2019年秋人教版七年级数学上册第二章质量评估测试卷(含答案)
新编【北师大版】2019年秋七年级数学上册:第2章质量检测卷(Word版,含答案)
第二章检测卷分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.-1的倒数是( ) A.1 B.-1 C.±1 D.02.下列四个数中,最大的数是( ) A.-2 B.13C.0D.63.如图是南昌市去年一月份某一天的天气预报,则该天最高气温比最低气温高( )A.-3℃B.7℃C.3℃D.-7℃ 4.下列计算错误的是( )A.8-(-2)=10B.-5÷⎝ ⎛⎭⎪⎫-12=10C.(-5)+(+3)=-8D.-1×⎝ ⎛⎭⎪⎫-13=135.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm ”和“8cm ”分别对应数轴上的-3.6和x ,则x 的值为( )A.4.2B.4.3C.4.4D.4.56.数轴上表示整数的点叫作整点.某数轴的单位长度为1cm ,若在这条数轴上任意画出一条长度为2018cm 的线段,则线段盖住的整点个数为( )A.2019个B.2018个C.2019或2018个D.2018或2017个二、填空题(本大题共6小题,每小题3分,共18分) 7.计算:-3+2= .8.曾有微信用户提议应该补全朋友圈只有点赞功能的缺陷,增加“匿名点呸”的功能.如果将点32个赞记作+32,那么匿名点2个呸,应记作 .9.九景衢铁路2017年12月28日正式通车,景德镇从此跨入动车时代.据了解,九景衢铁路总长约333千米,用科学记数法表示为 米.10.如果a 与1互为相反数,则|a +2|= .11.如图所示是一个简单的数值运算程序.当输入x 的值为-1时,输出的数值为 .输入x ―→×(-3)―→-2―→输出12.已知点A 是数轴上的一点,且点A 到原点的距离为2,把点A 沿数轴向右移动5个单位得到点B ,则点B 表示的有理数是 .三、(本大题共5小题,每小题6分,共30分) 13.把下列各数填入集合内:+8.5,-312,0.3,0,-3.4,12,-9,413.(1)正数集合:{} …; (2)整数集合:{} …; (3)负分数集合:{} …. 14.计算:(1)(-2)2×5-(-2)3÷4;(2)⎝ ⎛⎭⎪⎫-56+23÷⎝ ⎛⎭⎪⎫-712×72.15.画出数轴,在数轴上表示下列各数,并用“〉”把它们连接起来.-⎝ ⎛⎭⎪⎫-412,-2,0,(-1)2,|-3|,-313.16.老王在农业银行的存款有28000元,昨天因为急用取出了13500元,今天上午他将收回的货款36000元又存入了银行,并且下午打算去批发市场进货.如果这批货物需要52000元,那么老王的银行存款是否足够支付这批货物的费用?17.如图是一个数值转换机的示意 图,若输入x 的值为3,y 的值为-2,根据程序列出算式并求出输出的结果.四、(本大题共3小题,每小题8分,共24分)18.已知|a-1|+(b+2)2=0,求(a+b)2019的值.19.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间?20.已知a ,b 均为有理数,现定义一种新的运算,规定:a#b =a 2+ab -5,例如:1#2=12+1×2-5=-2.求:(1)(-3)#6的值;(2)⎣⎢⎡⎦⎥⎤2#⎝ ⎛⎭⎪⎫-32-[(-5)#9]的值.五、(本大题共2小题,每小题9分,共18分)21.如图所示,在数轴上的三个点A、B、C表示的数分别为-3、-2、2,试回答下列问题.(1)A,C两点间的距离是;(2)若E点与B点的距离是8,则E点表示的数是;(3)若将数轴折叠,使A点与C点重合,则B点与哪个数重合?22.南丰蜜桔是江西抚州的一大特产,现有20筐南丰蜜桔,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(2)与标准重量比较,20筐蜜桔总计超过或不足多少千克? (3)若蜜桔每千克售价5元,则这20筐蜜桔可卖多少元?六、(本大题共12分)23.下面是按规律排列的一列数:第1个式子:1-⎝⎛⎭⎪⎫1+-12;第2个式子:2-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34;第3个式子:3-⎝ ⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34⎣⎢⎡⎦⎥⎤1+(-1)45⎣⎢⎡⎦⎥⎤1+(-1)56. (1)分别计算这三个式子的结果(直接写答案);(2)写出第2017个式子的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案与解析1.B2.D3.B4.C5.C6.C 解析:当线段的起点恰好是一个整点时,盖住的整点个数为2019个,其他情况下,盖住的整点个数为2018个.故线段盖住的整点个数为2019或2018个.故选C.7.-1 8.-2 9.3.33×10510.1 11.112.3或7 解析:根据题意,点A 表示的数是-2或2,当点A 表示的数是-2时,点B 表示的数是3;当点A 表示的数是2时,点B 表示的数是7.故点B 表示的有理数是3或7.13.解:(1)正数集合:⎩⎨⎧⎭⎬⎫+8.5,0.3,12,413,…;(2分)(2)整数集合:{}0,12,-9,…;(4分)(3)负分数集合:⎩⎨⎧⎭⎬⎫-312,-3.4,….(6分)14.解:(1)原式=22.(3分) (2)原式=1.(6分) 15.解:如图所示.(3分)由数轴得-⎝ ⎛⎭⎪⎫-412〉|-3|〉(-1)2〉0〉-2〉-313.(6分)16.解:因为28000-13500+36000-52000=-1500<0,(5分) 所以老王的银行存款不够支付这批货物的费用.(6分)17.解:根据程序列式计算如下:\[3×2+(-2)3\]÷2=\[6+(-8)\]÷2=-2÷2=-1.(6分)18.解:由题可知a -1=0,b +2=0,解得a =1,b =-2.(4分)则(a +b)2019=(1-2)2019=-1.(8分)19.解:(1)如图所示.(2分)(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km.(5分)(3)2+1.5+|-4.5|+1=9(km),9km =9000m ,9000÷250=36(min).(7分) 答:小明跑步一共用了36min.(8分)20.解:(1)(-3)#6=(-3)2+(-3)×6-5=9-18-5=-14.(3分)(2)⎣⎢⎡⎦⎥⎤2#⎝ ⎛⎭⎪⎫-32-[(-5)#9]=⎣⎢⎡⎦⎥⎤22+2×⎝ ⎛⎭⎪⎫-32-5-[(-5)2+(-5)×9-5]=(4-3-5)-(25-45-5)=-4+25=21.(8分)21.解:(1)5(2分) (2)6或-10(5分)(3)因为A 点与C 点重合,所以折痕与坐标轴的交点表示的数为-0.5,则B 点与表示1的点重合.(9分)22.解:(1)2.5-(-3)=5.5(千克).答:最重的一筐比最轻的一筐重5.5千克.(3分)(2)1×(-3)+4×(-2)+2×(-1.5)+3×0+2×1+8×2.5=-3-8-3+2+20=8(千克).答:20筐南丰蜜桔总计超过8千克.(6分) (3)5×(25×20+8)=2540(元).答:这20筐南丰蜜桔可卖2540元.(9分)23.解:(1)第1个数:12;第2个数:32;第3个数:52;(6分)(2)第2017个数:2017-⎝⎛⎭⎪⎫1+-12⎣⎢⎡⎦⎥⎤1+(-1)23⎣⎢⎡⎦⎥⎤1+(-1)34…⎣⎢⎡⎦⎥⎤1+(-1)40324033⎣⎢⎡⎦⎥⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)。
人教版七年级上册数学 第一章+第二章+第三章 共3个单元测试卷(Word版,含答案)
人教版七年级上册数学 第一章 有理数 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如图,表示正确的数轴的是( )A. B.C.D.2. -1的相反数是( )A . 1B . -1C . 0D . -123. 下列四个数中,最小的数是( )A . -12B . 0C . -1D . 14. 据统计,近十年中国累积节能1 570 000万吨标准煤,1 570 000这个数用科学记数法表示为( )A . 0.157×107B . 1.57×106C . 1.57×107D . 1.57×1085. 下列说法不正确的是( )A . 最大的负整数为-1B . 最小的正整数为1C . 最小的整数是0D . 相反数等于它本身的数是06. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( )A . 4 ℃B . 6 ℃C . 8 ℃D . 10 ℃7. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损):则这个周共盈利( )A .715元B .630元C .635元D .605元8. 如果一对有理数a ,b 使等式a -b =a ·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b ).根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A .3,12B .2,13C .5,23D .-2,-139. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m +n <0B .m -n >0C .mn >0D .m n<010. 细胞分裂按照一分为二,二分为四,四分为八……如此规律进行.例如:1个细胞分裂10次可以得到细胞的个数为210=1 024个,估计1个细胞分裂40次所得细胞的个数为( )A .七位数B .十二位数C .十三位数D .十四位数二、填空题(每题4分,共28分)11.||-2 022的倒数是________. 12. 如果||a -1+(b +2)2=0,那么(a +b )2 021的值是________.13. 放学静校,值周班的小明同学负责一条东西走向楼道巡视工作.记向东为正,小明巡视过程如下:+5,-3,-1,+7,-9,+4(单位:米),则小明这次巡视共走了________米.14. 如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.15. 某高山上的温度从山脚处开始每升高100米,就降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______℃.16. 已知||a =5,||b =3,则(a +b )(a -b )=________.17. 有一组数据:25,47,811,1619,3235,….请你根据此规律,写出第n 个数是________.三、解答题(一)(每题6分,共18分)18.计算:(1)-14-||1-0.5×13×[2-(-3)2];(2)(-34-56+712)÷124.19. 把下列各数先在数轴上表示出来,再按照从小到大的顺序用“<”号连接起来:-(+6),0,-(-4),+(-52),-||-2.20. 某地发生特大山洪泥石流灾害,消防总队迅速出动支援灾区.在抢险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+4,-9,+8,-7,+13,-6,+10,-5.(1)B地在A地的何处?(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗0.5升,油箱里原有油20升,求途中还需补充多少升油.四、解答题(每题8分,共24分)21. 某洗衣粉厂上月生产了30 000袋洗衣粉,每袋标准重量450克,质量检测部门从中抽出了20袋进行检测,超过或不足标准重量的部分分别记为“+”和“-”,记录如下:(1)通过计算估计本厂上月生产的洗衣粉平均每袋多少克?(2)厂家规定超过或不足的部分大于5克时,不能出厂销售,若每袋洗衣粉的定价为2.30元,试估计本厂上月生产的洗衣粉销售的总金额为多少元?22. 小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24(写出一种即可).23. 有规律的一列数:2,4,6,8,10,12,…,它的每一项可用2n(n为正整数)来表示.现在解决另外有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,….(1)它的第100个数是多少?(2)请用n(n为正整数)表示它的第n个数;(3)计算前2 022个数的和.五、解答题(每题10分,共20分)24. 随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了来的销售模式,实行了网上销售.刚大学华业的夏明把自家的冬枣产品放到网上销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超出的量记为正数,不足的量记为负数.单位:斤,1斤=500克)(1)根据记录的数据可知,前三天卖出________斤;(2)根据记录的数据可知,销售量最多的一天比销售量最少的一天多销售________斤;(3)本周实际销售总量达到了计划销售量吗?(4)若冬枣每斤按8元出售,每斤冬枣的运费平均为3元,那么夏明这一周一共收入多少元?25. 在数轴上依次有A ,B ,C 三点,其中点A ,C 表示的数分别为-2,5,且BC =6AB .(1)在数轴上表示出A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是14,12,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度? (3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,结合数轴,写出点P 对应的数;若不存在,请说明理由.参考答案1.D 2.A 3.C 4.B 5.C 6.D 7.D 8.D 9.D 10.C11.12 022 12.-1 13.29 14.-5 15.25 16.16 17.2n3+2n18.解:(1)原式=-1-0.5×13×[2-9]=-1-0.5×13×(-7)=-1-16×(-7)=-1+76=16(2)原式=(-34-56+712)×24=-34×24-56×24+712×24=-18-20+14 =-2419.解:在数轴上表示各数如下:-(+6)<+⎝ ⎛⎭⎪⎫-52<-||-2<0<-(-4)20.解:(1)∵4-9+8-7+13-6+10-5=8, ∴B 地在A 地的东边8千米(2)∵路程记录中各点离出发点的距离分别为: 4千米||4-9=5千米; ||4-9+8=3千米; ||4-9+8-7=4千米; ||4-9+8-7+13=9千米; ||4-9+8-7+13-6=3千米; ||4-9+8-7+13-6+10=13千米;||4-9+8-7+13-6+10-5=8千米.∴最远处离出发点13千米; (3)这一天走的总程为:4+||-9+8+||-7+13+||-6+10+||-5=62(千米), 应耗油62×0.5=31(升),故途中还需补充的油量为:31-20=11(升).21.解:(1)450+(-6×1-3×1-2×1+0×6+1×5+4×2+5×4)÷20=450+1.1=451.1(克) 答:上月生产的洗衣粉平均每袋451.1克.(2)2.30×⎝ ⎛⎭⎪⎫30 000-30 000×120=2.30×28 500=65 550(元). 答:本厂上月生产的洗衣粉销售的总金额为65 550元. 22.解:(1)(-3)×(-5)=15; (2)-5÷3=-53;(3)(-5)4=625;(4)[(-3)-(-5)]×(3×4)=2×12=24 23.解:(1)它的第100个数是:-100 (2)它的第n 个数是:(-1)n +1n(3)(1-2)+(3-4)+…+(2 021-2 022) =(-1)×2 022÷2 =-1 01124.解:(1)4-3-5+300=296(斤) 故答案为296. (2)21+8=29(斤) 故答案为29.(3)+4-3-5+14-8+21-6=17>0 故本周实际销售总量达到了计划销售量. (4)(17+100×7)×(8-3)=717×5 =3 585(元)答:小明本周一共收入3 585元. 25.解:(1)设B 点表示的数为x ,∵点A ,C 表示的数分别为-2,5,且BC =6AB ,∴5-x =6[x -(-2)], 解得:x =-1所以点B 表示的数为-1,(2)7÷⎝ ⎛⎭⎪⎫2-14=4(秒) 4×⎝ ⎛⎭⎪⎫12-14-1=0 答:丙追上甲时,甲乙相距0个单位长度. (3)设P 点表示的数x ,依题意得||x +2+||x +1+||x -5=10,结合数轴得x =-83,2,∴P 点表示的数为-83或2.人教版七年级上册数学 第二章 整式的加减 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 单项式-2ab 4c23的系数与次数分别是( )A .-23,6B .-23,7C .23,6D .23,72. 下列各组数是同类项的是( )A .x 2y 和xy 2B .3ab 和-abcC .x 2和12D .0和-53. 下列计算正确的是( )A .7a +a =7a 2B .5y -3y =2C .3x 2y -2x 2y =x 2yD .3a +2b =5ab4. 某商品的原价为每件x 元,后来店主将每件加价10元,再降价25%销售,则现在的单价是() A .(25%x +10)元 B .[(1-25%)x +10]元C .25%(x +10)元D .(1-25%)(x +10)元5. 整式x 2-3x 的值是4,则3x 2-9x +8的值是( )A .20B .4C .16D .-46. 化简a -[-2a -(a -b )]等于( )A .-2aB .2aC .4a -bD .2a -2b7. 如图,阴影部分的面积可表示为( )A .ab -r 2B .12ab -r 2C .12ab -πr 2D .ab8. 观察如图所示的图形,则第n个图形中三角形的个数是( )A.2n+2 B.4n+4 C.4n D.4n-49. 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为( )A.4 B.5 C.6 D.710. 如图①是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图②),下列表示a,b,c,d之间关系的式子中不正确的是( )A.a-b=b-c B.a+c+2=b+dC.a+b+14=c+d D.a+d=b+c二、填空题(每题4分,共28分)11. “比x的2倍大5的数”用式子表示是________.12. 若单项式x4y n与-2x m y3的和仍为单项式,则这个和为________.13. 一根铁丝的长为5a+4b,剪下一部分围成一个长为a,宽为b的长方形,则这根铁丝还剩下________.14. 某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立米按1.2元收费.已知某户用煤气x立方米(x>60),则该户应交煤气费________元.15. 按如图所示的程序计算,若开始输入的值为x =3,则最后输出的结果为________.16. 如图所示的每幅图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是s 盆.按此规律推断,s 与n 之间的数量关系可以表示为s =________.17. 已知a ,b ,c 在数轴上的位置如图所示,化简:||a -b +||b +c +||c -a =________.三、解答题(一)(每题6分,共18分)18. 合并同类项4a 2-3b 2+2ab -4a 2-3b 2+5ba .19. 先化简,再求值:2(x 2y +xy )-3(x 2y -xy )-4x 2y ,其中x =2,y =-14.20. 先化简,再求值:3m +4n -[2m +(5m -2n )-3n ],其中m =1n=2.四、解答题(二)(每题8分,共24分)21. 李叔叔买了一套新房,他准备将地面全铺上地板砖,这套新房的平面图如图所示,请解答下列问题:(1)用含x的式子表示这套新房的面积;(2)若每铺1 m2地板砖的费用为120元,当x=6时,求这套新房铺地板砖所需的总费用.22. 已知A =2a 2-a ,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值.23. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.”乙旅行社说:“所有人按全票价的六折优惠.”已知全票为a 元,学生有x 人,带队老师有1人.(1)试用含a 和x 的式子表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.五、解答题(三)(每题10分,共20分)24. 如下数表,是由从1开始的连续自然数组成的,观察规律完成下列各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36(1)表中第7行的最后一个数是________,它是自然数________的平方,第7行共有________个数;(2)用含n的代数式表示:第n行的第一个数是________,最后一个数是________,第n行共有________个数;(3)若将每行最中间的数取出,得到新的一列数1,3,7,13,21,31…,则第n个数与第(n-1)个数的差是多少?其中有两个相邻的数的差是24,那么这两个数分别在原数表的第几行?25. 某商场销某款西装和领带,西装每套定价1 000元,领带每条定价200元.国庆节期间商场计划开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现一位客户要到该商场购买西装20套,领带x 条(x >20).(1)若该客户按方案一购买,需付款________________元(用含x 的式子表示),若该客户按方案二购买,需付款________________元(用含x 的式子表示);(2)当x =30时,通过计算说明此时按哪种方案购买较为合算;(3)当x =30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案.参考答案1.B 2.D 3.C 4.D 5.A 6.C7.C 8.C 9.D 10.A11.2x +5 12.-x 4y 3 13.3a +2b14.1.2x -24 15.231 16.n (n +1)217.-2a18.解:4a 2-3b 2+2ab -4a 2-3b 2+5ba=-6b 2+7ab19.解:2(x 2y +xy )-3(x 2y -xy )-4x 2y=2x 2y +2xy -3x 2y +3xy -4x 2y=-5x 2y +5xy当x =2,y =-14时 原式=-5×22×(-14)+5×2×(-14) =5-52=5220.解:3m +4n -[2m +(5m -2n )-3n ]=3m +4n -(2m +5m -2n -3n )=3m +4n -7m +5n=-4m +9n ,把m =1n=2,n =0.5,代入代数式得 原式=-8+4.5=-3.521.解:(1)这套新房的面积为2x +x 2+4×3+2×3=x 2+2x +12+6=x 2+2x +18(m 2).(2)当x =6时,这套新房的面积是 x 2+2x +18=62+2×6+18=36+12+18=66(m 2).66×120=7 920(元).故这套新房铺地板砖所需的总费用为7 920元.22.解:(1)3A -2B +2=3(2a 2-a )-2(-5a +1)+2=6a 2-3a +10a -2+2=6a 2+7a ;(2)当a =-12时, 3A -2B +2=6×⎝ ⎛⎭⎪⎫-122+7×⎝ ⎛⎭⎪⎫-12 =-2,23.解:(1)由题意可得:甲:a +12ax ,乙:0.6a (x +1); (2)当x =30时,甲所需费用:16a 元;乙所需费用:0.6a (x +1)=18.6a 元因为18.6a >16a ,所以到甲旅行社更优惠.24.解:(1)每行数的个数为1,3,5,…的奇数列,由题意最后一个数是该行数的平方即得49,其他也随之解得:7,13;故答案为49;7;13.(2)由(1)知第n 行最后一数为n 2,则第一个数为n 2-2n +2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n -1;故答案为n 2-2n +2;n 2;2n -1.(3)第n 个和第(n -1)个数的差是2(n -1);2(n -1)=24 n -1=12n =13这两个数分别在原数表的第12行和第13行.25.解:(1)方案一:20×1 000+(x -20)×200=200x +16 000方案二:1 000×20×0.9+0.9×200x =180x +18 000故答案为200x +16 000;180x +18 000.(2)方案一:当x =30时,200x +16 000=200×30+16 000=22 000(元)方案二:当x =30时,180x +18 000=180×30+18 000=23 400(元),而22 000<23 400∴按方案一购买较合算.(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带,此时共花费:20×1 000+10×200×0.9=21 800(元),∵21 800<22 000,∴先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带最便宜.人教版七年级上册数学 第三章 一元一次方程 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是( ) A . m ≠0 B . m ≠1 C . m =-1 D . m =02. 下列方程的解是x =0的是( )A . 2x +3=x -3B . 3x =xC . x -9+4=5D . x +1=-13. 设x ,y ,c 是有理数,则下列结论正确的是( )A . 若x =y ,则x +c =y -cB . 若x =y ,则xc =ycC . 若x =y ,则x c =y cD . 若x 2c =y 3c,则2x =3y4. 方程x -x -53=1去分母,得( ) A . 3x -2x +10=1 B . x -(x -5)=3C . 3x -(x -5)=3D . 3x -2x +10=65. 如果x =-8是方程3x +8=-a 的解,则a 的值为( )A . -14B . 16C . 32D . -306. 下列两个方程的解相同的是( )A . 方程5x +3=6与方程2x =4B . 方程3x =x +1与方程2x =4x -1C . 方程x +12=0与方程x +12=0 D . 方程6x -3(5x -2)=5与6x -15x =37. 解方程4.5(x +0.7)=9x ,最简便的方法是首先( )A . 去括号B . 在方程两边同时乘10C . 移项D . 在方程两边同时除以4.58. 某车间有工人85人,平均每人每天加工大齿轮16个或小齿轮10个,又知2个大齿轮与3个小齿轮配成一套,若有x 人生产大齿轮,则可列方程为( )A . 2×16x =3×10(85-x )B . 2×10x =3×16(85-x )C . 3×16x =2×10(85-x )D . 3×10x =2×10(85-x )9. 学校食堂提供两种午餐:已知12月份盈盈在学校共吃了22次午餐,每次吃一份,刚好把妈妈给的300元午餐费全部用完,则盈盈这个月的午餐吃自助餐( )A . 6次B . 10次C . 12次D . 16次10. 一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是( )A . 亏损20元B . 盈利30元C . 亏损50元D . 不盈不亏二、填空题(每题4分,共28分)11. 若代数式3x +7的值为-2,则x =________.12. 若代数式x -5的值与2x -4的值互为相反数,则x =________. 13. 若-0.2a3x +4b 3与12ab y 是同类项,则xy =________.14. 在某年全国足球超级联赛前15场比赛中,某队保持连续不败,共积37分,按比赛规则,胜一场得3分,平一场得1分,则该队共胜了________场.15. 如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息,可知买5束鲜花和5个礼盒的总价为________元.16. 如图,是某年6月份的月历,用一个圈竖着圈3个数,若被圈住的三个数的和为39,则这三个数中最大的一个为________.17. 对于实数p 、q ,我们用符号min {p ,q }表示p ,q 两数中较小的数,如min {1,2}=1,若min {4x +12,1}=x,则x=________.三、解答题(一)(每题6分,共18分)18. 解方程x-3(1-2x)=11.19. 解方程x+53-x-32=1.20. 某校组织学生种植芽苗菜,三个年级共种植909盆,初二年级种植的数量比初一年级的2倍少3盆,初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?四、解答题(二)(每题8分,共24分)21. 下面是马小哈同学做的一道题: 解方程:2x -13=1-x +24.解:①去分母,得4(2x -1)=1-3(x +2), ②去括号,得8x -4=1-3x -6, ③移项,得8x +3x =1-6+4, ④合并同类项,得11x =-1, ⑤系数化为1,得x =-111.(1)上面的解题过程中最早出现错误的步骤是________;(填代号) (2)请正确地解方程:x -x -12=2-x +24.22. 某学校举行排球赛,积分榜部分情况如下:(1)分析积分榜,平一场比负一场多得________分;(2)若胜一场得3分,七(6)班也比赛了6场,胜场是平场的一半且共积了14分,则七(6)班胜几场?23. 列方程解应用题:某人从家里骑自行车到学校,若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;从家里到学校的路程有多少千米?五、解答题(三)(每题10分,共20分)24. 某公园的门票价格规定如下表:某校七年级甲、乙两班共103人(其中甲班人数多于乙班人数,且甲班人数不超过100)去该公园游玩.如果两班都以班级为单位分别购票,那么一共需付486元.(1)如果两班联合起来作为一个团体购票,那么可以节约多少钱?(2)甲、乙两班各有多少人?25. 某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元?(2)请问购买商品的总价格是多少时,两种方案的优惠情况相同?(3)你认为哪种方案更合算?(直接写出答案) 参考答案1.B 2.B 3.B 4.C 5.B 6.B 7.D 8.C 9.D 10.A 11.-3 12.3 13.-3 14.11 15.440 16.20 17.-12或118.解:x -3(1-2x )=11x -3+6x =117x =14x =219.解:x +53-x -32=1方程两边同时乘6得, 6×x +53-6×x -32=62(x +5)-3(x -3)=6 2x +10-3x +9=6 -x =6-10-9=-13x =1320.解:设初一年级种植x 盆, 依题意得:x +(2x -3)+(2x -3+25)=909,解得x =178. ∴2x -3=353 2x -3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆. 21.解:(1)①. (2)去分母,得4x -2(x -1)=8-(x +2), 去括号,得4x -2x +2=8-x -2, 移项,得4x -2x +x =8-2-2, 合并同类项,得3x =4, 系数化为1,得x =43.22.解:(1)17-16=1;故答案为1. (2)设负1场得x 分. 根据题意得:3×5+x =16. 解得:x =1.∴负1场得1分,平一场得2分. 设七(6)胜y 场,则平2y 场,负6-3y 场. 根据题意得:3y +2×2y +6-3y =14.解得:y =2答:七(6)班胜2场.23.解:设从家到学校有x 千米,15分钟=14小时,依题意得:x 15+14=x 9-14,12x +45=20x -45, 8x =90x =11.25,答:从家里到学校的路程有11.25千米. 24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元) 可节省486-412=74(元)答:如果两班联合起来,作为一个团体购票,则可以节约74元钱. (2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班一定大于50人.,又甲班人数不超过100人,则甲班票价按每人4.5元计算.下面就乙班人数分析:①若乙班少于或等于50人,设乙班有x 人,则甲班有(103-x )人,依题意,得 5x +4.5(103-x )=486 解得x =45, ∴103-45=58(人)即甲班有58人,乙班有45人. ②若乙班此时也大于50人,而 103×4.5=463.5<486.应舍去. 答:甲班有58人,乙班有45人. 25.解:(1)120×0.95=114 (元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元. (2)设购买商品的价格是x 元, 根据题意,得0.8x +168=0.95x , 解得x =1 120,所以所购买商品的价格是1 120元时,两种方案的优惠情况相同. (3)当不购买会员卡,实际应支付的钱数=购买会员卡应支付的钱数时,则0.8x+168=0.95x,解得:x=1 120,当不购买会员卡,实际应支付的钱数>购买会员卡应支付的钱数时,则0.8x+168>0.95x解得:x<1 120 ,当不购买会员卡,实际应支付的钱数<购买会员卡应支付的钱数时,则0.8x+168<0.95x,解得:x>1 120.所以当购买商品的价格等于1 120元时,两种方案同样合算,当购买商品的价格在1 120元以上时,采用方案一更合算,当购买商品的价格在1 120元以下时,采用方案二合算.。
人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)
人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)一、单选题1.代数式22a b +的意义是( ).A .a 的平方与b 的和B .a 与b 的平方的和C .a 与b 两数的平方和D .a 与b 的和的平方 2.用a 表示的数一定是( )A .正数B .正数或负数C .正整数D .以上全不对 3.若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-54.已知3,2a b c d +=-=,则()()a c b d +--+的值是( )A .5B .-5C .1D .-15.若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .166.不改变代数式22a a b c +-+的值,下列添括号错误的是( )A .2(2)a a b c +-+B .2(2)a a b c --+-C .2(2)a a b c --+D .22()a a b c ++-+ 7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第①个图案中有9个正方形,第①个图案中有13个正方形,第①个图案中有17个正方形,此规律排列下去,则第①个图案中正方形的个数为( )A .32B .34C .37D .418.化简(2a ﹣b )﹣(2a +b )的结果为( )A .2bB .﹣2bC .4aD .4a9.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==10.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元 B .()2024a +元 C .()17 3.6a +元 D .()20 3.6a +元 11.如图,将图1中的长方形纸片前成①号、①号、①号、①号正方形和①号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是( )A .只需知道图1中大长方形的周长即可B .只需知道图2中大长方形的周长即可C .只需知道①号正方形的周长即可D .只需知道①号长方形的周长即可12.将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A .98B .100C .102D .10413.化简1(93)2(1)3x x --+的结果是( ) A .21x - B .1x + C .53x + D .3x -14.把图1中周长为16cm 的长方形纸片分割成四张大小不等的正方形纸片A 、B 、C 、D 和一张长方形纸片E ,并将它们按图2的方式放入周长为24cm 的的长方形中.设正方形C 的边长为cm x ,正方形D 的边长为cm y .则下结论中正确的是( )A .正方形C 的边长为1cmB .正方形A 的边长为3cmC .正方形B 的边长为4cmD .阴影部分的周长为20cm15.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%16.多项式2835x x -+与多项式323257x mx x +-+相加后,不含二次项,则常数m 的值是( )A .2B .4-C .2-D .8-17.代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值A .与x ,y 有关B .与x 有关C .与y 有关D .与x ,y 无关18.有n 个依次排列的整式:第一项是a 2,第二项是a 2+2a +1,用第二项减去第一项,所得之差记为b 1,将b 1加2记为b 2,将第二项与b 2相加作为第三项,将b 2加2记为b 3,将第三项与b 3相加作为第四项,以此类推;某数学兴趣小组对此展开研究,得到4个结论: ①b 3=2a +5;①当a =2时,第3项为16;①若第4项与第5项之和为25,则a =7;①第2022项为(a +2022)2;①当n =k 时,b 1+b 2+…+bk =2ak +k 2;以上结论正确的是( )A .①①①B .①①①C .①①①D .①①①19.将正整数按如图所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示8,已知1+2+3+…+n=()12n n +,则表示2020的有序数对是( ).A .(64,4)B .(65,4)C .(64,61)D .(65,61) 20.当1x =-时,3238ax bx -+的值为18,则1282b a -+的值为( )A .40B .42C .46D .56二、填空题21.化简()x y x y +--=___________.22.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.23.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.24.22213x x ⎛⎫-+ ⎪⎝⎭-_________________=2325x x -+. 25.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知112a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2020a =________.三、解答题26.有这样一道题:“求(2x 3﹣3x 2y ﹣2xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x =2020,y =﹣1”.小明同学把“x =2a ab --”错抄成了“x =﹣3m n -”,但他的计算结果竟然正确,请你说明原因,并计算出正确结果.27.如图,用字母表示图中阴影部分的面积.28.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.29.(1)若(a﹣2)2+|b+3|=0,则(a+b)2019=.(2)已知多项式(6x2+2ax﹣y+6)﹣(3bx2+2x+5y﹣1),若它的值与字母x的取值无关,求a、b的值;(3)已知(a+b)2+|b﹣1|=b﹣1,且|a+3b﹣3|=5,求a﹣b的值.30.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:(1)请直接写出a、b、c的值.a=,b=,c=.(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用含t的关系式表示);①请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.参考答案1--10CDCAC CCBCD 11--20BBDDB BDACB21.2y22.323.1324.2443x x -+- 25.12- 26.解:原式=2x 3﹣3x 2y ﹣2xy 2﹣x 3+2xy 2﹣y 3﹣x 3+3x 2y ﹣y 3=﹣2y 3,①此题的结果与x 的取值无关,y =﹣1时,原式=﹣2×(﹣1)3=2.27.解:由题意得:==S S S mn pq --阴影大长方形空白长方形,①阴影部分的面积为mn pq -.28.正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a =a+20-2=18,所以说小张说的对.29.解:(1)①(a ﹣2)2+|b +3|=0,且(a ﹣2)2≥0,|b +3|≥0,①a ﹣2=0,b +3=0,解得a =2,b =﹣3,①(a +b )2019=(2﹣3)2019=﹣1.故答案为:﹣1;(2)原式=6x 2+2ax ﹣y +6﹣3bx 2﹣2x ﹣5y +1,=(6﹣3b )x 2+(2a ﹣2)x ﹣6y +7,由结果与x 取值无关,得到6﹣3b =0,2a ﹣2=0,解得:a =1,b =2;(3)①(a +b )2+|b ﹣1|=b ﹣1,①(a +b )2+|b ﹣1|-(b ﹣1)=0,①|b ﹣1|≥(b ﹣1),①|b ﹣1|-(b ﹣1)≥0,(a +b )2≥0,①a +b =0且|b ﹣1|=b ﹣1,①010a b b +=⎧⎨-≥⎩, 解得,1a b b =-⎧⎨≥⎩, ①|a +3b ﹣3|=5,①a +3b ﹣3=5或a +3b ﹣3=-5,①a +3b =8或a +3b =﹣2,把a =﹣b 代入上式得:b =4或﹣1(舍去),①a ﹣b =﹣4﹣4=﹣8.30.(1)解:由题意得,单项式-xy 2的系数a =-1,最小的正整数b =1,多项式2m 2n -m 3n 2-m -2的次数c =5; 故答案为:-1,1,5(2)①t 秒后点A 对应的数为a -t ,点B 对应的数为b +t ,点C 对应的数为c +3t ,故AC =|c +3t -a +t |=|5+4t +1|=6+4t ; 故答案为:6+4t ①①BC =5+3t -(1+t )=4+2t ,AB =1+t -(-1-t )=2+2t ;①BC -AB =4+2t -2-2t =2, 故BC -AB 的值不会随时间t 的变化而改变.其值为2.。
2019-2020学年七年级上册数学第二章检测试卷及答案人教版
2019-2020学年七年级上册数学第二章检测试卷及答案人教版注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“比a 的32大1的数”用式子表示是A .32a +1B .23a +1C .52a D .32a –12.下列单项式书写不正确的有①312a 2b ;②2x 1y 2;③–32x 2;④–1a 2b .A .1个B .2个C .3个D .4个3.下列各组式中是同类项的为A .4x 3y 与–2xy 3B .–4yx 与7xyC .9xy 与–3x 2D .ab 与bc 4.下列说法正确的是A .a 的系数是0B .1y 是一次单项式C .–5x 的系数是5D .0是单项式5.下列各式计算正确的是A .235a b ab+=B .2538x x x +=C .22523y y -=D .222945a b ba a b -=6.下列整式中,去括号后得a –b +c 的是A .a –(b +c )B .–(a –b )+cC .–a –(b +c )D .a –(b –c )A .a =0,b =3B .a =1,b =3C .a =2,b =3D .a =2,b =18.若长方形长是2a +3b ,宽为a +b ,则其周长是A .6a +8bB .12a +16bC .3a +8bD .6a +4b 9.减去–2x 后,等于4x 2–3x –5的代数式是A .4x 2–5x –5B .–4x 2+5x +5C .4x 2–x –5D .4x 2–510.用棋子摆出如图所示的一组“口”字,若按照这种方法摆下去,则摆第n 个“口”字需用棋子A .4n 枚B .(4n –4)枚C .(4n +4)枚D .n 2枚第Ⅱ卷二、填空题(本题共8小题,每小题3分,共24分)11.212x y 是__________次单项式.12.计算:3a –(2a –b )=__________.13.–2x 2y 4的系数是a ,次数是b ,则a +b =__________.14.已知23x 3m y 2与–14x 6y 2n 是同类项,则5m +3n =__________.15.若a +b =–1,ab =4,则(4a –5b –3ab )–(3a –6b +ab )的值为__________.16.某班a 名同学参加植树活动,其中男生b 名(b <a ).若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树__________棵.17.若关于x 的多项式(a –4)x 3–x 2+x –2是二次三项式,则a =__________.18.若1314a =-,2111a a =-,3211a a =-,......,则2019a =__________.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)计算:(1)3x 2y –3xy 2–12xy 2+23x 2y ;(2)4(a –2b +1)–3(–4a +b –5).20.(本小题满分6分)课堂上老师给大家出了这样一道题,“当2016x =时,求代数式的值”,小明一看(2x 3–3x 2y –2xy 2)–(x 3–2xy 2+y 3–2019)+(–x 3+3x 2y +y 3)中x 的值太大了,又没有y 的值,怎么算呢?”你能帮小明解决这个问题吗?请写出具体过程.21.(本小题满分6分)先化简,再求值:(1)12x –2(x –13y 2)+(–32x +13y 2),其中x =–2,y =23.23.(本小题满分8分)已知222322A x xy y x y =-+++,224623B x xy y x y =-+--.(1)当2x =,15y =-时,求2B A -的值.(2)若22(3)0x a y -+-=,且2B A a -=,求a 的值.24.(本小题满分10分)如图所示.(1)阴影部分的周长是__________;(2)阴影部分的面积是__________;(3)当x =5.5,y =4时,阴影部分的周长是多少?面积是多少?25.(本小题满分10分)阅读材料:对于任何数,我们规定符号a bc d的意义是a bc d=ad–bc,例如:1234=1×4–2×3=–2.(1)按照这个规定,请你计算5628-的值.(2)按照这个规定,请你计算当|x+y–4|+(xy+1)2=0时,132121xy yx+-+的值.26.(本小题满分12分)长春市发起了“保护伊通河”行动,某学校七年级两个班的115名学生积极参与,踊跃捐款.已知甲班有13的学生每人捐了10元,乙班有25的学生每人捐了10元,两个班其余学生每人捐了5元,设甲班有学生x人.(1)用含x的代数式表示乙班人数:__________;(2)用含x的代数式表示两班捐款的总额;(3)若x=60,则两班共捐款多少元?加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
【精选习题】最新人教版初中数学七年级上册第2章整式的加减单元测试卷.doc
人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式 的系数和次数分别是( ) A.2,2B.2,3C.3,2D.2,42.下列说法正确的是( ) A .ab +c 是二次三项式 B .多项式2x 2+3y 2的次数是4 C .0是单项式 D .34ba是整式 3.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .54.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )25.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy6.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( )A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______. 15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式 2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a―b)]=___.16.的结果是___.17.小颖在计算a+N时,误将“+”看成“―”,结果得3a,则a+N=___.18.数学家发明了一个魔术盒,当任意实数对...(a,b)进入其中时,•会得到一个新的实数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:请写出剩油量A与行驶路程n与耗油量Q之间的关系式,并计算当n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版初中数学七年级上册第2章《整式加减》单元测试卷(及答案)一.选择题1.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b 与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定2.单项式﹣5ab的系数是()A.5B.﹣5C.2D.﹣23.多项式3x2+xy﹣xy2的次数是()A.2B.1C.3D.44.下列多项式是五次多项式的是()A.x3+y2B.x2y3+xy+4C.x5y﹣l D.x5﹣y6+15.与2ab2是同类项的是()A.4a2b B.2a2bC.5ab2D.﹣ab6.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣a C.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣4 7.在下列整式中,次数为4的单项式是()A.mn2B.a3﹣b3C.x3y D.5st8.计算4a2﹣5a2的结果是()A.﹣a2 B.﹣1C.a2 D.9 a29.已知A=﹣4x2,B是多项式,在计算B+A时,李明同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x310.已知:a2+2a=1,则代数式2a2+4a﹣1的值为()A.1B.0C.﹣1D.﹣211.按如图所示的运算程序,能使运算输出结果为﹣5的是()A.x=1,y=﹣2B.x=1,y=2C.x=﹣1,y=2D.x=﹣1,y=﹣212.在式子a2+2,,ab2,,﹣8x,0中,整式有()A.3个B.4个C.5个D.6个13.下列说法中正确的是()A.xy﹣x+y﹣4的项是xy,x,y,4B.单项式m的系数为0,次数为0C.单项式2a2b的系数是2,次数是2D.1是单项式14.甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定15.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5二.填空题16.若5a m b2n与﹣9a5b6是同类项,则m+n的值是.17.已知m2+m=﹣2,则2m2+2m+2023=.18.已知多项式x2﹣(3k﹣1)xy﹣3y2+3mxy﹣8中不含xy项,则8k+1×4÷23m+2的值为.19.班主任老师的想法:七年级我班50名同学,想参加元旦长跑活动的同学就举手,当举手的人数和没有举手的人数之差是一个奇数时,全班就不参加;如果是偶数,全班就参加元旦长跑活动.请思考:老师的想法(填“参加”或“不参加”).20.若代数式﹣(3x3y m﹣1)+3(x n y+1)经过化简后的结果等于4,则m﹣n的值是.21.已知(a+b)2=7,|ab|=3,则(a2+b2)﹣ab=.三.解答题22.先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.23.计算:﹣3[b﹣(3a2﹣3ab)]﹣[b+2(4a2﹣4ab)]24.已知代数式A=x2+xy﹣2y,B=2x2﹣2xy+x﹣1(1)求2A﹣B;(2)若2A﹣B的值与x的取值无关,求y的值.25.已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1).(1)化简此多项式;(2)若x,y互为倒数,且恰好计算得多项式的值等于0,求x的值.26.已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.参考答案一.选择题1.A;2.B;3.C;4.B;5.C;6.C;7.C;8.A;9.C;10.A;11.C;12.C;13.D;14.C;15.C;二.填空题16.8;17.2019;18.16;19.参加;20.﹣2;21.﹣或;三.解答题22.解:(1)原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x,当x=-1时,原式=-1-1=-2;(2)原式=3x2-6xy-x2+6xy-4y=2x2-4y=2(x2-2y),由x2-2y-5=0,得到x2-2y=5,则原式=10.23.解:原式=-3b+9a2-9ab-b-8a2+8ab=a2-4b-ab24.解:(1)2A-B=2(x2+xy-2y)-(2x2-2xy+x-1)=2x2+2xy-4y-2x2+2xy-x+1=4xy-x-4y+1;(2)∵2A-B=4xy-x-4y+1=(4y-1)x-4y+1,且其值与x无关,∴4y-1=0,解得y=25. 解:(1)原式=3x 2+6(y 2+xy-2)-3x 2-6y 2-4xy+4x+4 =3x 2+6y 2+6xy-12-3x 2-6y 2-4xy+4x+4 =2xy+4x-8;(2)∵x ,y 互为倒数, ∴xy=1,则2xy+4x-8=2+4x-8=4x-6, 由题意知4x-6=0, 解得:x=26.解:∵A=2x 2-xy+my-8,B=-nx 2+xy+y+7,∴A-2B=2x 2-xy+my-8+2nx 2-2xy-2y-14=(2+2n )x 2-3xy+(m-2)y-22,由结果不含有x 2项和y 项,得到2+2n人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( )A.4,3B.4,-3C.6,3D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( ) A.2(x-y )=2x-y B.-(m-n )=-m+n C.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53 B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________. 14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数)创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3.当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ;乙每份材料收2.5元印刷费, 故答案为25,50,2.5x ;(2)对甲来说,印刷大于800份时人教版初中数学七年级上册第2章《整式加减》单元测试卷一、单选题(每小题只有一个正确答案) 1.下列各式:ab ,2x y -,2x,–xy 2,0.1,1π,x 2+2xy+y 2,其中单项式有( ) A .5个B .4个C .3个D .2个2.多项式x 3–2x 2y 2+3y 2每项的系数和是( ) A .1B .2C .5D .63.若单项式–2335a bc 的系数、次数分别是m 、n ,则( )A .m=−35,n=6 B .m=35,n=6 C .m=–35,n=5 D .m=35,n=5 4.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy5.对[()]a b c d --+去括号后的结果是( ). A .a b c d --+ B .a b c d +-- C .a b c d -++D .a b c d -+-6.单项式﹣x 2y 的系数与次数分别是( ) A.-,3B.-,4C.-π,3D.-π,47.下列各式计算正确的是( ). A .(2)2a a b b --=- B .2(3)242xy y xy xy y --=- C .233336ab a b ab +=D .3()3xy y xy y +-=8.下列各组单项式属于同类项的是( ).A .2a 与22aB .3m -与2mC .223a b 与22ab D .22a 与23a9.一个两位数,十位上的数字比个位上的数字小2,设十位上的数字为x ,则这个两位数可以表示为( ). A .22x +B .22x -C .112x -D .112x +10.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .611.规定一种新运算,a *b =a +b ,a #b =a ﹣b ,其中a 、b 为有理数,化简a 2b *3ab +5a 2b #4ab 的结果为( ) A .6a 2b +abB .﹣4a 2b +7abC .4a 2b ﹣7abD .6a 2b ﹣ab12.一个多项式加上2325y y --得到多项式3546y y --,则原来的多项式为( ) A.325321y y y ++- B.325326y y y --- C.325321y y y +-- D.325321y y y ---二、填空题13.多项式2239x xy π++ 人教版初中数学七年级上册第1章《有理数》单元测试题一、选择题(本大题12小题,每小题3分,共36分,每小题只有一个正确选项)1.—2019的相反数是( ) A .-2019B .2019C .12019 D.12019- 2. 下列说法正确的是( )A .分数都是有理数B .﹣a 是负数C .有理数不是正数就是负数D .绝对值等于本身的数是正数3.2018年10月23日,港珠澳大桥开通,港珠澳大桥东起香港国际机场附近的香港口岸 人工岛,向西横跨伶仃洋海域后连按珠海和澳门人工岛,止于珠海祺湾,工程项目总投资额1269亿元,数据1269亿元用科学记数法可表示为( ) A .1269×108元 B .126.9×109元 C .1.269×1011元 D .1.269×108元 4.比-4.5小的负整数是( )A .-3B .-5.5C .-4D .05.如图所示,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示正确的是( ) A.a <1<-a B.a <-a <1C.1<-a <aD. -a <a <16.又是一年杨梅采摘时!丰景杨梅场每框杨梅以5千克为基准,超过千克数的记为正数,不足千克数的记为负数,记录如图,则这四框杨梅的总质量是( )第5题A .19.7千克B .19.9千克C .20.1千克D .20.3千克7.利用运算律简便计算52×(﹣999)+49×(﹣999)+999正确的是 ( )A .﹣999×(52+49)=﹣999×101=﹣100899B .﹣999×(52+49﹣1)=﹣999×100=﹣99900C .﹣999×(52+49+1)=﹣999×102=﹣101898D .﹣999×(52+49﹣99)=﹣999×2=﹣1998 8.下列运算正确的是 ( )A .(-3)2=-9B .(-1)2019×(-1)=1 C .-9÷3=3 D .﹣|﹣1|=19.在等式[(-8) -□]÷(-2)=4中,□表示的数是 ( )A.1B. -1C. -2D.0 10.若ab>,a+b<,则( ) A .a 、b 都为负数 B .a 、b 都为正数 C .a 、b 中一正一负D .以上都不对 11.在-|-5|3,-(-5)3,(-5)3,-53中,最大的是( ) A .-|-5|3 B .-(-5)3C .(-5)3D .-5312. 观察下列算式:根据表格中个位数的规律可知,22019的个位数是 ( ) A .2 B.4 C.6 D.8二、填空题(本大题4小题,每小题3分,共12分)13.如果节约5.6吨水记作+5.6吨,那么浪费3.2吨水记作 吨. 14.如图,数轴上A 、B 两点所表示的数分别是-4和2, 点C 在线段AB 上且到点A 、B 的距离相等, 则点C 所表示的数是 . 15.已知|x |=3,|y |=15.且xy <0,则x y 的值等于 .16.若()235180a b c ++-+-=,则ab -c =______ 三、解答题(本大题7小题,共52分)第15题17 .(6分)将下列各数在数轴上表示出来,并按照从大到小的顺序排列. -3,-(-1),212,-1.5,4.18.(本题共2小题,每小题4分,共8分) 计算:(1)13+(﹣5)﹣(﹣21)﹣19; (2)11336964⨯(--)19.(本题共2小题,每小题4分,共8分) 计算:(1)﹣8﹣3×(﹣12)+8; (2)﹣6×2334(-)﹣|(﹣8)÷2|20.(本题共2小题,每小题4分,共8分)计算:(1)3527(3 1.2)6⎡⎤-⨯-+-⨯⎢⎥⎣⎦(); (2)-12019-|-3|+16×[10-(-2)3]21. (8分)已知某种机器零件的标准直径是10mm,超过标准直径长度的数量(毫米)记作正数,不足标准直径长度的数量(毫米)记作负数,检验员某次抽查了物件样品,检查的(2)如果规定误差的绝对值在0.18mm之内是正品.误差的绝对值在0.18mm~0.22mm之间是次品,误差的绝对值超过0.22mm的是废品,那么上述五件样品中,哪些是正品,哪些是次品,哪些是废品?22.(8分)某巡警骑摩托车在一条东西大道上巡逻.某天他从岗亭出发,晚上停留在A处.规定向东方向为正.当天行驶记录如下(单位:千米)+10,﹣8,+6,﹣13,+7,﹣12,+3,﹣1(1)A在岗亭何方?距岗亭多远?(2)在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站几次?(3)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?23.(6分)阅读下列内容,然后解答问题:因为:11111111111 1,,12223233434910910 =-=-=-⋯=-⨯⨯⨯⨯所以:1111 122334910 +++⋯+⨯⨯⨯⨯1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111122334910=-+-+-+⋯+-1911010=-=问题:计算:(1)111111223342015201620162017+++⋯++⨯⨯⨯⨯⨯ (2)111133557++⨯⨯⨯ (3)111113355720152017+++⋯+⨯⨯⨯⨯龙华中学2019秋学期七年级数学第一次月考试题参考答案一、1.B 2.A 3.C 4.B 5.A 6.C 7.B 8.B 9.D 10.A 11.B 12.D 二、13. -3.2 14.-1 15.﹣15 16.3 三、17.解:(1)正确画出图形………………3分 (2)按照从大到小的顺序排列为:4>12>-(-1)>-1.5>-3.………………6分 18.解:(1)原式=13﹣5+21﹣19………………2分 =34﹣24………………3分 =10;………………4分 (2)原式=………………6分=4﹣6﹣27………………7分 =﹣29;………………8分19. 解:(1)原式=﹣8+36+8………………2分 =36;………………4分(2)原式=﹣4+﹣4………………6分=﹣3.………………8分20.(1)原式==(﹣8)×[﹣7+(3﹣1)] ………………2分=(﹣8)×(﹣5)………………3分=40.………………4分(2)原式=-1-3+3………………6分=-1.………………8分21.解:(1)∵|-0.05|<|+0.1|<|-0.15|<|-0.2|<|+0.25|,∴第4个样品最符合要求;……………………3分(2)∵|-0.05|=0.05<0.18,|+0.1|=0.1<0.18,|-0.05|=0.05<0.18,∴第1、2、4件样品是正品,……………………4分∵|-0.2|=0.2,且0.18<0.2<0.22,∴第3个样品是次品;……………………6分∵|+0.25|=0.25>0.22,∴第5件样品是废品.……………………8分22.解:解:根据题意可得:东方向为正,则西方向为负,将岗亭看为0,加油站为6.(1)+10﹣8+6﹣13+7﹣12+3﹣1=﹣8,即A在岗亭西方8千米处;……………2分(2)巡警巡逻时经过岗亭东面6千米处加油站,应该是4次,第一次向东走10千。
成都师大附中外国语学校学校人教版初中七年级数学上册第二章《整式的加减》模拟测试题(有答案解析)
一、选择题1.(0分)[ID :68029]代数式x 2﹣1y的正确解释是( )A .x 与y 的倒数的差的平方B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数2.(0分)[ID :68055]把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1C .5D .113.(0分)[ID :68052]有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 1004.(0分)[ID :68014]如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n5.(0分)[ID :68011]如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .666.(0分)[ID :68010]一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -17.(0分)[ID :68009]已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2-B .13C .23D .328.(0分)[ID :68008]下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++9.(0分)[ID :68004]下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯C .126p - D .2y z ÷10.(0分)[ID :67997]下列式子中,是整式的是( )A .1x +B .11x + C .1÷x D .1x x+ 11.(0分)[ID :67988]已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .nC .m n +D .m ,n 中较大者 12.(0分)[ID :67969]一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+B .253a a -+-C .2513a a --D .21a a -+-13.(0分)[ID :67967]下列各对单项式中,属于同类项的是( ) A .ab -与4abcB .213x y 与212xy C .0与3-D .3与a14.(0分)[ID :67963]小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( ) A .16a ﹣8b B .7a ﹣5b C .4a ﹣4b D .7a ﹣7b 15.(0分)[ID :67958]长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题16.(0分)[ID :68137]化简:226334xx x x_________.17.(0分)[ID :68134]如图,阴影部分的面积用整式表示为_________.18.(0分)[ID :68131]m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________. 19.(0分)[ID :68129]某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.20.(0分)[ID :68126]某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.21.(0分)[ID :68110]如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④22.(0分)[ID :68107]若212m ma b -是一个六次单项式,则m 的值是______. 23.(0分)[ID :68102]一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.24.(0分)[ID :68082]两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子. 25.(0分)[ID :68080]多项式223324573x x y x y y --+-按x 的降幂排列是______。
【数学试题】最新人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题.doc
人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式 的系数和次数分别是( ) A.2,2B.2,3C.3,2D.2,42.下列说法正确的是( ) A .ab +c 是二次三项式 B .多项式2x 2+3y 2的次数是4 C .0是单项式 D .34ba是整式 3.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .54.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )25.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy6.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( )A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______. 15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy -人教版数学七年级(上)第二章单元质量检测试卷、答案一、选择题(共10小题;共30分)1. 多项式的项数和次数分别为A. ,B. ,C. ,D. ,2. 下列计算正确的是A. B.C. D.3. 的结果是A. B. C. D.4. 若单项式的次数是,则的值是A. B. C. D.5. 今年学校运动会参加的人数是人,比去年增加,那么去年运动会参加的人数为人.A. B. C. D.6. 下列说法正确的是A. 与不是同类项B. 不是整式C. 单项式的系数是D. 是二次三项式7. 设某数为,那么代数式表示A. 某数的倍的平方减去除以B. 某数的倍减的一半C. 某数与的差的倍除以D. 某数平方的倍与的差的一半8. 用字母表示 与 的和除 与 的差为 A.B.C.D.9. 观察下列数表: 第一行 第二行 第三行 第四行根据数表所反映的规律,第 行第 列交叉点上的数应为 A.B.C.D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( )A.4,3B.4,-3C.6,3D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( ) A.2(x-y )=2x-y B.-(m-n )=-m+n C.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53 B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________. 14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数)创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3.当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时人教版七年级上册数学单元练习题:第二章整式的加减一、选择题1.单项式的系数是()A. B. π C. 2 D.2.下列各组式子中,是同类项的是()A. 3x2y与-3xy2B. 3xy与-2yxC. 2x与2x2D. 5xy与5yz3.在式子a2+2,,ab2,,﹣8x,0中,整式有()A. 6个B. 5个C. 4个D. 3个4.下列各式计算结果正确的是()A. a+a=a2B. (a﹣1)2=a2﹣1C. a•a=a2D. (3a)3=9a25.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 36.下列说法错误的是()A. 2x2﹣3xy﹣1是二次三项式B. ﹣x+1不是单项式C. 的系数是D. ﹣22xab2的次数是67.计算2a3+3a3结果正确的是()A. 5a6B. 5a3C. 6a6D. 6a38.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=2bB. a=3bC. a=4bD. a=b10.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. ﹣1B. ﹣5C. 5D. 111.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题12.单项式﹣x3y的系数是________.13.多项式是a -2a -1 是________次________项式.14.下面是按一定规律排列的一列数:,- ,,- …那么第8个数是________.15.观察下列数:,,,,…按规律写出第6个数是________,第10个数是________,第n个数是________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________17.下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有________个★.三、解答题18.化简:(1)2x-5y-3x+y(2)19.先化简,再求值.,其中.20.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.21.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.参考答案一、选择题1.D2. B3.B4.C5. A6. D7. B8. C9.A 10.C 11. B二、填空题12. 13.三;三14. 15.;;16.x n+n217.(1+3n)三、解答题18.(1)解:2x-5y-3x+y=(2-3)x+(-5+1)y=-x-4y(2)解:=2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b19.解:原式=3x²-2xy- [x²-8x+8xy],=3x²-2xy- x²+4x-4xy,= x²-6xy+4x,当时,原式= ×(-2)2-6×(-2)×1+4×(-2),=10+12-8,=14.20.(1)解:上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则第一个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)(2)解:∵左边=(10m+n)(10m﹣n+10),=(10m+n)[10(m+1)﹣n],=100m(m+1)﹣10mn+10n(m+1)﹣n2,=100m(m+1)﹣10mn+10mn+10n﹣n2,=100m(m+1)+n(10﹣n)=右边,∴(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)成立21.(1)④4×6﹣52=﹣1(2)(2n﹣1)(2n+1)﹣(2n)2=﹣1(3)解:左边=(2n﹣1)(2n+1)﹣(2n)2=4n2﹣1﹣4n2=﹣1所以(2)中所写的等式一定成立人教版数学七年级上册第2章整式的加减单元检测卷(含答案解析)一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=.5.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=.6.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3 10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣112.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣113.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?人教版数学七年级(上册)第2章整式的加减单元检测卷参考答案一.填空题(共6小题,满分24分,每小题4分)1.(4分)将多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7.【分析】根据多项式的项的概念和降幂排列的概念解答即可.【解答】解:多项式x2y﹣2x3+7﹣5xy按字母x降幂排列为﹣2x3+x2y﹣5xy+7,故答案为:﹣2x3+x2y﹣5xy+7.2.(4分)“x2的3倍与y的倒数的和”,用代数式表示为3x2+.【分析】首先表示出x2的3倍、y的倒数,然后求其和即可.【解答】解:依题意得3x2+.故答案是:3x2+.3.(4分)如图是一个数值转换机的示意图.当输入x=3时,则输出的结果为26.【分析】把x的值代入运算程序进行计算即可得解.【解答】解:x=3时,32×3﹣2=27﹣1=26.故答案为:26.4.(4分)如果x2﹣3xy=6,3xy+y2=10,则x2+y2=16.【分析】已知等式相加即可求出原式的值.【解答】解:∵x2﹣3xy=6,3xy+y2=10,∴x2+y2=x2﹣3xy+3xy+y2=10+6=16,故答案为:165.(4分)当a=3.6,b=6.4时,求多项式a2+ab﹣b2+a﹣a2﹣ab+b+b2=10.【分析】所求式子合并同类项得到最简结果,将a与b的值代入计算即可求出值.【解答】解:a2+ab﹣b2+a﹣a2﹣ab+b+b2=a+b,当a=3.6,b=6.4时,原式=3.6+6.4=10.故答案为:106.(4分)当3x+3﹣x=2时,代数式32x+3﹣2x的值是2.【分析】把3x+3﹣x=2两边平方即可求解.【解答】解:把3x+3﹣x=2两边平方得:32x+3﹣2x+2•3x+3﹣x=4,即32x+3﹣2x=2.故答案是2.二.选择题(共10小题,满分30分,每小题3分)7.(3分)下列各式:﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有()A.3个B.4个C.6个D.7个【分析】根据整式的定义,结合题意即可得出答案.【解答】解:在﹣mn,m,8,,x2+2x+6,,,y3﹣5y+中,整式有﹣mn,m,8,x2+2x+6,,,一共6个.故选:C.8.(3分)下列说法错误的是()A.x是单项式B.3x4是四次单项式C.的系数是D.x3﹣xy2+2y3是三次多项式【分析】根据多项式的有关概念,以及单项式的系数的定义即可作出判断.【解答】解:A、x是单项式,正确;B、3x4是四次单项式,正确;C、的系数是,错误;D、x3﹣xy2+2y3是三次多项式,正确;故选:C.9.(3分)三个连续整数的积是0,则这三个整数的和是()A.﹣3B.0C.3D.﹣3或0或3【分析】设最小的整数为n﹣1,根据连续的整数只是相差1,知另外的两个整数分别是n,n+1.由等量关系这三个连续整数的积是0,列出方程.然后根据三个因式的积是0,则每一个因式都可能是0,分情况讨论.【解答】解:设最小的整数为n﹣1,根据题意得(n﹣1)•n•(n+1)=0,解得n﹣1=0或n=0或n+1=0,当n﹣1=0时,n=1,这三个数分别是0,1,2,这三个数的和是3;当n=0时,这三个数分别是﹣1,0,1,这三个数的和是0;当n+1=0时,n=﹣1,这三个数是﹣2,﹣1,0,这三个数的和是﹣3.故选:D.10.(3分)下列各式合并同类项后,结果正确的是()A.3a+2b=5ab B.3x3y2﹣2x2y=xyC.3x2+2x3=5x5D.4x2y﹣7yx2=﹣3x2y【分析】直接利用合并同类项法则计算得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、3x3y2﹣2x2y,无法合并,故此选项错误;C、3x2+2x3,无法合并,故此选项错误;D、4x2y﹣7yx2=﹣3x2y,正确.故选:D.11.(3分)下列说法中,错误的是()A.x2是二次单项式B.x3﹣2xy2+y3是三次三项式C.0是单项式D.﹣的系数是﹣1【分析】根据单项式、多项式的定义即可判断;【解答】解:A、x2是二次单项式;正确,本选项不符合题意.B、x3﹣2xy2+y3是三次三项式;正确,本选项不符合题意.C、0是单项式;正确,本选项不符合题意.D、﹣的系数是﹣1;错误,系数应该是﹣,本选项符合题意.故选:D.12.(3分)若﹣3x2m y3与2x4y n的和是一个单项式,则|m﹣n|的值是()A.0B.1C.7D.﹣1【分析】根据单项式的和是单项式,可得同类项,根据同类项,可得m、n的值,根据差的绝对值是大数减小数,可得答案.【解答】解:由题意,得2m=4,n=3.解得m=2,n=3.|m﹣n|=|2﹣3|=1,故选:B.13.(3分)若A=3m2﹣5m+2,B=3m2﹣5m﹣2,则A与B的大小关系是()A.A=B B.A>B C.A<B D.无法确定【分析】利用作差法即可判断两个多项式的大小关系.【解答】解:A﹣B=(3m2﹣5m+2)﹣(3m2﹣5m﹣2)=3m2﹣5m+2﹣3m2+5m+2=4>0,∴A﹣B>0,∴A>B,故选:B.14.(3分)将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】解:原式=(2+3﹣4)(x+y)=x+y,故选:A.15.(3分)原产n吨,增产30%之后的产量应为()A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨【分析】原产量n吨,增产30%之后的产量为n×(1+30%),再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n×(1+30%)=n130%吨.故选:B.16.(3分)一家三口准备外出旅游,甲乙两家的旅行社的报价相同,为了竞争,甲旅行社说:“父亲买全票,其它人可享受6折优惠”.乙旅行社说:“家庭旅行可按团体票计价,按原价的优惠”,由此可以判断()A.甲比乙优惠B.乙比甲优惠C.甲乙收费相同D.以上都有可能【分析】可以设每人的原票价为a元,然后按照旅行社的要求代入数据进行计算即可.【解答】解:设每人的原票价为a元,如果选择甲,则所需要费用为a+0.6a×2=2.2a(元),如果选择乙,则所需费用为:×3×a=2.4a(元),∵2.2a<2.4a,∴甲比乙优惠,故选:A.三.解答题(共9小题,满分66分)17.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)【分析】合并同类项就是系数和系数相加作为系数,字母和字母的指数不变.【解答】解:(1)15x+4x﹣10x=(15+4﹣10)x=9x(2)﹣p2﹣p2﹣p2=﹣3p2(3)3x2y﹣3xy2+2yx2﹣y2x=5x2y﹣4xy2(4)=a2b=a2b.18.(6分)先化简,再求值:(1)2x2﹣5x+x2+4x,其中x=﹣3.(2),其中x=6,y=﹣1.【分析】按要求先化简再求值.注意去括号法则:++得+,﹣﹣得+,﹣+得﹣,+﹣得﹣;合并同类项法则:把同类项的系数相加减,字母和字母指数的部分不变.【解答】解:(1)原式=3x2﹣x,当x=﹣3时,原式=30;(2)原式==﹣,当x=6,y=﹣1时,原式=﹣2.19.(6分)已知3x|2a﹣1|y与﹣2xy|b|是同类项,并且a与b互为负倒数,求ab﹣3(﹣b)﹣+6的值.【分析】此题要抓住同类项的定义“所含字母相同,相同字母的指数相同”去列方程:|2a ﹣1|=1,|b|=1,解方程即可求得a,b的值;同时注意a与b互为负倒数这一条件;再将代数式ab﹣3(﹣b)﹣+6化简,将a,b的值代入即可.【解答】解:由题意可知|2a﹣1|=1,|b|=1,解得a=1或0,b=1或﹣1.又因为a与b互为负倒数,所以a=1,b=﹣1.原式=ab﹣a+3b﹣a+6=ab﹣2a+3b+6,当a=1,b=﹣1时,原式=1×(﹣1)﹣2×1+3×(﹣1)+6=0.20.(6分)李可同学欲将一个多项式加上2xy﹣3yz+4时,由于错把“加上”当作“减去”使得计算结果为﹣6xy+8yz﹣9,请你求出正确的答案.【分析】用这个多项式加上﹣6xy+8yz﹣9,求出这个多项式的式子,然后用这个多项式再减去﹣6xy+8yz﹣9,求出结果即可.【解答】解:﹣6xy+8yz﹣9+2(2xy﹣3yz+4)=﹣6xy+8yz﹣9+4xy﹣6yz+8=﹣2xy+2yz﹣1.21.(6分)设a、b、c为非零有理数,|a|+a=0,|ab|=ab,|c|﹣c=0.化简:|b|﹣|a+b|﹣|c ﹣b|+|a﹣c|.【分析】根据|a|+a=0,|ab|=ab,|c|﹣c=0知a<0,b<0,c>0,继而知a+b<0,c﹣b >0,a﹣c<0,根据绝对值性质去绝对值符号后合并即可得.【解答】解:∵|a|+a=0,|c|﹣c=0,即|a|=﹣a,|c|=c,∴a<0,c>0,∵|ab|=ab,∴ab>0,∴b<0,则原式=﹣b+a+b﹣c+b﹣a+c=b.22.(6分)已知a=﹣1,b=﹣2,求代数式{a2b﹣[3a2b﹣(4ab2+a2b)]}+3a2b的值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2b﹣3a2b+4ab2+a2b+3a2b=a2b+4ab2,当a=﹣1,b=﹣2时,原式=﹣3﹣16=﹣19.23.(7分)已知,如图,某长方形广场的四角都有一块边长为x米的正方形草地,若长方形的长为a米,宽为b米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.【分析】根据题意可知,阴影部分面积是长方形面积减去四个正方形的面积.【解答】解:(1)由图可知:ab﹣4x2.(2)阴影部分的面积为:200×150﹣4×102=29 600(m2).24.(8分)已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?【分析】(1)直接把A=x2﹣2xy,B=y2+3xy代入进行计算即可;(2)根据题意得出C的表达式,再去括号,合并同类项即可;(3)把A、B、C的表达式代入,合并同类项后,把x=﹣2,y=﹣3代入进行计算即可.【解答】解:(1)∵A=x2﹣2xy,B=y2+3xy,∴2A﹣3B=2(x2﹣2xy)﹣3(y2+3xy)=2x2﹣4xy﹣3y2﹣9xy=2x2﹣13xy﹣3y2;(2)∵A﹣B+C=0,∴C=B﹣A=(y2+3xy)﹣(x2﹣2xy)=y2+3xy﹣x2+2xy=y2+5xy﹣x2;(3)∵A=x2﹣2xy,B=y2+3xy,C=y2+5xy﹣x2,∴2A﹣B+C=2(x2﹣2xy)﹣(y2+3xy)+(y2+5xy﹣x2)=2x2﹣4xy﹣y2﹣3xy+y2+5xy﹣x2=x2﹣2xy,当x=﹣2,y=﹣3,原式=4﹣2×6=﹣8.25.(9分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?【分析】(1)根据后一排比前一排多2个座位,第n 排比第一排多2(n ﹣1)个座位;(2)①把n =25,m =20代入进行计算即可得解;②利用求和公式列式计算即可得解.【解答】(1)m +2(n ﹣1).(2)①当m =20,n =25时,m +2(n ﹣1)=20+2×(25﹣1)=68(个);②m +m +2+m +2×2+…+m +2×(25﹣1)=25m +600.当m =20时,25m +600=25×20+600=1 100(人).解:(1)第一排有m 个座位,后边的每一排比前一排多两个座位,第n 排有m +2(n ﹣1)=2n +m ﹣2(个);(2)当m =20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2=88×25÷2=1100(位)答:如果这个剧院共25排,那么最多可以容纳1100位观众.人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2019年人教版七年级上册数学《第2章整式的加减》单元测试卷(解析版)
2019年人教版七年级上册数学《第2章整式的加减》单元测试卷一.选择题(共10小题)1.下列各式符合代数式书写规范的是()A.a8B.C.m﹣1元D.1x2.七年级1班有女生m人,女生占全班人数的40%,则全班人数是()A.B.40%m C.D.(1﹣40%)m3.当x=2时,ax+3的值是5;当x=﹣2时,代数式ax﹣3的值是()A.﹣5B.1C.﹣1D.24.若﹣3x m y2与2x3y2是同类项,则m等于()A.1B.2C.3D.45.如果单项式x a+b y3与5x2y b的和仍是单项式,则|a﹣b|的值为()A.4B.3C.2D.16.下列说法正确的是()A.单项式是整式,整式也是单项式B.25与x5是同类项C.单项式的系数是,次数是4D.是一次二项式7.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是38.下列各式中,是二次三项式的是()A.B.32+3+1C.32+a+ab D.x2+y2+x﹣y9.一个多项式A与多项式B=2x2﹣3xy﹣y2的差是多项式C=x2+xy+y2,则A等于()A.x2﹣4xy﹣2y2B.﹣x2+4xy+2y2C.3x2﹣2xy﹣2y2*D.3x2﹣2xy10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.﹣2D.2二.填空题(共5小题)11.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:.12.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为千米.13.若a与b互为相反数,c与d互为倒数,则(a+b)3﹣4(cd)5=.14.和统称为整式.15.单项式﹣的次数是.三.解答题(共4小题)16.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.17.方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?18.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b 的值可能是多少?说明你的理由.19.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.2019年人教版七年级上册数学《第2章整式的加减》单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列各式符合代数式书写规范的是()A.a8B.C.m﹣1元D.1x【分析】本题根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【解答】解:A、数字应写在前面正确书写形式为8a,故本选项错误;B、书写形式正确,故本选项正确;C、正确书写形式为(m﹣1)元,故本选项错误;D、正确书写形式为x,故本选项错误,故选:B.【点评】本题考查了代数式:用运算符号(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.数的一切运算规律也适用于代数式.单独的一个数或者一个字母也是代数式,注意代数式的书写格式是解答此题的关键.2.七年级1班有女生m人,女生占全班人数的40%,则全班人数是()A.B.40%m C.D.(1﹣40%)m【分析】根据全班人数=女生人数÷女生所占百分比即可列式求解.【解答】解:∵七年级1班有女生m人,女生占全班人数的40%,∴全班人数是.故选:A.【点评】本题考查了列代数式,列代数式时,要注意语句中的关键字,根据题意找出数据之间的联系,并准确的用代数式表示出来.3.当x=2时,ax+3的值是5;当x=﹣2时,代数式ax﹣3的值是()A.﹣5B.1C.﹣1D.2【分析】由当x=2时,代数式ax+3的值为5就可得到一个关于a的方程,求出a的值,再把a 的值及x=﹣2代入代数式就可求出代数式的值.【解答】解:根据题意得2a+3=5,解得:a=1,把a=1以及x=﹣2代入,得:ax﹣3=﹣2﹣3=﹣5.故选:A.【点评】此题的关键是据已知条件求出a的值,再根据已知条件求代数式的值.4.若﹣3x m y2与2x3y2是同类项,则m等于()A.1B.2C.3D.4【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得:m=3.注意同类项与字母的顺序无关,与系数无关.【解答】解:因为﹣3x m y2与2x3y2是同类项,所以m=3.故选:C.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.5.如果单项式x a+b y3与5x2y b的和仍是单项式,则|a﹣b|的值为()A.4B.3C.2D.1【分析】由题意可知x a+b y3与5x2y b是同类项,然后分别求出a与b的值,最后代入求值即可.【解答】解:由题意可知:a+b=2,3=b,∴a=﹣1,b=3,∴原式=|﹣1﹣3|=4,故选:A.【点评】本题考查了合并同类项法则和同类项定义的应用,关键是能根据题意得出方程a+b=2,3=b.6.下列说法正确的是()A.单项式是整式,整式也是单项式B.25与x5是同类项C.单项式的系数是,次数是4D.是一次二项式【分析】根据整式、同类项、单项式和多项式的概念,紧扣概念逐一作出判断.【解答】解;A、整式包括单项式和多项式,所以单项式是整式,但整式不一定是单项式,故本选项错误;B、25与x5指数相同,但底数不同,故本选项错误;C、单项式的系数是,次数是4,正确;D、中的不是整式,故本选项错误.故选:C.【点评】主要考查了整式的有关概念.要正确掌握整式、同类项、单项式和多项式的概念.7.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是3【分析】直接利用单项式次数与系数确定方法分析得出答案.【解答】解:单项式的系数是,次数是3.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.8.下列各式中,是二次三项式的是()A.B.32+3+1C.32+a+ab D.x2+y2+x﹣y【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选:C.【点评】此题主要考查了如何确定多项式的项数和次数,难点是通过计算确定多项式的次数.9.一个多项式A与多项式B=2x2﹣3xy﹣y2的差是多项式C=x2+xy+y2,则A等于()A.x2﹣4xy﹣2y2B.﹣x2+4xy+2y2C.3x2﹣2xy﹣2y2*D.3x2﹣2xy【分析】首先表示出A=B+C,然后去括号合并同类项.【解答】解:A=B+C=(2x2﹣3xy﹣y2)+(x2+xy+y2)=2x2﹣3xy﹣y2+x2+xy+y2=3x2﹣2xy.故选:D.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.合并同类项时把系数相加减,字母与字母的指数不变.10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.﹣2D.2【分析】原式去括号合并得到最简结果,根据结果与x的值无关,即可确定出a与b的值,进而求出﹣a+b的值.【解答】解:原式=x2+ax﹣2y+7﹣bx2+2x﹣9y+1=(1﹣b)x2+(a+2)x﹣11y+8,由结果与x的取值无关,得到1﹣b=0,a+2=0,解得:a=﹣2,b=1,则﹣a+b=2+1=3.故选:A.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.二.填空题(共5小题)11.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:练习本每本0.8元,小明买了a本,共付款0.8a元(答案不唯一).【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.【点评】本题考查了代数式的意义,此类问题应结合实际,根据代数式的特点解答.12.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为3(50﹣a)千米.【分析】根据题意先得轮船在逆水中航行的速度为“静水中的速度﹣水流速度”,再得3小时航行的路程.【解答】解:由题意得,该轮船在逆水中航行3小时的路程为3(50﹣a)千米.【点评】本题考查了代数式的列法,正确理解题意是解决这类题的关键.13.若a与b互为相反数,c与d互为倒数,则(a+b)3﹣4(cd)5=﹣4.【分析】根据a与b互为相反数,c与d互为倒数,可以得到:a+b=0,cd=1.代入求值即可求解.【解答】解:∵a与b互为相反数,c与d互为倒数,∴a+b=0,cd=1.∴(a+b)3﹣4(cd)5=0﹣4×1=﹣4.故答案是:﹣4.【点评】本题考查了相反数,倒数的定义,正确理解定义是关键.14.单项式和多项式统称为整式.【分析】根据整式的定义进行解答.【解答】解:整式包括单项式和多项式.故答案为:单项式和多项式.【点评】本题重点考查整式的定义:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母.单项式和多项式统称为整式.15.单项式﹣的次数是3.【分析】根据单项式的次数的定义直接求解.【解答】解:单项式﹣的次数为3.故答案为3.【点评】本题考查了单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的系数.所有字母的指数之和叫做这个单项式的次数.三.解答题(共4小题)16.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.【分析】根据代数式的分类解答:.【解答】解:本题答案不唯一.单项式:,a,3x,4x2ay;多项式:,a2+x,x+8;整式:,a,3x,4x2ay,,a2+x,x+8;分式:.【点评】本题考查了代数式的定义及其分类.由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.注意,分式和无理式都不属于整式.17.方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【分析】第一个窗户射进的阳光的面积=长方形面积﹣半径为的一个半圆的面积;第二个窗户射进的阳光的面积=长方形面积﹣半径为的2个圆的面积.【解答】解:第一个窗户射进的阳光的面积为ab﹣×π()2=ab﹣第二个窗户射进的阳光的面积为ab﹣2×π()2=ab﹣∵>∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要能根据图形得到窗户射进的阳光的面积的计算公式.18.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b 的值可能是多少?说明你的理由.【分析】因为4xy2,axy b,﹣5xy相加得到的和仍然是单项式,它们y的指数不尽相同,所以这几个单项式中有两个为同类项.那么可分情况讨论:(1)若axy b与﹣5xy为同类项,则b=1,这两个式子相加后再加一个式子仍是单项式,说明这两个式子相加得0;(2)若4xy2与axy b为同类项,则b=2,这两个式子相加后再加一个式子仍是单项式,说明这两个式子相加得0.【解答】解:(1)若axy b与﹣5xy为同类项,∴b=1,∵和为单项式,∴;(2)若4xy2与axy b为同类项,∴b=2,∵axy b+4xy2=0,∴a=﹣4,∴.【点评】本题考查的知识点是:三个单项式相加得到的和仍然是单项式,它们y的指数不尽相同,这几个单项式中有两个为同类项,并且相加得0.19.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.【分析】(1)直接利用多项式的次数的确定方法得出m的值;(2)将x,y的值代入求出答案.【解答】解:(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.【点评】此题主要考查了多项式以及绝对值,正确得出m的值是解题关键.。
强化训练人教版七年级数学上册第二章整式的加减综合练习练习题(含答案详解)
人教版七年级数学上册第二章整式的加减综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若3223323M x x y xy y =-++,322325N x x y xy y =-+-,则322327514x x y xy y -++的值为( ).A .M N +B .M N -C .3M N -D .3N M -2、小文在做多项式减法运算时,将减去2235a a +-误认为是加上2235a a +-,求得的答案是24a a +-(其他运算无误),那么正确的结果是( )A .221a a --+B .234a a -+-C .24a a +-D .2356a a --+ 3、若单项式am ﹣1b 2与212n a b 的和仍是单项式,则nm 的值是( )A .3B .6C .8D .94、下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A .160B .128C .80D .485、下列式子中a ,﹣23xy 2,29x y-+,0,是单项式的有( )个.A .2B .3C .4D .56、用实际问题表示代数式34a b +意义不正确的是( )A .3kg 单价为a 元的苹果与4kg 单价为b 元的梨的价钱和B .3件单价为a 元的上衣与4件单价为b 元的裤子的价钱和C .单价为a 元/吨的3吨水泥与4箱b 千克的行李D .甲以 km/h a 的速度行驶3h 与乙以 km/h b 的速度行驶4h 的路程和7、观察下面由正整数组成的数阵:照此规律,按从上到下、从左到右的顺序,第51行的第1个数是( )A .2500B .2501C .2601D .26028、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是( )A .(3,8)B .(4,7)C .(5,6)D .(6,5)9、用a 表示的数一定是( )A .正数B .正数或负数C .正整数D .以上全不对10、多项式a -(b -c )去括号的结果是( )A .a -b -cB .a+b -cC .a+b+cD .a -b+c第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、单项式22335x y -的系数是_________,次数是_________. 2、若a -2b =1,则3-2a +4b 的值是__.3、按如图所示的程序计算,若开始输入的x 的值为48,我们发现第一次得到的结果为24 ,第二次得到的结果为12 …,请你探索第2021次得到的结果为_____.4、已知有理数a 和有理数b 满足多项式A ,232(1)b A a x x x bx a +=-+-+-是关于x 的二次三项式,则=a ______,b =______;当2x =-时,多项式A 的值为________.5、一个多项式减去3x 等于2535x x --,则这个多项式为________.三、解答题(5小题,每小题10分,共计50分)1、阅读下列材料,完成相应的任务:发现:每相邻两个“三角形数”的和有一定的规律.如:134+=;369+=;61016+=;…(1)第5个“三角形数”与第6个“三角形数”的和为__________;(2)第n 个“三角形数”与第()1n +个“三角形数”的和的规律可用下面等式表示:__________+__________=__________,请补全等式并说明它的正确性.2、如图,数轴上的三个点A ,B ,C 分别表示实数a ,b ,c .(1)如果点C 是AB 的中点,那么a ,b ,c 之间的数量关系是________;(2)比较4b -与1c +的大小,并说明理由;(3)化简:|2||1|||--+++a b c .3、观察下面依次排列的各数,按照规律写出后面的数及其他要求的数.1,12,1-3,1-4, 15,16,1-7,1-8,______,______,…第2019个数是______. 4、已知:212x xy +=,215xy y +=,求()2x y +-()()x y x y +-的值 5、【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,48×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为 ;(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是 .【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn 的最大值为 ,并用你学过的知识加以证明.-参考答案-一、单选题1、C【解析】【分析】分别计算:M N +,M N -,3M N -,3N M -化简后可得答案.【详解】解:32232532M N x x y xy y +=-+-,故A 不符合题意;2238M N x y xy y -=-++,故B 不符合题意;322332233396925M N x x y xy y x x y xy y -=-++-+-+3223=27514x x y xy y -++,故C 符合题意;322332233=36315323N M x x y xy y x x y xy y --+--+--3223=2318x x y xy y -+-,故D 不符合题意;故选:.C【考点】本题考查的是整式的加减运算,掌握合并同类项的法则与去括号的法则是解题的关键.2、D【解析】【分析】根据加减互逆运算关系得出这个多项式为:()()224235a a a a +--+-,去括号,合并同类项可得该多项式为:221a a --+,再根据题意列出()()2221235a a a a --+-+-进一步求解即可 【详解】根据题意,这个多项式为:()()224235a a a a +--+-,222423521a a a a a a =+---+=--+ ,则正确的结果为:()()2221235a a a a --+-+-,2221235a a a a =--+--+ ,2356a a =--+ ,故选:D .【考点】本题主要考查多项式的运算,解题关键是掌握整式的加减运算顺序和运算法则及加减互逆的运算关系.3、C【解析】【分析】首先可判断单项式am -1b 2与12a 2bn 是同类项,再由同类项的定义可得m 、n 的值,代入求解即可.【详解】解:∵单项式am -1b 2与12a 2bn 的和仍是单项式,a2bn是同类项,∴单项式am-1b2与12∴m-1=2,n=2,∴m=3,n=2,∴nm=8.故选C.【考点】本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.4、A【解析】【分析】先计算出66⨯方格纸片,再乘以4即可得.⨯方格纸片中共含有多少个32【详解】由图可知,在66⨯⨯=(个)⨯方格纸片中,32⨯方格纸片的个数为54240则404160n=⨯=故选:A.【考点】本题考查了图形类规律探索,正确得出在66⨯方格纸片的个数是解题关键.⨯方格纸片中,325、B【解析】【分析】根据单项式的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式进行逐一判断即可.解:式子中a,﹣23xy2,29x y-+,0,是单项式的有a,﹣23xy2,0,一共3个.故选B.【考点】本题主要考查了单项式的定义,解题的关键在于能够熟练掌握单项式的定义.6、C【解析】【分析】根据题意列代数式判断即可.【详解】解:A、所表示的代数式为:3a+4b,故本选项错误;B、所表示的代数式为:3a+4b,故本选项错误;C、单价为a元/吨的3吨水泥与4箱b千克的行李不能得出代数式3a+4b,故本选项正确;D、所表示的代数式为:3a+4b,故本选项错误;故选:C.【考点】本题考查了列代数式的知识,属于基础题,注意仔细分析各选项所表示的代数式.7、B【解析】【分析】观察这个数列知,第n行的最后一个数是n2,第50行的最后一个数是502=2500,进而求出第51行的第1个数.由题意可知,第n 行的最后一个数是n 2,所以第50行的最后一个数是502=2500,第51行的第1个数是2500+1=2501,故选:B .【考点】本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于发现第n 行的最后一个数是n 2的规律.8、C【解析】【分析】不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.【详解】观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,12345678945++++++++=,∴第46、47、48、49、50个有序数对依次是()1,10、()2,9、()3,8、()4,7、()5,6.所以C 选项是正确的.【考点】本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.9、D【解析】字母可以表示任何数,A、B、C三个选项说法都不全面.【详解】字母可以表示任何数,即a可以表示正数、0或负数,故选D.【考点】本题考查了代数式,需要注意字母可以表示任意数,既可以是正数,也可以是负数和0,带有负号的数不一定就是负数.10、D【解析】【分析】根据去括号的法则:括号前是“-”时,把括号和它前面的“-”去掉,原括号里的各项都改变符号,进行计算即可.【详解】()a b c a b c--=-+,故选:D.【考点】本题主要考查去括号,掌握去括号的法则是解题的关键.二、填空题1、﹣955【解析】【分析】根据单项式的系数和次数的概念进行判断,即可得出结论.解:单项式22335x y-的系数是:23955-=-,次数是:2+3=5.故答案为:95-,5.【考点】此题考查了单项式的系数和次数,掌握单项式的相关概念并能准确理解其含义是解题的关键.2、1【解析】【分析】先把代数式3﹣2a+4b化为3﹣2(a﹣2b),再把已知条件整体代入计算即可.【详解】根据题意可得:3﹣2a+4b=3﹣2(a﹣2b)=3﹣2=1.故答案为:1.【考点】本题考查了代数式求值.注意此题要用整体思想.3、8【解析】【分析】按照程序将每次得到的结果重复输入,寻找结果之间的规律,从而找出2021次时的结果.【详解】按照程序,每次得到结果如下:第1次:24第3次:6第4次:3第5次:8第6次:4第7次:2第8次:1第9次:6第10次:3第11次:8……根据以上结果以可发现,从第3次开始,结果按6、3、8、4、2、1每6个结果为一个周期进行循环, ∵202123366-=……3, ∴到2021次时,结果为循环中第3个数,结果为8,故答案为:8【考点】本题考查了数字类规律探索,根据数据找出规律是解题的关键.4、 1 3- 1-【解析】【分析】根据有理数a 和b 满足多项式A .232(1)b A a x x x bx a +=-+-+-是关于x 的二次三项式,求得a 、b 的值,然后分别代入计算可得.【详解】解:∵有理数a 和b 满足多项式A .232(1)b A a x x x bx a +=-+-+-是关于x 的二次三项式,∴a −1=0,解得a =1.当|b +2|=2时,解得b =0 或b =−4,此时A 不是二次三项式;当|b +2|=1时,解得b =−1(舍)或b =−3,当|b +2|=0时,解得b =−2(舍),当a −1=−1且|b +2|=3,即a =0、b =1或−5时,此时A 不是关于x 的二次三项式;∴a =1,b =−3,232(1)b A a x xx bx a +=-+-+-221x x =---, 当2x =-时,2(2)2(2)11A =---⨯--=-,故答案为:1;3-;1-.【考点】本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.5、255x -【解析】【分析】要求的多项式实际上是2(535)3x x x --+,化简可得出结果.【详解】解:2(535)3x x x --+=225353=55x x x x --+-,故答案为:255x -.【考点】此题考查整式的加减计算,正确掌握整式的去括号法则及合并同类项法则是解题的关键.三、解答题1、 (1)36 (2)(1)2n n +,(1)(2)2n n ++,2(1)n + 【解析】【分析】(1)根据第n 个“三角形数”可表示为:(1)1232n n n ++++⋅⋅⋅+=进行求解即可; (2)根据规律得到等式并化简即可证明.(1)解:第5个“三角形数”为:5(51)152⨯+=; 第6个“三角形数”为:6(61)212⨯+=; 第5个“三角形数”与第6个“三角形数”的和为:15+21=36,故答案是:36; (2)(1)2n n ++(1)(2)2n n ++=2(1)n + 理由:∵左边222223224221(1) 222n n n n n nn n n+++++=+==++=+=右边∴原等式成立.故答案是:()12n n+,()()122n n++,()21n+.【考点】本题主要考查整式的混合运算的应用,正确理解“三角形数”的概念是解题的关键.2、 (1)2c=a+b(答案不唯一)(2)4-<b1c+;理由见解析(3)3a b c---【解析】【分析】(1)利用C是AB的中点得到AC=BC,可得a c c b-=-,化简即可;(2)通过数轴得出a,b,c的大小关小,从而得出b-4和c+1的大小;(3)先判断a-2,b+1,c的正负,然后根据绝对值的性质化简即可.(1)∵C是AB的中点,且数轴上的三个点A,B,C分别表示实数a,b,c,∴AC=BC,∴a c c b-=-,∴2c=a+b,故答案是:2c=a+b;(2)4-<b1c+,理由如下:由数轴知:01a <<,10c -<<,1b <-,∴b -4<-5,c +1>0,∴4-<b 1c +;(3)由数轴知:01a <<,10c -<<,1b <-,∴a -2<0,b +1<0, ∴()()2121213a b c a b c a b c a b c --+++=---+-=-+---=---.【考点】本题考查了数轴的意义,绝对值以及有理数大小的比较,掌握绝对值的性质以及有理数的加减法则是解题的关键.3、19, 110,−12019 【解析】【分析】分子是1,分母是从1开始连续的自然数,符号为''++--“,四个数一组,由此得出第9个数为19,第10个数为110,2019÷4=504…3所以第2019个数的符号为“-”,进一步求得答案即可. 【详解】∵由已知得分子是1,分母是从1开始连续的自然数,符号为“++−−”,∴第9个数为19,第10个数为110, ∵2019÷4=504…3,∴第2019个数为负数,∴第2019个数为−12019,故答案为19,110,−12019. 【考点】 此题考查规律型:数字的变化类,解题关键在于找到其规律.4、30【解析】【分析】将已知的两个等式相加得到(x+y)2=27,将已知的两个等式相减得到x 2-y 2=-3,即可得出答案.【详解】解:因为212x xy +=,215xy y +=,所以221215x xy xy y +++=+,()2x y +=27,22(3x xy xy y +-+=-),223x y -=-,所以 ()2x y +-()()x y x y +-, ()222()x y x y +-- ()273=--=30.故答案为30.【考点】本题考查了整式的混合运算——化简求值.5、(1)625;(2)a+b=50; 900;证明见解析.【解析】【分析】发现:(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;类比:由于m+n=60,将n=60−m代入mn,得mn=−m2+60m=−(m−30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【详解】解:发现:(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;类比:由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【考点】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.。
(压轴题)人教版初中七年级数学上册第二章《整式的加减》模拟测试(包含答案解析)(1)
一、选择题1.(0分)[ID :68057]若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3-B .0C .3D .62.(0分)[ID :68054]下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差 D .a 的相反数与b 的差的倒数3.(0分)[ID :68050]某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )4.(0分)[ID :68046]已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .465.(0分)[ID :68024]下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个6.(0分)[ID :68015]已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3 C .4 D .57.(0分)[ID :68012]大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .558.(0分)[ID :68011]如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .669.(0分)[ID :68009]已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( ) A .2-B .13C .23D .3210.(0分)[ID :68001]已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( ) A .﹣1B .﹣2C .﹣3D .﹣411.(0分)[ID :67991]小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n+ B .mnm n+ C .2mnm n+ D .m nnm + 12.(0分)[ID :67986]古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+3113.(0分)[ID :67985]多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8B .4和8-C .6和8D .2-和8-14.(0分)[ID :67984]下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个 15.(0分)[ID :67972]﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c二、填空题16.(0分)[ID :68156]多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.17.(0分)[ID :68147]在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空) 18.(0分)[ID :68145]观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.19.(0分)[ID :68141]请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______. 20.(0分)[ID :68138]观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形. 21.(0分)[ID :68137]化简:226334xx x x_________.22.(0分)[ID :68124]一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________. 23.(0分)[ID :68118]将连续正整数按以下规律排列,则位于第 7 行第 7 列的数 x 是________________.? 13 6 10 15 2128 2 5 9 1420 27 ? 4813 19 26 ? ? 7121825 ? ? 111724? ?16 23 ??22 ? ? ? ? ? x?24.(0分)[ID :68108]将下列代数式的序号填入相应的横线上.①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x .(1)单项式:_______________; (2)多项式:_______________; (3)整式:_________________; (4)二项式:_______________.25.(0分)[ID :68095]如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.26.(0分)[ID :68079]仅当b =______,c =______时,325x y 与23b c x y 是同类项。
成都市金牛实验中学人教版初中七年级数学上册第二章《整式的加减》模拟检测(有答案解析)
一、选择题1.(0分)[ID :68035]在代数式a 2+1,﹣3,x 2﹣2x ,π,1x中,是整式的有( ) A .2个B .3个C .4个D .5个2.(0分)[ID :68031]下面用数学语言叙述代数式1a﹣b ,其中表达正确的是( ) A .a 与b 差的倒数 B .b 与a 的倒数的差 C .a 的倒数与b 的差 D .1除以a 与b 的差 3.(0分)[ID :68028]与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a) 4.(0分)[ID :68051]已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣75.(0分)[ID :68050]某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )6.(0分)[ID :68025]观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +-7.(0分)[ID :68014]如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n8.(0分)[ID :68012]大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .559.(0分)[ID :68005]下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+-D .如果||||x y =,那么x y =10.(0分)[ID :67999]如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上11.(0分)[ID :67995]若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .012.(0分)[ID :67983]已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( ) A .2- B .2C .2±D .3±13.(0分)[ID :67982]若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B >B .A B =C .A B <D .无法确定14.(0分)[ID :67976]代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍15.(0分)[ID :67970]张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元二、填空题16.(0分)[ID :68151]如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.17.(0分)[ID :68149]数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.18.(0分)[ID :68148]已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______. 19.(0分)[ID :68139]a -b ,b -c ,c -a 三个多项式的和是____________ 20.(0分)[ID :68135]在多项式422315x x x x 中,同类项有_________________;21.(0分)[ID :68114]用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____; (2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .22.(0分)[ID :68097]在括号内填上恰当的项:22222x xy y -+-=-(_____________________).23.(0分)[ID :68078]“a 的3倍与b 的34的和”用代数式表示为______. 24.(0分)[ID :68077]如图,大、小两个正方形ABCD 与正方形BEFG 并排放在一起,点G 在边BC 上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF 的面积是______平方厘米.25.(0分)[ID :68064]某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.26.(0分)[ID :68063]观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.27.(0分)[ID :68062]一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)三、解答题28.(0分)[ID :67842]已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值.29.(0分)[ID :67773]为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算): 每月用电量度 电价/(元/度) 不超过150度的部分0.50元/度 超过150度且不超过250度的部分 0.65元/度 超过250度的部分0.80元/度问:(1)某居民12月份用电量为180度,请问该居民12月应缴交电费多少元? (2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费. 30.(0分)[ID :67769]生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm ,宽为cm x ,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围. (2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点P 的距离(用P 表示)【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.C3.B4.A5.B6.B7.A8.C9.B10.C11.B12.A13.A14.B15.C二、填空题16.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n个上字需用(4n+2)枚棋子故答17.65【分析】设该数列中第n个数为an(n为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n 个数为an(n为正整数)观察发现规18.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4| =−2…所以n是奇数19.0【解析】(a-b)+(b-c)+(c-a)=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为020.-2x5x【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x与5x是同类项;故答案为:-2x5x【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义21.(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b)÷2据此解答;(4)利用:含盐率=22.【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去23.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a +b;故答案为:3a+b【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列24.【分析】设出两个正方形边长分别为ab(a>b)表示正方形面积之差用ab表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab(a>b)由已知四边形的面积为:故答案为:【点睛】本题考查25.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键26.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n个单项式为即第2019个单项式为故答案为:【点睛】本题考27.【分析】用个位上的数字表示出十位和百位上的数然后根据数的表示列式整理即可得答案【详解】∵个位数字为n十位数字比个位数字少2百位数字比个位数字多1∴十位数字为n-2百位数字为n+1∴这个三位数为100三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试1.C解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a2+1和 x2﹣2x是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.2.C解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b为a的倒数与b的差,故选:C.【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.3.B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒4.A解析:A由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.5.B解析:B 【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B. 考点:列代数式.6.B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.7.A解析:A 【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答. 【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.8.C解析:C 【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解. 【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-,∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数, 当m=44时,()()4424419892+-=,当m=45时,()()4524511342+-=,∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个, 即m=45. 故选:C . 【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.9.B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.10.C解析:C 【分析】由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案. 【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B , ∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈ 在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈ ∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上. 故答案为:C. 【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.11.B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.12.A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210mxm x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键.13.A解析:A【分析】作差进行比较即可.【详解】解:因为A-B=(x2-5x+2)-( x2-5x -6)=x2-5x+2- x2+5x +6=8>0,所以A>B.故选A.【点睛】本题考查了整式的加减和作差比较法,若A-B>0,则A>B,若A-B<0,则A<B,若A-B=0,则A=B.14.B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x与1的差,据此即可判断.【详解】代数式213x-的含义是2倍的x与1的差除以3的商.故选:B.【点睛】本题考查了代数式,正确理解代数式表示的意义是关键.15.C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-2 3020302222a b a b a b a a b aa b++++ -+-=⨯+⨯)()=10(b-a)+15(a-b)=10b-10a+15a-15b=5a-5b,则这次买卖中,张师傅赚5(a-b)元.故选C.【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.二、填空题16.(4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.17.65【分析】设该数列中第n个数为an(n为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n个数为an(n为正整数)观察发现规解析:65【分析】设该数列中第n个数为a n(n为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n=2a n﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n个数为a n(n为正整数),观察,发现规律:a1=3=2+1,a2=5=2a1﹣1,a3=9=2a2﹣1,a4=17=2a3﹣1,…,a n=2a n﹣1﹣1.∴a6=2a5﹣1=2×(2a4﹣1)﹣1=2×(2×17﹣1)﹣1=65.故答案为65.18.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n-;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.19.0【解析】(a-b)+(b-c)+(c-a)=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0 解析:0【解析】(a-b)+(b-c)+(c-a)=a-b+b-c+c-a=a-a+b-b+c-c=0,故答案为0.20.-2x5x【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x与5x是同类项;故答案为:-2x5x【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x与5x是同类项;故答案为:-2x,5x.【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.21.(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b)÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x-(3)2a b+(4)100aa b+(5)52y-【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -. 【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.22.【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去 解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验. 23.【分析】a 的3倍表示为3ab 的表示为b 然后把它们相加即可【详解】根据题意得3a +b ;故答案为:3a +b 【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列 解析:334a b + 【分析】a 的3倍表示为3a ,b 的34表示为34b ,然后把它们相加即可. 【详解】根据题意,得3a +34b ; 故答案为:3a +34b . 【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写. 24.【分析】设出两个正方形边长分别为ab (a>b )表示正方形面积之差用ab 表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab (a>b )由已知四边形的面积为:故答案为:【点睛】本题考查 解析:312【分析】设出两个正方形边长分别为a ,b (a>b ),表示正方形面积之差,用a 、b 表示四边形CDGF 的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a ,b (a>b )由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。
人教版七年级数学上册 第2---4章同步测试题含答案
人教版七年级数学上册 第二章同步测试题含答案 2.1 整式一、选择题(本大题共8道小题)1. 下列式子:1.2,3ab ,m +2,2x -3=1,2a -3b >0,y 2,xyx +y中,整式共有( )A .3个B .4个C .5个D .6个2. 我们知道,用字母表示的式子具有一般意义,则下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的单价是3元/千克,则3a 元表示购买a 千克该种葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .王师傅每天做a 个零件,则3a 个表示王师傅3天做的零件个数D .若3和a 分别表示一个两位数的十位数字和个位数字,则3a 表示这个两位数3. 多项式2x 2-x -3的项分别是( )A .2x 2,x ,3B .2x 2,-x ,-3C .2x 2,x ,-3D .2x 2,-x ,34. 用语言叙述式子“a -12b ”所表示的数量关系,下列说法正确的是( ) A .a 与b 的差的12 B .a 与b 的一半的积 C .a 与b 的12的差D .a 比b 大125. 下列说法正确的是()A .-1不是单项式B .2πr 2的次数是3 C.x 2y3的次数是3D .-xy2的系数是-16. 下列叙述中,错误的是()A .a 2-2ab +b 2是二次三项式B .x -5x 2y 2+3xy -1是二次四项式C .2x -3是一次二项式D .3x 2+xy -8是二次三项式7. 正方体的棱长为a ,那么它的表面积和体积分别是( ) A .6a ,a 3B .6a 2,a 3C .6a 3,a 3D .6a ,3a 38. 按图所示的运算程序,能使输出的结果为12的是( )A .x =3,y =3B .x =-4,y =-2C .x =2,y =4D .x =4,y =2二、填空题(本大题共8道小题)9. 某企业去年的年产值为a 万元,今年比去年增长10%,则今年的年产值是________万元.10. -12x 2y 是________次单项式.11. 如图,将长和宽分别是a ,b 的长方形纸片的四个角各剪去一个边长为x 的小正方形.用含a ,b ,x 的式子表示长方形纸片剩余部分的面积为__________.12. 把下列式子:①-3x 2y ;②-5+4a ;③12;④-m 7;⑤a 3-b 3;⑥x 2+2xy +y 2;⑦1x -y;⑧1-x 3;⑨xπ;⑩π+x 中的单项式填入单项式集合内,多项式填入多项式集合内.(填序号)单项式集合:{ …}; 多项式集合:{ …}.13. 对于多项式-2x +4xy 2-5x 4-1,它的次数是______,最高次项是______,三次项的系数是______,常数项是______.14. 一列单项式:-x 2,3x 3,-5x 4,7x 5,…,按此规律排列,则第7个单项式为__________.15. 妞妞家新装修了楼房,每面墙上都贴有长方形的壁纸,每张壁纸长a m ,宽bm .如果所用壁纸的张数为n ,那么墙壁的面积S 为________m 2,这个式子是________项式,系数为________,次数为________(壁纸无重叠、无缝隙).16. 一个单项式含x ,y ,z 三个字母,次数是5,系数是x 的指数的相反数,写出满足这些条件的所有单项式:___________________________________________.三、解答题(本大题共2道小题)17. 材料阅读题要对一组对象进行分类,关键是要选定一个分类标准,不同的分类标准有不同的结果,如下面给出的7个单项式:2x 3z ,xyz ,3y 2,-5y 2x ,-z 2y 2,13x 2yz ,z 3,若按系数分类:系数为正数的有2x 3z ,xyz ,3y 2,13x 2yz ,z 3;系数为负数的有-5y 2x ,-z 2y 2.请你再按两种不同的分类标准对上述7个单项式进行分类.18. 已知多项式-a12+a11b-a10b2+…+ab11-b12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?人教版七年级数学上册 2.1 整式(含答案)-答案一、选择题(本大题共8道小题)1. 【答案】B[解析] 其中2x-3=1,2a-3b>0,xyx+y不是整式,其余4个是整式.故选B.2. 【答案】D3. 【答案】B4. 【答案】C5. 【答案】C6. 【答案】B7. 【答案】B8. 【答案】C[解析] 将四个选项分别按运算程序进行计算.A.当x=3,y=3时,输出结果为32+2×3=15,不符合题意;B.当x=-4,y=-2时,输出结果为(-4)2-2×(-2)=20,不符合题意;C.当x=2,y=4时,输出结果为22+2×4=12,符合题意;D.当x=4,y=2时,输出结果为42+2×2=20,不符合题意.故选C.二、填空题(本大题共8道小题)9. 【答案】1.1a【解析】增长率问题,今年为(1+10%)a=1.1a.10. 【答案】三11. 【答案】ab-4x212. 【答案】①③④⑨②⑤⑥⑧⑩13. 【答案】4-5x44-114. 【答案】-13x8[解析] 第7个单项式的系数为-(2×7-1)=-13,x的指数为8,所以第7个单项式为-13x8.故答案为-13x8.15. 【答案】nab单1 316. 【答案】-3x3yz,-2x2y2z,-2x2yz2,-xy3z,-xy2z2,-xyz3三、解答题(本大题共2道小题)17. 【答案】12[解析] 分类的方法有很多,例如按单项式的次数分类、按字母的个数分类等.解:答案不唯一,如按单项式的次数分类:二次单项式有3y2;三次单项式有xyz,-5y2x,z3;四次单项式有2x3z,-z2y2,13x2yz.按含有字母的个数分类:只含有一个字母的有3y2,z3;含有两个字母的有2x3z,-5y2x,-z2y2;含有三个字母的有xyz,13x2yz.[点析] 确定分类的标准时应考虑到既不重复又不遗漏.18. 【答案】[解析] 观察所给条件,a的指数逐次减1,b的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a8b4,它的系数为-1,次数为12.(2)十二次十三项式.2.2 整式的加减一.选择题1.下列各组单项式中,不是同类项的是()A.4a2y与B.xy3与﹣xy3C.2abx2与x2ba D.7a2n与﹣9an22.已知x2a y4﹣b与﹣x3﹣b y3a是同类项,则a+b的值为()A.﹣1B.0C.1D.23.下列计算正确的是()A.3a+4b=7ab B.3a﹣2a=1C.3a2b﹣2ab2=a2b D.2a2+3a2=5a24.下列变形正确的是()A.﹣(a+2)=a﹣2B.﹣(2a﹣1)=﹣2a+1C.﹣a+1=﹣(a﹣1)D.1﹣a=﹣(a+1)5.计算x3+x3的结果是()A.x6B.x9 C.2x6 D.2x36.若2x+y=1,﹣y+2z=﹣3,则x+y﹣z的值是()A.1B.2C.3D.47.下列运算正确的是()A.5xy﹣4xy=1B.3x2+2x3=5x5C.x2﹣x=x D.3x2+2x2=5x28.已知无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,则m+n等于()A.5B.﹣5C.1D.﹣19.已知A=x2+2y2﹣z,B=﹣4x2+3y2+2z,且A+B+C=0,则多项式C为()A.5x2﹣y2﹣z B.x2﹣y2﹣z C.3x2﹣y2﹣3z D.3x2﹣5y2﹣z 10.设M=x2+8x+12,N=﹣x2+8x﹣3,那么M与N的大小关系是()A.M>N B.M=N C.M<N D.无法确定二.填空题11.若7a x b2与﹣a3b y的和为单项式,则y x=.12.若关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,则m﹣6n的值为.13.不改变式子的值,把括号前的符号变成相反的符号x﹣y﹣(﹣y3+x2﹣1)=.14.在等式的括号内填上恰当的项,x2﹣y2+8y=x2﹣().15.若m2+3mn=5,则5m2﹣3mn﹣(﹣9mn+3m2)=.三.解答题16.已知:①单项式x m y3与﹣xy n(其中m、n为常数)是同类项,②多项式x2+ax+b(其中a、b为常数)和x2+2x﹣3+(2x﹣1)相等.求(a+b)+(﹣2m)n的值.17.下面的去括号有没有错?若有错,请改正.(1)a2﹣(2a﹣b﹣c)=a2﹣2a﹣b﹣c;(2)﹣(x﹣y)+(xy﹣1)=﹣x﹣y+xy+1.18.计算:9m2﹣4(2m2﹣3mn+n2)+4n2.19.先化简,再求值:2ab+6(a2b+ab2)﹣[3a2b﹣2(1﹣ab﹣2ab2)],其中a为最大的负整数,b为最小的正整数.参考答案1.D2.D3.D4.C5.D6.B7.D8.D9.D10.A11.812.013.x﹣y+(y3﹣x2+1)14.y2﹣8y15.1016.解:由单项式单项式x m y3与﹣xy n同类项得m=1,n=3,∵x2+ax+b=x2+2x﹣3+(2x﹣1)=x2+4x﹣4,∴a=4,b=﹣4,∴(a+b)+(﹣2m)n=(4﹣4)+(﹣2×1)3=﹣8.17.解:(1)有错.a2﹣(2a﹣b﹣c)=a2﹣2a+b+c;(2)有错.﹣(x﹣y)+(xy﹣1)=﹣x+y+xy+1.18.解:原式=9m2﹣8m2+12mn﹣4n2+4n2=m2+12mn.19.解:原式=2ab+3a2b+6ab2﹣3a2b+2﹣2ab﹣4ab2=(2ab﹣2ab)+2+(3a2b﹣3a2b)+(6ab2﹣4ab2)=2ab2+2,∵a为最大的负整数,b为最小的正整数,∴a=﹣1,b=1,∴原式=2×(﹣1)×1+2=0.人教版七年级上册数学第三章同步测试题3.1一元一次方程1、下列说法正确的是:A 、方程的解就是方程的根B 、不是等式就不是方程C 、方程中未知数的值就是方程的解D 、方程3x = 2x 没有解。
七级上册数学第二章测试卷及答案人教版(二)
七年级上册数学第二章测试卷及答案人教版(二)1.(2020·吉林省初一期末)先化简,再求值:()()2222x y xy xy x y +--,其中1,1x y ==-【答案】3x 2y ,-3【解析】解:原式 = 2x 2y+2xy-2xy+x 2y = 3x 2y ,把x=1,y=-1代入原式 = 3x 2y = 3×12×(-1)= -32.(2020·广东省初一期末)先化简,再求值:已知6x 2﹣3(2x 2﹣4y )+2(x 2﹣y ),其中x =﹣1,y =12.【答案】2x 2+10y ;7【解析】解:原式=6x 2﹣6x 2+12y +2x 2﹣2y=2x 2+10y ,当x =﹣1,y =12时,原式=2×(﹣1)2+10×12=2+5=7.3.(2020·上饶市广信区第七中学初二月考)某同学在计算一个多项式乘以﹣3x 2时,因抄错运算符号,算成了加上﹣3x 2,得到的结果是x 2﹣4x+1,那么正确的计算结果是多少?【答案】﹣12x 4+12x 3﹣3x 2【解析】解:这个多项式是(x 2﹣4x+1)﹣(﹣3x 2)=4x 2﹣4x+1,(3分)正确的计算结果是:(4x 2﹣4x+1)•(﹣3x 2)=﹣12x 4+12x 3﹣3x 2.(3分)4.(2019·河北省初三三模),,A B C 均为多项式,小元在计算“A B -”时,误将符号抄错而计算成了“A B +”,得到结果是C ,其中221132A x x C x x =+-=+,,请正确计算AB -.【答案】2x --【解析】根据题意,得A B C +=,221(3)(1)2B C A x x x x ∴=-=+-+-=221312x x x x +--+=21212x x ++,∴2211(1)(21)22A B x x x x -=+--++=221112122x x x x +----=2x --.5.(2019·苏州市景范中学校初一期末)已知:223+2A B a ab -=,223A a ab =-+-.(1)求B ;(用含a 、b 的代数式表示)(2)比较A 与B 的大小.【答案】(1)-5a 2+2ab-6;(2)A >B .【解析】(1)∵2A-B=3a 2+2ab ,A=-a 2+2ab-3,∴B=2A-(3a 2+2ab )=2(-a 2+2ab-3)-(3a 2+2ab )=-2a 2+4ab-6-3a 2-2ab=-5a 2+2ab-6,(2)∵A=223a ab -+-,B=-5a 2+2ab-6,∴A-B=(223a ab -+-)-(-5a 2+2ab-6)=-a 2+2ab-3+5a 2-2ab+6=4a 2+3,∵无论a 取何值,a 2≥0,所以4a 2+3>0,∴A >B .6.(2017·江西省初一期末)已知代数式22223,31A x xyB x x =+-=++(1)求2A B -的值;(2)若2A B -的值与x 的取值无关,求y 的值.【答案】(1)265xy x --;(2)3【解析】(1)()222223231A B x xy x x -=+--++22223262x xy x x =+----265xy x =--;(2)由(1)得:()2265265A B xy x y x -=--=--,∵A-2B 的值与x 的取值无关,∴2y-6=0,∴y=3.7.(2020·南京市金陵中学河西分校初一期中)已知A=22x +3xy-2x-l ,B= -2x +xy-l .(1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值.【答案】(1) 15xy -6x -9 ;(2)25.解:(1)3A+6B=3(2x 2+3xy ﹣2x ﹣1)+6(﹣x 2+xy ﹣1)=6x 2+9xy ﹣6x ﹣3﹣6x 2+6xy ﹣6=15xy ﹣6x ﹣9;(2)原式=15xy ﹣6x ﹣9=(15y ﹣6)x ﹣9要使原式的值与x 无关,则15y ﹣6=0,解得:y=25.8.(2019·山西省初一期中)张老师给学生出了一道题:当20192020a b ==-,时,求: 3323323(763)(363103)a a b a b a a b a b a -+---++-的值.题目出完后,小明说:“老师给的条件20192020a b ==-,是多余的.”小红说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【答案】因为代数式与a 、b 的取值无关,故小明说得对【解析】解:∵3323323(763)(363103)a ab a b a a b a b a -+---++-=3323323763363103a ab a b a a b a b a -+++--+=()()()3333322731066333a a a ab a b a b a b +-+-+-+=3故代数式与a 、b 的取值无关,即小明说得对.9.(2020·河北省初三零模)已知22A x mx =-+,221B nx x =+-,且化简2A B -的结果与x 无关.(1)求m 、n 的值;(2)求式子2222223(2)[2(2)5]m n mn m n mn m n mn ---+--的值.【答案】(1)1m =-,2n =;(2)-36.【解析】(1)∵22A x mx =-+,221B nx x =+-,∴2A B-=222(2)(21)x mx nx x -+-+-=2222421x mx nx x -+--+=2(2)(22)5n x m x -+--+∵2A B -的结果与x 无关,∴20n -=,220m --=解得,1m =-,2n =;(2)2222223(2)[2(2)5]m n mn m n mn m n mn ---+-- =2222223+6245m n mn m n mn m n mn ---++=29mn ∵1m =-,2n =∴原式=29(1)2⨯-⨯=-36.10.(2019·广西壮族自治区初一期中)有这样一道题:已知5x =,1y =-,求代数式()32332132233x y xy y x y xy ⎛⎫-+--- ⎪⎝⎭的值.小明认为:“已知5x =”这个条件是多余的,你认为小明的说法有道理吗?为什么?【答案】小明的说法有道理.【解析】解:小明的说法有道理.理由:原式=32332626x y xy y x y xy -+-+-=32y -∵代数式化简后与x 无关∴小明的说法有道理.11.(2020·河北省石家庄新世纪外国语学校初三二模)(1)计算217﹣323﹣513+(﹣317)(2)某同学做一道数学题:“两个多项式A 、B ,B =3x 2﹣2x ﹣6,试求A +B ”,这位同学把“A +B ”看成“A ﹣B ”,结果求出答案是﹣8x 2+7x +10,那么A +B 的正确答案是多少?【答案】(1)﹣10;(2)﹣2x 2+3x ﹣2.【解析】解:(1)217﹣323﹣513+(﹣317)=217﹣323﹣513﹣317=217﹣317﹣323﹣513=﹣1﹣9=﹣10.(2)∵A ﹣B =﹣8x 2+7x +10,B =3x 2﹣2x ﹣6,∴A =(﹣8x 2+7x +10)+(3x 2﹣2x ﹣6)=﹣5x 2+5x +4,∴A +B =(﹣5x 2+5x +4)+(3x 2﹣2x ﹣6)=﹣2x 2+3x ﹣2.12.(2018·天津初一期末)已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -;()2已知x 22a b --与y 1ab 3的同类项,求2B A -的值.【答案】(1)225x 9xy 9y +-(2)63或-13【解析】()1∵22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+,∴()()22222222222B A 22xy 3y 4x 3x 3y 5xy 4xy 6y 8x 3x 3y 5xy 5x 9xy 9y -=-+-+-=-+--+=+-;()2∵x 22a b --与y 1ab 3的同类项,∴x 21-=,y 2=,解得:x 3=或x 1=,y 2=,当x 3=,y 2=时,原式45543663=+-=;当x 1=,y 2=时,原式5183613=+-=-.考点2:与某项无关问题典例:(2020·河北省初三三模)已知22A x mx =-+,221B nx x =+-.(1)求2A B -,并将结果整理成关于x 的整式;(2)若2A B -的结果与x 无关,求m 、n 的值;(3)在(2)基础上,求()()22222232225m n mn m n mn m n mn ⎡⎤---+--⎣⎦的值.【答案】(1)2(2)(22)5n x m x -+--+;(2)1m =-,2n =;(3)-36.【解析】解:(1)∵22A x mx =-+,221B nx x =+-,∴()()2222221A B x mx nx x -=-+-+-2222421x mx nx x =-+--+2(2)(22)5n x m x =-+--+(2)∵2A B -的结果与x 无关,∴20n -=,220m --=解得,1m =-,2n =(3)原式2222222362459m n mn m n mn m n mn mn =-+--++=∵1m =-,2n =∴原式29(1)236=⨯-⨯=-.方法或规律点拨此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.巩固练习1.(2020·广东省绿翠现代实验学校初一期中)已知多项式2412A x my =+-与多项式221B nx y =-+.(1)当1m =,5n =时,计算A B +的值;(2)如果A 与2B 的差中不含x 和y ,求mn 的值.【答案】(1)9x 2-y-11;(2)-8【解析】解:(1)当1m =,5n =时,2412A x y =+-,2521B x y =-+,∴A+B=4x 2+y-12+5x 2-2y+1=9x 2-y-11;(2) A -2B =4x 2+my-12-2(nx 2-2y+1)=(4-2n) x 2+(m+4)y-14∵A 与2B 的差中不含x 和y∴4-2n=0,m+4=0,∴n=2,m=-4∴mn=-82.(2020·甘州中学初一月考)(1)化简求值:已知,求代数式的值.(2)若化简的结果与的取值无关,求的值.【答案】(1);(2).【解析】解:(1)由可得:,.原式,当,时,原式(2)原式,由结果与的取值无关,得到,解得:.3.(2020·河北省育华中学初三一模)已知2223,A x xy y B x xy=++=-()1若()2230x y ++-=,求2A B -的值()2若2-的值与y的值无关,求x的值A B【答案】(1)-9;(2)x=-1【解析】(1)A-2B=(2x2+xy+3y)-2(x2-xy)=2x2+xy+3y-2x2+2xy=3xy+3y.∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B的值与y的值无关,即(3x+3)y与y的值无关,∴3x+3=0.解得x=-1.4.(2019·广西壮族自治区初一期中)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?【答案】相信,理由见解析.【解析】相信,理由如下:(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)=7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+3=(7a3+3a3-10a3)+(-6a3b+6a3b)+(3a2b-3a2b)+3=3,则不管a,b取何值,整式的值都为3.考点3:整式运算的应用典例:(2020·珠海市斗门区实验中学初一期中)今年秋季,长白山土特产喜获丰收,某土特产公司组织10辆汽车装运甲、乙、丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的汽车有x辆,装运乙种土特产的汽车有y 辆,根据下表提供的信息,解答以下问题.(1)装运丙种土特产的车辆数为(用含x 、y 的式子表示);(2)用含x 、y 的式子表示这10辆汽车共装运土特产的吨数;(3)求销售完装运的这批土特产后所获得的总利润(用含x 、y 的式子表示).【答案】(1)装运丙种土特产的车辆数为10-x-y ;(2)这10辆汽车共装运土特产的吨数为60-2x-y ;(3)销售完装运的这批土特产后所获得的总利润为90000-4200x-4000y .【解析】(1)由题意得,装运丙种土特产的车辆数为:10−x −y (辆)答:装运丙种土特产的车辆数为(10−x −y );(2)根据题意得:4x+5y+6(10-x-y)=4x+5y+60-6x-6y=60-2x-y答:这10辆汽车共装运土特产的数量为(60-2x-y )吨;(3)根据题意得:()12004100051500610x y x y ⨯+⨯+⨯--=4800x+5000y+90000-9000x-9000y=90000-4200x-4000y .答:销售完装运的这批土特产后所获得的总利润为(90000-4200x-4000y )元.方法或规律点拨本题主要考查了列代数式,正确理解各种数量关系之间的运算关系是列代数式的关键所在.巩固练习1.(2019·广西壮族自治区初一期末)某商店在甲批发市场以每箱x 元的价格进了30箱海鸭蛋,又在乙批发市场以每箱y 元(x >y )的价格进了同样的50箱海鸭蛋,如果商家以每箱2x y + 元的价格卖出这些海鸭蛋,卖完后,这家商店( )A .盈利了B .亏损了C .不赢不亏D .盈亏不能确定【答案】A【解析】购买海鸭蛋的进价为:30x+50y卖完海鸭蛋的收入为:8040402x y x y +=+∵40x+40y -(30x+50y)=10(x -y)>0∴收入>进价故选:A .2.(2019·霍林郭勒市第五中学初一期中)如图所示,某长方形广场的四角都有一块半径相同的14圆形的草地,已知圆形的半径为r 米,长方形的长为a 米,宽为b 米. (1)请列式表示广场空地的面积;(2)若长方形的长为300米,宽为200米,圆形的半径为10米,计算广场空地的面积(计算结果保留π).【答案】(1)ab -πr 2;(2)60 000-100π.【解析】(1)广场空地的面积(单位:平方米)为:ab -πr 2;(2)当a=300,b=200,r=10时,ab -πr 2=300×200-π×102=60 000-100π.所以广场空地的面积(单位:平方米)为:60 000-100π.3.(2019·河南省初一期中)自我国实施“限塑令”起,开始有偿使用环保购物袋,为了满足市场需求,某厂家生产A 、B 两种款式的布质环保购物袋,每天生产4500个,两种购物袋的成本和售价如下表,若设每天生产A 种购物袋x 个.(1)用含x 的整式表示每天的生产成本,并进行化简;(2)用含x 的整式表示每天获得的利润,并进行化简(利润=售价-成本);(3)当x =1500时,求每天的生产成本与每天获得的利润.【答案】(1)每天的生产成本为(-x +13 500)元;(2)每天获得的利润为()0.2x 2 250-+元.(3)每天的生产成本为12 000元;每天获得的利润为1 950元.【解析】解:(1)2x +3(4500-x )=-x +13500,即每天的生产成本为(-x +13500)元.(2)(2.3-2)x +(3.5-3)(4500-x )=-0.2x +2250,即每天获得的利润为(-0.2x +2250)元.(3)当x =1 500时,每天的生产成本:-x +13500=-1500+13 500=12000元;每天获得的利润:-0.2x +2250=-0.2×1500+2 250=1950(元).4.(2019·内蒙古自治区初一期末)如图所示,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a ,三角形的高为h .(1)用式子表示阴影部分的面积;(2)当a =2,h =12时,求阴影部分的面积.【答案】(1)2a 2ah -(2)2【解析】(1)阴影部分的面积为:221a 4ah a 2ah 2-⨯=-;(2)当1a 2h 2,==时,原式2a 2ah =-=22-12222⨯⨯=.5.(2020·黑龙江省初一期末)A 、B 两仓库分别有水泥15吨和35吨,C 、D 两工地分别需要水泥20吨和30吨.已知从A 、B 仓库到C 、D 工地的运价如表:到C 工地到D 工地A 仓库每吨15元每吨12元B 仓库每吨10元每吨9元(1)若从A 仓库运到C 工地的水泥为x 吨,则用含x 的代数式表示从A 仓库运到D 工地的水泥为 吨,从B 仓库将水泥运到D 工地的运输费用为 元;(2)求把全部水泥从A 、B 两仓库运到C 、D 两工地的总运输费(用含x 的代数式表示并化简);(3)如果从A 仓库运到C 工地的水泥为10吨时,那么总运输费为多少元?【答案】(1)15-x ;9x+180;(2)(2x+515)元;(3)535元.【解析】(1)从A 仓库运到D 工地的水泥为:(15-x )吨,从B 仓库将水泥运到D 工地的运输费用为:[35-(15-x )]×9=(9x+180)元;(2)总运输费:15x+12×(15-x )+10×(15-x )+[35-(15-x )]×9=(2x+510)元;(3)当x=10时,2x+510=530.答:总运费为530元.6.(2019·山西省初一期中)综合与探究阅读理解:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用较大数与较小数的差来表示.例如:在数轴上,有理数3与1对应的两点之间的距离为312-=;在数轴上,有理数3与-2对应的两点之间的距离为()325--=;在数轴上,有理数-3与-2对应的两点之间的距离为()()231---=.解决问题:如图所示,已知点A 表示的数为-3,点B 表示的数为-1,点C 表示的数为2.(1)点A 和点C 之间的距离为______.(2)若数轴上动点P 表示的数为x ,当1x >-时,点P 和点B 之间的距离可表示为______;当1x <-时,点P 和点B 之间的距离可表示为______.(3)若数轴上动点P 表示的数为x ,点P 在点A 和点C 之间,点P 和点A 之间的距离表示为PA ,点P 和点C 之间的距离表示为PC ,求23PA PC +(用含x 的代数式表示并进行化简)(4)若数轴上动点P 表示的数为-2,将点P 向右移动19个单位长度,再向左移动23个单位长度终点为Q ,那么P ,Q 两点之间的距离是______.【答案】(1)5;(2)1x + ,1x --;(3)12-x ;(4)4【解析】解:(1)2-(-3)=5;(2)x-(-1)=1x + ;1x --;(3)∵PA=x-(-3)=x+3,PC=2-x ,∴()()232332PA PC x x +=++-2663x x=++-12x =-;(4)∵-2+19-23=-6,∴P ,Q 两点之间的距离是-2-(-6)=4.7.(2020·珠海市斗门区实验中学初一期中)如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示)(4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC ﹣2AB=12.【解析】(1)∵|a +2|+(c −7)2=0,∴a +2=0,c −7=0,解得a =−2,c =7,∵b 是最小的正整数,∴b =1;故答案为:−2;1;7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,2.5+(2.5−1)=4;故答案为:4.(3)依题意可得AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3;5t+9;2t+6.(4)不变.3BC−2AB=3(2t+6)−2(3t+3)=12.8.(2020·四川省初一期中)小明家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低?【答案】(1)3;(2)木地板:75﹣7x,地砖:7x+53;(3)B种活动方案【解析】解:(1)根据题意,可得a+5=4+4,得a=3;(2)铺设地面需要木地板:4×2x+a[10+6﹣(2x﹣1)﹣x﹣2x]+6×4=8x+3(17﹣5x)+24=75﹣7x,铺设地面需要地砖:16×8﹣(75﹣7x)=128﹣75+7x=7x+53;(3)∵卧室2的面积为21平方米,∴3[10+6﹣(2x﹣1)﹣x﹣2x]=21,∴3(17﹣5x)=21,∴x=2,∴铺设地面需要木地板:75﹣7x=75﹣7×2=61,铺设地面需要地砖:7x+53=7×2+53=67,A种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元),22335>22165,所以小方家应选择B种活动方案,使铺设地面总费用(含材料费及安装费)更低.考点4:数字规律探究典例:(2020·河北省初三一模)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣3,﹣2,﹣1,0,且任意相邻四个台阶上数的和都相等.(1)求第五个台阶上的数x是多少?(2)求前21个台阶上的数的和是多少?(3)发现:数的排列有一定的规律,第n个﹣2出现在第 个台阶上;(4)拓展:如果倩倩小同学一步只能上1个或者2个台阶,那么她上第一个台阶的方法有1种:1=1,上第二个台阶的方法有2种:1+1=2或2=2,上第三个台阶的方祛有3种:1+1+1=3、1+2=3或2+1=3,…,她上第五个台阶的方法可以有 种.【答案】(1)第五个台阶上的数x是﹣3(2)-33(3)(4n﹣2)(4)8【解析】(1)由题意得:﹣3﹣2﹣1+0=﹣2﹣1+0+x,x=﹣3,答:第五个台阶上的数x是﹣3;(2)由题意知:台阶上的数字是每4个一循环,﹣3﹣2﹣1+0=﹣6,∵21÷4=5…1,∴5×(﹣6)+(﹣3)=﹣33,答:前21个台阶上的数的和是﹣33;(3)第一个﹣2在第2个台阶上,第二个﹣2在第6个台阶上,第三个﹣2出现在第10个台阶上;…第n个﹣2出现在第(4n﹣2)个台阶上;故答案为(4n﹣2);(4)上第五个台阶的方法:1+1+1+1+1=5,1种,1+1+1+2=5,1+2+2=5,1+2+1+1=5,1+1+2+1=5,4种,2+2+1=5,2+1+2=5,2+1+1+1=5,3种,∴1+4+3=8种,答:她上第五个台阶的方法可以有8种.故答案为8.方法或规律点拨本题考查数字的变化类,解答本题的关键是明确题目中数字的变化特点,求出相应的结果.巩固练习1.(2020·绵竹市孝德中学初一期中)已知一个三位数:100a+10b+c,将它的百位数字与个位数字交换后得到一个新的三位数:100c+10b+a,试求这两个三位数的差,并求当a=5,c=7时,差的值是多少?【答案】差为99a-99c或99c-99a,差值分别为-198和198【解析】解:由题意可得:①100a+10b+c-(100c+10b+a)=99a-99c,将a=5,c=7代入,原式=99×(-2)=-198;②100c+10b+a-(100a+10b+c)=99c-99a,将a=5,c=7代入,原式=99×2=198;2.(2019·湖南省初一期中)定义:若2a b +=,则称a 与b 是关于1的平衡数,例如,462-+=,则4-与6是关于1的平衡数(1)3与 是关于1的平衡数,5x -与 (用含的式子表示)是关于1的平衡数(2)若2223()4a x x x =-++,223(4)2b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.【答案】(1)-1,x-3;(2)a 与b 不是关于1的平衡数,理由见详解【解析】解:(1)∵3(1)2,5(3)2x x +-=-+-=∴3与-1是关于1的平衡数,5x -与x-3是关于1的平衡数;(2)a 与b 不是关于1的平衡数,理由如下:∵22223()434a x x x x x =-++=--+,2223(4)232b x x x x x x ⎡⎤=--+-=++⎣⎦∴2234326a b x x x x +=--++++=∴ a 与b 不是关于1的平衡数.3.(2020·河北省初三二模)把正整数1,2,3,4, 排成如下的一个数表.(1)2020在第_____行,第______列;(2)第n 行第3列的数是_______(用含“n ”的代数式表示)(3)嘉嘉和淇淇玩数学游戏,嘉嘉对淇淇说:“你从数表中挑一个数x ,按如图所示的程序计算,只要你告诉我所得的数在第几行,我就知道你挑的数在第几行.”你认为嘉嘉说得有道理吗?计算说明理由.【答案】(1)253,4;(2)85n -;(3)嘉嘉说得有道理,见解析【解析】(1)由图中可以得出规律,每一行共有8个数,每行最后的数是8的倍数,∵2020÷8=252……4,∴2020在第253行,第4列;(2)第n 行第3列的数是:8(n −1)+3=8n −5;(3)根据计算程序,可得:y =[]5(10)1058x x +-÷=+,所以当知道数y 在第几行时,则x 必在它的上一行,所以嘉嘉说得有道理.4.(2020·云南省初三学业考试)符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+,2(4)14f =+, .(1)利用以上运算的规律写出()f n = ;(n 为正整数)(2)计算:(1)(2)(3)(100)f f f f 的值.【答案】(1)1+2n;(2)5151.【解析】解:(1)∵f (1)=1+21,f (2)=1+22,f (3)=1+23,f (4)=1+24…∴f (n )=1+2n,故答案为:1+2n ;(2)f (1)•f (2)•f (3)•…•f (100)=(1+21)(1+22)(1+23)(1+24)...(1+2100)=31×42×53×64× (102100)10110212⨯⨯=51515.(2020·河北省初三学业考试)观察下列等式,探究发现规律,并解决问题,①2113323-=⨯;②3323323-=⨯;③4333323-=⨯;(1)直接写出第④个等式: ;(2)猜想第n 个等式(用含字母n 的式子表示),并说明这个等式的正确性;(3)利用发现的规律,求123103333++++ 的值.(参考数据:113177147=)【答案】(1)35﹣34=2×34;(2)猜想:第n 个等式为:3n +1﹣3n =2×3n .理由见解析;(3)88572【解析】(1)①2113323-=⨯;②3323323-=⨯;③4333323-=⨯;∴第④个等式:35-34=2×34;故答案为:35-34=2×34;(2)猜想:第n 个等式为:3n +1﹣3n =2×3n .理由如下:∵3n +1﹣3n =3×3n ﹣3n =(3﹣1)×3n =2×3n ,∴3n +1﹣3n =2×3n ;(3)根据发现的规律,有:311﹣310=2×310,∴(32﹣31)+(33﹣32)+(34﹣33)+…+(311﹣310)=2(31+32+33+…+310),∴311﹣31=2(31+32+33+…+310),即31+32+33+ (310)12(311﹣3).∵311=177147,∴31+32+33+…+310=12(177147﹣3)=88572.6.(2020·河北省初三二模)魔术师说将你想到的数进行以下四步操作,我就可以猜到你心里想的数.第一步:心中想一个数,求其平方;第二步:想比这个数小2的数,求其平方;第三步:求其平方的差值;第四步:平方的差值除以4再加1.将结果告诉我,我就能猜中你心里想的数.(1)若你想的数是5,求出你告诉魔术师的结果是多少.(2)聪明的同学们,你觉得魔术师的步骤一定能猜中你心中的数吗?请用代数式计算证明你的结论.解答:魔术师 猜中你心中的数(填“能”或“否”);证明:设心中想的数为n (n 为任意实数)【答案】(1)5;(2)能,证明见解析.【解析】(1)()2255225916--=-=,16415÷+=,告诉魔术师的数是5.故答案为:5(2)能()222222(2)444444n n n n n n n n n --=--+=-+-=-,()4441n n -÷=-,()11n n -+=,∴可以猜中.故答案为:能,证明见解析7.(2020·河北省初三三模)如图,从左向右依次摆放序号分别为1,2,3,…,n 的小桶,其中任意相邻的四个小桶所放置的小球个数之和相等.尝试 求x +y 的值;应用 若n =22,则这些小桶内所放置的小球个数之和是多少?发现 用含k (k 为正整数)的代数式表示装有“4个球”的小桶序号.【答案】尝试:x +y =9;应用:99;发现:装有“4个球”的小桶序号为4k -1.【解析】尝试:根据题意可得6+3+4+5=4+5+x +y ,∴x +y =9;应用:∵6+3+4+5=3+4+5+x ,又∵x +y =9,∴x =6,y =3,∴小桶内所放置的小球数每四个一循环,∵22÷4=5⋯⋯2,∴(6+3+4+5)×5+9=99发现:装有“4个球”的小桶序号分别为3=4×1-1,7=4×2-1,11=4×3-1…,∴装有“4个球”的小桶序号为4k -1.8.(2020·云南省初三学业考试)观察下列等式的规律11111111111141112233445223344555+++=-+-+-+-=-=⨯⨯⨯⨯请用上述等式反映出的规律解决下列问题:(1)请直接写出111111223344520192020++++⋅⋅⋅+⨯⨯⨯⨯+的值为 .(2)化简:()11111122334451n n ++++⋅⋅⋅+⨯⨯⨯⨯⨯+【答案】(1)20192020;(2)1n n +【解析】1111111111223344520192020=-+-+-+-++- 211200=-20192020=故答案为:20192020.(2)()11111122334451n n ++++⋯+⨯⨯⨯⨯⨯+111111111122334451n n =-+-+-+-++-+ 111n =-+ 1n n =+9.(2020·石家庄市第二十八中学初三一模)小丽同学准备化简:(3x 2﹣6x ﹣8)﹣(x 2﹣2x □6),算式中“□”是“+,﹣,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x 2﹣6x ﹣8)﹣(x 2﹣2x ×6);(2)若x 2﹣2x ﹣3=0,求(3x 2﹣6x ﹣8)﹣(x 2﹣2x ﹣6)的值;(3)当x =1时,(3x 2﹣6x ﹣8)﹣(x 2﹣2x □6)的结果是﹣8,请你通过计算说明“□”所代表的运算符号.【答案】(1)2x2+6x﹣8;(2)4;(3)□处应为“﹣”.【解析】(1)(3x2﹣6x﹣8)﹣(x2﹣2x×6)=(3x2﹣6x﹣8)﹣(x2﹣12x)=3x2﹣6x﹣8﹣x2+12x=2x2+6x﹣8;(2)(3x2﹣6x﹣8)﹣(x2﹣2x﹣6)=3x2﹣6x﹣8﹣x2+2x+6=2x2﹣4x﹣2,∵x2﹣2x﹣3=0,∴x2﹣2x=3,∴2x2﹣4x﹣2=2(x2﹣2x)﹣2=6﹣2=4;(3)“□”所代表的运算符号是“﹣”,当x=1时,原式=(3﹣6﹣8)﹣(1﹣2□6),∴﹣11﹣(1+2□6)=﹣8,整理得:1+2□6=﹣3,∴2□6=﹣4∴即□处应为“﹣”.10.(2020·重庆中考真题)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【答案】(1)312是“好数”,675不是“好数”,理由见解析;(2)611,617,721,723,729,831,941.理由见解析.【解析】(1)∵3,1,2都不为0,且3+1=4,4能被2整除,∴312是“好数”.∵6,7,5都不为0,且6+7=13,13不能被5整除,∴675不是“好数”;(2)设十位数字为x,个位数字为y,则百位数字为(x+5).其中x,y都是正整数,且1≤x≤4,1≤y≤9.十位数字与个位数字的和为:2x+5.当x=1时,2x+5=7,此时y=1或7,“好数”有:611,617当x=2时,2x+5=9,此时y=1或3或9,“好数”有:721,723,729当x=3时,2x+5=11,此时y=1,“好数”有:831当x=4时,2x+5=13,此时y=1,“好数”有:941所以百位数字比十位数字大5的所有“好数”的个数是7.考点5:图形规律探究典例:(2020·山东省初三二模)(问题提出):有同样大小正方形256个,拼成如图1所示⨯的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过的1616多少个小正方形?(问题探究):我们先考虑以下简单的情况:一条直线穿越一个正方形的情况.(如图2)从图中我们可以看出,当一条直线穿过一个小正方形时,这条直线最多与正方形上、下、左、右四条边中的两个边相交,所以当一条直线穿过一个小正方形时,这条直线会与其中某两条边产生两个交点,并且以两个交点为顶点的线段会全部落在小正方形内.这就启发我们:为了求出直线l最多穿过多少个小正方形,我们可以转而去考虑当直线l穿越由小正方形拼成的大正方形时最多会产生多少个交点.然后由交点数去确定有多少根小线段,进而通过线段的根数确定下正方形的个数.⨯正方形的情况(如图3):再让我们来考虑33⨯的正方为了让直线穿越更多的小正方形,我们不妨假设直线l右上方至左下方穿过一个33⨯正方形的情况:从上下来看,这条直线由下至上形,我们从两个方向来分析直线l穿过33最多可穿过上下平行的两条线段;从左右来看,这条直线最多可穿过左右平行的四条线段;⨯的大正方形中的六条线段,从而直线l上会产生6个交点,这6这样直线l最多可穿过33个交点之间的5条线段,每条会落在一个不同的正方形内,因此直线l最多能经过5个小正方形.(问题解决):⨯的一个大的正方形.如果用一(1)有同样大小的小正方形16个,拼成如图4所示的44条直线穿过这个大正方形的话,最多可以穿过_________个小正方形.⨯的一个大的正方形.如果用一条直线穿过(2)有同样大小的小正方形256个,拼成1616这个大正方形的话,最多可以穿过___________个小正方形.⨯的大正方形的话,最多可以穿过___________个小正方形.(3)如果用一条直线穿过n n(问题拓展):⨯的大长方形的话(如图5),最多可以穿过个___________小(4)如果用一条直线穿过23正方形.⨯的大长方形的话(如图6),最多可以穿过___________个小(5)如果用一条直线穿过34正方形.⨯的大长方形的话,最多可以穿过________个小正方形.(6)如果用一条直线穿过m n(类比探究):由二维的平面我们可以联想到三维的立体空间,平面中的正方形中四条边可联想到正方体中的正方形的六个面,类比上面问题解决的方法解决如下问题:(7)如图7有同样大小的小正方体8个,拼成如图所示的222⨯⨯的一个大的正方体.如果用一条直线穿过这个大正方体的话,最多可以穿过___________个小正方体.(8)如果用一条直线穿过n n n ⨯⨯的大正方体的话,最多可以穿过_________个小正方体.【答案】(1)7;(2)31;(3)21n -;(4)4;(5)6 ;(6)1m n +-;(7)4;(8)32n -【解析】(1)再让我们来考虑4×4正方形的情况(如图4):为了让直线穿越更多的小正方形,我们不妨假设直线L 右上方至左下方穿过一个4×4的正方形,我们从两个方向来分析直线l 穿过4×4正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的3条线段;从左右来看,这条直线最多可穿过左右平行的5条线段;这样直线L 最多可穿过4×4的大正方形中的8条线段,从而直线L 上会产生8个交点,这8个交点之间的7条线段,每条会落在一个不同的正方形内,因此直线L 最多能经过7个小正方形.故答案为7(2)我们发现直线穿越1×1正方形时最多经过1个正方形,直线穿越2×2正方形时最多经过3个正方形,直线穿越3×3正方形时最多经过5个正方形,直线穿越4×4正方形时最多经过7个正方形,…直线穿越n×n 正方形时最多经过2n-1个正方形.∴直线穿越10×10正方形时最多经过19个正方形.故答案为19.(3)由(2)可知,有2×16-1=31个正方形,故答案为31.(4)由(2)可知有2n-1个正方形.故答案为2n-1.(5)为了让直线穿越更多的小正方形,我们不妨假设直线L 右上方至左下方穿过一个2×3的正方形,我们从两个方向来分析直线l穿过2×3正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的1条线段;从左右来看,这条直线最多可穿过左右平行的4条线段;这样直线L最多可穿过2×3的大正方形中的5条线段,从而直线L上会产生5个交点,这5个交点之间的4条线段,每条会落在一个不同的正方形内,因此直线L最多能经过4个小正方形,故答案为4.(6)为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个3×4的正方形,我们从两个方向来分析直线l穿过3×4正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的2条线段;从左右来看,这条直线最多可穿过左右平行的5条线段;这样直线L最多可穿过4×4的大正方形中的7条线段,从而直线L上会产生7个交点,这7个交点之间的6条线段,每条会落在一个不同的正方形内,因此直线L最多能经过6个小正方形.故答案为6.(7)为了让直线穿越更多的小正方形,我们不妨假设直线L右上方至左下方穿过一个m×n 的正方形,我们从两个方向来分析直线l穿过m×n正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的(m-1)条线段;从左右来看,这条直线最多可穿过左右平行的(n+1)条线段;这样直线L最多可穿过4×4的大正方形中的(m+n)条线段,从而直线L上会产生(m+n)个交点,这m+n个交点之间的(m+n-1)条线段,每条会落在一个不同的正方形内,因此直线L最多能经过(m+n-1)个小正方形,故答案为(m+n-1).(8)用类似的方法可以得到:用一条直线穿过1×1×1正方体的话,最多可以穿过1个小正方体,用一条直线穿过,2×2×2正方体的话,最多可以穿过4个小正方体,用一条直线穿过,3×3×3正方体的话,最多可以穿过7个小正方体,用一条直线穿过4×4×4正方体的话,最多可以穿过10个小正方体,…用一条直线穿过,n×n×n正方体的话,最多可以穿过(3n-2)个小正方体.故答案为4.(9)由(8)可知有(3n-2)个正方形,故答案为(3n-2).方法或规律点拨本题考查线线相交得点、以及正方形、立方体的有关知识,是个探究题目,学会从简单到复杂的推理方法,找到规律即可解决问题,本题难度比较大,从穿过的线段入手,找到问题的突破口,这个方法值得在以后的学习中应用.巩固练习1.(2020·安徽省初三二模)(1)观察下列图形与等式的关系,并填空:第一个图形:;第二个图形:;第一个等式:9+4=13;第二个等式:13+8=21;第三个图形:;……;第三个等式: + = ;……;(2)根据以上图形与等式的关系,请你猜出第n个等式(用含有n的代数式表示),并证明.【答案】(1)17,12,29;(2)(4n+5)+4n=8n+5,证明见解析【解析】解:(1)观察图形的变化可知:第一个图形:9+4=13,即4×1+5+4=13=8×1+5,第二个图形:13+8=21,即4×2+5+4×2=21=8×2+5,第三个图形:17+12=29,即4×3+5+4×3=29=8×3+5,…发现规律:第n个等式为:(4n+5)+4n=8n+5;故答案为:17,12,29;(2)由(1)发现的规律:所以第n个等式为:(4n+5)+4n=8n+5;证明:左边=4n+5+4n=8n+5=右边.所以等式成立.2.(2020·河北省初三其他)如图,第①个多边形由正三角形“扩展”而来,边数记为。
人教版数学七年级上册 第2章 质量检测题含答案
人教版数学七年级上册第2章质量检测题含答案2.1整式一.选择题1.多项式3x2y﹣6xy﹣1的次数和常数项分别是()A.2和1 B.2和﹣1 C.3和1 D.3和﹣12.多项式3xy﹣2xy2+1的次数及最高次项的系数分别是()A.2,﹣3 B.2,3 C.3,2 D.3,﹣23.下列说法中错误的个数是()①﹣a表示负数;②多项式﹣3a2b+7a2b2﹣2ab+1的次数是3;③单项式﹣的系数为﹣2;④若|x|=﹣x,则x<0.A.1个B.2个C.3个D.4个4.下列说法正确的是()①有理数是整数和分数的统称;②一个数的绝对值的相反数一定是负数;③如果一个数的倒数等于它本身,则这个数是0和±1;④3ab3的次数为4次;⑥如果ab>0,那么a >0,b>0.A.①②⑤B.①④C.①②④D.⑨⑤5.下列说法中,正确的是()A.﹣的系数是﹣B.﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项C.单项式a2b3的系数是0,次数是5D.是二次二项式6.给出下列结论:①﹣a表示负数;②若|x|=﹣x,则x<0;③绝对值最小的有理数是0;④3×102x2y是5次单项式.其中正确的个数是()A.0个B.1个C.2个D.3个7.单项式﹣的系数和次数分别为()A.,4 B.﹣,4 C.﹣,6 D.﹣,78.下列说法中,正确的是()A.单项式﹣的系数是﹣2,次数是3B.﹣3x2y+4x﹣1是三次三项式,常数项是1C.单项式a的系数是0,次数是0D.单项式﹣ab的次数是2,系数为﹣9.下列说法错误的是()A.+1是整式B.x2y是单项式C.的系数是,次数是2D.3x4﹣x3y+2x是四次三项式10.在代数式x﹣y,5a,x2﹣y+,,xyz,﹣,中,有()A.5个整式B.4个单项式,3个多项式C.6个整式,4个单项式D.6个整式,单项式与多项式的个数相同二.填空题11.将多项式3mn3﹣4m2n2+2﹣5m3n的各项按照m的指数从大到小的顺序排列为.12.多项式2a3b+3b﹣1是次项式.13.单项式πa的次数是;整式的二次项系数为.14.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.15.若多项式m(m﹣1)x3+(m﹣1)x+2是关于x的一次多项式,则m需满足的条件是.三.解答题16.若关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,求m ﹣n的值.17.已知a、b互为相反数,c、d互为倒数,多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,单项式x2n y5﹣m的次数与这个多项式的次数相同,求(a+b)m+m n﹣(cd﹣n)2019的值.18.已知多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数.(1)求a,b的值;(2)求b2﹣3b+4b﹣5的值.19.把几个数或整式用大括号括起来,中间用逗号分开,如{﹣3,6,12},{x,xy2,﹣2x+1},我们称之为集合,其中大括号内的数或整式称为集合的元素.定义如果一个集合满足:只要其中有一个元素x使得﹣2x+1也是这个集合的元素,这样的集合称为关联集合,元素﹣2x+1称为条件元素.例如:集合{﹣1,1,0}中元素1使得﹣2×1+1=﹣1,﹣1也恰好是这个集合的元素,所以集合{﹣1,1,0}是关联集合,元素﹣1称为条件元素.又如集合满足﹣2×是关联集合,元素称为条件元素.(1)试说明:集合是关联集合.(2)若集合{xy﹣y2,A}是关联集合,其中A是条件元素,试求A.参考答案与试题解析一.选择题1.【解答】解:多项式3x2y﹣6xy﹣1的次数和常数项分别是3和﹣1,故选:D.2.【解答】解:多项式3xy﹣2xy2+1的次数及最高次项的系数分别是:3,﹣2.故选:D.3.【解答】解:①﹣a不一定是负数,故原说法错误,符合题意;②多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故原说法错误,符合题意;③单项式﹣的系数为﹣,故原说法错误,符合题意;④若|x|=﹣x,则x≤0,故原说法错误,符合题意;故选:D.4.【解答】解:①有理数是整数和分数的统称,本小题说法正确;②一个数的绝对值的相反数一定是负数或0,本小题说法错误;③如果一个数的倒数等于它本身,则这个数是±1,本小题说法错误;④3ab3的次数为4次,本小题说法正确;⑥如果ab>0,那么a>0,b>0或a<0,b<0,本小题说法错误;故选:B.5.【解答】解:A、﹣的系数是﹣π,故此选项错误;B、﹣4a2b,3ab,﹣5是多项式﹣4a2b+3ab﹣5的项,故此选项错误;C、单项式a2b3的系数是1,次数是5,故此选项错误;D、是二次二项式,正确.故选:D.6.【解答】解:①﹣a不一定表示负数,故①错误;②由题意可知:﹣x≥0,所以x≤0,故②错误;③由|x|≥0可知,绝对值最小的有理数为0,故③正确;④该单项式的次数为3,故④错误;故选:B.7.【解答】解:单项式﹣的系数和次数分别为:﹣,7.故选:D.8.【解答】解:A、单项式﹣的系数是﹣,次数是3,故此选项错误;B、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,故此选项错误;C、单项式a的系数是1,次数是1,故此选项错误;D、单项式﹣ab的次数是2,系数为﹣,正确.故选:D.9.【解答】解:(A)不是单项式,故不是整式,故A错误;故选:A.10.【解答】解:x﹣y,5a,x2﹣y+,,xyz,是整式,其中式x﹣y,x2﹣y+,是多项式,5a,,xyz是单项式,故选:D.二.填空题(共5小题)11.【解答】解:按m的降幂排列:﹣5m3n﹣4m2n2+3mn3+2,故答案为:﹣5m3n﹣4m2n2+3mn3+2.12.【解答】解:多项式2a3b+3b﹣1是四次三项式.故答案为:四,三.13.【解答】解:单项式πa的次数是1;整式的二次项系数为﹣,故答案为:1;﹣.14.【解答】解:∵2x=(﹣1)1+121x1;﹣4x2=(﹣1)2+122x2;8x3=(﹣1)3+123x3;﹣16x4=(﹣1)4+124x4;第n个单项式为(﹣1)n+12n x n,故答案为:(﹣1)n+12n x n.15.【解答】解:∵多项式m(m﹣1)x3+(m﹣1)x+2是关于x的一次多项式,∴m(m﹣1)=0,且m﹣1≠0,则m=0.故答案为:m=0.三.解答题(共4小题)16.【解答】解:∵关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,∴m+1=3,﹣n=﹣3,解得:n=3,m=2,故m﹣n=2﹣3=﹣1.17.【解答】解:∵多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,则2n+5﹣3=6,解得:n=2,∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴(a+b)m+m n﹣(cd﹣n)2019=0+9﹣(1﹣2)2019=9﹣(﹣1)=10.18.【解答】解:(1)∵多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数,∴,解得a=﹣7,b=2;(2)b2﹣3b+4b﹣5=,把b=2代入得:==2+2﹣5=﹣1.19.【解答】解:(1)∵且是这个集合的元素∴集合是关联集合2.2整式的加减一、选择题(共12题)1、下列各式计算正确的是( )A.3x+3y=6xy B.x+x=x2C.-9y2+6y2=-3 D.9a2b-9a2b=02、下列各组代数式中,是同类项的是()A.5x2y与xy B.﹣5x2y与yx2 C.5ax2与yx2 D.83与x33、若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2 B.﹣1 C.2 D.14、若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3 B.3 C.5 D.75、如果多项式A加上﹣2x2﹣1得4x2+1,那么多项式A是()A.6x2+2 B.2x2 C.6x4+2 D.﹣2x2+26、已知a-b=3, c+d=2 ,则(a+c)-(b-d)的值为()A.1 B.-1 C.-5 D.57、一个整式减去a2﹣b2等于a2+b2,则这个整式为()A.2b2B.2a2 C.﹣2b2 D.﹣2a28、代数式4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3的值()A.与x,y有关B.与x有关 C.与y有关 D.与x,y无关9、当a=﹣1,b=1时,(a3﹣b3)﹣(a3﹣3a2b+3ab2﹣b3)的值是()A.0 B.6 C.﹣6 D.910、一个多项式A与多项式B=2x2-3xy-y2的和是多项式C=x2+xy+y2,则A 等于( )A. x2-4xy-2y2B. -x2+4xy+2y2C. 3x2-2xy-2y2D. 3x2-2xy11、已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+112、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是().A. B. C. D.二、填空题(共5题)1、多项式与﹣3x+1的和是x2﹣3.2、若﹣4x a y+x2y b=﹣3x2y,则a+b= .3、 (徐州中考)若2m+n=4,则代数式6-2m-n的值为.4、有一名同学把一个整式减去多项式xy+5yz+3xz误认为加上这个多项式,结果答案为 5yz-3xz+2xy,则原题正确答案为.5、若关于a,b的多项式不含ab项,则m= 。
【数学】新人教版数学七年级(上)第二章单元质量检测试卷、答案.doc
人教版初中数学七年级上册第2章《整式加减》单元测试卷(答案)一、选择题(每小题3分,共30分)1、用式子表示“比y 的相反数少3的数”是( ) A 3y - B 3y + C 3y -+ D 3y --2、下列式子中是单项式的是( ) A 8x + B 43s t + C13mx D 1n- 3、多项式3233524x x y y -++的次数是( ) A 2 B 3 C 4 D 5 4、多项式5225x y -+的项为( ) A525x -,2y B 2x -,2y C x ,25,2y D x ,25-,2y 5、代数式2346x x -+的值为9,则2463x x -+的值为( )A 7B 18C 12D 96、下列合并同类项的结果中,正确的是( )A 550xy xy --=B 22330a b ba -=C 235235m m m +=D 2232a a -= 7、计算22(321)(235)a a a a -+-+-的结果是( )A 256a a -+B 254a a --C 24a a +-D 26a a ++ 8、若2214m x y -与2n x y --是同类项,则()n m --的值为( ) A 8 B 16 C 32 D 649、下列计算中,错误的是( )(1)3232549(5)(49)x x x x x x --+=---+;(2)32325499(54)x x x x x x --+=-++;(3)()a b c d a b c d --+=-++;(4)2()2a b c a b c --+=+-A 1个B 2个C 3个D 4个10、若22M a b =,27N ab =,24P a b =-,则下列等式正确的是( )A 29M N a b +=人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y的系数、次数分别是( )A.-1,3B.1,3C.13,3 D.-13,3 2.下列式子中代数式的个数为( ) ①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .53.下列说法中,正确的是( ) A .5mn 不是整式 B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式 的次数是( ) A.B.mC.D.m ,n 中的较大数5.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元6.已知两个完全相同的大长方形,长为 ,宽为 ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么 与 之间的关系是( )A. B.C.D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2B .1C .3D .48.[]()a b c --+去括号后应为( ) A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 210.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211. 等于( ) A.B.C.D.12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8二、填空题13.已知212a a -+=人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( ) A.4,3 B.4,-3 C.6,3 D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( )A.2(x-y )=2x-yB.-(m-n )=-m+nC.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53 B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________.14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数) (1)根据题意,填写下表创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3.当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ; 乙每份材料收2.5元印刷费, 故答案为25,50,2.5x ;(2)对甲来说,印刷大于800份时人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题一、选择题(每小题3分,共18分) 1. 在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个 2.计算3a 3+a 3,结果正确的是( ) A .3a 6B .3a 3C .4a 6D .4a 33.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6 B . -6 C . 12 D . -124.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( ) A .-2 B .25. 若x =1时,ax 3+bx +7式子的值为2033,则当x =﹣1时,式子ax 3+bx +7的值为( ) A .2018 B .2019 C .﹣2019 D .﹣20186. 据市统计局发布:2018年我市有效发明专利数比2017年增长12.5%.假定2019年的年增长率保持不变,2017年和2019年我市有效发明专利分别为a 万件和b 万件,则( ) A .b =(1+12.5%×2)a B .b =(1+12.5%)2a C .b =(1+12.5%)×2 a D .b =12.5%×2 a二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________.10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2019的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1. 16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值. 19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值;(2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a 、b 的式子表示)?并计算当a =300,b =200时的旅游费用. 五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,当a=1,b=2时,求A ﹣2B+3C 的值(先化简再求值).22.阅读材料:“如果代数式5a +3b 的值为-4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =-4两边同乘以2,得10a +6b =-8.仿照上面的解题方法,完成下面的问题: (1)已知a 2+a =0,求a 2+a +2019的值;(2)已知a -b =-3,求3(a -b )-a +b +5的值;(3)已知a 2+2ab =-2,ab -b 2=-4,求2a 2+5ab -b 2的值. 六、(本大题共12分) 23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)写出第(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T ”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参 考 答 案:一、选择题 1.B 2.D 3.D 4.A 5.C 6.B二、填空题7.﹣2 3 8.111a +80 9.-8 10.111.2c -a -b 解析:由图可知a <c <0<b ,∴a -c <0,b -c >0,∴原式=c -a -(b -c )=c -a -b +c =2c -a -b .故答案为2c -a -b .12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4. 三、解答题 13.解:解:(1)原式=4a ;(3分)(2)原式=3a ﹣2﹣3a+15=13;(6分) 14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分) 15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2019=0+2019=2019.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式 的系数和次数分别是( ) A.2,2B.2,3C.3,2D.2,42.下列说法正确的是( ) A .ab +c 是二次三项式 B .多项式2x 2+3y 2的次数是4 C .0是单项式 D .34ba是整式 3.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .54.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )25.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy6.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( ) A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______.15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy - 人教版数学七上第二章单元质量检测试卷及答案一、选择题(共10小题;共30分)1. 已知 ,则 的值为A. B. C. 或 D. 或2. 下列说法正确的是A. 单项式 的系数是 ,次数是B. 单项式 的系数是 ,次数是C. 是二次三项式D. 单项式 的次数是 ,系数为3. 下面的计算正确的是A. B.C. D.4. 下列式子,符合代数式书写格式的是A. B. C. D.5. 下列说法中,正确的是A. 一定是负数B. 一定是正数C. 一定是正数D. 一定是正数6. 化简结果为A. B. C. D.7. 单项式与单项式是同类项,则的值是A. B. C. D.8. 已知的值为,则代数式的值为A. B.。
2019秋季人教版七年级数学(上)第2章《整式的加减》单元检测题(含答案)
七年级数学(上)第2章《整式的加减》单元检测题一、选择题(每小题3分,共30分 ) 1.下列各式中不是单项式的是( )A .3a B . 1-mC .0D .37 2.甲数比乙数的3倍大2,若乙数为x ,则甲数为( )A .3x +2B .2x +3C .123-xD . 123+x3.如果312+n m x y 与-3x 12y n 是同类项,那么m ,n 的值分别是( )A .m =-2,n =3B .m =2,n =3C . m =-3,n =2D . m =3,n =4 4.代数式-32xy 4的系数与次数分别是( )A .-2,4B .+9,5C .-9,5D .-8,4 5.(2018烟台)已知a -b =2,则2a -2b -3的值是( ) A .1 B .-1 C .-5 D .-3 6.从2a +5b 减去6a -6b 的一半,应当得到( ) A . 4a -b B . b -aC . -a +8D . 5a +2b 7.减去3m 等于5m 2-3m -5的式子是( )A .5(m 2-1) B .5m 2-6m -5 C .5(m 2+1) D .-(5m 2+6m -5) 8.在排成每行七日的日历表中取下一个3×3方块,若所有日期数之和为207.则n 的值为( ) A .21 B .23 C .15 D .19 9.已知a -b =5,c +d =2.则(b +c )-(a -d )的值是( )A .-3B .3C .-5D .7第8题图 第10题图10,填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .74B .92C .158D .176二、填空题(每小题3分,共18分)11.当x =5,y =4时,式子2x 2-y 的值是 .12.把(x -y )看作一个整体,合并同类项:7(x -y )+2(x -y )-4(x -y )= .13.一根铁丝的长为7a +8b ,剪下一部分围成一个长为a 宽为b 的长方形,则这根铁丝还剩下 . 14.已知单项式3a m b 4与312--n a b 的和是单项式,则m = ,n = .15.已知A =3x 2-5x +3,B =2x 2+2x -1,则3B -A 的结果是 .16.已知:数a ,b ,c 在数轴上的对应点如图所示,化简|a +b |-|-3c |-|c -a |的值是 .三、解答题(共8题,共72分)17,(8分)化简(1)5x 2+2xy -3y 2-(3xy -4y 2+3x 2); (2)5(x 2-5x )-3(2x 2+3x ) 04282622464484c18.(8分)已知A=3x2-3xy+2y2,B=3x2+xy-4y2,求:(1)A+B;(2)A-(B-2A).19.(8分)已知|x+2|+(y-12)2=0,求5xy-[(x2+4xy-y2)-(x2+3xy)]的值20.(8分)有这样一道题:“当a=2017,b=-2018时,求多项式8a3-5a3b+3a2b+4a3+5a3b-3a2b-12a3+2016值.”小明说:本题中a=2017,b=-2018是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由21.(8分)(2018中山)如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米(1)分别用代数式表示草地和空地的面积(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积?(计算结果保留到整数)22.(10分)已知:A=x3+2x+3,B=2x3-mx+2.(1)若m=5,求A-(3A-2B)的值(2)若2A-B的值与x无关,求2m2-[3m2-(4m-7)+2m]的值23.(10分)幻方的历史很悠久,传统幻方最早出现在夏禹时代的“洛书”。