(12ln )16(12ln 2)t x d y eedx t t ===-=-++五【详解】方法1:第二类换元法. 由于被积函数中含有根号21x +,作积分变量变换tan ()22x t x ππ=-<<,那么3232(1)sec x t +=,2sec dx tdt =,则dx x xe x⎰+232arctan )1(=2322tan sec (1tan )t e ttdt t +⎰23tan sec sec t e ttdt t =⎰ 三角变换公式 tan sec tte dt t=⎰=.sin tdt e t ⎰又t d e tdt e t t cos sin ⎰⎰-==)cos cos (tdt e t e tt⎰-- 分部积分(cos (sin ))t t e t e d t =--⎰(cos sin sin )t t t e t e t e tdt =--+⎰ 分部积分 =tdt e t e t e tttsin sin cos ⎰-+-,故.)cos (sin 21sin C t t e tdt e tt+-=⎰由tan ()22x t x ππ=-<<得arctan t x =,因此dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C x e x x++-方法2:分部积分法dx x xe x ⎰+232arctan )1(=x de xx arctan 21⎰+ arctan arctan 2()1x xd e e x=+=dx x e xxe x x ⎰+-+232arctan 2arctan )1(1 分部积分=x x de xxxe arctan 22arctan 111⎰+-+ arctan arctan 2()1x xd e e x=+arctan arctan arctan 3222212211(1)xxx x e dx x x x ⎛⎫-⋅ ⎪=-⎪+++⎪⎭⎰ 分部积分 =dx x xe xe xxe x x x ⎰+-+-+232arctan 2arctan 2arctan )1(11,移项整理得;dx x xe x ⎰+232arctan )1(=.12)1(2arctan C xe x x ++-六【详解】 (1) 将题中的dy dx 与22d x dy 变换成以x 为自变量y 为因变量的导数dx dy 与22d ydx 来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dydx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21xxe C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为.sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.七【详解】讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数等价于讨论方程4()ln 4ln 4x x x x k ϕ=-+-在区间(0,)+∞内的零点问题,为此对函数求导,得334ln 44()4(ln 1).x x x x x x xϕ'=-+=-+可以看出1x =是)(x ϕ的驻点,而且当10<<x 时,3ln 0x <,则3ln 10x x -+<,而40x>,有()0x ϕ'<,即)(x ϕ单调减少;当1x >时,3ln 0x >,则3ln 10x x -+>,而40x>,有()0x ϕ'>,即)(x ϕ单调增加,故k -=4)1(ϕ为函数)(x ϕ的惟一极小值即最小值.① 当(1)40k ϕ=->,即当4k <时,()(1)0x ϕϕ≥>,)(x ϕ无零点,两曲线没有交点; ② 当(1)40k ϕ=-=,即当4k =时,()(1)0x ϕϕ≥=,)(x ϕ有且仅有一个零点,即两曲线仅有一个交点;③ 当(1)40k ϕ=-<,即当4k >时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 30k x x x x x x ϕ;+∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ由连续函数的介值定理,在区间(0,1)与),1(+∞内各至少有一个零点,又因)(x ϕ在区间(0,1)与),1(+∞内分别是严格单调的,故)(x ϕ分别各至多有一个零点. 总之,)(x ϕ有两个零点. 综上所述,当4k <时,两曲线没有交点;当4k =时,两曲线仅有一个交点;当4k >时,两曲线有两个交点.八【详解】(1) 曲线()y f x =在点(,)P x y 处的法线方程为)(1x X yy Y -'-=- 令0X =,则它与y 轴的交点为).,0(y xy '+ 由题意,此点与点(,)P x y 所连的线段被x 轴平分,由中点公式得0)(21='++y xy y ,即.02=+xdx ydy 积分得222x y C +=(C 为任意常数),代入初始条件2122==x y 得12C =,故曲线()y f x =的方程为22122x y +=,即.1222=+y x (2) 曲线sin y x =在[0,]π上的弧长为22222220211cos 1cos 21cos .x tl y dx xdx tdt tdt πππππ=+-'=+=+=+=+⎰⎰⎰弧长公式另一方面,将(1)中所求得的曲线()y f x =写成参数形式,在第一象限中考虑,于是⎪⎩⎪⎨⎧==,sin 22,cos t y t x .20π≤≤t 于是该曲线的弧长为:222()()t t s x y dt π''=+=222221sin cos 1sin 22t tdt tdt ππ+=+ 2022201cos ()1cos 22t uu du udu πππ=-=+-=+⎰所以122s l =,即2s .九【详解】(1) 设在t 时刻,液面的高度为y ,此时液面的面积为2()()A t y πϕ=圆的面积公式,由题设:液面的面积将以min /2m π的速率均匀扩大,可得2()()dA t d y dt dt πϕπ==,即2()1dy dtϕ= 所以2()y t C ϕ=+, 由题意,当0t =时()2y ϕ=,代入求得4C =,于是得2() 4.y t ϕ=+从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为20()()yV t u du πϕ=⎰,由题设:以min /33m 的速率向容器内注入液体,得()20()()3y dV t du du dt dtπϕ==⎰所以 220()33()12.yu du t y πϕϕ==-⎰上式两边对y 求导,得2()6()()y y y πϕϕϕ'=变限积分求导,即()()6d y y dy ϕπϕ= 解此微分方程,得yCey 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知2C =, 故所求曲线方程为.26yex π=十【详解】(1) 因为极限ax a x f ax --+→)2(lim 存在,且lim()0x a x a +→-=,故lim (2)0x a f x a +→-= 又()f x 在[,]a b 上连续,从而lim (2)()x af x a f a +→-=,则()0f a =. 由于0)(>'x f ,则()f x 在(,)a b 内严格单调增加,所以()f x 在x a =处取最小值,即).,(,0)()(b a x a f x f ∈=>(2) 由要证明的形式知,要用柯西中值定理证明.取2()F x x =,()()xag x f t dt =⎰()a x b ≤≤,则0)()(>='x f x g ,则)(),(x g x F 满足柯西中值定理的条件,于是在(,)a b 内存在点ξ,使222()()()2()()()()()(())baxaaa x Fb F a b a x g b g a f f t dt f t dtf t dt ξξξ='--===-'-⎰⎰⎰即)(2)(22ξξf dxx f a b ba=-⎰. (3) 在区间],[ξa 上应用拉格朗日中值定理,得在),(ξa 内存在一点η,使()()()()f f a f a ξηξ'-=-因()0f a =,上式即))(()(a f f -'=ξηξ,代入(2) 的结论得,))((2)(22a f dxx f a b ba-'=-⎰ξηξ即 ⎰-=-'ba dx x f aa b f .)(2))((22ξξη十一【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a . 至于求P ,则是常识问题.【详解】矩阵A 的特征多项式为]16)2)[(6(628222---=------=-λλλλλλa A E =)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r42021068400000000E A a a --⎡⎤⎡⎤⎢⎥⎢⎥-=--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,所以0a =.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E ,解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P十二【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A232()3()23232323a b c a b c b c a c a b A bc a b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b c a c a b c a b -=++-=-++- 16()6()c ba ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++---2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb ba ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 所以||0B =.而232323232323a b c a bcB bc a bc a A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a “充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为])([2)(22222b b a a b ac cb b a ++-=-==222[()]0a b a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.。

200数二真题标准答案及解析

200数二真题标准答案及解析

2003年考研数学(二)真题一、填空题(此题共6小题,每题4分,总分值24分.把答案填在题中横线上) 1(1)假设XT 0时,(1 - ax 2)4 -1与xsinx 是等价无穷小,那么 a= . (2)设函数y=f(x)由方程xy +21nx = y 4所确定,那么曲线y=f(x)在点(1,1)处的切线方程 是 .(3) y =2X的麦克劳林公式中x n项的系数是 .(4)设曲线的极坐标方程为P=e a8(a >0),那么该曲线上相应于围成的图形的面积为 .1-11(5) 设u 为3维列向量,a T 是a 的转置.假设otc(T = -11—1 ,那么-J-11一:- T:- =(6)设三阶方阵 A,B 满足A 2B — A —B = E ,其中E 为三阶单位矩阵,假设、选择题(此题共6小题,每题4分,?茜分24分.每题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内)(1)设{a n }, {bj {g}均为非负数列,且 lim a n =0, lim b =1 ,lim g3 _n_ (2)设an =- ^n + x n ^v1 +x ndx ,那么极限 四中2门等于日从0变到2n 的一段弧与极轴所101A= 020,那么:一2 0 1一,那么必有(A)a n <b n 对任意n 成立.(B)b n < C n 对任意n 成立.(C)极限n ma n C n 不存在. (D)极限n mb n C n 不存在.3(A)(1 e)21.3(C)(1 e])21.31 二(B)(1 - e )2 -1.3(D)(1 e)2-1.X(3)y = ——是微分方程ln Xy' = '+中(>)的解,那么中泠)的表达式为2 y(A)±.X2(B ) X(6)设向量组I : %,£2,…P r 可由向量组II :81,葭,,B s 线性表示,那么(A)当r <s 时,向量组II 必线性相关.(B)当r >s 时,向量组II 必线性相关. (C)当r <s 时,向量组I 必线性相关.(D)当r AS 时,向量组I 必线性相关.[]三、(此题总分值10分)ln(1 +ax 3) , x<0,x -arcsin x设函数 f (x) = «6, x = 0,ax 2e +x -ax-1 x>0,x ,xsin 一 L 4问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四、(此题总分值9分)'x=1+2t 2,.2d y设函数y=y(x)由参数万程1产1nte 代〉1)所确正,求 一2|y =[——dudx x=9(C) (D) (4)设函数f(x)在(_oo ,+oc )内连续,其导函数的图形如下图,那么[]f(x)有(A) 一个极小值点和两个极大值点 (B)两个极小值点和一个极大值点 (C)两个极小值点和两个极大值点 (D)三个极小值点和一个极大值点(B)1 I 112.(C)I 2 I i 1.(D)1 I2 I i .1u 五、(此题总分值9分)arctan x计算不定积分Xe2 dX.(1X2)2六、(此题总分值12分)设函数y=y(x)在(_co,〜)内具有二阶导数,且y0, x = x( y)是y=y(x)的反函数.d 2 xdx Q(1)试将x=x(y)所满足的微分方程dt + (y + sin x)(©x)3 = 0变换为y=y(x)满足的微分万程;dydy3(2)求变换后的微分方程满足初始条件y(0) = 0, y '(0) = 2的解.七、(此题总分值12分)讨论曲线y =4lnx+k与y =4x+in4 x的交点个数.八、(此题总分值12分),「,2 1设位于第一象限的曲线y=f(x)过点(匚,一),其上任一点P(x,y)处的法线与y轴的交点为Q,且线2 2段PQ被x轴平分.(1)求曲线y=f(x)的方程;(2)曲线y=sinx在[0,n]上的弧长为l,试用l表示曲线y=f(x)的弧长s.九、(此题总分值10分)有一平底容器,其内侧壁是由曲线x =平(y)(y之0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以3m3 / min的速率向容器内注入液体时,速率均匀扩大(假设注入液体前,容器内无液体)(1)根据t时刻液面的面积,写出t与平(y)之间的关系式;(2)求曲线x =④(y)的方程.(注:m表示长度单位米,min表示时间单位分.) 十、(此题总分值10分)明:(1)在(a,b)内f(x)>0;⑶ 在(a,b)内存在与(2)中之相异的点“,使f '(")(b2—a2) =v2 ,. 一放面的面积将以nm / min的设函数f(x)在闭区间[a,b]上连续, 在开区间(a,b)内可导,且f '(x) >0. 假设极限limf (2x—a)存在证x阳x- a(2)在(a,b)内存在点使b2 2-aba f(x)dxba f(x)dx.十一、〔此题总分值10分〕2 2 0假设矩阵A= 8 2a相似于对角阵A,试确定常数a的值;并求可逆矩阵P使P/AP=A.0 0 6_十二、〔此题总分值8分〕平面上三条不同直线的方程分别为11: ax +2by +3c = 0 ,12: bx +2cy +3a = 0,13: cx 2ay 3b = 0.试证这三条直线交于一点的充分必要条件为a+b + c = 0.2003年考研数学(二)真题评注一、填空题(此题共6小题,每题4分,总分值24分.把答案填在题中横线上)1(1)假设XT 0时,(1 - ax 2)4-1与xsinx 是等价无穷小,那么 a=-4.1【分析】 根据等价无穷小量的定义,相当于lim(1-aX尸=1 ,反过来求a.注意在计算过程中X0 xsin X应尽可能地应用无穷小量的等价代换进行化简.11【详解】当 X T 0时,(1 -ax 2)4 -1 ~ — ax 2 , xsin X ~ X 2.4112(1 - ax 2)4ax 1于是,根据题设有lim(1)= lim42= _1 a = 1,故 a=-4.X )0xsin X X 50X 4(2) 设函数y=f(x)由方程xy+21nx = y 4所确定,那么曲线y=f(x)在点(1,1)处的切线方程是x-y=0 .【分析】先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可 【详解】 等式xy + 21n X = y 4两边直接对X 求导,得23y+xy +-=4y y ,X将X=1,y=1代入上式,有 y(1) =1.故过点(1,1)处的切线方程为y -1 =1 (x -1),即 X - y = 0.【评注】此题属常规题型,综合考查了隐函数求导与求切线方程两个知识点【分析】此题相当于先求y=f(x)在点X =0处的n 阶导数值f (n)(0),那么麦克劳林公式中x n项的系数是f (n)(0). n!【详解】由于 y' = 2Xln2, y*=2X(ln 2)2,…,y (X)=2X(ln 2)n,于是有(3) y=2X 的麦克劳林公式中x n 项的系数是(ln2)n n!y (n)(0) =(ln2)n,故麦克劳林公式中x n项的系数是y ⑺(0) _ (ln2)n【评注】此题属常规题型,在一般教材中都可找到答案^(4)设曲线的极坐标方程为P =e a%a > 0),那么该曲线上相应于日从0变到2n的一段弧与极轴所围成的图形的面积为工〔e 4[a-1〕4a利用极坐标下的面积计算公式S=1 fp 2〔e 〕d 日即可. 所求面积为S=11P 2⑼da =1 j“e 2a 9d H此题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比拟复杂1-11(5) 设ct 为3维列向量,a T 是a 的转置.假设& = -11—1 ,那么1-11 _T、工、工=31.2【分析】 先化简分解出矩阵 B,再取行列式即可 【详解】 由A 2B — A —B =E 知,(A 2— E)B=A + E ,即 (A + E)(A —E)B = A + E ,【分析】1 2a r =e 4a 2二」(e 4a4a -1). 【评注】【分析】 此题的关键是矩阵〔行〔或任一非零行〕,列向量的元素那么 1-1 [详解]由aa T= -11:1-1一1〕a[ =1 -1 1 ] -1 =3.J J【评注】一般地,假设n 阶矩阵的秩为1,必可分解为一夕各行与选定行的倍数构成1 [1 ]-1 = -1 1 -1 1 ],知 1 _ J _行的形式,而行向量一般可选第一1 1-1 ,于是 J 一〔6〕设三阶方阵A,B 满足A 2A 的秩为1 ,那么必有A =一 _a n3—A —B = E ,其中E 为三阶 b b2…b n 】1011位矩阵,假设A=020,那么8 =-201 _再两边取行列式,得A - E| B = 1 ,001010=2,所以 -2 0 0【评注】 此题属基此题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算 二、选择题(此题共6小题,每题4分,工茜分24分.每题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内)(1)设{aj,{b n }, {C n } 土匀为非负数歹U, 且 lim a n = 0, lim b n = 1,lim g =㈠,那么必有 n )二二n )二二n )二二(A) a n <b n 对任意n 成立.(B) b n <c n 对任意n 成立. (C)极限lim a n C n 不存在.(D)极限lim bng 不存在.[D ]n .n _.【分析】 此题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除lim a nc n是0 8型未定式,可能存在也可能不存在,举反例说明即可;极限lim b nc n 属1 8型,必为无穷n ,n大量,即不存在.21【详解】用举反例法,取a n =£ , b n=1, c n=」n(n=1,2,…),那么可立即排除(A),(B),(C),因此 n2正确选项为(D).【评注】 对于不便直接证实的问题,经常可考虑用反例,通过排除法找到正确选项^V 1 +x n dx ,那么极限lim na n 等于n )二二易知矩阵A+E 可逆,于是有(A 一 E)B =E.由于 A -E(A),(B);而极限(A)(C)【分析】3(1 e)2 1.3(1 e 4)2 1.先用换元法计算积分,再求极限 由于(B)(D)3(1 e 4)2 -1.3(1 e)2 -1.n 4n 3x . 1 x dx =—— 2nn0n 1. 1 x nd(1 x n) 13 = 1(1 x n )2 n1 n 3=科+(西)]2-1},可见 lim na n= lim {[ 1 (门2-1} =(1 e 4)2-1.【评注】 此题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限 的计算均是最根底的问题,一般教材中均可找到其计算方法^xvxx(3)y=一是微分方程「=」十中(―)的解,那么中(―)的表达式为In xxyy2y (B)2x2 x (D)— yx .x【分析】将y = ——代入微分方程,再令中的中间变量为u,求出中(u)的表达式,进而可计算出中(一).In xy x. y x【详解】将丫= ——代入微分方程丫’=上+中(一),得In xx y2^(-) =--y2.应选(A).y x【评注】 此题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复 杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在(口,y )内连续,其导函数的图形如下图,那么 f(x)有(D) 一个极小值点和两个极大值点(E)两个极小值点和一个极大值点 (F)两个极小值点和两个极大值点 (D)三个极小值点和一个极大值点【分析】答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定^【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而x=0那么是导数不存在的点.三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧 一阶导数为正,右侧一阶导数为负,可见 x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应 选(C).【评注】 此题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是f(x)的图象去y (A)x 2 x (C)-- y(In x)工1 In2 x令Inx=u ,有1 (u)=--,故u推导f (x)的图象,此题是其逆问题.完全类似例题在文登学校经济类串讲班上介绍过一—一 . H可见有I1 >12且I 2<-,可排除(A);(C);(D),故应选(B).4II : 网,22,…,P s 线性表示,那么当r >s 时,向量组I 必线性相关.或其逆否命题:假设向量组可由向量组II : 3,P 2,…,P s 线性表示,且向量组I 线性无关,那么必有r <s .可见正确选项为(D).此题也 可通过举反例用排除法找到答案【评注】 此题将一定理改造成选择题,如果考生熟知此定理应该可直接找到答案,假设记不清楚,(5)设 I 1——dx ,I 2 xtan x(A) I 1 I 21. (B) 1 I 1 I 2. (C) I 2 I i 1.(D)1 I2 I i .【详解】 直接计算I i ,I 2是困难的,可应用不等式tanx>x, x>0.由于当 x>0时,有tanx>x,于x——<1 ,从而有 11 tanxJI dx > —, 4二 Xi 2 = r — tan x冗dx ::一, 4【评注】 此题没有必要去证实I 1 <1 ,由于用排除法,(A),(C),(D)均不正确,剩下的 (B) 一定为正确(6)设向量组I: %,0(2,…P 「可由向量组II :丸鼠(A)当r <s 时,向量组II 必线性相关.(C)当r <s 时,向量组I 必线性相关.(B)当r >s 时,向量组II 必线性相关. (D)当r a s 时,向量组I 必线性相关.【分析】 此题为一般教材上均有的比拟两组向量个数的定理:假设向量组I :«1«2;,r 可由向量组【详解】 用排除法:如、1 -二0「’0、串2,但P1,P 2线性无关,排除(A) ; 0t l0;:1J那么%尸2可由3线性表示,但 %可由「1,「2线性表示,但1a1线性无关,排除3线性无关,排除(B);(C).故正确选项为(D).也可通过构造适当的反例找到正确选项 、(此题总分值10分)设函数f (x)= 3 ln(1 ax ) , x -arcsin x6, e ax x 2 -ax -1 :二0,=0, 0, -x xsin 一 4 问a 为何值时, 【分析】 f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点? 分段函数在分段点 x=0连续,要求既是左连续又是右连续,即 f (0 -0) = f (0) = f (0 0). 【详解】f(0 -0) = lim f(x)=x _0 - 3、ln(1 ax ) lim 二 lim3ax xw —x-arcsinx x P —x - arcsinx ..3ax 23ax 2=lim 二 lim x"1 1 x 〞 .1-x 2 -1 .1 - x 223ax =limx Q- 12 --x2-6a.f (0 0) = lim f (x) =limx _0 'x )0e ax x 2 - ax -1 cn xxsin 一 4=4 lim x -0 ax 2e x - ax -1 ae a x 2x - a 2 =4 lim = 2a 4. x Q 2x令 f(0—0) = f(0+0),有—6a=2a 2+4 ,得 a = —1 或 a = —2. 当 a=-1 时,lim f (x) = 6 = f (0),即 f(x)在 x=0 处连续. x 「0当a=-2时,lim f (x) = 12 0 f (0),因而x=0是f(x)的可去间断点. x 0【评注】此题为基此题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度, 在计算过程中应尽量利用无穷小量的等价代换进行简化^ 四、(此题总分值9分) x =1 2t 2,设函数y=y(x)由参数方程1 2lnt y= 1e u (t A 1)所确定,求——du u d 2y dx 2x=9【分析】 此题为参数方程求二阶导数,按参数方程求导的公式进行计算即可 地确定参数t 的取值.dy2et得 dy _^dt _ 1 2lnt __e —dx dx4t2(1 2lnt)dt2_d yddy x 1e -1212"()=2dx 2dtdxdx2(1 2lnt)2t4tdt_ e -4t 2(1 2ln t)2.当x=9时,由x =1 +2t 2及t>1得t=2,故.2 d y _ e_ edx 2x 3 ―4t 2(1+2lnt)2J-16(1 + 21n2)2五、(此题总分值9分)arctan x xe计算不定积分e3dx.(1 x 2) 2【分析】 被积函数含有根号 J 1 +x 2,典型地应作代换:x=tant,或被积函数含有反三角函数 同样可考虑作变换:arctanx=t,即x=tant.[详解]设x =tant,那么arctanxt ,,xe .e tant 2 3 t3-dx= 3-sec tdt = e sintdt. (1x 2) 2(1 tan 21) 2又 e t sin tdt - - e t d cost=-(e t cost - e t costdt)=-e t cost +S sint - je t sintdt ,t ._1 t故 e s i n d t=—e (s in-c os) + C. 2 arctan x因此 xe3 dx 」e arctanx(——x—) C (1 x 2)3221 x 21x 2【详解】由 dy _dt 一 1 2lnt 0e 21 2lnt t2et 1 2ln tdx x ——=4t , dt.注意当x=9 所以arctanx,d /dx 、 d , 1、dx dy dy dx y dyy(y)3.然后再代入原方程化简即可一, ,, dx【详解】(1)由反函数的求导公式知 dxdyarctan x2 Tx2-C.【评注】此题也可用分布积分法:arctan xxe(1 +x 2『2 x arctan xdx = de,1 x 2arctan xxe .1 x 2arctan x3dx (1 x 2) 2移项整理得arctan xxe 1x 2arctanxxe ,1 x 2arctanxxe (1 x 2)1arctan x de ,1 x 2arctan xed2,1 xarctan xxe 3-dx ,3 3arctan x」(x -1)e c dx = C. 2 1 x 2此题的关键是含有反三角函数,作代换 arctanx = 1或tant=x.、(此题总分值12分)设函数y=y(x)在(-°o ,〜)内具有二阶导数,且 y ' # 0, x = x( y)是y=y(x)的反函数.d 2xdx o试将x=x(y)所满足的微分方程 一2 + (y + sin x)(—)3= 0变换为y=y(x)满足的微分万程;dydy(2)求变换后的微分方程满足初始条件y(0) = 0, y '(0) = 3的解.一 ,dx【分析】将空转化为dy 出比拟简单,dxdx 1dy dy dx1 —,关键是应注意:y d 2x dy 2-2 y代入原微分方程得y y = sin x.当k>4,即4-k<0时,由于d 2xd ,dx 、 d 1 dx dy(dy )= dx (7) dy-y1~1~ 一yy(2)方程(* )所对应的齐次方程y " - y=0的通解为Y =C 〔e xC 2「设方程(* )的特解为*y = Acosx + B sin,一、 (1)代入万程(* ),求得A = 0, B ,故y1- 一一sinx, 2从而y " — y = sin x 的通解是y =Y y * =C 1e xC 2e" -gsinx.二人八 —3由y(0) =0, y(0)=万,得C I =1,C 2 = -1.故所求初值问题的解为x_x 1.y = e - e - - s i nx. 2【评注】此题的核心是第一步方程变换. 七、(此题总分值12分) (4)讨论曲线丫=4m*+卜与丫 = 4*+mx 的交点个数.【分析】问题等价于讨论方程ln 4x-4lnx+4x-k = 0有几个不同的实根.此题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与设(x) = ln 4x -4ln x 4x那么有八 3)、:(x )二4(1n x -1 x)不难看出, x=1是中(x)的驻点.当0 <x <1时,邛(x) <0,即邛(x)单调减少;当x>1时,丝(x) a 0,即5(x)单调增加,故中⑴=4 — k 为函数中(x)的最小值.当 k<4,即 4-k>0 时, 5(x)=0无实根,即两条曲线无交点;当 k=4,即 4-k=0 时,中(x)=0有唯一实根,即两条曲线只有一个交点;x 轴交点的个数)lim 邛(x) = lim [ln x(ln x 一4) +4x -k]=";x_0 -x_0 -_4 ______3_x lim 中(x) = ^lim [ln x(ln x 一4) + 4x 一k]=",故中(x) = 0有两个实根,分别位于(0,1)与(1, +oc)内,即两条曲线有两个交点【评注】讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数别离开来,使得求导后不含参数,便于求驻点坐标.八、(此题总分值12分)_.2 1…, 一…八设位于第一象限的曲线y=f(x)过点(——,一),其上任一点P(x,y)处的法线与y轴的交点为Q,且线2 2段PQ被x轴平分.(3)求曲线y=f(x)的方程;(4)曲线y=sinx在[0, n ]上的弧长为l,试用l表示曲线y=f(x)的弧长s.【分析】(1)先求出法线方程与交点坐标Q,再由题设线段PQ被x轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程.(2) 将曲线y=f(x)化为参数方程,再利用弧长公式y dt进行计算即可【详解】(1)曲线y=f(x)在点P(x,y)处的法线万程为1Y-y = --(X -x),y其中(X,Y)为法线上任意一点的坐标.令X=0 ,那么x、故Q点的坐标为(0, y + —).由题设知y1(y+y+—)=0,即2ydy+xdx=0.2y积分得x2+2y2 =C (C为任意常数).,1 . 一、一 .由y ,,=一知C=1,故曲线y=f(x)的万程为x=T 222,x 2y = 1.(2)曲线y=sinx在[0 ,n]上的弧长为7r ,Hl =1 cos2 xdx =2 2 d cos2 xdx.00曲线y=f(x)的参数方程为x = c o&/-n2 .0<t --. y =——sM,22. 2121sin t -cos tdt:2 ,令t = ±—u,那么21°/212/2,s -——-\ 1 cos u(-du)——°21 1 cos udu2 2- -'2l 2, = --= l. 2.24【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0至U ,而不是从0到2i. 九、(此题总分值10分)有一平底容器,其内侧壁是由曲线x=④(y)(y 之0)绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为 2 m. 根据设计要求,当以 3m 3/min 的速率向容器内注入液体时, 液面的面积将以Jim 2/ min 的速率均匀扩大(假设注入液体前, 容器内无液体).(3)根据t 时刻液面的面积,写出 t 与% y)之间的关系式; (4)求曲线x =9(y)的方程.(注:m 表示长度单位米,min 表示时间单位分.)【分析】 液面的面积将以nm 2/min 的速率均匀扩大,因此 t 时刻液面面积应为:n 22+收,而液面 为圆,其面积可直接计算出来,由此可导出t 与甲(y) 之间的关系式;又液体的体积可根据旋转体的体积公 式用定积分计算,t 时刻的液体体积为3t,它们之间也可建立积分关系式,求导后转化为微分方程求 解即可.【详解】(1)设在t 时刻,液面的高度为v,那么由题设知此时液面的面积为n 邛2(y) = 4n +n t ,从而t =q 、2(y) -4.y cc(2)液面的高度为y 时,液体的体积为 nj 0cp(u)du=3t=3平(y)T2.H , 2J l +上式两边对y求导,得2. 一一*(y) =6 9(yH'(y),即即(y)=69'(y).解此微分方程,得. 袅中(y) =Ce6,其中C为任意常数,由中(0) =2知C=2,故所求曲线方程为A y x = 2e【评注】作为应用题,此题比拟好地综合考查了定积分在几何上的应用与微分方程的求解^十、(此题总分值10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f'(x)A0.假设极限|im f (2x—a)存在证x声x - a明:(2)在(a,b)内f(x)>0;(3)在(a,b)内存在点匕,使b2—a221f(x)dx f( )a(3)在(a,b)内存在与(2)中巴相异的点灯,使222 bf ( )(b -a ) = f (x)dx.-a a【分析】(1)由lim4f (2x存在知,f(a)=0,利用单调性即可证实f(x)>0. (2)要证的结论显含x—a x - af(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证实.(3)注意利用(2)的结论证明即可.【详解】(1)由于lim ,f (2x—段■存在,故lim+f(2x —a) = f (a) =0.x—a x -a x 旧内单调增加,故f (x) f (a) = 0, x (a,b).2x(2)设F(x)= x2,g(x) = f f(t)dt(a <x<b),那么g'(x)= f(x) >0,故F (x), g(x)满足柯西中值定理a的条件,于是在(a,b)内存在点之,使F(b) - F (a)b2 - a2_ (x2)又f'(x) > 0 ,于是f(x)在(a,b)g(b)-g(a)J b f(t)dt-f f(t)dt (『f(t)dt)'aaab 2 -a 2 _ 2.:f(x)dx f()(3)因f(9= f(9 _ f(0) = f(D — f (a),在[a,引上应用拉格朗日中值定理,知在(a,£)内存在一 点刈,使f 仁)=f '(")仁-a),从而由(2)的结论得b 2 -a 22b :f(x)dx f ()( -a)….222 b即有 f ( )(b 2 -a 2) = f (x)dx.-a a【评注】 证实(3),关键是用(2)的结论:222 bf ( )(b -a ) = f (x)dx 二-a au f(D = f P )(C_a)(根据(2)结论)u f(t)-f(a) = f P )(t,a), 可见对f(x)在区间[a,盯上应用拉格朗日中值定理即可十一、(此题总分值10分)2 2 0假设矩阵A= 8 2a 相似于对角阵 A,试确定常数a 的值;并求可逆矩阵 P 使P,AP=A.:0 0 6_-20八一八2九 一2-a =(九 一6)[(九 -2) -16] 06 -6=(九一6)2(九 +2), 故A 的特征值为入=% =6, % = -2.由于A 相似于对角矩阵 A,故对应% =% =6应有两个线性无关的特征向量,即3 -r(6E - A) =2 ,于是有 r(6E - A) =1.b 2 - a 22 b f(x)dx = f ( )( -a) a【分析】 A 相似于对角矩阵,应先求出 的个数相同,转化为特征矩阵的秩,进而确定参数【详解】矩阵A 的特征多项式为A 的特征值,再根据特征值的重数与线性无关特征向量 a.至于求P,那么是常识问题.由 知 a=0. 于是对应于Z i =九2 =6的两个线性无关的特征向量可取为一..、.._ i _,那么P 可逆,并有P AP =A . 十二、〔此题总分值8分〕平面上三条不同直线的方程分别为11 : ax +2by +3c = 0 , 12 : bx 2cy 3a = 0, 13 : cx 2ay 3b = 0. 试证这三条直线交于一点的充分必要条件为a + b + c = 0.【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的 秩均为2.【详解】方法一:必要性设三条直线1i12/3交于一点,那么线性方程组l ax2by--3c,bx2cy=- 3a,〔*〕cx2ay=- 3b, 01一2 - a T 0 0 01一11 .=0 ,-2 = 2〕一立当,电=一2时, -4 -2 -2E —A= -8 -4 -00 '2x +x0 =0.解万程组〕12,得对应于乂3 =0,0210 0 T 001, _8_/00_ 一 1 1 %=—2的特征向量—2 I 012 o O 11—2 4-2 6E —A = —8400 -1 00 a 00a 2b -3c由于 I Al = b 2c -3a c 2a -3b=3(a b c)[(a-b)2(b -c)2 (c-a)2], 但根据题设(a —b)2+(b —c)2+ (c —a)2 # 0 ,故 a b c = 0.充分性:由a+b+c=0,那么从必要性的证实可知,网=0,故秩(入)<3.由于a 2b 〜2、、2r= 2(ac - b ) = —2[a(a +b) + b ]b 2c 1c 3_=-2[(a + — b) + — b ] # 0 ,24故秩(A)=2.于是,秩(A 尸秩(A) =2.因此方程组(*)有唯一解,即三直线11,12,13交于一点. 方法二:必要性设三直线交于一点(x 0,y 0),那么y 0为Ax=0的非零解,其中 J 一a 2b 3cA = |b 2c 3a:c 2a 3b J是 A =0.2b 3c..2 .2 .22c 3a =-6(a+b+c)[a +b +c -ab - ac-bc]2a 3b=-3(a b c)[( a -b)2(b -c)2(c - a)2], -a 2b]a 2b -3c 有唯一解,故系数矩阵 A = b:c2c 与增广矩阵A= b 2a 1 ? 2c -3a 的秩均为2,于是A =0. 2a -3b 222二6(a b c)[a b c - ab - ac -bc]但根据题设(a -b)2 +(b -c)2 +(c—a)2 #0,故a b c = 0.充分性:考虑线性方程组'ax +2by = -3c,«bx+2cy = ^3a,(*)cx +2ay = -3b,将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组ax 2by =-3c,(* *)bx 2cy = -3a.由于a 2? = 2(ac—b2) =—2[a(a+b)+b2] b 2c 222=-[a b (a b) ] ;0,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线l1,l2,l3交于一点.【评注】此题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点^。

2003年考研数学二真题答案解析

2003年考研数学二真题答案解析

1. 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.【评注】 本题属常规题型2.. 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x3.. 【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n f n 【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',n x x y)2(ln 2,)(= ,于是有nn y )2(l n )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 4.. 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 5.. 【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=6.. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).8.. 【分析】 先用换元法计算积分,再求极限. 【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n n n n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n 【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.9.. 【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(yx ϕ.【详解】将x x y ln =代入微分方程)(yxx y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(u u -=ϕ,故 )(y xϕ=.22xy - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.10.. 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题..11.. 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0. 【详解】 因为当 x>0 时,有tanx>x ,于是1tan >x x ,1tan <xx,从而有 4t a n 41ππ>=⎰dx x x I , 4tan 402ππ<=⎰dx x x I ,可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B). 【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.12.. 【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关.或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。

2003考研数二真题及解析

2003考研数二真题及解析

2003年全国硕士研究生入学统一考试数学二试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a = .(2) 设函数()y f x =由方程4ln 2y x xy =+所确定,则曲线()y f x =在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵,A B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2) 设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于( ) (A) 1)1(23++e . (B) 1)1(231-+-e . (C) 1)1(231++-e . (D) 1)1(23-+e .(3) 已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为( )(A) .22x y - (B) .22x y (C) .22yx - (D) .22y x(4 ) 设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示, 则()f x 有( )(A)一个极小值点和两个极大值点.(B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(5) 设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则( )(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,则( ) (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 32ln(1),0arcsin ()6,01,sin 4ax ax x x x f x x e x ax x x x ⎧⎪+<⎪-⎪⎪==⎨⎪+--⎪>⎪⎪⎩ 问a 为何值时,()f x 在0x =处连续;a 为何值时,0x =是()f x 的可去间断点?四 、(本题满分9分)y设函数()y y x =由参数方程212ln 112,(1)ut x t t e y du u +⎧=+⎪>⎨=⎪⎩⎰所确定,求.922=x dxyd五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.八 、(本题满分12分)设位于第一象限的曲线()y f x =过点)21,22(,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 ()y f x =的方程;(2) 已知曲线sin y x =在],0[π上的弧长为l ,试用l 表示曲线()y f x =的弧长s .九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m . 根据设 计要求,当以min /33m 的速率向容器内注入 液体时,液面的面积将以2/min m π的速率均-2 O 2 xyy x =φ(y )匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(,)a b 内()0f x >; (2) 在(,)a b 内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(,)a b 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a2003年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】4-【详解】 当0→x 时,11(1)1~nx x n +-,sin ~x x ,则241241~1)1(ax ax ---,2~sin x x x 由题设已知,当0→x 时,124(1)1ax --与sin x x 是等价无穷小,所以 12242001(1)141lim lim sin 4x x ax ax a x x x →→--===-,从而 4a =-.(2)【答案】0x y -=【分析】为了求曲线在点(1,1)处的切线方程,首先需要求出函数在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】对所给方程两边对x 求导数,将其中的y 视为x 的函数,有y y xy x y '=+'+342将1,1x y ==代入上式,得.1)1(='y 故函数在点(1,1)处的导数为1,即点(1,1)处切线的斜率为1,再利用点斜式得,过点(1,1)处的切线方程为)1(11-⋅=-x y ,即.0=-y x(3)【答案】!)2(ln n n【详解】()y f x =带佩亚诺余项的麦克劳林公式:()2(0)(0)()(0)(0)()2!!n nn f f f x f f x x x x n ο'''=+++++L求()y f x =的麦克劳林公式中nx 项的系数相当于先求()y f x =在点0x =处的n 阶导数值)0()(n f,()(0)!n f n 就是麦克劳林公式中nx 项的系数.2ln 2x y =';2)2(ln 2x y ='';L L ()2(ln 2)n x n y = (归纳法及求导公式)于是有nn y )2(ln )0()(=,故x y 2=的麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn =(4)【答案】)1(414-ae aπ 【详解】方法1:用定积分计算. 极坐标下平面图形的面积公式:θθρβαd S ⎰=)(212,则 θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a)1(414-ae aπ. 方法2:用二重积分计算. D 表示该图形所占的区域,在极坐标下,利用二重积分面积公式:Dd d σρρθ=⎰⎰所以 2220012a e a DS d d rdr e d θππθσθθ===⎰⎰⎰⎰⎰=)1(414-ae aπ.(5)【答案】3【分析】本题的可由矩阵Tαα的秩为1,把其分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.也可设TA αα=求出α,或利用2A 或设123[]T x x x α=,定出α等.【详解】方法1:观察得A 的三个行向量成比列,其比为1:1:1, 故111111111T A αα-⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT方法2:TA αα=, 2()()(1)TTTTTA Aαααααααααα===而 21111113331111113333(2)111111333A A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=----=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦比较(1),(2)式,得3Tαα=.方法3:设123[]T x x x α=211213221223231323111111111Tx x x x x A x x x x x x x x x x αα⎡⎤-⎡⎤⎢⎥⎢⎥===--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦故 122212321233()T x x x x x x x x x αα⎡⎤⎢⎥==++⎢⎥⎢⎥⎣⎦(A 的主对角元之和)(6)【答案】21【分析】 先化简分解出矩阵B ,再计算行列式B 或者将已知等式变形成含有因子B 的矩阵乘积形式,而其余因子的行列式都可以求出即可.【详解】方法1:由E B A B A =--2,知E A B E A +=-)(2,即E A B E A E A +=-+))((,易知矩阵A E +可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为2002010100=-=-E A , 所以=B 21.方法2:由E B A B A =--2,得E A B E A E A +=-+))((等式两端取行列式且利用矩阵乘积的行列式=行列式的乘积,得A E A EB A E +-=+约去0A E +≠,得 112B A E ==+.二、选择题 (1)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(2)【答案】()B【详解】dx x xa n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+ (第一类换元法) =3121(1)n n n x n++321111nn n n n ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪+⎝⎭⎝⎭可见 n n na ∞→lim =32lim 111n n n n →∞⎡⎤⎛⎫⎛⎫⎢⎥=+- ⎪ ⎪⎢⎥ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦=321(1)1lim 1(1)11n n n n n -+-+→∞⎡⎤⎛⎫⎢⎥-⎧⎫ ⎪++-⎢⎥⎨⎬ ⎪+⎩⎭⎢⎥⎝⎭⎢⎥⎣⎦(凑重要极限形式) 312(1)1e -=+- (重要极限)所以选项()B 正确(3)【答案】()A 【详解】将x x y ln =代入微分方程y x y x y ϕ⎛⎫'=+ ⎪⎝⎭,其中2ln 1ln x y x -'=,得: )(ln ln 1ln 1ln 2x x xx ϕ+=-,即 21(ln )ln x x ϕ=- 令ln x u =,有21)(u u -=ϕ,以xu y =代入,得 )(y xϕ=.22xy - 故选项()A 正确.(4) 【答案】()C【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定.y【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧 导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(5)【答案】()B【详解】令()tan x x x ϕ=-,有2(0)0,()sec 10,0,4x x x πϕϕ⎛⎫'==-> ∈ ⎪⎝⎭,所以当0,4x π⎛⎫∈ ⎪⎝⎭时()x ϕ单调递增,则()0x ϕ>,即tan 0x x >>,tan 1x x >,<1tan x x ,由定积分的不等式性质知,44412000tan 14tan x xI dx dx dx I x x ππππ=>=>=⎰⎰⎰可见有 21I I >且42π<I .(6)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21Λ可由向量组II :s βββ,,,21Λ线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).三【详解】函数()f x 在0x =处连续,则要求函数()f x 在0x =处既是左连续又是右连续,即(0)(0)(0).f f f +-==300ln(1)(0)lim ()lim arcsin x x ax f f x x x ---→→+==-30lim arcsin x ax x x-→=-(由于ln(1)(0)x x x +→:,所以33ln(1)ax ax +:(0)x →)223lim 111x ax x -→-= (型极限,用洛必达法则) 2220lim lim 111x x x x --→→=--- (极限的四则运算) =2023lim 12x ax x-→- (1222211(1)1()(0)22x x x x ---=-→:)6a =-2001(0)lim ()lim sin4ax x x e x ax f f x x x +++→→+--==2201lim 4ax x e x ax x +→+--= 22014lim ax x e x ax x +→+--=024lim 2ax x ae x ax +→+-= 220024lim 2lim (2)2ax ax x x a e a e ++→→+=+=224a =+ (0) 6.f =所以,0x =为()f x 的连续点⇔(0)(0)f f +-=⇔26624a a -==+,得1-=a ; 所以,0x =为()f x 的可去间断点⇔26246a a -=+≠,即22640,1a a a ++=≠-但 解得2-=a ,此时()f x 在0x =为可去间断点.四【分析】(i)变上限积分求导公式:()()()()()()()()u x v x df t dt f u u x f v v x dx''=-⎰;(ii)参数方程()()x t y t ϕψ=⎧⎨=⎩的一阶导数:1()()dy dy dt dy t dx dx dt dx dt t dtψϕ'=⋅=⋅='; (iii)若()x t ϕ=,()y t ψ=二阶可导,函数的二阶导数公式:2223()()()()()()1()()()()()()()d y d dy d t dtdx dx dx dt t dxt t t t t t t t t t t ψϕψϕψϕψϕψϕϕϕϕ'⎛⎫⎛⎫==⋅ ⎪ ⎪'⎝⎭⎝⎭''''''''''''--=⋅='''【详解】设2()12x t t ϕ==+,12ln 1()ute y t du uψ+==⎰,则 ()4dxt t dtϕ'==;12ln 2222()12ln 12ln 12ln t dy e e t et t dt t t t t t ψ+⋅'==⋅=⋅=+++; 所以 212ln 42(12ln )etdy et dx t t +==+ 所以 2222214()11()2(12ln )44(12ln )44(12ln )e d y d dy d t dt e e t dx dx dx dt t dx t t t t t t ψϕ-''⎛⎫⎛⎫⎛⎫==⋅=⋅=⋅=- ⎪ ⎪ ⎪'+++⎝⎭⎝⎭⎝⎭ 当9x =时,由221t x +=及1t >得2t =, 故2222229.4(12ln )16(12ln 2)t x d y eedx t t ===-=-++五【详解】方法1:第二类换元法. 由于被积函数中含有根号21x +,作积分变量变换tan ()22x t x ππ=-<<,那么3232(1)sec x t +=,2sec dx tdt =,则dx x xe x⎰+232arctan )1(=2322tan sec (1tan )t e ttdt t +⎰23tan sec sec t e ttdt t =⎰ 三角变换公式 tan sec tte dt t=⎰=.sin tdt e t ⎰又t d e tdt e t t cos sin ⎰⎰-==)cos cos (tdt e t e tt⎰-- 分部积分(cos (sin ))t t e t e d t =--⎰(cos sin sin )t t t e t e t e tdt =--+⎰ 分部积分 =tdt e t e t e tttsin sin cos ⎰-+-,故.)cos (sin 21sin C t t e tdt e tt+-=⎰由tan ()22x t x ππ=-<<得arctan t x =,因此dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C x e x x++-方法2:分部积分法dx x xe x ⎰+232arctan )1(=x de xx arctan 21⎰+ arctan arctan 2()1x xd e e x=+=dx x e xxe x x ⎰+-+232arctan 2arctan )1(1 分部积分=x x de xxxe arctan 22arctan 111⎰+-+ arctan arctan 2()1x xd e e x=+arctan arctan arctan 3222212211(1)xxx x e dx x x x ⎛⎫-⋅ ⎪=-⎪+++⎪⎭⎰ 分部积分 =dx x xe xe xxe x x x ⎰+-+-+232arctan 2arctan 2arctan )1(11,移项整理得;dx x xe x ⎰+232arctan )1(=.12)1(2arctan C xe x x ++-六【详解】 (1) 将题中的dy dx 与22d x dy 变换成以x 为自变量y 为因变量的导数dx dy 与22d ydx 来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dydx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21xxe C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为.sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.七【详解】讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数等价于讨论方程4()ln 4ln 4x x x x k ϕ=-+-在区间(0,)+∞内的零点问题,为此对函数求导,得334ln 44()4(ln 1).x x x x x x xϕ'=-+=-+可以看出1x =是)(x ϕ的驻点,而且当10<<x 时,3ln 0x <,则3ln 10x x -+<,而40x>,有()0x ϕ'<,即)(x ϕ单调减少;当1x >时,3ln 0x >,则3ln 10x x -+>,而40x>,有()0x ϕ'>,即)(x ϕ单调增加,故k -=4)1(ϕ为函数)(x ϕ的惟一极小值即最小值.① 当(1)40k ϕ=->,即当4k <时,()(1)0x ϕϕ≥>,)(x ϕ无零点,两曲线没有交点; ② 当(1)40k ϕ=-=,即当4k =时,()(1)0x ϕϕ≥=,)(x ϕ有且仅有一个零点,即两曲线仅有一个交点;③ 当(1)40k ϕ=-<,即当4k >时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 30k x x x x x x ϕ;+∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ由连续函数的介值定理,在区间(0,1)与),1(+∞内各至少有一个零点,又因)(x ϕ在区间(0,1)与),1(+∞内分别是严格单调的,故)(x ϕ分别各至多有一个零点. 总之,)(x ϕ有两个零点. 综上所述,当4k <时,两曲线没有交点;当4k =时,两曲线仅有一个交点;当4k >时,两曲线有两个交点.八【详解】(1) 曲线()y f x =在点(,)P x y 处的法线方程为)(1x X yy Y -'-=- 令0X =,则它与y 轴的交点为).,0(y xy '+ 由题意,此点与点(,)P x y 所连的线段被x 轴平分,由中点公式得0)(21='++y xy y ,即.02=+xdx ydy 积分得222x y C +=(C 为任意常数),代入初始条件2122==x y 得12C =,故曲线()y f x =的方程为22122x y +=,即.1222=+y x (2) 曲线sin y x =在[0,]π上的弧长为22222220211cos 1cos 21cos .x tl y dx xdx tdt tdt πππππ=+-'=+=+=+=+⎰⎰⎰弧长公式另一方面,将(1)中所求得的曲线()y f x =写成参数形式,在第一象限中考虑,于是⎪⎩⎪⎨⎧==,sin 22,cos t y t x .20π≤≤t 于是该曲线的弧长为:222()()t t s x y dt π''=+=222221sin cos 1sin 22t tdt tdt ππ+=+ 2022201cos ()1cos 22t uu du udu πππ=-=+-=+⎰所以122s l =,即2s .九【详解】(1) 设在t 时刻,液面的高度为y ,此时液面的面积为2()()A t y πϕ=圆的面积公式,由题设:液面的面积将以min /2m π的速率均匀扩大,可得2()()dA t d y dt dt πϕπ==,即2()1dy dtϕ= 所以2()y t C ϕ=+, 由题意,当0t =时()2y ϕ=,代入求得4C =,于是得2() 4.y t ϕ=+从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为20()()yV t u du πϕ=⎰,由题设:以min /33m 的速率向容器内注入液体,得()20()()3y dV t du du dt dtπϕ==⎰所以 220()33()12.yu du t y πϕϕ==-⎰上式两边对y 求导,得2()6()()y y y πϕϕϕ'=变限积分求导,即()()6d y y dy ϕπϕ= 解此微分方程,得yCey 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知2C =, 故所求曲线方程为.26yex π=十【详解】(1) 因为极限ax a x f ax --+→)2(lim 存在,且lim()0x a x a +→-=,故lim (2)0x a f x a +→-= 又()f x 在[,]a b 上连续,从而lim (2)()x af x a f a +→-=,则()0f a =. 由于0)(>'x f ,则()f x 在(,)a b 内严格单调增加,所以()f x 在x a =处取最小值,即).,(,0)()(b a x a f x f ∈=>(2) 由要证明的形式知,要用柯西中值定理证明.取2()F x x =,()()xag x f t dt =⎰()a x b ≤≤,则0)()(>='x f x g ,则)(),(x g x F 满足柯西中值定理的条件,于是在(,)a b 内存在点ξ,使222()()()2()()()()()(())baxaaa x Fb F a b a x g b g a f f t dt f t dtf t dt ξξξ='--===-'-⎰⎰⎰即)(2)(22ξξf dxx f a b ba=-⎰. (3) 在区间],[ξa 上应用拉格朗日中值定理,得在),(ξa 内存在一点η,使()()()()f f a f a ξηξ'-=-因()0f a =,上式即))(()(a f f -'=ξηξ,代入(2) 的结论得,))((2)(22a f dxx f a b ba-'=-⎰ξηξ即 ⎰-=-'ba dx x f aa b f .)(2))((22ξξη十一【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a . 至于求P ,则是常识问题.【详解】矩阵A 的特征多项式为]16)2)[(6(628222---=------=-λλλλλλa A E =)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r42021068400000000E A a a --⎡⎤⎡⎤⎢⎥⎢⎥-=--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,所以0a =.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E ,解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P十二【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A232()3()23232323a b c a b c b c a c a b A bc a b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b c a c a b c a b -=++-=-++- 16()6()c ba ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++---2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb ba ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 所以||0B =.而232323232323a b c a bcB bc a bc a A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a “充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为])([2)(22222b b a a b ac cb b a ++-=-==222[()]0a b a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.。

2003年考研数学二试题及答案

2003年考研数学二试题及答案

2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分。

把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f (x )由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 。

(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 。

(6) 设三阶方阵A ,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题(本题共6小题,每小题4分,满分24分。

每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A ) n n b a <对任意n 成立。

(B ) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B ) 1)1(231-+-e 。

(C) 1)1(231++-e . (D ) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x )有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点。

2003考研数学二真题及答案解析

2003考研数学二真题及答案解析
将=x 1,=y 1 代入上式,得 y′(1) = 1. 故函数在点(1,1)处的导数为 1,即点(1,1)处切线的斜
率为 1,再利用点斜式得,过点 (1,1) 处的切线方程为
y −1 = 1⋅ (x −1) ,即 x − y = 0.
(ln 2)n
(3)【答案】
n!
【详解】 y = f (x) 带佩亚诺余项的麦克劳林公式:
ln x
xy
y
(A) − y 2 . x2
y2
(B)
.
x2
(C) − x 2 . y2
x2 (D) .
y2
(4 ) 设函数 f (x) 在 (−∞,+∞) 内连续,其导函数的图形如图所示,
y
则 f (x) 有( )
(A)一个极小值点和两个极大值点.
(B)两个极小值点和一个极大值点.
(C)两个极小值点和两个极大值点.
易知矩阵 A + E 可逆,于是有 ( A − E)B = E.
再两边取行列式,得 A − E B = 1,
0 01 因为 A − E = 0 1 0 = 2 , 所以 B = 1 .
2 −2 0 0
方法 2:由 A2 B − A − B = E ,得
( A + E)( A − E)B = A + E
(A) 当 r < s 时,向量组 II 必线性相关. (C) 当 r < s 时,向量组 I 必线性相关.
(B) 当 r > s 时,向量组 II 必线性相关. (D) 当 r > s 时,向量组 I 必线性相关.
三 、(本题满分 10 分)
ln(1+ ax3)
,
x<0

2003考研数学二真题及答案

2003考研数学二真题及答案

2003考研数学二真题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点.[ ](5)设⎰=401tan πdx x x I ,dx xxI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分) 计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m. 根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前, 容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2) 在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使 ⎰-=-'ba dx x f aa b f .)(2))((22ξξη 十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a参考答案1. 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim4120=-→xx ax x ,反过来求a.注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.【评注】 本题属常规题型,完全类似例题见《数学复习指南》P.38 【例1.62】.2.. 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点,类似例题见《数学复习指南》P.55 【例2.13】和【例2.14】.3.. 【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n fn 【详解】 因为 2ln 2x y =',2)2(ln 2xy ='',nx x y )2(ln 2,)(= ,于是有nn y )2(ln )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案. 4.. 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂. 完全类似例题见《数学复习指南》P.200 【例7.38】.5.. 【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=完全类似例题见《数学复习指南》P.389 【例2.11】和《考研数学大串讲》P.162 【例13】.6.. 【分析】 先化简分解出矩阵B ,再取行列式即可.【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算. 完全类似例题见《考研数学大串讲》P.160 【例11】.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见《数学最后冲刺》P.179.8.. 【分析】 先用换元法计算积分,再求极限. 【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n nn n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n 【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.9.. 【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(yx ϕ.【详解】将xxy ln =代入微分方程)(y x x y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(uu -=ϕ,故 )(y x ϕ=.22x y - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.10.. 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.11.. 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0. 【详解】 因为当 x>0 时,有tanx>x ,于是1tan >x x ,1tan <xx,从而有4tan 41ππ>=⎰dx x x I , 4tan 402ππ<=⎰dx x x I ,可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B).【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.12.. 【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。

2003年考研数学二真题答案解析

2003年考研数学二真题答案解析

1. 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.【评注】 本题属常规题型2.. 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x3.. 【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n f n 【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',n x x y)2(ln 2,)(= ,于是有nn y )2(l n )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 4.. 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 5.. 【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=6.. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).8.. 【分析】 先用换元法计算积分,再求极限. 【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n n n n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n 【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.9.. 【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(yx ϕ.【详解】将x x y ln =代入微分方程)(yxx y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(u u -=ϕ,故 )(y xϕ=.22xy - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.10.. 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题..11.. 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0. 【详解】 因为当 x>0 时,有tanx>x ,于是1tan >x x ,1tan <xx,从而有 4t a n 41ππ>=⎰dx x x I , 4tan 402ππ<=⎰dx x x I ,可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B). 【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.12.. 【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关.或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。

2003考研数二真题及解析

2003考研数二真题及解析

2003年全国硕士研究生入学统一考试数学二试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a = .(2) 设函数()y f x =由方程4ln 2y x xy =+所确定,则曲线()y f x =在点(1,1)处的切线方程是 .(3) x y 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵,A B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2) 设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于( ) (A) 1)1(23++e . (B) 1)1(231-+-e . (C) 1)1(231++-e . (D) 1)1(23-+e .(3) 已知x x y ln =是微分方程)(yxx y y ϕ+='的解,则)(y x ϕ的表达式为( ) (A) .22x y - (B) .22x y (C) .22yx - (D) .22y x(4 ) 设函数()f x 在),(+∞-∞则()f x 有( )(A)一个极小值点和两个极大值点.(B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(5) 设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则( )(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则( ) (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 32ln(1),0arcsin ()6,01,sin 4ax ax x x x f x x e x ax x x x ⎧⎪+<⎪-⎪⎪==⎨⎪+--⎪>⎪⎪⎩ 问a 为何值时,()f x 在0x =处连续;a 为何值时,0x =是()f x 的可去间断点?四 、(本题满分9分)设函数()y y x =由参数方程212ln 112,(1)ut x t t e y du u +⎧=+⎪>⎨=⎪⎩⎰所确定,求.922=x dxyd五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.八 、(本题满分12分)设位于第一象限的曲线()y f x =过点)21,22(,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 ()y f x =的方程;(2) 已知曲线sin y x =在],0[π上的弧长为l ,试用l 表示曲线()y f x =的弧长s .九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m . 根据设 计要求,当以min /33m 的速率向容器内注入 液体时,液面的面积将以2/min m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(,)a b 内()0f x >; (2) 在(,)a b 内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(,)a b 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a2003年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】4-【详解】 当0→x 时,11(1)1~nx x n +-,sin ~x x ,则241241~1)1(ax ax ---,2~sin x x x 由题设已知,当0→x 时,124(1)1ax --与sin x x 是等价无穷小,所以 12242001(1)141lim lim sin 4x x ax ax a x x x →→--===-,从而 4a =-.(2)【答案】0x y -=【分析】为了求曲线在点(1,1)处的切线方程,首先需要求出函数在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】对所给方程两边对x 求导数,将其中的y 视为x 的函数,有y y xy x y '=+'+342将1,1x y ==代入上式,得.1)1(='y 故函数在点(1,1)处的导数为1,即点(1,1)处切线的斜率为1,再利用点斜式得,过点(1,1)处的切线方程为)1(11-⋅=-x y ,即.0=-y x(3)【答案】!)2(ln n n【详解】()y f x =带佩亚诺余项的麦克劳林公式:()2(0)(0)()(0)(0)()2!!n nn f f f x f f x x x x n ο'''=+++++求()y f x =的麦克劳林公式中nx 项的系数相当于先求()y f x =在点0x =处的n 阶导数值)0()(n f,()(0)!n f n 就是麦克劳林公式中nx 项的系数. 2ln 2x y =';2)2(ln 2x y =''; ()2(ln 2)n x n y = (归纳法及求导公式)于是有nn y )2(ln )0()(=,故xy 2=的麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn =(4)【答案】)1(414-ae aπ 【详解】方法1:用定积分计算. 极坐标下平面图形的面积公式:θθρβαd S ⎰=)(212,则 θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a)1(414-ae aπ. 方法2:用二重积分计算. D 表示该图形所占的区域,在极坐标下,利用二重积分面积公式:Dd d σρρθ=⎰⎰所以 2220012a e a DS d d rdr e d θππθσθθ===⎰⎰⎰⎰⎰=)1(414-a e a π.(5)【答案】3【分析】本题的可由矩阵Tαα的秩为1,把其分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.也可设TA αα=求出α,或利用2A 或设123[]T x x x α=,定出α等.【详解】方法1:观察得A 的三个行向量成比列,其比为1:1:1, 故111111111T A αα-⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT方法2:TA αα=, 2()()(1)TT T T T A Aαααααααααα===而 21111113331111113333(2)111111333A A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=----=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ 比较(1),(2)式,得3Tαα=.方法3:设123[]Tx x x α=211213221223231323111111111T x x x x x A x x x x x x x x x x αα⎡⎤-⎡⎤⎢⎥⎢⎥===--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦故 122212321233()T x x x x x x x x x αα⎡⎤⎢⎥==++⎢⎥⎢⎥⎣⎦(A 的主对角元之和)(6)【答案】21【分析】 先化简分解出矩阵B ,再计算行列式B 或者将已知等式变形成含有因子B 的矩阵乘积形式,而其余因子的行列式都可以求出即可.【详解】方法1:由E B A B A =--2,知E A B E A +=-)(2,即E A B E A E A +=-+))((,易知矩阵A E +可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为2002010100=-=-E A , 所以=B 21.方法2:由E B A B A =--2,得E A B E A E A +=-+))((等式两端取行列式且利用矩阵乘积的行列式=行列式的乘积,得A E A EB A E +-=+约去0A E +≠,得 112B A E ==+.二、选择题 (1)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(2)【答案】()B【详解】dx x xa n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+ (第一类换元法) =3121(1)n n n x n++321111nn n n n ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪+⎝⎭⎝⎭可见 n n na ∞→lim =32lim 111n n n n →∞⎡⎤⎛⎫⎛⎫⎢⎥=+- ⎪ ⎪⎢⎥ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦=321(1)1lim 1(1)11n n n n n -+-+→∞⎡⎤⎛⎫⎢⎥-⎧⎫ ⎪++-⎢⎥⎨⎬ ⎪+⎩⎭⎢⎥⎝⎭⎢⎥⎣⎦(凑重要极限形式) 312(1)1e -=+- (重要极限)所以选项()B 正确(3)【答案】()A 【详解】将x x y ln =代入微分方程y x y x y ϕ⎛⎫'=+ ⎪⎝⎭,其中2ln 1ln x y x -'=,得: )(ln ln 1ln 1ln 2x x xx ϕ+=-,即 21(l n )ln x x ϕ=- 令ln x u =,有21)(u u -=ϕ,以xu y =代入,得)(y x ϕ=.22xy - 故选项()A 正确.(4) 【答案】()C【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定.【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧 导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(5)【答案】()B【详解】令()tan x x x ϕ=-,有2(0)0,()s e c 10,0,4x x x πϕϕ⎛⎫'==-> ∈ ⎪⎝⎭,所以当0,4x π⎛⎫∈ ⎪⎝⎭时()x ϕ单调递增,则()0x ϕ>,即tan 0x x >>,tan 1x x >,<1tan x x ,由定积分的不等式性质知,44412000tan 14tan x xI dx dx dx I x x ππππ=>=>=⎰⎰⎰可见有 21I I >且42π<I .(6)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).三【详解】函数()f x 在0x =处连续,则要求函数()f x 在0x =处既是左连续又是右连续,即(0)(0)(0).f f f +-==300ln(1)(0)lim ()lim arcsin x x ax f f x x x ---→→+==-30lim arcsin x ax x x-→=-(由于ln(1)(0)x x x +→ ,所以33ln(1)ax ax + (0)x →)23lim 11x ax -→= (型极限,用洛必达法则)20lim lim x x --→→= (极限的四则运算) =2023lim 12x ax x-→- (1222211(1)1()(0)22x x x x ---=-→ )6a =-2001(0)lim ()lim sin4ax x x e x ax f f x x x +++→→+--==2201lim 4ax x e x ax x +→+--= 22014lim ax x e x ax x +→+--=024lim 2ax x ae x ax +→+-= 220024lim 2lim(2)2ax ax x x a e a e ++→→+=+=224a =+ (0) 6.f =所以,0x =为()f x 的连续点⇔(0)(0)f f +-=⇔26624a a -==+,得1-=a ; 所以,0x =为()f x 的可去间断点⇔26246a a -=+≠,即22640,1a a a ++=≠-但 解得2-=a ,此时()f x 在0x =为可去间断点.四【分析】(i)变上限积分求导公式:()()()()()()()()u x v x df t dt f u u x f v v x dx''=-⎰;(ii)参数方程()()x t y t ϕψ=⎧⎨=⎩的一阶导数:1()()dy dy dt dy t dx dx dt dx dt t dtψϕ'=⋅=⋅=';(iii)若()x t ϕ=,()y t ψ=二阶可导,函数的二阶导数公式:2223()()()()()()1()()()()()()()d y d dy d t dtdx dx dx dt t dxt t t t t t t t t t t ψϕψϕψϕψϕψϕϕϕϕ'⎛⎫⎛⎫==⋅ ⎪ ⎪'⎝⎭⎝⎭''''''''''''--=⋅='''【详解】设2()12x t t ϕ==+,12ln 1()ute y t du uψ+==⎰,则 ()4dxt t dtϕ'==;12ln 2222()12ln 12ln 12ln t dy e e t et t dt t t t t t ψ+⋅'==⋅=⋅=+++; 所以 212ln 42(12ln )etdy et dx t t +==+ 所以 2222214()11()2(12ln )44(12ln )44(12ln )e d y d dy d t dt e e t dx dx dx dt t dx t t t t t t ψϕ-''⎛⎫⎛⎫⎛⎫==⋅=⋅=⋅=- ⎪ ⎪ ⎪'+++⎝⎭⎝⎭⎝⎭ 当9x =时,由221t x +=及1t >得2t =, 故2222229.4(12ln )16(12ln 2)t x d y eedx t t ===-=-++五【详解】方法1:第二类换元法. 由于被积函数中含有根号21x +,作积分变量变换tan ()22x t x ππ=-<<,那么3232(1)sec x t +=,2sec dx tdt =,则dx x xe x⎰+232arctan )1(=2322tan sec (1tan )t e ttdt t +⎰23tan sec sec t e ttdt t =⎰ 三角变换公式 tan sec tt e dt t=⎰=.sin tdt e t⎰ 又t d e tdt e t t cos sin ⎰⎰-==)cos cos (tdt e t e tt ⎰-- 分部积分(c o s (s i n t t e t e dt =--⎰(c o s s i n s i nt t te t e t et d t =--+⎰ 分部积分 =tdt e t e t e tt t sin sin cos ⎰-+-,故.)cos (sin 21sin C t t e tdt e tt+-=⎰由tan ()22x t x ππ=-<<得arctan t x =,因此dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C x e x x++-方法2:分部积分法dx x xe x ⎰+232arctan )1(=x de xx arctan 21⎰+arctan arctan ()x xd e e ==dx x e xxe x x ⎰+-+232arctan 2arctan )1(1 分部积分=x x de xxxe arctan 22arctan 111⎰+-+a r c t a n a ()x x d e e=arctan arctan arctan 322122(1)xxx x e dx x ⎛⎫-⋅ ⎪=-⎪+⎪⎭⎰ 分部积分 =dx x xe xe xxe x x x ⎰+-+-+232arctan 2arctan 2arctan )1(11,移项整理得;dx x xe x ⎰+232arctan )1(=.12)1(2arctan C xe x x ++-六【详解】 (1) 将题中的dy dx 与22d xdy 变换成以x 为自变量y 为因变量的导数dx dy 与22d y dx 来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dy dx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .s i nx y y =-'' ( * ) (2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21xxe C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为.sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.七【详解】讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数等价于讨论方程4()ln 4ln 4x x x x k ϕ=-+-在区间(0,)+∞内的零点问题,为此对函数求导,得334ln 44()4(ln 1).x x x x x x xϕ'=-+=-+可以看出1x =是)(x ϕ的驻点,而且当10<<x 时,3ln 0x <,则3l n 10x x -+<,而40x>,有()0x ϕ'<,即)(x ϕ单调减少;当1x >时,3ln 0x >,则3ln 10x x -+>,而40x>,有()0x ϕ'>,即)(x ϕ单调增加,故k -=4)1(ϕ为函数)(x ϕ的惟一极小值即最小值.① 当(1)40k ϕ=->,即当4k <时,()(1)0x ϕϕ≥>,)(x ϕ无零点,两曲线没有交点; ② 当(1)40k ϕ=-=,即当4k =时,()(1)0x ϕϕ≥=,)(x ϕ有且仅有一个零点,即两曲线仅有一个交点;③ 当(1)40k ϕ=-<,即当4k >时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ; +∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ由连续函数的介值定理,在区间(0,1)与),1(+∞内各至少有一个零点,又因)(x ϕ在区间(0,1)与),1(+∞内分别是严格单调的,故)(x ϕ分别各至多有一个零点. 总之,)(x ϕ有两个零点. 综上所述,当4k <时,两曲线没有交点;当4k =时,两曲线仅有一个交点;当4k >时,两曲线有两个交点.八【详解】(1) 曲线()y f x =在点(,)P x y 处的法线方程为)(1x X yy Y -'-=- 令0X =,则它与y 轴的交点为).,0(y xy '+ 由题意,此点与点(,)P x y 所连的线段被x 轴平分,由中点公式得0)(21='++y xy y ,即.02=+xdx ydy 积分得222x y C +=(C 为任意常数),代入初始条件2122==x y得12C =,故曲线()y f x =的方程为22122x y +=,即.1222=+y x (2) 曲线sin y x =在[0,]π上的弧长为22022.x tl πππππ=+-====⎰⎰⎰弧长公式另一方面,将(1)中所求得的曲线()y f x =写成参数形式,在第一象限中考虑,于是⎪⎩⎪⎨⎧==,sin 22,cos t y t x .20π≤≤t 于是该曲线的弧长为:s ===22)t udu ππ=-=-=⎰所以12l =,即4s =.九【详解】(1) 设在t 时刻,液面的高度为y ,此时液面的面积为2()()A t y πϕ=圆的面积公式,由题设:液面的面积将以min /2m π的速率均匀扩大,可得2()()dA t d y dt dt πϕπ==,即2()1dy dtϕ= 所以2()y t C ϕ=+, 由题意,当0t =时()2y ϕ=,代入求得4C =,于是得2() 4.y t ϕ=+从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为20()()yV t u du πϕ=⎰,由题设:以min /33m 的速率向容器内注入液体,得()20()()3y dV t du du dt dtπϕ==⎰所以220()33()12.yu du t y πϕϕ==-⎰上式两边对y 求导,得2()6()()y y y πϕϕϕ'=变限积分求导,即()()6d y y dy ϕπϕ= 解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知2C =, 故所求曲线方程为.26ye x π=十【详解】(1) 因为极限ax a x f ax --+→)2(lim 存在,且lim ()0x a x a +→-=,故lim(2)0x a f x a +→-= 又()f x 在[,]a b 上连续,从而lim (2)()x af x a f a +→-=,则()0f a =. 由于0)(>'x f ,则()f x 在(,)a b 内严格单调增加,所以()f x 在x a =处取最小值,即).,(,0)()(b a x a f x f ∈=>(2) 由要证明的形式知,要用柯西中值定理证明.取2()F x x =,()()xag x f t dt =⎰()a x b ≤≤,则0)()(>='x f x g ,则)(),(x g x F 满足柯西中值定理的条件,于是在(,)a b 内存在点ξ,使222()()()2()()()()()(())baxaaa x Fb F a b a x g b g a f f t dt f t dtf t dt ξξξ='--===-'-⎰⎰⎰即)(2)(22ξξf dxx f a b ba=-⎰. (3) 在区间],[ξa 上应用拉格朗日中值定理,得在),(ξa 内存在一点η,使()()()()f f a f a ξηξ'-=-因()0f a =,上式即))(()(a f f -'=ξηξ,代入(2) 的结论得,))((2)(22a f dxx f a b ba-'=-⎰ξηξ即 ⎰-=-'ba dx x f aa b f .)(2))((22ξξη十一【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a . 至于求P ,则是常识问题.【详解】矩阵A 的特征多项式为]16)2)[(6(628222---=------=-λλλλλλa A E =)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r42021068400000000E A a a --⎡⎤⎡⎤⎢⎥⎢⎥-=--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,所以0a =.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E ,解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P十二【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A232()3()23232323a b c a b c b c a c a b A bca b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b ca c abc a b-=++-=-++-16()6()c ba ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++---2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb b a ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 所以||0B =.而232323232323a b c a b cB bc a bca A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为 ])([2)(22222b b a a b ac cb ba ++-=-==222[()]0ab a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.。

2003年考研数学数学二真题及答案解析

2003年考研数学数学二真题及答案解析

2003年考研数学数学二真题及答案解析2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2)设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4)设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5)设α为3维列向量,Tα是α的转置. 若----=111111111T αα,则ααT = .(6)设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若-=102020101A ,则=B .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=?+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ?+='的解,则)(y x ?的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)设?=401tan πdx x x I ,dx xxI ?=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<--+-+=x x x xx ax x e x x ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>??=+=?+t du u e y t x t u所确定,求.922=x dx y d五、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ?+六、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ?绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m. 根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ?之间的关系式; (2) 求曲线)(y x ?=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2) 在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-?; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使 ?-=-'ba dx x f aa b f .)(2))((22ξξη 十一、(本题满分10分)若矩阵=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a真题答案解析1. 【分析】根据等价无穷小量的定义,相当于已知1sin )1(lim4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xaxx x ax x x ,故a=-4.【评注】本题属常规题型,完全类似例题见《数学复习指南》P.38 【例1.62】.2.. 【分析】先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342,将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-?=-x y ,即 .0=-y x【评注】本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点,类似例题见《数学复习指南》P.55 【例2.13】和【例2.14】.3.. 【分析】本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n fn 【详解】因为 2ln 2x y =',2)2(ln 2xy ='',nx x y )2(ln 2,)(= ,于是有nn y )2(l n)0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】本题属常规题型,在一般教材中都可找到答案. 4.. 【分析】利用极坐标下的面积计算公式θθρβαd S ?=)(212即可. 【详解】所求面积为θθθρπθπd e d S a ??==20220221)(21==πθ20241a e a )1(414-ae aπ. 【评注】本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂. 完全类似例题见《数学复习指南》P.200 【例7.38】.5.. 【分析】本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】由----=111111111Tαα=[]111111--,知-=111α,于是[].3111111=??--=ααT【评注】一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A=完全类似例题见《数学复习指南》P.389 【例2.11】和《考研数学大串讲》P.162 【例13】.6.. 【分析】先化简分解出矩阵B ,再取行列式即可.【详解】由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算. 完全类似例题见《考研数学大串讲》P.160 【例11】.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B);而极限n n n c a ∞→lim 是∞?0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞?1型,必为无穷大量,即不存在.【详解】用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见《数学最后冲刺》P.179.8.. 【分析】先用换元法计算积分,再求极限. 【详解】因为。

2003考研数二真题及解析

2003考研数二真题及解析

2003年全国硕士研究生入学统一考试数学二试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a = .(2) 设函数()y f x =由方程4ln 2y x xy =+所确定,则曲线()y f x =在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵,A B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有( )(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在.(2) 设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于( ) (A) 1)1(23++e . (B) 1)1(231-+-e . (C) 1)1(231++-e . (D) 1)1(23-+e .(3) 已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为( )(A) .22x y - (B) .22x y (C) .22yx - (D) .22y x(4 ) 设函数()f x 在),(+∞-∞则()f x 有( )(A)一个极小值点和两个极大值点.(B)两个极小值点和一个极大值点. (C)两个极小值点和两个极大值点. (D)三个极小值点和一个极大值点.(5) 设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则( )(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >>(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则( ) (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关.三 、(本题满分10分)设函数 32ln(1),0arcsin ()6,01,sin 4ax ax x x x f x x e x ax x x x ⎧⎪+<⎪-⎪⎪==⎨⎪+--⎪>⎪⎪⎩ 问a 为何值时,()f x 在0x =处连续;a 为何值时,0x =是()f x 的可去间断点?四 、(本题满分9分)设函数()y y x =由参数方程212ln 112,(1)ut x t t e y du u +⎧=+⎪>⎨=⎪⎩⎰所确定,求.922=x dxyd五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六、(本题满分12分)设函数()y y x =)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.八 、(本题满分12分)设位于第一象限的曲线()y f x =过点)21,22(,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 ()y f x =的方程;(2) 已知曲线sin y x =在],0[π上的弧长为l ,试用l 表示曲线()y f x =的弧长s .九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m . 根据设 计要求,当以min /33m 的速率向容器内注入 液体时,液面的面积将以2/min m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)十 、(本题满分10分)设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(,)a b 内()0f x >; (2) 在(,)a b 内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(,)a b 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f a a b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为1:230l ax by c ++=,2:230l bx cy a ++=,3:230l cx ay b ++=.试证: 这三条直线交于一点的充分必要条件为.0=++c b a2003年全国硕士研究生入学统一考试数学二试题解析一、填空题 (1)【答案】4-【详解】 当0→x 时,11(1)1~nx x n +-,sin ~x x ,则241241~1)1(ax ax ---,2~sin x x x 由题设已知,当0→x 时,124(1)1ax --与sin x x 是等价无穷小,所以 12242001(1)141lim lim sin 4x x ax ax a x x x →→--===-,从而 4a =-.(2)【答案】0x y -=【分析】为了求曲线在点(1,1)处的切线方程,首先需要求出函数在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】对所给方程两边对x 求导数,将其中的y 视为x 的函数,有y y xy x y '=+'+342将1,1x y ==代入上式,得.1)1(='y 故函数在点(1,1)处的导数为1,即点(1,1)处切线的斜率为1,再利用点斜式得,过点(1,1)处的切线方程为)1(11-⋅=-x y ,即.0=-y x(3)【答案】!)2(ln n n【详解】()y f x =带佩亚诺余项的麦克劳林公式:()2(0)(0)()(0)(0)()2!!n n n f f f x f f x x x x n ο'''=+++++求()y f x =的麦克劳林公式中nx 项的系数相当于先求()y f x =在点0x =处的n 阶导数值)0()(n f,()(0)!n f n 就是麦克劳林公式中nx 项的系数.2ln 2x y =';2)2(ln 2x y ='';()2(ln 2)n x n y = (归纳法及求导公式)于是有nn y )2(ln )0()(=,故xy 2=的麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn =(4)【答案】)1(414-ae aπ 【详解】方法1:用定积分计算. 极坐标下平面图形的面积公式:θθρβαd S ⎰=)(212,则 θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a)1(414-ae aπ. 方法2:用二重积分计算. D 表示该图形所占的区域,在极坐标下,利用二重积分面积公式:Dd d σρρθ=⎰⎰所以 2220012a e a DS d d rdr e d θππθσθθ===⎰⎰⎰⎰⎰=)1(414-ae aπ.(5)【答案】3【分析】本题的可由矩阵Tαα的秩为1,把其分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.也可设TA αα=求出α,或利用2A 或设123[]T x x x α=,定出α等.【详解】方法1:观察得A 的三个行向量成比列,其比为1:1:1, 故111111111T A αα-⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT方法2:TA αα=, 2()()(1)TTTTTA Aαααααααααα===而 21111113331111113333(2)111111333A A ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=----=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ 比较(1),(2)式,得3Tαα=.方法3:设123[]T x x x α=211213221223231323111111111Tx x x x x A x x x x x x x x x x αα⎡⎤-⎡⎤⎢⎥⎢⎥===--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦故 122212321233()T x x x x x x x x x αα⎡⎤⎢⎥==++⎢⎥⎢⎥⎣⎦(A 的主对角元之和)(6)【答案】21【分析】 先化简分解出矩阵B ,再计算行列式B 或者将已知等式变形成含有因子B 的矩阵乘积形式,而其余因子的行列式都可以求出即可.【详解】方法1:由E B A B A =--2,知E A B E A +=-)(2,即E A B E A E A +=-+))((,易知矩阵A E +可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为2002010100=-=-E A , 所以=B 21.方法2:由E B A B A =--2,得E A B E A E A +=-+))((等式两端取行列式且利用矩阵乘积的行列式=行列式的乘积,得A E A EB A E +-=+约去0A E +≠,得 112B A E ==+.二、选择题 (1)【答案】()D 【详解】方法1:推理法由题设lim 1n n b →∞=,假设lim n n n b c →∞存在并记为A ,则lim limn nn n n nb c c A b →∞→∞==,这与lim n n c →∞=∞矛盾,故假设不成立,lim n n n b c →∞不存在. 所以选项()D 正确.方法2:排除法取1n a n =,1n n b n-=,满足0lim =∞→n n a ,1lim =∞→n n b , 而11111,0,a b a b ==>,()A 不正确;取1n n b n-=,2n c n =-,满足1lim =∞→n n b ,∞=∞→n n c lim ,而1101b c =>-=,()B 不正确;取1n a n=,2n c n =-,满足0lim =∞→n n a ,∞=∞→n n c lim ,而lim 1n n n a c →∞=,()C 不正确.(2)【答案】()B【详解】dx x xa n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+ (第一类换元法) =3121(1)n n n x n++321111nn n n n ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪+⎝⎭⎝⎭可见 n n na ∞→lim =32lim 111n n n n →∞⎡⎤⎛⎫⎛⎫⎢⎥=+- ⎪ ⎪⎢⎥ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦=321(1)1lim 1(1)11n n n n n -+-+→∞⎡⎤⎛⎫⎢⎥-⎧⎫ ⎪++-⎢⎥⎨⎬ ⎪+⎩⎭⎢⎥⎝⎭⎢⎥⎣⎦(凑重要极限形式) 312(1)1e -=+- (重要极限)所以选项()B 正确(3)【答案】()A 【详解】将x x y ln =代入微分方程y x y x y ϕ⎛⎫'=+ ⎪⎝⎭,其中2ln 1ln x y x -'=,得: )(ln ln 1ln 1ln 2x x xx ϕ+=-,即 21(l n )ln x x ϕ=- 令ln x u =,有21)(u u -=ϕ,以xu y =代入,得 )(y xϕ=.22xy - 故选项()A 正确.(4) 【答案】()C【分析】函数的极值点可能是驻点(一阶导数为零) 或导数不存在的点,极值点是极大值点还是极小值 点可进一步由取极值的第一或第二充分条件判定.【详解】根据导函数的图形可知,一阶导数为零的 点有3个(导函数与x 轴交点的个数);0x =是导数 不存在的点.对3个一阶导数为零的点左右两侧导数符号均 不一致,故必为极值点,其中第一个交点左右两侧 导数符号由正变为负,是极大值点;第二个交点和第三个交点左右两侧导数符号由负变为正,是极小值点,则三个驻点中有两个极小值点,一个极大值点;对导数不存在的点:0x =.左侧一阶导数为正,右侧一阶导数为负,可见0x =为极大值点.故()f x 共有两个极小值点和两个极大值点,应选(C).(5)【答案】()B【详解】令()tan x x x ϕ=-,有2(0)0,()s e c 10,0,4x x x πϕϕ⎛⎫'==-> ∈⎪⎝⎭,所以当0,4x π⎛⎫∈ ⎪⎝⎭时()x ϕ单调递增,则()0x ϕ>,即tan 0x x >>,tan 1x x >,<1tan x x ,由定积分的不等式性质知,44412000tan 14tan x xI dx dx dx I x x ππππ=>=>=⎰⎰⎰可见有 21I I >且42π<I .(6)【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C).三【详解】函数()f x 在0x =处连续,则要求函数()f x 在0x =处既是左连续又是右连续,即(0)(0)(0).f f f +-==300ln(1)(0)lim ()lim arcsin x x ax f f x x x ---→→+==-30lim arcsin x ax x x-→=-(由于ln(1)(0)x x x +→,所以33ln(1)ax ax +(0)x →)23lim 11x ax -→= (型极限,用洛必达法则)2lim lim x x --→→= (极限的四则运算) =2023lim 12x ax x -→- (1222211(1)1()(0)22x x x x ---=-→)6a =-2001(0)lim ()lim sin4ax x x e x ax f f x x x +++→→+--==2201lim 4ax x e x ax x +→+--= 22014lim ax x e x ax x +→+--=024lim 2ax x ae x ax +→+-= 220024lim 2lim (2)2ax ax x x a e a e ++→→+=+=224a =+ (0) 6.f =所以,0x =为()f x 的连续点⇔(0)(0)f f +-=⇔26624a a -==+,得1-=a ; 所以,0x =为()f x 的可去间断点⇔26246a a -=+≠,即22640,1a a a ++=≠-但 解得2-=a ,此时()f x 在0x =为可去间断点.四【分析】(i)变上限积分求导公式:()()()()()()()()u x v x df t dt f u u x f v v x dx''=-⎰;(ii)参数方程()()x t y t ϕψ=⎧⎨=⎩的一阶导数:1()()dy dy dt dy t dx dx dt dx dt t dtψϕ'=⋅=⋅='; (iii)若()x t ϕ=,()y t ψ=二阶可导,函数的二阶导数公式:2223()()()()()()1()()()()()()()d y d dy d t dtdx dx dx dt t dxt t t t t t t t t t t ψϕψϕψϕψϕψϕϕϕϕ'⎛⎫⎛⎫==⋅ ⎪ ⎪'⎝⎭⎝⎭''''''''''''--=⋅='''【详解】设2()12x t t ϕ==+,12ln 1()ute y t du uψ+==⎰,则 ()4dxt t dtϕ'==;12ln 2222()12ln 12ln 12ln t dy e e t et t dt t t t t t ψ+⋅'==⋅=⋅=+++; 所以 212ln 42(12ln )etdy et dx t t +==+ 所以 2222214()11()2(12ln )44(12ln )44(12ln )e d y d dy d t dt e e t dx dx dx dt t dx t t t t t t ψϕ-''⎛⎫⎛⎫⎛⎫==⋅=⋅=⋅=- ⎪ ⎪ ⎪'+++⎝⎭⎝⎭⎝⎭ 当9x =时,由221t x +=及1t >得2t =, 故2222229.4(12ln )16(12ln 2)t x d y eedx t t ===-=-++五【详解】方法1:第二类换元法. 由于被积函数中含有根号21x +,作积分变量变换tan ()22x t x ππ=-<<,那么3232(1)sec x t +=,2sec dx tdt =,则dx x xe x⎰+232arctan )1(=2322tan sec (1tan )t e ttdt t +⎰23tan sec sec t e ttdt t =⎰ 三角变换公式 tan sec tte dt t=⎰=.sin tdt e t ⎰又t d e tdt e t tcos sin ⎰⎰-==)cos cos (tdt e t e tt⎰-- 分部积分 (c o s (s i n t t e t e dt =--⎰(c o s s i n s i nt t te t e t et d t =--+⎰ 分部积分 =tdt e t e t e tttsin sin cos ⎰-+-,故.)cos (sin 21sin C t t e tdt e tt+-=⎰由tan ()22x t x ππ=-<<得arctan t x =,因此dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C x e x x++-方法2:分部积分法dx x xe x ⎰+232arctan )1(=x de xx arctan 21⎰+arctan arctan ()x xd e e ==dx x e xxe x x ⎰+-+232arctan 2arctan )1(1 分部积分=x x de xxxe arctan 22arctan 111⎰+-+a r c t a n a ()x x d e e=arctan arctan arctan 322122(1)xxx x e dx x ⎛⎫-⋅ ⎪=-⎪+⎪⎭⎰ 分部积分 =dx x xe xe xxe x x x ⎰+-+-+232arctan 2arctan 2arctan )1(11,移项整理得;dx x xe x ⎰+232arctan )1(=.12)1(2arctan C xe x x ++-六【详解】 (1) 将题中的dy dx 与22d x dy 变换成以x 为自变量y 为因变量的导数dx dy 与22d ydx 来表示(即通常所说的反函数变量变换),有dy dx =y dxdy '=11,)(22dydx dy d dy x d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原方程,得 .s i nx y y =-'' ( * ) (2) 方程( * )所对应的齐次方程为0=-''y y ,特征方程为210r -=,根1,21r =±,因此通解为.21xxe C e C Y -+= 由于i λω+不是特征方程得根,所以设方程( * )的特解为x B x A y sin cos *+=则 *sin cos y A x B x '=-+,*cos sin y A x B x ''=--代入方程( * ),得:cos sin cos sin 2cos 2sin sin A x B x A x B x A x B x x ----=--= 解得21,0-==B A ,故x y sin 21*-=. 从而x y y sin =-''的通解为.sin 2121*x e C e C y Y y x x -+=+=-由23)0(,0)0(='=y y ,得1,121-==C C .故变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解为.sin 21x e e y x x --=-且()y x 的导函数1()cos 02x x y x e e x -'=+->,满足题设0y '≠条件.七【详解】讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数等价于讨论方程4()ln 4ln 4x x x x k ϕ=-+-在区间(0,)+∞内的零点问题,为此对函数求导,得334ln 44()4(ln 1).x x x x x x xϕ'=-+=-+可以看出1x =是)(x ϕ的驻点,而且当10<<x 时,3ln 0x <,则3l n 10x x -+<,而40x>,有()0x ϕ'<,即)(x ϕ单调减少;当1x >时,3ln 0x >,则3ln 10x x -+>,而40x>,有()0x ϕ'>,即)(x ϕ单调增加,故k -=4)1(ϕ为函数)(x ϕ的惟一极小值即最小值.① 当(1)40k ϕ=->,即当4k <时,()(1)0x ϕϕ≥>,)(x ϕ无零点,两曲线没有交点; ② 当(1)40k ϕ=-=,即当4k =时,()(1)0x ϕϕ≥=,)(x ϕ有且仅有一个零点,即两曲线仅有一个交点;③ 当(1)40k ϕ=-<,即当4k >时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 30k x x x x x x ϕ;+∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ由连续函数的介值定理,在区间(0,1)与),1(+∞内各至少有一个零点,又因)(x ϕ在区间(0,1)与),1(+∞内分别是严格单调的,故)(x ϕ分别各至多有一个零点. 总之,)(x ϕ有两个零点. 综上所述,当4k <时,两曲线没有交点;当4k =时,两曲线仅有一个交点;当4k >时,两曲线有两个交点.八【详解】(1) 曲线()y f x =在点(,)P x y 处的法线方程为)(1x X yy Y -'-=- 令0X =,则它与y 轴的交点为).,0(y xy '+ 由题意,此点与点(,)P x y 所连的线段被x 轴平分,由中点公式得0)(21='++y xy y ,即.02=+xdx ydy 积分得222x y C +=(C 为任意常数),代入初始条件2122==x y 得12C =,故曲线()y f x =的方程为22122x y +=,即.1222=+y x (2) 曲线sin y x =在[0,]π上的弧长为22022.x tl ππππ=+-====⎰⎰⎰弧长公式另一方面,将(1)中所求得的曲线()y f x =写成参数形式,在第一象限中考虑,于是⎪⎩⎪⎨⎧==,sin 22,cos t y t x .20π≤≤t 于是该曲线的弧长为:s ===2)t udu π=-=-= 所以12l =,即4s =.九【详解】(1) 设在t 时刻,液面的高度为y ,此时液面的面积为2()()A t y πϕ=圆的面积公式,由题设:液面的面积将以min /2m π的速率均匀扩大,可得2()()dA t d y dt dt πϕπ==,即2()1dy dtϕ= 所以2()y t C ϕ=+, 由题意,当0t =时()2y ϕ=,代入求得4C =,于是得2() 4.y t ϕ=+从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为20()()yV t u du πϕ=⎰,由题设:以min /33m 的速率向容器内注入液体,得()20()()3y dV t du du dt dtπϕ==⎰所以 220()33()12.yu du t y πϕϕ==-⎰上式两边对y 求导,得2()6()()y y y πϕϕϕ'=变限积分求导,即()()6d y y dy ϕπϕ= 解此微分方程,得yCey 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知2C =, 故所求曲线方程为.26yex π=十【详解】(1) 因为极限ax a x f ax --+→)2(lim 存在,且lim()0x a x a +→-=,故lim (2)0x a f x a +→-=又()f x 在[,]a b 上连续,从而lim (2)()x af x a f a +→-=,则()0f a =. 由于0)(>'x f ,则()f x 在(,)a b 内严格单调增加,所以()f x 在x a =处取最小值,即).,(,0)()(b a x a f x f ∈=>(2) 由要证明的形式知,要用柯西中值定理证明.取2()F x x =,()()xag x f t dt =⎰()a x b ≤≤,则0)()(>='x f x g ,则)(),(x g x F 满足柯西中值定理的条件,于是在(,)a b 内存在点ξ,使222()()()2()()()()()(())baxaaa x Fb F a b a x g b g a f f t dt f t dtf t dt ξξξ='--===-'-⎰⎰⎰即)(2)(22ξξf dxx f a b ba=-⎰. (3) 在区间],[ξa 上应用拉格朗日中值定理,得在),(ξa 内存在一点η,使()()()()f f a f a ξηξ'-=-因()0f a =,上式即))(()(a f f -'=ξηξ,代入(2) 的结论得,))((2)(22a f dxx f a b ba-'=-⎰ξηξ即 ⎰-=-'ba dx x f aa b f .)(2))((22ξξη十一【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a . 至于求P ,则是常识问题.【详解】矩阵A 的特征多项式为]16)2)[(6(628222---=------=-λλλλλλa A E =)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r42021068400000000E A a a --⎡⎤⎡⎤⎢⎥⎢⎥-=--→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,所以0a =.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E ,解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P十二【分析】三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】方法1:“必要性”. 设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A232()3()23232323a b c a b c b c a c a b A bc a b c a c a bc ab -++++-++=-=---123111()236()23a b c b ca abc b c a c a b c a b -=++-=-++- 16()6()c b a ba b c b c b a b a b c a c b cc a c b c--=-++--=-++----6()[()()()()]a b c c b b c a b a c =-++-----2226()()a b c bc c b bc a ac ab bc =-++--+-++- 2226()()a b c a b c ac ab bc =++++---2223()[()()()]a b c a b b c c a =++-+-+-,由于三条直线互不相同,所以0)()()(222≠-+-+-a c c b b a ,故.0=++c b a“充分性”. 由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于])([2)(22222b b a a b ac cb ba ++-=-==0]43)21[(222≠++-b b a ,故秩()2A =.于是,秩(A )=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法2:“必要性”设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为0BX =的非零解,其中2323.23a b c B b c a c a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 所以||0B =.而232323232323a b c a bcB bc a bc a A c a bca b-==--=-- 2223()[()()()]a b c a b b c c a =-++-+-+-,(解法同方法1)但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a “充分性”:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 将方程组(*)的三个方程相加,并由.0=++c b a 可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *) 因为])([2)(22222b b a a b ac cb b a ++-=-==222[()]0a b a b -+++≠,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) xy 2=的麦克劳林公式中nx 项的系数是 .(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为 .(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B .二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知xxy ln =是微分方程)(y x x y y ϕ+='的解,则)(y x ϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分) 计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dy x d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m. 根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前, 容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2) 在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη 十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a1. 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.【评注】 本题属常规题型,完全类似例题见《数学复习指南》P.38 【例1.62】.2.. 【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点,类似例题见《数学复习指南》P.55 【例2.13】和【例2.14】.3.. 【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n fn 【详解】 因为 2ln 2xy =',2)2(ln 2xy ='',n x x y )2(ln 2,)(= ,于是有nn y )2(ln )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案.4.. 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ.【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂. 完全类似例题见《数学复习指南》P.200 【例7.38】.5.. 【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=完全类似例题见《数学复习指南》P.389 【例2.11】和《考研数学大串讲》P.162 【例13】.6.. 【分析】 先化简分解出矩阵B ,再取行列式即可.【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算. 完全类似例题见《考研数学大串讲》P.160 【例11】.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7. 【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见《数学最后冲刺》P.179.8.. 【分析】 先用换元法计算积分,再求极限. 【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n nn n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n 【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.9.. 【分析】 将xxy ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(yx ϕ.【详解】将xxy ln =代入微分方程)(y x x y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(uu -=ϕ,故 )(y x ϕ=.22x y - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.10.. 【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.11.. 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0. 【详解】 因为当 x>0 时,有tanx>x ,于是1tan >x x ,1tan <xx,从而有 4tan 41ππ>=⎰dx x x I , 4tan 402ππ<=⎰dx x x I ,可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B).【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.12.. 【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关.或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。

相关文档
最新文档