《随机过程答案》第五章习题
钱敏平龚光鲁随机过程答案(部分)
钱敏平龚光鲁随机过程答案(部分)随机过程课后习题答案第⼀章第⼆题:已知⼀列⼀维分布{();1}n F x n ≥,试构造⼀个概率空间及其上的⼀个相互独⽴的随机变量序列{(,);1}n n ξ?≥使得(,)n ξ?的分布函数为()n F x 。
解:有引理:设ξ为[0, 1]上均匀分布的随机变量,F(x)为某⼀随机变量的分布函数,且F(x)连续,那么1()F x η-=是以F(x)为分布的随机变量。
所以可以假设有相互独⽴的随机变量12,,...,n θθθ服从u[0, 1]分布,另有分布{()}n F x ,如果令1(,)()n n n F ξθ-?=,则有(,)n ξ?为服从分布()n F x 的随机变量。
⼜由假设条件可知,随机变量{(,),1}n n ξ?≥之间相互独⽴,则其中任意有限个随机变量12(,), (,),...,(,)n i i i ξξξ的联合分布为:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i x i x i x F x F x F x ξξξ?≤?≤?≤=再令112{,,...,,...},,{|()[0,1],1,2,...}n i i i i w w w w A A x F x i -Ω=∈=∈=,令F 为Ω所有柱集的σ代数,则由Kolmogorov 定理可知,存在F 上唯⼀的概率测度P 使得:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i w i w i w F w F w F w ξξξ?≤?≤?≤=则所构造的概率空间为(Ω,F , P)。
第⼋题:令{};1n X n ≥是⼀列相互独⽴且服从(0,1)N (正态分布)的随机变量。
⼜令1n n S X X =++22(1)n S n n ξ+=1(,,)n n F X X σ=试证明:,;1n n F n ξ≥()是下鞅(参见23题)。
随机过程第三版课后答案
随机过程第三版课后答案【篇一:随机过程习题答案】们的均值分别为mx和my,它们的自相关函数分别为rx(?)和ry(?)。
(1)求z(t)=x(t)y(t)的自相关函数;(2)求z(t)=x(t)+y(t)的自相关函数。
答案:(1)rz(?)?e?z(t??)z(t)??e?x(t??)y(t??)x(t)y(t)?利用x(t)和y(t)独立的性质:rz(?)?e?x(t??)x(t)?e?y(t??)y(t)???rx(?)ry(?)(2)rz(?)?e?z(t??)z(t)??e??x(t??)?y(t??)???x(t)?y(t)?? ?e?x(t??)x (t)?x(t??)y(t)?y(t??)x(t)?y(t??)y(t)?仍然利用x(t)和y(t)互相独立的性质:rz(?)?rx(?)?2mxmy?ry(?)2、一个rc低通滤波电路如下图所示。
假定输入是均值为0、双边功率谱密度函数为n0/2的高斯白噪声。
(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。
电流:i(t)电压:y(t)答案:(1)该系统的系统函数为h(s)?y(s)1? x(s)1?rcs则频率响应为h(j?)?11?jrc?n02而输入信号x(t)的功率谱密度函数为px(j?)?该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为:py(j?)?px(j?)h(j?)?2n0/21?rc?2对py(j?)求傅里叶反变换,就得到输出的自相关函数:1ry(?)?2?????py(j?)ej??1d??2?n0/2j?????1?rc?2ed??(2)线性系统输入为高斯随机过程,则输出也一定是高斯的。
因此,为了求输出的一维概率密度函数,仅需知道输出随机过程的均值和方差即可。
均值:已知输入均值mx=0,则输出均值my=mxh(0)=02方差:ry(0)?var(y)?my因为均值为0,所以方差var(y)?ry(0)?一维pdf:略12?n0/2???1?rc2?2d??3、理想带通滤波器的中心频率为fc、带宽为b,其在通带的频率增益为1。
随机过程第三版课后答案
随机过程第三版课后答案【篇一:随机过程习题答案】们的均值分别为mx和my,它们的自相关函数分别为rx(?)和ry(?)。
(1)求z(t)=x(t)y(t)的自相关函数;(2)求z(t)=x(t)+y(t)的自相关函数。
答案:(1)rz(?)?e?z(t??)z(t)??e?x(t??)y(t??)x(t)y(t)?利用x(t)和y(t)独立的性质:rz(?)?e?x(t??)x(t)?e?y(t??)y(t)???rx(?)ry(?)(2)rz(?)?e?z(t??)z(t)??e??x(t??)?y(t??)???x(t)?y(t)?? ?e?x(t??)x (t)?x(t??)y(t)?y(t??)x(t)?y(t??)y(t)?仍然利用x(t)和y(t)互相独立的性质:rz(?)?rx(?)?2mxmy?ry(?)2、一个rc低通滤波电路如下图所示。
假定输入是均值为0、双边功率谱密度函数为n0/2的高斯白噪声。
(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。
电流:i(t)电压:y(t)答案:(1)该系统的系统函数为h(s)?y(s)1? x(s)1?rcs则频率响应为h(j?)?11?jrc?n02而输入信号x(t)的功率谱密度函数为px(j?)?该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为:py(j?)?px(j?)h(j?)?2n0/21?rc?2对py(j?)求傅里叶反变换,就得到输出的自相关函数:1ry(?)?2?????py(j?)ej??1d??2?n0/2j?????1?rc?2ed??(2)线性系统输入为高斯随机过程,则输出也一定是高斯的。
因此,为了求输出的一维概率密度函数,仅需知道输出随机过程的均值和方差即可。
均值:已知输入均值mx=0,则输出均值my=mxh(0)=02方差:ry(0)?var(y)?my因为均值为0,所以方差var(y)?ry(0)?一维pdf:略12?n0/2???1?rc2?2d??3、理想带通滤波器的中心频率为fc、带宽为b,其在通带的频率增益为1。
《随机过程》课后习题解答
( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2
i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)
x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )
f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt
3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n
(完整版)随机过程习题答案
解 转移概率如图
一步概率转移矩阵为
10000 111
00 333 P 01110
333
00111 333
00001
二步转移概率矩阵为
10 0 00 1 00 0 0
11 1 00 11 1 0 0
3 33
333
P (2)
111
111
0
00
0
33 3
333
00 1 11 0 01 11
333
333
00 0 01 0 00 01
(3) mX (t ) 1 cos( t) 1 2t 1 cos( t ) t
2
2
2
1 mX (1)
2
2 X
(t )
E[ X 2 (t)] [ EX (t )] 2
1 cos2 ( t )
1 ( 2t) 2
1 [ cos( t )
t]2
2
2
2
1 cos2 ( t) 2t 2 1 cos2 ( t) t 2 t cos( t)
。
解 (1) t
1
时,
X ( 1) 的分布列为
2
2
1
0
1
X( )
2
P
1
1
2
2
一维分布函数
0, x 0
1
1
F ( , x) ,
2
2
1,
0 x1 x1
t 1 时, X (1) 的分布列为
-1
2
X (1)
P
1
1
2
2
一维分布函数
0, x 1
1
F (1, x)
,
2
《概率论与随机过程》第5章习题解答
5.4 对于题5.2,若滤波器的输出,再加到第二个相同的滤波器中,仍用频域分析法求出第二个滤波器
的输出。
解:
第一个滤波器输入是
,则经过两个相同的滤波器以后的输出
5.14 假设一个零均值平稳随机过程
加到冲激响应为
(t.>=0)的线形滤波器中,证明
证明:
5.15 假设一个零均值平稳随机过程
,加到冲激响应为
的线性滤波器中,证明输出功率谱密度为。
证明:
所以,
5.18 假设随机过程
通过一个微分器,其输出过程
存在,微分器的传密为
,求(1)
与
的互功率谱密度。
(2)
的功率谱密度。
解:(1)
(2)
5.20 图为单个输入两个输出的线形系统,输入
为平稳随机过程,求证输出
和
的互谱密度为
证明:
令
,则
5.26 若线性系统输入平稳过程
的功率谱密度为
,现要求系统输出
的功率谱密度为
,求:相应的稳定系统的传输系数。
解:
5.29 某个放大器,其功率增益随频率的变化为
,求:该放大器的噪声带宽。
解:。
西安交通大学汪荣鑫随机过程第二版课后答案
随机过程习题解答第一章习题解答1.设随机变量X 服从几何分布,即:(),0,1,2,kP X k pqk ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ =()1jt k jtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑(其中 0(1)nnnn n n nx n x x ∞∞∞====+-∑∑∑)令 0()(1)nn S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰同理 2(1)2kkkk k k k k kx k x kx x ∞∞∞∞=====+--∑∑∑∑令2()(1)kk S x k x ∞==+∑ 则211()(1)(1)xkk kk k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为(2) 其期望和方差;(3)证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则 (2)'1()(0)Xp E X fjb∴==(4)若(,)i i X p b Γ 1,2i = 则同理可得:()()i i P X b f t b jt∑=∑-3、设ln (),()(kZ F X E Zk =并求是常数)。
X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)ln (),()(kZ F X E Z k =并求是常数)。
解(1)11{()}{()}[()]P F x y P x F y F F y y --<=<==(01y ≤≤) ∴00()0111y F y yy y <⎧⎪=≤≤⎨⎪>⎩∴()F x 在区间[0,1]上服从均匀分布()F x ∴的特征函数为11001()(1)jtx jtx jt X e f t e dx e jt jt ===-⎰ (2)ln ()()()[]jtz jt F x Z f t E e E e ===1ln 01jt ye dy ⋅⎰=111jty dy jt =+⎰4、设12n X X X ,,相互独立,且有相同的几何分布,试求1nkk X =∑的分布。
(解答)《随机过程》第五章习题
T 2 (u)du
0
T 0
2
(v)dv
P
2
1 T T E{ 2 (u) 2 (v)}dudv P 2 T2 0 0
1 T2
T 0
T 0
[
R2
(0)
2
R2
(u
v)]dudv
P
2
2
T2
T 0
T 0
R2
(u
v)dudv
H ( j) 2 1
j
2 2
由维纳-辛嵌定理,有:
S
()
F[R
(
)]
2
2
2
2
由输入输出功率谱的关系,有:
因此,我们有
S ()
H ( j) 2 S ()
( 2
2
2
2 )( 2
2)
2
2
2 2
2
H ( j) 2 Sn ()
N0 2( 2 2 )
由维纳-辛嵌定理,有:
由于
R
( )
F
1[S
()]
N0 4
e
E{(t)} 0 , D{(t)}
E{(t)(t)} 2[R (0) R (T )]
N0 2
1 eT
ˆ
(1)在 t 0 时输出(0) 大于 y 的概率 P{(0) y};
(2)求条件概率 P{(0) y (T ) 0},其中T 0 ;
(3)求条件概率 P{(0) y (T ) 0},其中T 0 。
湖南大学《随机过程》课程习题集
湖南大学本科课程《随机过程》习题集主讲教师:何松华 教授第一章:概述及概率论复习1.1 设一批产品共50个,其中45个合格,5个为次品,从这一批产品中任意抽取3个,求其中有次品的概率。
1.2 设一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第3次才取得合格品的概率。
1.3 设一袋中有N 个球,其中有M 个红球,甲、乙两人先后各从袋中取出一个球,求乙取得红球的概率(甲取出的球不放回)。
1.4 设一批产品有N 个,其中有M 个次品,每次从其中任取一个来检查,取出后再放回,求连续n 次取得合格品的概率。
1.5设随机变量X 的概率分布函数为连续的,且0()00xA Be x F x x λ-⎧+≥=⎨<⎩其中λ≥0为常数,求常数A 、B 的值。
1.6设随机变量X 的分布函数为 ()() (-<<)F x A Barctg x x =+∞∞(1) 求系数A 、B ;(2)求随机变量落在(-1,1)内的概率;(3)求其概率密度函数。
1.7已知二维随机变量(X,Y)的联合概率密度分布函数为6(2)0,1(,)0XY xy x y x y f x y elsewhere --≤≤⎧=⎨⎩(1)求条件概率密度函数|(|)X Y f x y 、|(|)Y X f y x ;(2)问X 、Y 是否相互独立?1.8已知随机变量X 的概率密度分布函数为22()()]2X X X x m f x σ-=- 随机变量Y 与X 的关系为 Y=cX+b ,其中c ,b 为常数。
求Y 的概率密度分布函数。
1.9设X 、Y 是两个相互独立的随机变量,其概率密度分布函数分别为101()0X x f x elsewhere ≤≤⎧=⎨⎩,0()0y Y e y f y elsewhere-⎧<=⎨⎩ 求随机变量Z=X+Y 的概率密度分布函数。
1.10设随机变量Y 与X 的关系为对数关系,Y=ln(X),随机变量Y 服从均值为m Y 、标准差为σY 的正态分布,求X 的概率密度分布。
_随机数学_习题解答 第五章答案
第5章1. 设{},0t B t ≥是一维标准Brown 运动, 判断它是否均方连续, 是否均方可微. 解:由均方连续准则,Brown 运动{},0t B t ≥的相关函数(,)R s t 为()()()()()22(,)s t s s s t t s t t E B B B B s s t R s t E B B E B B B B t t s⎧-+=≤⎪==⎨-+=≤⎪⎩故()000,R t t t =连续,故Brown 运动是均方连续的。
由均方可微准则,对Brown 运动,1[(,)(,)(,)(,)]1m in(,)m in(,)m in(,)1R t h t k R t h t R t t k R t t hkh k t h t k t h t t t k t k hk k hh++-+-++⎧≤⎪++-+-++⎪==⎨⎪≤⎪⎩ 当0,0h k →→时极限不存在,故Brown 运动不是均方可微的。
2. 设()()2212,~0,0,,,X Y N σσρ. 令0,tt t u X X tY Y X du =+=⎰, 2tt u Z X du =⎰,0s t ∀≤≤.1) 证明t X 在0t >上均方可微; 2) 求,t t Y Z 的均方导数.证:1)()()()()221122,,,()()s t s t R s t E X X E X sY X tY s t st σρσσσ∀==++=+++根据均方可微准则,相关函数(,)R s t 在(),t t 点广义二次可微:()()()()()()()()()()()(),0222211221122,022222112211222222,01lim[(,)(,)(,)(,)]1lim[2222]1limh k h k h k R t h t k R t h t R t t k R t t hkt h k t h t k t h t h t hkt k t k t t t hk hk σρσσσσρσσσσρσσσσρσσσσσ→→→++-+-++=++++++-++++-+++++++⎡⎤==⎣⎦故t X 在0t >上均方可微。
随机过程及其应用_习题答案(陆大金)
⎛ z2 ⎞ 1 exp ⎜ − ⎟ 2π ⎝ 2⎠
解(4) : 若 c 小于零,则事件 A 为必然事件,P(A)=1; 若 c 大于等于零, 考察
2ω
π
∫
π /ω
0
ζ 2 (t )dt ,变形为:
2ω
π
∫
π /ω
0
v 2 sin 2 (ωt + φ )dt
= v2 ⎛ v2 ⎞ ⎛ c⎞ P{A}=P{ v > c }=P{ v > c }= ∫ v ⋅ exp ⎜ − ⎟ dv = exp ⎜ − ⎟ ⎝ 2⎠ ⎝ 2⎠ c
0
+∞
=∫ =
+∞
0
V −2 e dv 2π
V2
1 2π
因为 f v (v) ⋅ f φ (φ ) = f vφ (v, φ ) ,所以可知二者统计独立。 解(2) : 典型样本函数图形,略。 解(3) : 利用特征函数求解。 在 t 时刻,cos(wt),sin(wt) 值均给定。
⎛ u2 ⎞ 高斯随机变量 ξ 的特征函数为 Φξ (u ) = exp ⎜ − ⎟ ⎝ 2 ⎠
= P{ηn > [t − (n − 1)T ]}
1 dη t − ( n −1)T T T − t + (n − 1)T = T nT − t = T t = n− T t − (n − 1)T = 1− T
=∫
T
P{ξ (t ) = 0} = 1 − P{ξ (t ) = A} =
t − (n − 1)T t = − (n − 1) T T ∴ fξt ( x) = PAδ ( x − A) + P0δ ( x) t⎞ ⎛ ⎛t ⎞ = ⎜ n − ⎟ δ ( x − A) + ⎜ − (n − 1) ⎟ δ ( x) T⎠ ⎝ ⎝T ⎠
随机过程(刘次华)第五章试题
第五章复习题1. 证明泊松过程(){},0X t t ≥为连续时间齐次马尔可夫链。
证 先证泊松过程的马尔可夫性。
泊松过程是独立增量过程,且()00X =,对任意1210n n t t t t +<<<<<有1111111121211111{()|(),,()}{()()|()(0),()(),,()()}{()()}n n n n n n n n n n n n n n n n P X t i X t i X t i P X t X t i i X t X i X t X t i i X t X t i i P X t X t i i ++++--++====-=--=-=--=-=-=-另一方面111111{()|()}{()()|()(0)}{()()}n n n n n n n n n n n n n n P X t i X t i P X t X t i i X t X i P X t X t i i ++++++===-=--==-=- 所以111111{()|(),,()}{()|()}n n n n n n n n P X t i X t i X t i P X t i X t i ++++======即泊松过程是一个连续时间马尔可夫链。
再证齐次性,当j i ≥时,(){()|()}{()()}()!j itt P X s t j X s i P X s t X s j i ej i λλ--+===+-=-=-当j i <时,因增量只取非负整数值,故(),0ij p s t =,所以(),(,)()()!0,j it ij ij t ej i p s t p t j i j i λλ--⎧≥⎪==-⎨⎪<⎩转移概率与s 无关,泊松过程具有齐次性。
2、连续时间齐次马尔可夫链的科尔莫戈罗夫向后方程是()()()ijikkj ii ij k ip t qp t q p t ≠'=-∑,其矩阵表达式为()()P t QP t '=,其中()P t 是马尔可夫链的状态转移矩阵,Q 是马尔可夫链的转移速率矩阵。
北邮随机信号答案ch5
怎样的条件才能使
Z (t ) =
∑A e ω
j k =1 k
n
kt
是一个复平稳随机过程。 5.7 设有复随机过程
Z (t ) = ∑ (α i cos ω i t + jβ sin ω i t )
i =1
n
其中 α i 与 β k 是相互独立的随机变量, α i 与 α k 、 β i 与 β k (i ≠ k ) 是相互正交的,数学期 望和方差分别为 E[α i ] = E[ β i ] =0, 解:
πτ
= R0 (τ ) cos ω0τ
ˆ (τ ) = R (τ ) sin ω τ 是一个低频信号,所以 R n 0 0 πτ ˆ (τ ) sin ω τ = R (τ ) 所以 Rn (τ ) = Rn (τ ) = Rn (τ ) cos ω0τ + R n 0 0
由于 R0 (τ ) =
c s
=
1 2π
∫
∞
−∞
[2 X (ω − ω ′)U (ω − ω ′)][2 X (ω ′)U (ω ′)]d ω ′
Ω Ω ⎧ ω0 − ≤ ω ′ ≤ ω0 + ⎪ Ω Ω ⎪ 2 2 时亦不 由于有 ω0 − ≤ ω ≤ ω0 + 时 X (ω ) 不为零,因此有 ⎨ 2 2 ⎪ω − Ω ≤ ω − ω ′ ≤ ω + Ω 0 0 ⎪ 2 2 ⎩
5.2 设 A(t ) 与 ϕ(t ) 为低频信号,证明 (1) H [ A(t ) cos[ω 0 t + ϕ (t )] = A(t ) sin[ω 0 t + ϕ (t )] (2) H [ A(t ) sin[ω 0 t + ϕ (t )] = − A(t ) cos[ω 0 t + ϕ (t )]
(完整版)随机过程习题答案
随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。
解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。
解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。
《随机过程》第五章作业解答
(2) P (Zn = 0) = φn(0) = 1 − pn.
7. 解:
∞
φη(s) = Esη = p(η = k) · sk
k=1 ∞
= P (ξ = k|ξ > 0) · sk
k=1
=
∞ k=1
sk
·
P (ξ
=
k)
1 − P (ξ = 0)
φ(s) − φ(0) =
1 − φ(0)
如有疏漏,欢迎指正
《随机过程》第五章作业解答
1. 解:Eξ = 1, V arξ = 1,从而由定理 5.1 得,EZn = 1, V arZn = n。 2. 解:µ = Eξ = b + 2c = 2 − 2a − b, σ2 = V arξ = b + 4a − (2a + b)2,从而由定理 5.1 可得: EZn = (2−2a−b)n; V arZn = [b+4a−(2a+b)2](2−2a−b)n−1[1+(2−2a−b)+· · ·+(2−2a−b)n−1]. 分情况讨论可得:
−
=
1
p −
p
αn−1 − 1
αn−1
−
1−p p
.
1 − pαn−1
p
记
xn
=
αn − 1
αn
−
1−p p
,从而得到
xn
=
1
p −
p
·
xn−1,其中
x1
=
α1 − 1
α1
−
1−p p
=
1−p−1
1
−
p
−
1−p p
=
随机过程课后习题答案
标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。
求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。
解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。
随机过程第5章
第五章 离散参数Markov 链5.1 Markov 链的基本概念 1.Markov 链和转移概率矩阵 定义5-1考虑只取有限个或可数个值的随机过程{},0,1,2,nX n = .把过程所取可能值的全体称为它的状态空间,记之为E ,通常假{}0,1,2,E = .若n X i =就说“过程在时刻n 处于状态i ”.若对任意状态011,,,(,n 0)n i i i i j -≥ 及任意的有11111001(|,,,,)(|)n n n n n n n P X j X i X i X i X i P X j X i +--+======== 这样的随机过程称为Markov 链.假设每当过程处于状态i ,则在下一个时刻将处于状态j 的概率是固定的ijp ,即对任意时刻n ,有1(|)n nijP X j X i p +===,称过程具有齐次性.称矩阵00010201011121012j j i i i ij p p p p p p p p P p p p p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦是一步转移概率矩阵,简称为转移矩阵. 由ijp 的定义可知,这是一种带有平稳转移概率的Markov 链,也称作时间齐次Markov 链或简称时齐次Markov 链.我们研究的均为齐次马氏链.2.例题例5-1(直线上的随机游动)考虑在直线上整数点上运动的粒子,当它处于位置j 时,向右转移到j+1的概率为p ,而向左移动到j-1的概率为q=p-1,又设时刻0时粒子处在原点,即00X =.于是粒子在时刻n 所处的位置{}n X 就是一个Markov 链,且具有转移概率,1,10,jk p k j p q k j =+⎧⎪==-⎨⎪⎩其他当12p q ==时,称为简单对称随机游动.例5-6(排队模型)考虑顾客到服务台排队等候服务,在每个服务周期中只要服务台前有顾客在等待,就要对排队在队前的一位顾客提供服务,若服务台前无顾客时就不实施服务.设在第n 个服务周期中到达的顾客数为一随机变量n Y ,且序列{}nY 是独立同分布随机序列,即(),0,1,2,,n k P Y k p k === 且01k k p ∞==∑设n X 为服务周期n 开始时服务台前顾客数,则有11,1,0n n n n n n X Y X X Y X +-+≥⎧=⎨=⎩若若此时{},1nXn ≥为一Markov 链,其转移概率矩阵为01234012340123012000p p p p p p p p p p P p p p p p p p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦例5-8(生灭链)观察某种生物群体,以n X 表示在时刻n群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个数量单位的概率为i b ,减灭到i-1个数量单位的概率为i a ,保持不变的概率为1()i i i r a b =-+,则{},0nX n ≥为齐次马尔可夫链,{}0,1,2,E = ,其转移概率为,1,,1i ij i ib j i p r i ja j i =+⎧⎪==⎨⎪=-⎩ 0(0)a =,称此马尔可夫链为生灭链.3.定理5-1设随机过程{}nX 满足:(1)1(,)(1),n n n X f X n ξ-=≥其中:f E E E ⨯→,且n ξ取值在E 上; (2){},1nn ξ≥为独立同分布随机变量,且0X 与{},1n n ξ≥也相互独立,则{}n X 是Markov 链,而且其一步转移概率为,对于任意,i j E ∈,1((,))ij p P f i j ξ==证明:设1n ≥,由上面(1)、(2)可知,1n ξ+与12,,,nX X X 互相独立,所以有1110011100111001(|,,,)((,)|,,,)((,)|,,,)((,))n n n n n n n n n n n n n n P X j X i X i X i P f X j X i X i X i P f i j X i X i X i P f i j ξξξ+--+--+--+================同理111001(|,,,)(|)n n n n n n P X j X i X i X i P X j X i +--+=======即{}nX 是Markov 链,由时间齐次性,其一步转移概率为1((,))ij p P f i j ξ==于是定理5-1得证.4.定理5-2时齐次Markov 链{}nX 完全由其初始状态的概率分布0(),1,2,i p P X i i ===和其转移概率矩阵()ijP p =所确定.证明:对于任意12,,,n i i i E ∈ ,计算有限维联合分布,由概率的乘法公式及马氏性可知1001121001100111100111100111111001111(,,,)(,,,)(|,,,)(,,,)(|)(,,,)n n n nn n n n n n n n n n n n n n n n i i i i i i i i i P X i X i X i P X i X i X i P X i X i X i X i P X i X i X i P X i X i P X i X i X i p p p p p ------------======================定理5-2得证. 5.例题 例5-9(1)(二项过程的概念)设在每次试验中,事件A 发生的概率为(01)p p <<,独立地重复进行这项试验,以n Y 表示到第n 次为止事件A 发生的次数,则{},1,2,nY n = 是一个二项过程.说明:令n X 表示第n 次试验中事件A 发生的次数,则n X ~(0)1,(1),1,2,n n P X p P X p n ==-=== 且独立.(易知{},1nX n ≥为马氏过程)而1,1,2,n n Y X X n =++= 服从二项分布(,)B n p ,故称此{},1nY n ≥为二项过程.(2)二项过程具有独立平稳增量性. 证明:易知增量1n l n n n l Y Y X X +++-=++ ,1121n l k n l n l n l k Y Y X X ++++++++++-=++ ,等等相互独立;且~(,),1,2,n m n Y Y B m p n +-= ,即具有平稳性. 即{},1nY n ≥为一个独立平稳增量过程.(3)独立平稳增量过程为马氏过程.5.2 C-K 方程1.定理5-3 Chapman-Kolmogorov 方程 对任何整数,0m n ≥, 有()()()m n m n ijik kj k Epp p +∈=∑或()()()m n m n P P P +=⨯证明:这里只需要证明()(1)n n P PP -=成立,再依次递推即可证明本定理.(?)因为()0100100101010(1)(|)(,|)(|)(|,)(|)(|)(n ij n n k n k n k n ik kj k P P X j X i P X j X k X i P X k X i P X j X i X k P X k X i P X j X k p p ∞=∞=∞=∞-====================∑∑∑∑由马氏性)根据矩阵的乘法规则,知()(1)n n P PP -=.定理得证.注:定义m 步转移概率()(|)m ijn m n pP X j X i +===,()m ijp 表示给定时刻n 时,过程处于状态i ,间隔m 步之后过程在时刻n+m 转移到了状态j 的条件概率.还约定(0)1iip =,(0)0ijp =,i j ≠以()n ijp 表示第i 行、第j 列的元素矩阵()n P =(()n ijp ),称为Markov 链的n 步转移概率矩阵.2.例题(两状态Markov 链) 例5-10在重复独立贝努里(Bernoulli )试验中,每次试验有两种状态{}0,1E =,设{}nX 表示第n 次试验中出现的结果,且有(1),(0)1,1,2,n n P X p P X q p n =====-=其中01p <<,则{},1nX n ≥显然是独立同分布随机序列,从而它是Markov 链.于是经过计算有00100111,p p q p p p ====所以,一步转移概率矩阵为q p P qp ⎡⎤=⎢⎥⎣⎦而且有()n qp PP q p ⎡⎤==⎢⎥⎣⎦5.3 Markov 链的状态分类 1.互通 定义5-2称自状态i 可达状态j ,并记i j →,如果存在0n >,使()0n ijp >,称状态i 与j 互通(相同,互达),并记为i j ↔,如i j →且j i →2.定理5-4可达关系与互通关系都具有传递性,即如果i j →且j k →,则i k → 证:因为有i j →,j k →,所以存在1,1l m ≥≥,使()()0,0l m ij jk p p >>由C-K 方程()()()()()0l m l m l m ik is sk ij jk sp p p p p +=≥>∑这里1l m +≥,所以i k →成立.若将可达关系得证明正向进行,再反向进行,就可得出互通关系的传递性,证毕. 3.定义5-3 设{},1nXn ≥为齐次Markov 链,其状态空间为E 。
随机过程答案4(1)
第四章第五章习题4.4 设解析信号()Z t为ˆ()()()Z t X t jX t=+,证明{()()}0E Z t Z tτ-=证明:(隐含条件:二阶平稳)由希尔伯特变换的性质有ˆ()()X XR Rττ=;ˆˆˆˆˆˆ{()()}{[()()][()()]}()()[()()]XX XX XX XXE Z t Z t E X t jX t X t jX tR R j R Rτττττττ-=+-+-=-++由希尔伯特变换的性质有ˆˆ()()XX XXR Rττ=;ˆˆ()ˆ(){[()()]}[()]()()()ˆ[]()()ˆ()[()()][()]()()()ˆ[]()XXXXXXXXX tR E X t X t E X t dX t X t RE d d RX tR E X t X t E X t dX t X t RE d d Rτξττξπξτξξτξξτπξπξξτττξπξξτξτξξτπξπξ+∞-∞+∞+∞-∞-∞+∞-∞+∞+∞-∞-∞-+=-=--+-=-=-=--=-=----===⎰⎰⎰⎰⎰⎰即ˆˆ()()XX XXR Rττ=-故{()()}0E Z t Z tτ-=4.12 试证明均值为零、方差为1的窄带平稳高斯过程,其任意时刻包络平方的数学期望为2,方差为4。
证明:设该窄带平稳高斯过程为000()()cos[()]()cos()cosc sY t A t t t A t t A t tωφωω=+=-∴[()]0E Y t=2[()]1E Y t=而Y(t)包络的平方为222()()()c sA t A t A t=+由0000ˆ()()cos()sinˆ()()sin()coscsA t Y t t Y t tA t Y t t Y t tωωωω⎧=+⎪⎨=-+⎪⎩易知A c(t)和A s(t)是在同一时刻相互独立的高斯过程且[()][()]0c sE A t E A t==22[()][()](0)1c s YE A t E A t R===∴ 2[()]2E A t =242244224422[()][()][()][()()2()()]4[()][()]2[()()]4332144c s c s c s c s D A t E A t E A t E A t A t A t A t E A t E A t E A t A t =-=++-=++-=++-=即证5.1 有一个检波器后接一理想滤波器如图所示。
随机过程作业解答第五章
《概率论与随机过程》
第五章 作业解答与提示 1.
1 t= 时 2
µ Y (t ) = E[Y (t )] = 1 ⋅ P{ X (t ) ≤ x0 } = FX ( x0 ; t )
RY (t1 , t 2 ) = E[Y (t1 )Y (t 2 )] = 1 ⋅ P{Y (t1 ) = 1, Y (t 2 ) = 1} = P{ X (t1 ) ≤ x0 , X (t 2 ) ≤ x0 } = F X ( x 0 , x 0 ; t1 , t 2 )
(
)
(
)
O 1 t1 t2 2 σ tn
ξ 的概率密度为f ( x1 ,L , x n ) = ∏
→
→
n
1 2π (t k − t k −1 )σ
ξ
k =1
e
−
2 xk
2 ( t k −t k −1 )σ 2
η 和C的定义如上. C −1
→
1 −1 1 = O O − 1 1 1
1 0 概率 2 X (t ) = 1 1 概率 2 1 − 1 概率 2 X (t ) = 2 概率 1 2
0 1 1 ∴ F ( x; ) = 2 2 1 0 1 ∴ F ( x;1) = 2 1
x<0 0 ≤ x <1 x ≥1 x < −1 −1 ≤ x < 2 x≥2