《随机过程答案》第五章习题

合集下载

钱敏平龚光鲁随机过程答案(部分)

钱敏平龚光鲁随机过程答案(部分)

钱敏平龚光鲁随机过程答案(部分)随机过程课后习题答案第⼀章第⼆题:已知⼀列⼀维分布{();1}n F x n ≥,试构造⼀个概率空间及其上的⼀个相互独⽴的随机变量序列{(,);1}n n ξ?≥使得(,)n ξ?的分布函数为()n F x 。

解:有引理:设ξ为[0, 1]上均匀分布的随机变量,F(x)为某⼀随机变量的分布函数,且F(x)连续,那么1()F x η-=是以F(x)为分布的随机变量。

所以可以假设有相互独⽴的随机变量12,,...,n θθθ服从u[0, 1]分布,另有分布{()}n F x ,如果令1(,)()n n n F ξθ-?=,则有(,)n ξ?为服从分布()n F x 的随机变量。

⼜由假设条件可知,随机变量{(,),1}n n ξ?≥之间相互独⽴,则其中任意有限个随机变量12(,), (,),...,(,)n i i i ξξξ的联合分布为:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i x i x i x F x F x F x ξξξ?≤?≤?≤=再令112{,,...,,...},,{|()[0,1],1,2,...}n i i i i w w w w A A x F x i -Ω=∈=∈=,令F 为Ω所有柱集的σ代数,则由Kolmogorov 定理可知,存在F 上唯⼀的概率测度P 使得:11221122{(,),(,),...,(,)}()()()i i n in i i i i in in P i w i w i w F w F w F w ξξξ?≤?≤?≤=则所构造的概率空间为(Ω,F , P)。

第⼋题:令{};1n X n ≥是⼀列相互独⽴且服从(0,1)N (正态分布)的随机变量。

⼜令1n n S X X =++22(1)n S n n ξ+=1(,,)n n F X X σ=试证明:,;1n n F n ξ≥()是下鞅(参见23题)。

随机过程第三版课后答案

随机过程第三版课后答案

随机过程第三版课后答案【篇一:随机过程习题答案】们的均值分别为mx和my,它们的自相关函数分别为rx(?)和ry(?)。

(1)求z(t)=x(t)y(t)的自相关函数;(2)求z(t)=x(t)+y(t)的自相关函数。

答案:(1)rz(?)?e?z(t??)z(t)??e?x(t??)y(t??)x(t)y(t)?利用x(t)和y(t)独立的性质:rz(?)?e?x(t??)x(t)?e?y(t??)y(t)???rx(?)ry(?)(2)rz(?)?e?z(t??)z(t)??e??x(t??)?y(t??)???x(t)?y(t)?? ?e?x(t??)x (t)?x(t??)y(t)?y(t??)x(t)?y(t??)y(t)?仍然利用x(t)和y(t)互相独立的性质:rz(?)?rx(?)?2mxmy?ry(?)2、一个rc低通滤波电路如下图所示。

假定输入是均值为0、双边功率谱密度函数为n0/2的高斯白噪声。

(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。

电流:i(t)电压:y(t)答案:(1)该系统的系统函数为h(s)?y(s)1? x(s)1?rcs则频率响应为h(j?)?11?jrc?n02而输入信号x(t)的功率谱密度函数为px(j?)?该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为:py(j?)?px(j?)h(j?)?2n0/21?rc?2对py(j?)求傅里叶反变换,就得到输出的自相关函数:1ry(?)?2?????py(j?)ej??1d??2?n0/2j?????1?rc?2ed??(2)线性系统输入为高斯随机过程,则输出也一定是高斯的。

因此,为了求输出的一维概率密度函数,仅需知道输出随机过程的均值和方差即可。

均值:已知输入均值mx=0,则输出均值my=mxh(0)=02方差:ry(0)?var(y)?my因为均值为0,所以方差var(y)?ry(0)?一维pdf:略12?n0/2???1?rc2?2d??3、理想带通滤波器的中心频率为fc、带宽为b,其在通带的频率增益为1。

随机过程第三版课后答案

随机过程第三版课后答案

随机过程第三版课后答案【篇一:随机过程习题答案】们的均值分别为mx和my,它们的自相关函数分别为rx(?)和ry(?)。

(1)求z(t)=x(t)y(t)的自相关函数;(2)求z(t)=x(t)+y(t)的自相关函数。

答案:(1)rz(?)?e?z(t??)z(t)??e?x(t??)y(t??)x(t)y(t)?利用x(t)和y(t)独立的性质:rz(?)?e?x(t??)x(t)?e?y(t??)y(t)???rx(?)ry(?)(2)rz(?)?e?z(t??)z(t)??e??x(t??)?y(t??)???x(t)?y(t)?? ?e?x(t??)x (t)?x(t??)y(t)?y(t??)x(t)?y(t??)y(t)?仍然利用x(t)和y(t)互相独立的性质:rz(?)?rx(?)?2mxmy?ry(?)2、一个rc低通滤波电路如下图所示。

假定输入是均值为0、双边功率谱密度函数为n0/2的高斯白噪声。

(1)求输出信号的自相关函数和功率谱密度函数;(2)求输出信号的一维概率密度函数。

电流:i(t)电压:y(t)答案:(1)该系统的系统函数为h(s)?y(s)1? x(s)1?rcs则频率响应为h(j?)?11?jrc?n02而输入信号x(t)的功率谱密度函数为px(j?)?该系统是一个线性移不变系统,所以输出y(t)的功率谱密度函数为:py(j?)?px(j?)h(j?)?2n0/21?rc?2对py(j?)求傅里叶反变换,就得到输出的自相关函数:1ry(?)?2?????py(j?)ej??1d??2?n0/2j?????1?rc?2ed??(2)线性系统输入为高斯随机过程,则输出也一定是高斯的。

因此,为了求输出的一维概率密度函数,仅需知道输出随机过程的均值和方差即可。

均值:已知输入均值mx=0,则输出均值my=mxh(0)=02方差:ry(0)?var(y)?my因为均值为0,所以方差var(y)?ry(0)?一维pdf:略12?n0/2???1?rc2?2d??3、理想带通滤波器的中心频率为fc、带宽为b,其在通带的频率增益为1。

《随机过程》课后习题解答

《随机过程》课后习题解答
6、证函数 f (t ) 解 (1)
( k 0, 2, n )
1 为一特征函数,并求它所对应的随机变量的分布。 1 t2
n n i
f (t
i 1 k 1
tk )i k
5
=
i 1 k 1
n
n
i k
1 (ti tk )
2

i 1 k 1
n
n
e jti e jti e jti {1 ( jtk )(1 jtk )} n n e jtk e e i k jti = i 1 k 1 e n(1 jtk ) e
1 n n n j ( ti tk ) l ] i k = [e n i 1 k 1 l 1
(2) (3)
其期望和方差; 证明对具有相同的参数的 b 的 分布,关于参数 p 具有可加性。
解 (1)设 X 服从 ( p , b ) 分布,则
f X (t ) e jtx
0
b p p 1 bx x e dx ( p )
bp ( p)

x
0
p 1 ( jt b ) x
i k
1 M 2
0
ti t k } ) ( M 1max{ i , j n
且 f (t ) 连续 f (0) 1 (2) f (t )

f (t ) 为特征函数
1 1 1 1 1 [ ] 2 2 1 t 1 ( jt ) 2 1 jt 1 jt

3
fZ(k)() t (1 )kk! jk (1 jt)(k1)
E (Z k ) 1 (k ) f Z (0) ( 1) k k ! k j
n

(完整版)随机过程习题答案

(完整版)随机过程习题答案
3
解 转移概率如图
一步概率转移矩阵为
10000 111
00 333 P 01110
333
00111 333
00001
二步转移概率矩阵为
10 0 00 1 00 0 0
11 1 00 11 1 0 0
3 33
333
P (2)
111
111
0
00
0
33 3
333
00 1 11 0 01 11
333
333
00 0 01 0 00 01
(3) mX (t ) 1 cos( t) 1 2t 1 cos( t ) t
2
2
2
1 mX (1)
2
2 X
(t )
E[ X 2 (t)] [ EX (t )] 2
1 cos2 ( t )
1 ( 2t) 2
1 [ cos( t )
t]2
2
2
2
1 cos2 ( t) 2t 2 1 cos2 ( t) t 2 t cos( t)

解 (1) t
1
时,
X ( 1) 的分布列为
2
2
1
0
1
X( )
2
P
1
1
2
2
一维分布函数
0, x 0
1
1
F ( , x) ,
2
2
1,
0 x1 x1
t 1 时, X (1) 的分布列为
-1
2
X (1)
P
1
1
2
2
一维分布函数
0, x 1
1
F (1, x)
,
2

《概率论与随机过程》第5章习题解答

《概率论与随机过程》第5章习题解答

5.4 对于题5.2,若滤波器的输出,再加到第二个相同的滤波器中,仍用频域分析法求出第二个滤波器
的输出。

解:
第一个滤波器输入是
,则经过两个相同的滤波器以后的输出
5.14 假设一个零均值平稳随机过程
加到冲激响应为
(t.>=0)的线形滤波器中,证明
证明:
5.15 假设一个零均值平稳随机过程
,加到冲激响应为
的线性滤波器中,证明输出功率谱密度为。

证明:
所以,
5.18 假设随机过程
通过一个微分器,其输出过程
存在,微分器的传密为
,求(1)

的互功率谱密度。

(2)
的功率谱密度。

解:(1)
(2)
5.20 图为单个输入两个输出的线形系统,输入
为平稳随机过程,求证输出

的互谱密度为
证明:

,则
5.26 若线性系统输入平稳过程
的功率谱密度为
,现要求系统输出
的功率谱密度为
,求:相应的稳定系统的传输系数。

解:
5.29 某个放大器,其功率增益随频率的变化为
,求:该放大器的噪声带宽。

解:。

西安交通大学汪荣鑫随机过程第二版课后答案

西安交通大学汪荣鑫随机过程第二版课后答案

随机过程习题解答第一章习题解答1.设随机变量X 服从几何分布,即:(),0,1,2,kP X k pqk ===。

求X 的特征函数,EX 及DX 。

其中01,1p q p <<=-是已知参数。

解()()jtxjtk k X k f t E ee pq ∞===∑ =()1jt k jtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑(其中 0(1)nnnn n n nx n x x ∞∞∞====+-∑∑∑)令 0()(1)nn S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰同理 2(1)2kkkk k k k k kx k x kx x ∞∞∞∞=====+--∑∑∑∑令2()(1)kk S x k x ∞==+∑ 则211()(1)(1)xkk kk k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为(2) 其期望和方差;(3)证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。

解 (1)设X 服从(,)p b Γ分布,则 (2)'1()(0)Xp E X fjb∴==(4)若(,)i i X p b Γ 1,2i = 则同理可得:()()i i P X b f t b jt∑=∑-3、设ln (),()(kZ F X E Zk =并求是常数)。

X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。

(1)(),(0,)Y aF X b a b =+≠是常数; (2)ln (),()(kZ F X E Z k =并求是常数)。

解(1)11{()}{()}[()]P F x y P x F y F F y y --<=<==(01y ≤≤) ∴00()0111y F y yy y <⎧⎪=≤≤⎨⎪>⎩∴()F x 在区间[0,1]上服从均匀分布()F x ∴的特征函数为11001()(1)jtx jtx jt X e f t e dx e jt jt ===-⎰ (2)ln ()()()[]jtz jt F x Z f t E e E e ===1ln 01jt ye dy ⋅⎰=111jty dy jt =+⎰4、设12n X X X ,,相互独立,且有相同的几何分布,试求1nkk X =∑的分布。

(解答)《随机过程》第五章习题

(解答)《随机过程》第五章习题

T 2 (u)du
0

T 0

2
(v)dv


P
2
1 T T E{ 2 (u) 2 (v)}dudv P 2 T2 0 0
1 T2
T 0
T 0
[
R2
(0)

2
R2
(u

v)]dudv

P
2
2
T2
T 0
T 0
R2
(u

v)dudv
H ( j) 2 1
j
2 2
由维纳-辛嵌定理,有:
S
()

F[R
(
)]

2
2
2
2
由输入输出功率谱的关系,有:
因此,我们有
S ()

H ( j) 2 S ()

( 2
2
2
2 )( 2
2)

2
2
2 2
2
H ( j) 2 Sn ()

N0 2( 2 2 )
由维纳-辛嵌定理,有:
由于
R
( )

F
1[S
()]

N0 4
e

E{(t)} 0 , D{(t)}
E{(t)(t)} 2[R (0) R (T )]
N0 2
1 eT
ˆ
(1)在 t 0 时输出(0) 大于 y 的概率 P{(0) y};
(2)求条件概率 P{(0) y (T ) 0},其中T 0 ;
(3)求条件概率 P{(0) y (T ) 0},其中T 0 。

湖南大学《随机过程》课程习题集

湖南大学《随机过程》课程习题集

湖南大学本科课程《随机过程》习题集主讲教师:何松华 教授第一章:概述及概率论复习1.1 设一批产品共50个,其中45个合格,5个为次品,从这一批产品中任意抽取3个,求其中有次品的概率。

1.2 设一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第3次才取得合格品的概率。

1.3 设一袋中有N 个球,其中有M 个红球,甲、乙两人先后各从袋中取出一个球,求乙取得红球的概率(甲取出的球不放回)。

1.4 设一批产品有N 个,其中有M 个次品,每次从其中任取一个来检查,取出后再放回,求连续n 次取得合格品的概率。

1.5设随机变量X 的概率分布函数为连续的,且0()00xA Be x F x x λ-⎧+≥=⎨<⎩其中λ≥0为常数,求常数A 、B 的值。

1.6设随机变量X 的分布函数为 ()() (-<<)F x A Barctg x x =+∞∞(1) 求系数A 、B ;(2)求随机变量落在(-1,1)内的概率;(3)求其概率密度函数。

1.7已知二维随机变量(X,Y)的联合概率密度分布函数为6(2)0,1(,)0XY xy x y x y f x y elsewhere --≤≤⎧=⎨⎩(1)求条件概率密度函数|(|)X Y f x y 、|(|)Y X f y x ;(2)问X 、Y 是否相互独立?1.8已知随机变量X 的概率密度分布函数为22()()]2X X X x m f x σ-=- 随机变量Y 与X 的关系为 Y=cX+b ,其中c ,b 为常数。

求Y 的概率密度分布函数。

1.9设X 、Y 是两个相互独立的随机变量,其概率密度分布函数分别为101()0X x f x elsewhere ≤≤⎧=⎨⎩,0()0y Y e y f y elsewhere-⎧<=⎨⎩ 求随机变量Z=X+Y 的概率密度分布函数。

1.10设随机变量Y 与X 的关系为对数关系,Y=ln(X),随机变量Y 服从均值为m Y 、标准差为σY 的正态分布,求X 的概率密度分布。

_随机数学_习题解答 第五章答案

_随机数学_习题解答 第五章答案

第5章1. 设{},0t B t ≥是一维标准Brown 运动, 判断它是否均方连续, 是否均方可微. 解:由均方连续准则,Brown 运动{},0t B t ≥的相关函数(,)R s t 为()()()()()22(,)s t s s s t t s t t E B B B B s s t R s t E B B E B B B B t t s⎧-+=≤⎪==⎨-+=≤⎪⎩故()000,R t t t =连续,故Brown 运动是均方连续的。

由均方可微准则,对Brown 运动,1[(,)(,)(,)(,)]1m in(,)m in(,)m in(,)1R t h t k R t h t R t t k R t t hkh k t h t k t h t t t k t k hk k hh++-+-++⎧≤⎪++-+-++⎪==⎨⎪≤⎪⎩ 当0,0h k →→时极限不存在,故Brown 运动不是均方可微的。

2. 设()()2212,~0,0,,,X Y N σσρ. 令0,tt t u X X tY Y X du =+=⎰, 2tt u Z X du =⎰,0s t ∀≤≤.1) 证明t X 在0t >上均方可微; 2) 求,t t Y Z 的均方导数.证:1)()()()()221122,,,()()s t s t R s t E X X E X sY X tY s t st σρσσσ∀==++=+++根据均方可微准则,相关函数(,)R s t 在(),t t 点广义二次可微:()()()()()()()()()()()(),0222211221122,022222112211222222,01lim[(,)(,)(,)(,)]1lim[2222]1limh k h k h k R t h t k R t h t R t t k R t t hkt h k t h t k t h t h t hkt k t k t t t hk hk σρσσσσρσσσσρσσσσρσσσσσ→→→++-+-++=++++++-++++-+++++++⎡⎤==⎣⎦故t X 在0t >上均方可微。

随机过程及其应用_习题答案(陆大金)

随机过程及其应用_习题答案(陆大金)

⎛ z2 ⎞ 1 exp ⎜ − ⎟ 2π ⎝ 2⎠
解(4) : 若 c 小于零,则事件 A 为必然事件,P(A)=1; 若 c 大于等于零, 考察

π

π /ω
0
ζ 2 (t )dt ,变形为:

π

π /ω
0
v 2 sin 2 (ωt + φ )dt
= v2 ⎛ v2 ⎞ ⎛ c⎞ P{A}=P{ v > c }=P{ v > c }= ∫ v ⋅ exp ⎜ − ⎟ dv = exp ⎜ − ⎟ ⎝ 2⎠ ⎝ 2⎠ c
0
+∞
=∫ =
+∞
0
V −2 e dv 2π
V2
1 2π
因为 f v (v) ⋅ f φ (φ ) = f vφ (v, φ ) ,所以可知二者统计独立。 解(2) : 典型样本函数图形,略。 解(3) : 利用特征函数求解。 在 t 时刻,cos(wt),sin(wt) 值均给定。
⎛ u2 ⎞ 高斯随机变量 ξ 的特征函数为 Φξ (u ) = exp ⎜ − ⎟ ⎝ 2 ⎠
= P{ηn > [t − (n − 1)T ]}
1 dη t − ( n −1)T T T − t + (n − 1)T = T nT − t = T t = n− T t − (n − 1)T = 1− T
=∫
T
P{ξ (t ) = 0} = 1 − P{ξ (t ) = A} =
t − (n − 1)T t = − (n − 1) T T ∴ fξt ( x) = PAδ ( x − A) + P0δ ( x) t⎞ ⎛ ⎛t ⎞ = ⎜ n − ⎟ δ ( x − A) + ⎜ − (n − 1) ⎟ δ ( x) T⎠ ⎝ ⎝T ⎠

随机过程(刘次华)第五章试题

随机过程(刘次华)第五章试题

第五章复习题1. 证明泊松过程(){},0X t t ≥为连续时间齐次马尔可夫链。

证 先证泊松过程的马尔可夫性。

泊松过程是独立增量过程,且()00X =,对任意1210n n t t t t +<<<<<有1111111121211111{()|(),,()}{()()|()(0),()(),,()()}{()()}n n n n n n n n n n n n n n n n P X t i X t i X t i P X t X t i i X t X i X t X t i i X t X t i i P X t X t i i ++++--++====-=--=-=--=-=-=-另一方面111111{()|()}{()()|()(0)}{()()}n n n n n n n n n n n n n n P X t i X t i P X t X t i i X t X i P X t X t i i ++++++===-=--==-=- 所以111111{()|(),,()}{()|()}n n n n n n n n P X t i X t i X t i P X t i X t i ++++======即泊松过程是一个连续时间马尔可夫链。

再证齐次性,当j i ≥时,(){()|()}{()()}()!j itt P X s t j X s i P X s t X s j i ej i λλ--+===+-=-=-当j i <时,因增量只取非负整数值,故(),0ij p s t =,所以(),(,)()()!0,j it ij ij t ej i p s t p t j i j i λλ--⎧≥⎪==-⎨⎪<⎩转移概率与s 无关,泊松过程具有齐次性。

2、连续时间齐次马尔可夫链的科尔莫戈罗夫向后方程是()()()ijikkj ii ij k ip t qp t q p t ≠'=-∑,其矩阵表达式为()()P t QP t '=,其中()P t 是马尔可夫链的状态转移矩阵,Q 是马尔可夫链的转移速率矩阵。

北邮随机信号答案ch5

北邮随机信号答案ch5

怎样的条件才能使
Z (t ) =
∑A e ω
j k =1 k
n
kt
是一个复平稳随机过程。 5.7 设有复随机过程
Z (t ) = ∑ (α i cos ω i t + jβ sin ω i t )
i =1
n
其中 α i 与 β k 是相互独立的随机变量, α i 与 α k 、 β i 与 β k (i ≠ k ) 是相互正交的,数学期 望和方差分别为 E[α i ] = E[ β i ] =0, 解:
πτ
= R0 (τ ) cos ω0τ
ˆ (τ ) = R (τ ) sin ω τ 是一个低频信号,所以 R n 0 0 πτ ˆ (τ ) sin ω τ = R (τ ) 所以 Rn (τ ) = Rn (τ ) = Rn (τ ) cos ω0τ + R n 0 0
由于 R0 (τ ) =
c s
=
1 2π


−∞
[2 X (ω − ω ′)U (ω − ω ′)][2 X (ω ′)U (ω ′)]d ω ′
Ω Ω ⎧ ω0 − ≤ ω ′ ≤ ω0 + ⎪ Ω Ω ⎪ 2 2 时亦不 由于有 ω0 − ≤ ω ≤ ω0 + 时 X (ω ) 不为零,因此有 ⎨ 2 2 ⎪ω − Ω ≤ ω − ω ′ ≤ ω + Ω 0 0 ⎪ 2 2 ⎩
5.2 设 A(t ) 与 ϕ(t ) 为低频信号,证明 (1) H [ A(t ) cos[ω 0 t + ϕ (t )] = A(t ) sin[ω 0 t + ϕ (t )] (2) H [ A(t ) sin[ω 0 t + ϕ (t )] = − A(t ) cos[ω 0 t + ϕ (t )]

(完整版)随机过程习题答案

(完整版)随机过程习题答案

随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。

解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。

解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。

《随机过程》第五章作业解答

《随机过程》第五章作业解答

(2) P (Zn = 0) = φn(0) = 1 − pn.
7. 解:

φη(s) = Esη = p(η = k) · sk
k=1 ∞
= P (ξ = k|ξ > 0) · sk
k=1
=
∞ k=1
sk
·
P (ξ
=
k)
1 − P (ξ = 0)
φ(s) − φ(0) =
1 − φ(0)
如有疏漏,欢迎指正
《随机过程》第五章作业解答
1. 解:Eξ = 1, V arξ = 1,从而由定理 5.1 得,EZn = 1, V arZn = n。 2. 解:µ = Eξ = b + 2c = 2 − 2a − b, σ2 = V arξ = b + 4a − (2a + b)2,从而由定理 5.1 可得: EZn = (2−2a−b)n; V arZn = [b+4a−(2a+b)2](2−2a−b)n−1[1+(2−2a−b)+· · ·+(2−2a−b)n−1]. 分情况讨论可得:

=
1
p −
p
αn−1 − 1
αn−1

1−p p
.
1 − pαn−1
p

xn
=
αn − 1
αn

1−p p
,从而得到
xn
=
1
p −
p
·
xn−1,其中
x1
=
α1 − 1
α1

1−p p
=
1−p−1
1

p

1−p p
=

随机过程课后习题答案

随机过程课后习题答案

标准教材:随机过程基础及其应用/赵希人,彭秀艳编著索书号:O211.6/Z35-2备用教材:(这个非常多,内容一样一样的)工程随机过程/彭秀艳编著索书号:TB114/P50历年试题(页码对应备用教材)2007一、习题0.7(1)二、习题1.4三、例2.5.1—P80四、例2.1.2—P47五、习题2.2六、例3.2.2—P992008一、习题0.5二、习题1.4三、定理2.5.1—P76四、定理2.5.6—P80五、1、例2.5.1—P802、例2.2.2—P53六、例3.2.3—P992009(回忆版)一、习题1.12二、例2.2.3—P53三、例1.4.2与例1.5.5的融合四、定理2.5.3—P76五、习题0.8六、例3.2.22010一、习题0.4(附加条件给出两个新随机变量表达二、例1.2.1三、例2.1.4四、例2.2.2五、习题2.6六、习题3.3引理1.3.1 解法纠正 许瓦兹不等式()222E XY E X E Y ⎡⎤⎡⎤≤⎡⎤⎣⎦⎣⎦⎣⎦证明:()()()()222222222220440E X Y E X E XY E Y E XY E X E Y E XY E X E Y λλλ +⎡⎤⎡⎤=++≥⎣⎦⎣⎦∴∆≤⎡⎤⎡⎤∴-≤⎡⎤⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤∴≤⎡⎤⎣⎦⎣⎦⎣⎦例1.4.2 解法详解已知随机过程(){},X t t T ∈的均值为零,相关函数为()121212,,,,0a t t t t et t T a --Γ=∈>为常数。

求其积分过程()(){},t Y t X d t T ττ=∈⎰的均值函数()Y m t 和相关函数()12,Y t t Γ。

解:()0Y m t =不妨设12t t >()()()()()()1212222112121122122100,,Y t t t t t t t t t EY t Y t E X d X d d d τττττττττΓ===Γ⎰⎰⎰⎰()()()()()222121122221222112222212221212121212000220022002200222211||111111||211ττττττττττττττττττττττττ--------------=+-=+=---=+-+⎡=++--⎣⎰⎰⎰⎰⎰⎰⎰⎰t t t a a t t a a a a t t t a a at a t a at t a t t at at ed d ed de d e d a ae d e d a a t t e e a a a a t e e e a a⎤⎦同理当21t t >时()()2112112221,1a t t at at Y t t t e e e a a----⎡⎤Γ=++--⎣⎦ (此处书上印刷有误)例1.5.5解法同上例1.5.6 解法详解 普松过程公式推导:(){}()()()()()()()()()()()1lim !lim 1!!!1lim 1!!lim 1lim !lim lim !第一项可看做幂级数展开:第二项将分子的阶乘进行变换:→∞-→∞-→∞---∆-→∞→∞-→∞→∞===-∆∆-⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦⎡⎤⎡⎤-∆==⎢⎥⎣⎦⎣⎦⎡⎤⋅∆=∆⎢⎥--⎣⎦N k N N kkN N k kN N kN kq t qtN N k N kk k N N P X t k C P N q t q t k N k N q t q t N k k q t e e N N N q t q t N k N ()()()()()!lim 1!-→∞⎡⎤⎢⎥⎣⎦⎡⎤⎡⎤=∆⋅=⋅=⎢⎥⎣⎦-⎣⎦N k k k k kN k N q t N qt qt N k (){}()()()()!1lim 1!!!N kkN kqt P X t k N q t q t N k k qt ek -→∞-∴=⎡⎤⎡⎤⎡⎤=-∆∆⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦=例2.1.2 解法详解设(){},X t t -∞<<+∞为零均值正交增量过程且()()2212121,E X t X t t t t t -=->⎡⎤⎣⎦,令()()()1Y t X t X t =--,试证明(){},Y t t -∞<<+∞为平稳过程。

随机过程第5章

随机过程第5章

第五章 离散参数Markov 链5.1 Markov 链的基本概念 1.Markov 链和转移概率矩阵 定义5-1考虑只取有限个或可数个值的随机过程{},0,1,2,nX n = .把过程所取可能值的全体称为它的状态空间,记之为E ,通常假{}0,1,2,E = .若n X i =就说“过程在时刻n 处于状态i ”.若对任意状态011,,,(,n 0)n i i i i j -≥ 及任意的有11111001(|,,,,)(|)n n n n n n n P X j X i X i X i X i P X j X i +--+======== 这样的随机过程称为Markov 链.假设每当过程处于状态i ,则在下一个时刻将处于状态j 的概率是固定的ijp ,即对任意时刻n ,有1(|)n nijP X j X i p +===,称过程具有齐次性.称矩阵00010201011121012j j i i i ij p p p p p p p p P p p p p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦是一步转移概率矩阵,简称为转移矩阵. 由ijp 的定义可知,这是一种带有平稳转移概率的Markov 链,也称作时间齐次Markov 链或简称时齐次Markov 链.我们研究的均为齐次马氏链.2.例题例5-1(直线上的随机游动)考虑在直线上整数点上运动的粒子,当它处于位置j 时,向右转移到j+1的概率为p ,而向左移动到j-1的概率为q=p-1,又设时刻0时粒子处在原点,即00X =.于是粒子在时刻n 所处的位置{}n X 就是一个Markov 链,且具有转移概率,1,10,jk p k j p q k j =+⎧⎪==-⎨⎪⎩其他当12p q ==时,称为简单对称随机游动.例5-6(排队模型)考虑顾客到服务台排队等候服务,在每个服务周期中只要服务台前有顾客在等待,就要对排队在队前的一位顾客提供服务,若服务台前无顾客时就不实施服务.设在第n 个服务周期中到达的顾客数为一随机变量n Y ,且序列{}nY 是独立同分布随机序列,即(),0,1,2,,n k P Y k p k === 且01k k p ∞==∑设n X 为服务周期n 开始时服务台前顾客数,则有11,1,0n n n n n n X Y X X Y X +-+≥⎧=⎨=⎩若若此时{},1nXn ≥为一Markov 链,其转移概率矩阵为01234012340123012000p p p p p p p p p p P p p p p p p p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦例5-8(生灭链)观察某种生物群体,以n X 表示在时刻n群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个数量单位的概率为i b ,减灭到i-1个数量单位的概率为i a ,保持不变的概率为1()i i i r a b =-+,则{},0nX n ≥为齐次马尔可夫链,{}0,1,2,E = ,其转移概率为,1,,1i ij i ib j i p r i ja j i =+⎧⎪==⎨⎪=-⎩ 0(0)a =,称此马尔可夫链为生灭链.3.定理5-1设随机过程{}nX 满足:(1)1(,)(1),n n n X f X n ξ-=≥其中:f E E E ⨯→,且n ξ取值在E 上; (2){},1nn ξ≥为独立同分布随机变量,且0X 与{},1n n ξ≥也相互独立,则{}n X 是Markov 链,而且其一步转移概率为,对于任意,i j E ∈,1((,))ij p P f i j ξ==证明:设1n ≥,由上面(1)、(2)可知,1n ξ+与12,,,nX X X 互相独立,所以有1110011100111001(|,,,)((,)|,,,)((,)|,,,)((,))n n n n n n n n n n n n n n P X j X i X i X i P f X j X i X i X i P f i j X i X i X i P f i j ξξξ+--+--+--+================同理111001(|,,,)(|)n n n n n n P X j X i X i X i P X j X i +--+=======即{}nX 是Markov 链,由时间齐次性,其一步转移概率为1((,))ij p P f i j ξ==于是定理5-1得证.4.定理5-2时齐次Markov 链{}nX 完全由其初始状态的概率分布0(),1,2,i p P X i i ===和其转移概率矩阵()ijP p =所确定.证明:对于任意12,,,n i i i E ∈ ,计算有限维联合分布,由概率的乘法公式及马氏性可知1001121001100111100111100111111001111(,,,)(,,,)(|,,,)(,,,)(|)(,,,)n n n nn n n n n n n n n n n n n n n n i i i i i i i i i P X i X i X i P X i X i X i P X i X i X i X i P X i X i X i P X i X i P X i X i X i p p p p p ------------======================定理5-2得证. 5.例题 例5-9(1)(二项过程的概念)设在每次试验中,事件A 发生的概率为(01)p p <<,独立地重复进行这项试验,以n Y 表示到第n 次为止事件A 发生的次数,则{},1,2,nY n = 是一个二项过程.说明:令n X 表示第n 次试验中事件A 发生的次数,则n X ~(0)1,(1),1,2,n n P X p P X p n ==-=== 且独立.(易知{},1nX n ≥为马氏过程)而1,1,2,n n Y X X n =++= 服从二项分布(,)B n p ,故称此{},1nY n ≥为二项过程.(2)二项过程具有独立平稳增量性. 证明:易知增量1n l n n n l Y Y X X +++-=++ ,1121n l k n l n l n l k Y Y X X ++++++++++-=++ ,等等相互独立;且~(,),1,2,n m n Y Y B m p n +-= ,即具有平稳性. 即{},1nY n ≥为一个独立平稳增量过程.(3)独立平稳增量过程为马氏过程.5.2 C-K 方程1.定理5-3 Chapman-Kolmogorov 方程 对任何整数,0m n ≥, 有()()()m n m n ijik kj k Epp p +∈=∑或()()()m n m n P P P +=⨯证明:这里只需要证明()(1)n n P PP -=成立,再依次递推即可证明本定理.(?)因为()0100100101010(1)(|)(,|)(|)(|,)(|)(|)(n ij n n k n k n k n ik kj k P P X j X i P X j X k X i P X k X i P X j X i X k P X k X i P X j X k p p ∞=∞=∞=∞-====================∑∑∑∑由马氏性)根据矩阵的乘法规则,知()(1)n n P PP -=.定理得证.注:定义m 步转移概率()(|)m ijn m n pP X j X i +===,()m ijp 表示给定时刻n 时,过程处于状态i ,间隔m 步之后过程在时刻n+m 转移到了状态j 的条件概率.还约定(0)1iip =,(0)0ijp =,i j ≠以()n ijp 表示第i 行、第j 列的元素矩阵()n P =(()n ijp ),称为Markov 链的n 步转移概率矩阵.2.例题(两状态Markov 链) 例5-10在重复独立贝努里(Bernoulli )试验中,每次试验有两种状态{}0,1E =,设{}nX 表示第n 次试验中出现的结果,且有(1),(0)1,1,2,n n P X p P X q p n =====-=其中01p <<,则{},1nX n ≥显然是独立同分布随机序列,从而它是Markov 链.于是经过计算有00100111,p p q p p p ====所以,一步转移概率矩阵为q p P qp ⎡⎤=⎢⎥⎣⎦而且有()n qp PP q p ⎡⎤==⎢⎥⎣⎦5.3 Markov 链的状态分类 1.互通 定义5-2称自状态i 可达状态j ,并记i j →,如果存在0n >,使()0n ijp >,称状态i 与j 互通(相同,互达),并记为i j ↔,如i j →且j i →2.定理5-4可达关系与互通关系都具有传递性,即如果i j →且j k →,则i k → 证:因为有i j →,j k →,所以存在1,1l m ≥≥,使()()0,0l m ij jk p p >>由C-K 方程()()()()()0l m l m l m ik is sk ij jk sp p p p p +=≥>∑这里1l m +≥,所以i k →成立.若将可达关系得证明正向进行,再反向进行,就可得出互通关系的传递性,证毕. 3.定义5-3 设{},1nXn ≥为齐次Markov 链,其状态空间为E 。

随机过程答案4(1)

随机过程答案4(1)

第四章第五章习题4.4 设解析信号()Z t为ˆ()()()Z t X t jX t=+,证明{()()}0E Z t Z tτ-=证明:(隐含条件:二阶平稳)由希尔伯特变换的性质有ˆ()()X XR Rττ=;ˆˆˆˆˆˆ{()()}{[()()][()()]}()()[()()]XX XX XX XXE Z t Z t E X t jX t X t jX tR R j R Rτττττττ-=+-+-=-++由希尔伯特变换的性质有ˆˆ()()XX XXR Rττ=;ˆˆ()ˆ(){[()()]}[()]()()()ˆ[]()()ˆ()[()()][()]()()()ˆ[]()XXXXXXXXX tR E X t X t E X t dX t X t RE d d RX tR E X t X t E X t dX t X t RE d d Rτξττξπξτξξτξξτπξπξξτττξπξξτξτξξτπξπξ+∞-∞+∞+∞-∞-∞+∞-∞+∞+∞-∞-∞-+=-=--+-=-=-=--=-=----===⎰⎰⎰⎰⎰⎰即ˆˆ()()XX XXR Rττ=-故{()()}0E Z t Z tτ-=4.12 试证明均值为零、方差为1的窄带平稳高斯过程,其任意时刻包络平方的数学期望为2,方差为4。

证明:设该窄带平稳高斯过程为000()()cos[()]()cos()cosc sY t A t t t A t t A t tωφωω=+=-∴[()]0E Y t=2[()]1E Y t=而Y(t)包络的平方为222()()()c sA t A t A t=+由0000ˆ()()cos()sinˆ()()sin()coscsA t Y t t Y t tA t Y t t Y t tωωωω⎧=+⎪⎨=-+⎪⎩易知A c(t)和A s(t)是在同一时刻相互独立的高斯过程且[()][()]0c sE A t E A t==22[()][()](0)1c s YE A t E A t R===∴ 2[()]2E A t =242244224422[()][()][()][()()2()()]4[()][()]2[()()]4332144c s c s c s c s D A t E A t E A t E A t A t A t A t E A t E A t E A t A t =-=++-=++-=++-=即证5.1 有一个检波器后接一理想滤波器如图所示。

随机过程作业解答第五章

随机过程作业解答第五章
概率论与随机过程第五章作业解答与提示由独立性知概率概率概率概率sincoscossinsincoscossinsincoscossincossincos泊松过程是独立增量过维分布列为过程的由泊松过程定义为非负整数cbccbc其中其中由维纳过程定义知
《概率论与随机过程》
第五章 作业解答与提示 1.
1 t= 时 2
µ Y (t ) = E[Y (t )] = 1 ⋅ P{ X (t ) ≤ x0 } = FX ( x0 ; t )
RY (t1 , t 2 ) = E[Y (t1 )Y (t 2 )] = 1 ⋅ P{Y (t1 ) = 1, Y (t 2 ) = 1} = P{ X (t1 ) ≤ x0 , X (t 2 ) ≤ x0 } = F X ( x 0 , x 0 ; t1 , t 2 )
(
)
(
)
O 1 t1 t2 2 σ tn
ξ 的概率密度为f ( x1 ,L , x n ) = ∏


n
1 2π (t k − t k −1 )σ
ξ
k =1
e

2 xk
2 ( t k −t k −1 )σ 2
η 和C的定义如上. C −1

1 −1 1 = O O − 1 1 1
1 0 概率 2 X (t ) = 1 1 概率 2 1 − 1 概率 2 X (t ) = 2 概率 1 2
0 1 1 ∴ F ( x; ) = 2 2 1 0 1 ∴ F ( x;1) = 2 1
x<0 0 ≤ x <1 x ≥1 x < −1 −1 ≤ x < 2 x≥2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档