纳米改性材料
纳米改性外墙外保温材料的生产及应用
材科学院合作 , 用甘蔗渣 ( 利 综合 利用 ) 等多种纤 维
和有 机 、 无机 多 种胶 粘剂 材料 研制 并 生产 了甘蔗 渣 纤 维 改性 抗裂 材料 , 通过 省科 技 厅专 家鉴 定 。属 国 内 且
收稿 日期 :0 7 81 2 0 - .1 0
的在 于改善 该类产品的技术性能 , 提高使用效率和节能效果 。 关键 词 : 纳米改性 . 夕 墙保温 ; 生产 ; 应用 中图分 类号 : T 52 U 9 文献标识码 : B 文章编 号 : 10 -6 6 20 )40 4 - 0 57 7 (0 7 0 -0 30 3
1 前 言 概 述
外墙 外保 温 是节 能建 筑 的 主要 措施 之 一 , 而外墙 外保 温 的裂缝 渗 漏是 保 温建筑 的质 量通 病 中的重 症 。 抗裂 防渗 水是 墙 体保 温体 系要 解决 的关 键 技术 之一 。
首创 , 取得 了国家专 利 ( 裂 问题 不 作 论 述 其论 文 另 抗
首要 的质量要求 , 特别是南方多雨潮湿环境下 , 这个
问题 更 为突 出 。 保 温墙 体 防水层 暴露 在 大 自然 中 , 到曝 晒冷冻 受
也就是说浸没在水 中的疏水性粒子表面被纳米气泡 包覆着 , 这项技术称为“ 纳米泡沫” 在我们这里说的 , 就是纳米气泡包覆着被涂有纳米改性材料的外 墙表 面, 通俗话 来 说 , 成 一 层 空 气 “ ” 将 墙 体 表 面 与 形 膜 , 水相 隔离 , 使水不能渗透。中国科学院 20 00年研究 成 功 了新 型 双疏水 界 面材 料 ( 纳米 ) 。这 种 材 质 具 有 疏 水性 和疏 油性 。用 于纺 织 服 装 , 粘油 污 , 服 不 不 衣 用洗涤。用于建筑物表 面, 防水 防露 。专家宣称 , 鉴 此纳米材料将使建材 、 纺织 、 石油 、 化工 、 交通 , 军事装
改性纳米零价铁材料制备的研究进展
2023年6月杨竞莹等:改性纳米零价铁材料制备的研究进展中,CMC 改性的nZVI 相较于淀粉改性的nZVI 具有更强的稳定性、更大的反应速率和活性;并且CMC 价格低廉、易获取、无毒害,可深入研究其与铁颗粒之间的作用机理,为工业化生产提供保障。
但表面包覆的方法很难在循环中保持可重复使用性和可分离性,仍需基于生产成本、功能及环境兼容性研发性能更加优异的新材料。
2 负载型nZVI负载型改性通过将nZVI 分散到具有孔隙结构的支撑载体上,为nZVI 提供更多的活性位点。
本身具有吸附性能的载体材料也可加速污染物跟nZVI 的反应,从而促进污染物的降解。
负载材料一般包括碳基材料、黏土矿物、膜材料等。
2.1 碳基材料负载型nZVI活性炭、生物炭、有序介孔碳、氧化石墨烯等碳基材料具有丰富的基团和较大的比表面积,常用作nZVI 的支撑材料[31],且厌氧系统中添加Fe-C 颗粒可减少酸性物质的积累,提高产甲烷菌的活性。
生物炭(BC )不仅为nZVI 的负载或微生物的黏附提供潜在的位点(图6),还可促进直接种间电子转移(DIET ),加速产甲烷菌对乙酸盐的转化,也可通过氢营养型产甲烷菌的作用促进甲烷的生成[32]。
Lim 等[33]发现添加松木屑生物炭负载的nZVI 可以缓解高负荷食物垃圾厌氧消化过程中挥发性脂肪酸和氨的抑制作用,甲烷产量比对照组提高105.55%。
石墨烯(GNS )是sp 2杂化的二维碳,具有比表面积大、机械强度高等特点,是一种很有前途的新型二维载体,可用于支撑金属纳米颗粒,有效抑制金属纳米颗粒的聚集[34]。
陈砚田等[35]利用还原氧化石墨烯负载零价铁可将废水中三硝基甲苯(TNT )处理到检出限0.1mg/L 以下,且处理后的杂化材料活性可通过煅烧恢复。
碳基材料作为nZVI 的载体不仅可以提高nZVI 的比表面积,减少其团聚,还可以加快电子传递效率(表5)。
但在合成Fe-C复合材料的过程中,铁图6 稻壳衍生生物炭负载nZVI 的SEM 图像[38]及负载改性效果图图5 胞外聚合物改性nZVI 的TEM 图像及元素扫描图像[29]··2979化工进展, 2023, 42(6)芯被大量腐蚀,其合成方法还有待提高。
《SnO2纳米结构的改性及其在气体检测中的应用》范文
《SnO2纳米结构的改性及其在气体检测中的应用》篇一一、引言随着纳米科技的飞速发展,SnO2纳米结构因其独特的物理和化学性质在众多领域中得到了广泛的应用。
SnO2纳米材料具有较高的比表面积、良好的化学稳定性和优异的电子传输性能,尤其在气体检测领域,其应用潜力巨大。
然而,原始的SnO2纳米结构在某些方面仍存在局限性,如灵敏度、选择性和稳定性等方面的问题。
因此,对SnO2纳米结构进行改性研究,提高其在气体检测中的应用性能,显得尤为重要。
本文将介绍SnO2纳米结构的改性方法及其在气体检测中的应用。
二、SnO2纳米结构的改性方法2.1 掺杂改性掺杂是一种常用的SnO2纳米结构改性方法。
通过将其他元素引入SnO2晶格中,可以调整其电子结构和表面性质,从而提高气体检测性能。
常见的掺杂元素包括贵金属(如Au、Pt)、过渡金属等。
掺杂可以增加SnO2纳米结构的活性位点,提高气体分子的吸附能力和电子传输速率。
2.2 表面修饰表面修饰是另一种有效的改性方法。
通过在SnO2纳米结构表面引入有机或无机分子,可以调整其表面化学性质和物理性质。
例如,可以利用含氧官能团与SnO2表面的相互作用,改善其对特定气体的吸附性能。
此外,表面修饰还可以增加SnO2纳米结构的亲水性或疏水性,有利于提高其在实际应用中的稳定性。
2.3 结构调控通过调整SnO2纳米结构的形貌、尺寸和结构,可以优化其气体检测性能。
例如,制备具有高比表面积的纳米花状、纳米线等结构,可以提高气体分子的吸附面积和吸附速率。
此外,控制SnO2纳米结构的结晶度和晶格缺陷,也可以影响其电子传输性能和气体吸附能力。
三、改性SnO2纳米结构在气体检测中的应用3.1 气体传感器改性SnO2纳米结构在气体传感器领域具有广泛的应用。
通过将改性后的SnO2纳米结构制备成薄膜或厚膜传感器,可以实现对多种气体的检测。
例如,利用掺杂贵金属的SnO2纳米结构制备的传感器,对CO、H2等可燃性气体具有较高的灵敏度和快速响应能力。
纳米改性材料
纳米改性材料纳米改性材料是指将纳米颗粒加入传统材料中,通过纳米尺度效应改变材料的性能和特性的一种新材料技术。
纳米颗粒具有较大的比表面积和特殊的物理、化学特性,可以显著改善材料的力学性能、热学性能、光学性能、导电性能等。
纳米改性材料广泛应用于各个领域,如能源、环境、医疗、电子等。
在能源领域,纳米改性材料可以用于提高储能设备的性能,如锂离子电池和超级电容器,通过增加纳米颗粒的比表面积,提高储能设备的能量密度和充放电速率,延长使用寿命。
在环境领域,纳米材料可以用于水处理、气体分离、污染物吸附等方面,如纳米纤维膜可以用于制备高效的水处理膜,纳米材料可以用于吸附重金属和有机污染物。
在医疗领域,纳米材料可以用于制备药物载体,提高药物的传输效率和靶向性,还可以用于医学影像、诊断和治疗,例如纳米颗粒可以用于肿瘤治疗和诊断。
在电子领域,纳米材料可以用于制备高性能的导电材料和半导体材料,如纳米线和纳米薄膜可以用于制备高效的太阳能电池和光电器件。
纳米改性材料具有许多优势。
首先,纳米颗粒具有高比表面积,可以增加材料与周围环境的接触面积,提高反应活性和传质速率,提高材料的吸附和催化性能。
其次,纳米材料具有尺寸量子效应和表面效应,可以调控材料的光学、电学和磁学性质,增加材料的功能性。
再次,纳米颗粒可以改变材料的微观结构和组织,提高材料的力学性能和热学性能,使材料具有更好的韧性和导热性。
此外,纳米材料具有可调控性和可定制性,可以根据不同的需求调整纳米颗粒的形状、组成和表面功能,实现对材料性能的精确控制。
然而,纳米改性材料也面临一些挑战和问题。
首先,纳米材料的制备和表征技术相对复杂,制备过程中还存在一定的安全隐患。
其次,纳米材料的放大制备和工业化应用面临着一系列的问题,如纳米颗粒的团聚、沉积和泄漏等。
同时,纳米材料对环境和人体的毒性和生物相容性问题至今没有得到充分解决。
此外,纳米材料的成本较高,限制了其大规模应用和商业化发展。
纳米材料的界面改性技术
纳米材料的界面改性技术在纳米技术领域,纳米材料的界面改性技术是一项关键的研究领域。
纳米材料具有独特的物理、化学和力学性质,在许多领域都有广泛的应用前景。
然而,纳米材料的表面和界面性质对其性能和应用具有重要影响。
因此,通过界面改性技术可以改善纳米材料的性能和功能,提高其应用的效率和可靠性。
一、界面改性技术的概念和原理界面是指两个不同材料之间的接触面。
在纳米材料中,尺寸效应导致其界面比体积占据更大的比例,因此纳米材料的性能往往受界面的影响更为显著。
界面改性技术旨在通过物理、化学和结构上的手段来改善纳米材料的界面性质,以提高其性能和功能。
界面改性技术的原理可以归结为以下几个方面:1. 表面功能化:通过在纳米材料的表面引入功能基团或分子,改变其化学性质和表面能,从而影响纳米材料的表面反应活性和物理性能。
2. 化学修饰:通过在纳米材料的界面上形成化学键或键合基团,从而改变其表面组成和结构,进一步影响纳米材料的性质和性能。
3. 外部涂层:将材料的保护层沉积在纳米材料的表面,形成一层保护膜,以改善纳米材料的稳定性、耐腐蚀性和耐磨损性。
4. 界面修复:通过填充纳米材料界面的裂纹或缺陷,修复和加强纳米材料的界面结构,提高其力学性能和耐久性。
二、纳米材料的界面改性应用纳米材料的界面改性技术在不同领域具有广泛的应用前景。
1. 纳米材料增强复合材料:将纳米材料引入基体材料的界面,可以增强复合材料的力学性能、导热性能和电学性能,提高其综合性能和工作寿命。
例如,在高强度塑料中添加纳米粒子可以提高强度和硬度,同时保持其良好的韧性。
2. 纳米涂料和薄膜:通过界面改性技术可以调控纳米材料的表面能和接触角,进而改善材料的抗腐蚀性、防污性和光学性能。
例如,利用纳米颗粒制备的抗紫外辐射涂层可以保护材料免受紫外线的伤害。
3. 纳米传感器和催化剂:通过改变纳米材料的界面性质,可以调控纳米材料的催化活性和选择性,使之更适用于特定的催化反应。
纳米改性沥青及其路用性能
纳米改性沥青及路用性能研究摘要:纳米材料由于其特殊的物理性质,在材料学中的应用越来越广泛,纳米改性沥青的研究成为路面材料研究的热点。
本文通过介绍纳米改性沥青及其研究现状,并结合实验数据,分析得出纳米改性沥青的路用性能,最后对纳米改性沥青的应用前景进行展望。
关键词:纳米材料,纳米改性沥青,路用性能;正文:1.纳米材料简介纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料。
纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。
纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。
当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。
纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。
这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。
2.纳米改性沥青介绍及其研究现状纳米材料改性沥青的研究是道路交通材料研究中的热点和前沿课题,纳米粒子与沥青的相容性以及在沥青中的分散和稳定性是决定纳米材料改善沥青各项性能的关键。
具有改性性能的纳米颗粒在沥青的改性方面表现出优良的混融、增强和增韧性能,对改善沥青混合料路用性能具有良好的效果。
纳米改性沥青路用性能纳米粒子的比表面积很大,表面能高,处于非热力学稳定态,很容易团聚在一起,形成带有若干弱连接界面的尺寸较大团聚体,这种团聚的二次粒子难以发挥其纳米效应,使材料达不到理想的性能。
而且由于表面有大量硅羟基,使得纳米Ⅰ具有强亲水性,在有机基体中的分散性和浸润性很差。
纳米改性油脂润滑材料的空间摩擦学性能
随着 我国空 间探索研究 的不断深 入 ,各类 空间飞 行 器对高精度 、长 寿命 、高可靠空 间活动零部件 的应 用需求不 断增多 。恰 当的油脂 润滑方案 能够有效 降低 活动部件运转摩擦力矩 ,延长其使用 寿命 ,提高运转
b s d g e s smo i e y n n — S a t lst mp o e isti oo ia e a ir T e s a ee vr n n d p a ii ae r a e wa df d b a o Mo 2p ri e oi rv t rb tgc b h vo . h p c n io me ta a tb l y i c l t frn n — d f ain g e s u rc n ssu id. h e ut h w h ta d n a o Mo 2p rilsi efu r p leh r o a o mo i c t a el b a twa t de T e rs l s o t a d i g n n — S a ce n P rl o o oy te i o r i s t
bsdges cnipoei bl cl eai i ot hn n s ni n e t d p it. a ae a r s r o g a bhv r t u ca g g t ev o m n aat ly e r m v tt o i i ow h i i r b a i
Istt o h s s LnhuG nu 3 0 0 C ia ntu f yi , azo as 0 0 ,hn ) i e P c 7
纳米二氧化硅改性环氧树脂复合材料的性能研究??
纳米二氧化硅改性环氧树脂复合材料的性能研究??【摘要】本文旨在研究纳米二氧化硅改性环氧树脂复合材料的性能。
首先介绍了纳米二氧化硅和环氧树脂的特性及应用,然后讨论了纳米二氧化硅改性环氧树脂复合材料的制备方法。
接着对其性能进行了研究,包括力学性能、热性能和耐化学腐蚀性能等。
分析了影响性能的因素,如纳米二氧化硅含量和分散性等。
探讨了纳米二氧化硅改性环氧树脂复合材料的应用前景和研究意义。
通过本研究,将为该复合材料的制备和应用提供重要参考。
【关键词】纳米二氧化硅、环氧树脂、复合材料、改性、性能研究、制备方法、影响因素、应用前景、研究意义1. 引言1.1 研究背景纳米二氧化硅改性环氧树脂复合材料的研究,对于提高材料的力学性能、热性能和耐化学性能具有重要意义。
通过对纳米二氧化硅改性环氧树脂复合材料的制备方法、性能研究结果以及影响性能的因素进行深入探讨,有助于开发出性能优异的新型复合材料,并拓展其在航空航天、汽车、建筑等领域的应用。
本研究旨在探讨纳米二氧化硅改性环氧树脂复合材料的性能,并为其未来的应用提供科学依据。
1.2 研究目的研究目的是通过对纳米二氧化硅改性环氧树脂复合材料的性能进行深入研究,探讨其在实际应用中的潜力和优势。
具体而言,我们旨在分析纳米二氧化硅所具有的特殊性能对环氧树脂复合材料性能的影响,进一步了解其制备方法及其对性能的影响因素。
通过对性能研究结果的分析和评估,我们将更好地理解纳米二氧化硅改性环氧树脂复合材料的力学性能、耐热性能、耐化学性能等方面的特点,为其在航空航天、汽车、电子等领域的应用提供更加可靠的理论依据。
最终,我们的研究目的是为推动纳米二氧化硅改性环氧树脂复合材料在工程领域的广泛应用,为材料科学领域的发展贡献力量。
2. 正文2.1 纳米二氧化硅的特性及应用纳米二氧化硅是一种具有独特性质的纳米材料,其主要特性包括高比表面积、优良的光学性能、优异的力学性能和化学稳定性。
纳米二氧化硅在材料科学领域具有广泛的应用前景。
纳米二氧化硅粉体的表面改性研究
纳米二氧化硅粉体的表面改性研究一、本文概述随着纳米科技的飞速发展,纳米二氧化硅粉体因其独特的物理化学性质,在众多领域如橡胶、塑料、涂料、陶瓷、医药和化妆品等中得到了广泛的应用。
然而,纳米二氧化硅粉体的高比表面积和强表面能使得其极易发生团聚,这不仅影响了其性能的发挥,也限制了其在某些领域的应用。
因此,对纳米二氧化硅粉体进行表面改性,提高其分散性和稳定性,成为了当前研究的热点之一。
本文旨在探讨纳米二氧化硅粉体的表面改性研究,通过对表面改性方法、改性剂种类和改性效果等方面的深入研究,为纳米二氧化硅粉体的应用提供理论支持和实践指导。
文章首先介绍了纳米二氧化硅粉体的基本性质和表面改性的重要性,然后综述了目前常用的表面改性方法,包括物理法、化学法和复合法等,并分析了各种方法的优缺点。
接着,文章重点研究了不同改性剂对纳米二氧化硅粉体表面改性的效果,通过对比实验和表征分析,揭示了改性剂种类、用量和改性条件等因素对改性效果的影响。
文章对纳米二氧化硅粉体表面改性的未来发展趋势进行了展望,提出了一些有待进一步研究的问题和方向。
本文的研究结果不仅有助于深入理解纳米二氧化硅粉体的表面改性机制,也为优化改性工艺、提高改性效果提供了有益的参考。
本文的研究也有助于推动纳米二氧化硅粉体在各个领域的应用,促进纳米科技的进一步发展。
二、纳米二氧化硅粉体的基本性质纳米二氧化硅粉体是一种无机纳米材料,因其独特的物理化学性质,在众多领域有着广泛的应用。
其基本性质主要表现在以下几个方面:粒径与比表面积:纳米二氧化硅粉体的粒径通常在1-100纳米之间,这使得其比表面积远大于常规材料。
高比表面积赋予了纳米二氧化硅优异的吸附性能和反应活性。
表面能:由于纳米二氧化硅粉体的高比表面积,其表面能也相对较高。
这使得纳米二氧化硅易于团聚,从而影响了其分散性和应用性能。
表面羟基:纳米二氧化硅粉体表面存在大量的羟基(-OH),这些羟基不仅使纳米二氧化硅具有亲水性,还为其表面改性提供了反应位点。
纳米材料改性水泥基注浆材料的作用机理与研究现状
第47卷第1期6送坊Vol.47,No.l 2021年1月Sichuan Building Materials January,2021纳米材料改性水泥基注浆材料的作用机理与研究现状欧阳泽斌,杨坪(同济大学土木工程学院,上海200092)摘要:由于工程地质条件的复杂性,注浆材料需要满足速凝早强、抗分散性、耐久性好的要求。
而纳米材料可以改善水泥基注浆材料的力学特性、抗分散性、耐久性,为注浆材料的研制提供了新方向。
本文就纳米材料改性水泥基注浆材料的作用机理和研究现状进行了归纳分析,指出关于注浆参数的模型试验和数值模拟研究成果应与工程实践联系,研制更符合特定工程要求的注浆材料,为注浆实践提供指导。
关键词:纳米材料;注浆;作用机理;研究现状中图分类号:TD745文献标志码:A文章编号:1672-4011(2021)01-0001-03DOI:10.3969/j.issn.1672-4011.2021.01.001The action mechanism and research status of nano-materials modified cement-based grouting materialsOUYANG Zebin,YANG Ping(School of Civil Engineering,Tongji University,Shanghai200092,China)Abstract:Due to the complexity of engineering geological conditions,grouting materials need to meet the requirements of quick setting,early strength,dispersion-resistance and good durability.Nanomaterials can improve the mechanical properties,dispersion-resistance and durability of cement-based grouting materials,providing a new direction for the development of grouting materials.In this paper,the action mechanism and research status of nano-materials modified cement-based grouting materials are summarized and analyzed,and it is pointed out that the research results of model test and numerical simulation on grouting parameters should be related to engineering practice,and the grouting materials more in line with specific engineering requirements should be developed,so as to provide guidance for grouting practice.Key words:nanomaterials;grouting;action mechanism;research statuso前言随着我国基础建设的不断推进,越来越多的工程项目面临复杂的工程地质条件,易发生突涌水等地质灾害,造成人员伤亡和经济损失。
纳米技术在高分子材料改性中的运用
环境领域
用于水处理、空气净化等,如纳米滤膜 、纳米催化剂等。
02
高分子材料改性简介
高分子材料定义与分类
高分子材料定义
高分子材料是由大量分子或原子以共价键结合而成的长链状大分子化合物,具 有独特的物理和化学性质。
高分子材料分类
根据来源和性质,高分子材料可分为天然高分子材料和合成高分子材料两大类 。天然高分子材料如纤维素、橡胶、蛋白质等;合成高分子材料如塑料、合成 纤维、合成橡胶等。
率。
纳米复合材料相容性
利用纳米技术制备高分子复合材料时,通过优化纳米粒子与基体的相容性,可以降低成 型过程中的温度和压力。相容性的提高有助于减少界面张力,促进ห้องสมุดไป่ตู้料在加工过程中的
流动和成型。
提高制品尺寸精度和表面质量
纳米粒子增强增韧
通过向高分子材料中添加具有增强和增韧作用的纳米粒子,如纳米橡胶、纳米弹性体等,可以提高制 品的尺寸精度和表面质量。这些纳米粒子能够增加材料的韧性,减少制品在加工过程中的变形和开裂 现象。
传统改性方法回顾
01
物理改性
物理改性是通过物理手段改变高分子材料的聚集态结构或形态,从而改
善其性能。常见的物理改性方法包括填充、共混、增强、拉伸等。
02 03
化学改性
化学改性是通过化学反应在高分子链上引入新的官能团或改变其化学结 构,从而赋予高分子材料新的性能。常见的化学改性方法包括接枝、交 联、共聚、氧化等。
电性和抗静电性能。
纳米碳材料改善电学性能
02
利用纳米碳材料如纳米石墨、碳纳米管等的高导电性,改善高
分子材料的电学性能。
纳米氧化物改善电学性能
03
添加纳米氧化物如纳米氧化锌、纳米氧化锡等,提高高分子材
纳米材料改性沥青研究进展
纳米材料改性沥青研究进展摘要:本文综述了纳米材料改性对沥青和沥青混合料力学性能和耐老化性的影响。
对高性能和长效沥青路面的需求极大地推动了传统道路沥青粘合剂的改性。
为了满足这种需求,使用纳米材料对沥青结合料进行改性似乎很有前景,因为少量改性可以显著提高沥青混合料的力学性能。
已经有几项研究评估了纳米材料改性的效果,主要集中在沥青结合料性能和流变性上,积极的发现鼓励了改性沥青混合料的研究。
介绍了纳米材料改性沥青的研究进展。
关键词:纳米材料;纳米改性沥青;性能;道路工程一、纳米改性沥青概述沥青粘合剂,即沥青,是一种广泛用于全球道路建设的材料。
通常,沥青是从精炼原油中获得的,其最终性质取决于原油来源和精炼过程。
沥青可以描述为一种热塑性粘弹性材料,在中低温(低于25℃)下表现为固体,在更高的温度下(通常高于60℃),表现为液体或半固态[1,2]。
该特性允许其用于道路施工。
首先,将沥青加热至与骨料适当混合,最后,在压实过程并冷却至环境温度后,沥青将作为骨料的粘合剂。
然而,沥青温度敏感性给在役沥青路面带来了一些问题。
永久变形和开裂力学分别与高和低使用温度高度相关。
在使用过程中,沥青路面必须承受各种环境条件和交通荷载。
在许多情况下,传统的渗透级沥青在使用寿命内不再能够确保所需的性能,可能需要进行早期养护工作或重建。
此外,沥青是一种对老化敏感的材料,其性能随着时间的推移而恶化。
老化沥青变得更硬、更脆,从而影响沥青混合料的性能[1]。
老化效应在暴露于紫外线辐射、水分、氧气和较大温度变化等环境条件下的表层中尤其严重[3]。
因此,沥青混合料的使用寿命取决于其抗老化性能[4]。
二、纳米材料改性沥青的制备要制得性能优良的纳米改性沥青,关键在于解决纳米改性剂与沥青的兼容性问题,即分散性问题。
多数情况下,纳米粒子的添加降低了沥青的存储稳定性,导致纳米材料与沥青的兼容性较差,纳米材料加入到基质沥青中,有的甚至发生团聚、沉降现象,进而影响纳米材料对沥青的改性效果及纳米改性沥青的品质。
二氧化钛纳米材料的制备、改性及光催化性能研究
摘要二氧化钛纳米材料的制备、改性及光催化性能研究摘要随着人们生活水平的不断提高,越来越多的产品来自于石油、煤炭和天然气等不可再生的自然资源。
同时,产品在原材料的提取、运输和转化过程中都有可能给环境带来负面效应。
因此,环境污染和能源短缺现象成为人类目前应对的世界性难题。
半导体光催化技术在环境修复领域的作为不容忽视,已被证明是降解水体和大气环境中有害污染物的有效途径。
在解决能源危机方面,通过光分解水制氢、太阳能电池等方式实现了可再生能源的高效利用。
二氧化钛因其高稳定性,无毒性且低成本被认为是非常理想的光催化半导体材料。
光催化剂的表面积是决定污染物吸附量的重要因素,直接影响其光催化活性的强弱。
由于二氧化钛纳米材料的高表面能使得纳米粒子间倾向于聚集以达到体系的平衡状态,导致纳米粉体的团聚现象严重,无法获得较大的活性表面积。
因此,本文采用表面活性剂作为分散剂,并优化制备工艺进行改性,以获得均一分散的二氧化钛纳米体系是十分必要的。
主要研究内容如下:(1)综合溶胶-凝胶法和溶剂热法的制备优势,本论文采用溶胶-溶剂热改进工艺进行实验分析。
以钛酸丁酯为钛源,无水乙醇为溶剂,浓硝酸为抑制剂,按照n(Ti(OR)4):n(C2H5OH):n(H+):n(H2O)=1:15:0.35:4的反应物配比,制备纳米级二氧化钛材料。
(2)通过单因素实验与正交实验相结合的方式,以样品对甲基橙的光催化降解率为分析依据,探究溶剂热温度、溶剂热时间、煅烧温度和煅烧时间对于二氧化钛光催化活性的影响。
正交实验的结果表明,最佳工艺参数是:当溶剂热温度为150℃,溶剂热时间为24h,煅烧温度为450℃,煅烧时间为4h时,样品的光催化降解率最高,为82.88%。
同时XRD、SEM、TEM和EDS的图像表明,样品为结晶度良好的单一锐钛矿相,无任何杂质,但分散性一般。
(3)在最佳工艺参数的基础上,通过控制表面活性剂的种类和含量的不同,探究不同类型表面活性剂的最佳投料比,从而确定用于二氧化钛纳米粉体改性的最佳分散剂,并通过XRD、SEM、TEM和EDS等技术对样品进行表征。
纳米材料表面化学特性及改性
(2)表面原子所处的晶体场环境及结合能与内部原 子 不 同,存 在 许 多 不 饱 和 键,具 有 不 饱 和 性质,出现许多活性中心,极易与其他原子相结 合而趋于稳定,具有很高的化学活性。 (3)表面台阶和粗糙度增加,表面出现非化学平衡、 非整数配位的化学价。
1.1 表面吸附
• 纳米粒子表面有大量的活性原子存在,极易吸附 各种原子或分子。如在空气中,纳米粒子会吸附 大量的氧、水等气体。
吸附可分成两类: 1、物理吸附: 吸附剂与吸附相之间是以范 德瓦 耳斯力之类较弱的物理力结合 2、化学吸附: 吸附剂与吸附相之间是以化学键 强结合
吸附产生原因
纳米微粒由于有大的比表面和表面原子配位 不足,与相同材质的大块材料相比较,有 较强的吸附性。纳米粒子的吸附性与被吸 附物质的性质、溶剂的性质以及溶液的性 质有关。电解质和非电解质溶 液以及溶 液的PH值等都对纳米微粒的吸附产生强烈 的影响。不同种类的纳米微粒吸附性质也 有很大差别。
a、分散系中加入反絮凝剂形成双电层 反絮凝剂的选择可依纳米微粒的性质、带电类型 等来定。即:选择适当的电解质作分散剂,使纳 米粒子表面吸引异电离子形成双电层,通过双电 层之间库仑排斥作用使粒子之间发生团聚的引力 大大降低,实现纳米微粒分散的目的。例如,纳 米氧化物SiO2,Al2O3和TiO2等在水中的pH高低不 同(带正电或负电),因此可选Na+,NH4+或Cl-, NO3-异电离子作反絮凝剂,使微粒表面形成双电 层,从而达到分散的目的。
(5)为纳米材料的自组装奠定基础 纳米粒子修饰后,颗粒表面形成一层有机包覆层,包覆层 的极性端吸附在颗粒的表面,非极性长链则指向溶剂,在 一定条件下,有机链的非极性端结合在一起,形成规则排 布的二维结构,如图所示。如经有机分子修饰的CdTe颗粒, 可自组装来制备发光纳米线。采用这种方式,还成功获得 了银、硫化银等的二维自组装结构的纳米材料。
纳米材料表面改性增强吸附性能研究
纳米材料表面改性增强吸附性能研究纳米材料因其独特的物理化学特性,在吸附领域展现出巨大的应用潜力。
表面改性是提高纳米材料吸附性能的重要手段之一。
本文将探讨纳米材料表面改性的方法、原理及其在吸附性能提升中的作用。
一、纳米材料表面改性概述纳米材料的表面改性是指通过物理或化学方法改变纳米材料表面的化学组成和结构,从而调节其表面性质,以满足特定应用需求。
表面改性可以显著提高纳米材料的吸附能力、选择性和稳定性。
1.1 表面改性的目的表面改性的主要目的是增强纳米材料的吸附性能,包括提高吸附量、改善选择性、增强化学稳定性和机械稳定性等。
此外,表面改性还可以赋予纳米材料特定的功能性,如催化、传感等。
1.2 表面改性的方法表面改性的方法主要包括物理改性和化学改性两大类。
物理改性包括热处理、机械研磨、等离子体处理等;化学改性包括表面接枝、表面涂层、表面复合等。
二、纳米材料表面改性的原理纳米材料的表面改性涉及到材料表面原子或分子的重新排列和化学键的形成或断裂,从而改变材料表面的化学组成和结构。
2.1 表面活性位点的引入通过表面改性,可以在纳米材料表面引入活性位点,如羟基、羧基、氨基等,这些活性位点可以与被吸附物形成化学键,提高吸附能力。
2.2 表面电荷的调节表面改性可以改变纳米材料表面的电荷状态,如通过引入带电基团或改变pH值,调节纳米材料表面的正负电荷,从而影响其对带电物质的吸附性能。
2.3 表面亲疏水性的调控通过表面改性,可以调节纳米材料表面的亲疏水性,如通过引入亲水或疏水基团,改变纳米材料对水或有机溶剂的吸附能力。
2.4 表面形态的优化表面改性还可以改变纳米材料的表面形态,如通过刻蚀、沉积等方法,形成多孔、粗糙或特定图案的表面,以提高吸附位点的数量和可接触性。
三、纳米材料表面改性在吸附性能提升中的应用纳米材料表面改性技术在吸附领域的应用十分广泛,包括环境治理、能源存储、生物医学等多个领域。
3.1 环境治理中的应用在环境治理中,纳米材料表面改性可以提高对重金属离子、有机污染物、气体污染物等的吸附能力。
纳米粉体改性聚丙烯材料非等温结晶研究进展
表 面积 很大 、表 面高 活性 的 羟基可 以与 聚合物 链 在一 定 条件下 发 生反 应 , 形成 新 的 S一 0 C共 价 i 一 键 , 些性 质 会使 材料 的热 稳定 性 有很 大 的提高 。 这 除 了 n n — i 聚合物 材 料力 的作川 以外 , 米 a o SO 与 纳 颗粒 还可 能影 响 到聚 合物 的结 品行 为 ,使材 料 的 结 品性 发生 变化l ( I 。黄 丽等 对纳 米 SO 采用 超 声 i:
1 纳米二氧化硅改性 P P复合 材 料
纳 米二 氧 化 硅 (3 0 SO) 一 种质 轻无 定 形 1 1 一 i 11 是
218) 1 19
摘 要 介绍 了纳 米粉体 改性聚 丙烯非 等温结 晶 的研 究进展 , 综述 了纳 米二氧 化硅 、 米碳 酸钙 、 纳 碳 纳米 管 、 蒙脱 土插 层改性 聚 丙烯 的非等 温结 晶研 究状 况的进 展 。
关 键 词 纳 米粉 体 聚 丙oa g・ Da n Li f i Hu Pi g Hu Ley l ’ Fa n n a fn iXi u Yu e n ia g n Bi bi
( . c o l f tra S in a d E gn e i g He a o) e h i n v st. i o u , 5 0 3 1S h o o e il ce c n n ie rn . n n P 1t c n c U im’ y Ja z o 4 4 0 ; Ma e i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米改性材料
纳米材料是指至少有一个尺寸在1-100纳米之间的材料,通常具有特殊的物理、化学和生物学性质。
纳米材料的改性是指通过在纳米材料表面或内部引入其他元素或化合物,改变其表面性质、结构或功能。
纳米改性材料在材料科学和工程领域具有广泛的应用,其独特的性能使其成为研究和开发的热点。
首先,纳米改性材料在材料增强方面具有重要意义。
通过在纳米材料中引入其
他元素或化合物,可以增强材料的硬度、强度和耐磨性,使其在工程领域具有更广泛的应用。
例如,将纳米硅粒子引入聚合物基体中,可以显著提高聚合物的力学性能,使其具有更好的耐磨性和耐腐蚀性。
其次,纳米改性材料在生物医学领域也具有重要应用。
纳米材料的特殊尺寸和
表面性质使其在药物递送、生物成像和生物传感等方面具有独特的优势。
通过对纳米材料进行表面修饰或功能化,可以使其具有靶向输送药物的能力,提高药物的生物利用度和靶向性,减少药物对正常组织的损伤。
此外,纳米改性材料还在环境保护和能源领域发挥着重要作用。
纳米材料的特
殊结构和性质使其成为高效的吸附剂、催化剂和功能材料。
例如,将纳米材料应用于污水处理中,可以有效去除水中的重金属离子和有机污染物,净化水质。
同时,纳米材料的高比表面积和丰富的表面活性位点使其成为优秀的催化剂,可用于提高能源转化效率和降低能源消耗。
总的来说,纳米改性材料具有广泛的应用前景,对材料科学、生物医学、环境
保护和能源领域都具有重要意义。
随着纳米技术的不断发展和进步,纳米改性材料将会在更多领域展现出其独特的优势和潜力,为人类社会的可持续发展做出更大的贡献。