纳米材料的制备方法以及应用方式

合集下载

纳米材料制备和应用技术研究

纳米材料制备和应用技术研究

纳米材料制备和应用技术研究一、纳米材料制备技术纳米材料是以纳米尺度为特征尺度的物质,具有晶粒级数、尺寸等特殊性质,广泛应用于能源、材料、环境等领域。

纳米材料制备技术的发展极大地推动了纳米材料的应用。

目前,纳米材料的制备方法主要有几种:1. 物理制备法物理制备法主要包括机械法、蒸发凝聚法、纳米微影技术等。

其中,在机械法制备纳米材料的方法中,超声波震荡折叠技术是最常用的方法之一。

这种方法采用超声波高频震荡、牵引力和折叠等多种力学效应作用于金属,使其在有限次折叠后出现纳米晶粒,从而实现纳米材料制备。

2. 化学制备法化学制备法主要包括溶胶凝胶法、水热法、电化学制备法等。

其中水热法是较为常见的一种方法。

该方法通过控制温度、压力、pH值等参数,使单质或化合物在特定环境条件下热液处理,得到具有纳米特征的材料。

此外,还有微乳液法、胶体化学法、聚合物模板法等化学制备法。

二、纳米材料应用技术纳米材料应用技术在各种领域推动了革命性的变化,下面列举几种纳米材料的应用:1. 纳米催化剂技术纳米材料可以作为催化剂,在能源、环保、新材料等领域中发挥至关重要的作用。

利用纳米催化剂可实现对废水、废气的清洁处理,以及延长催化剂的使用寿命等。

2. 纳米材料在能源领域的应用纳米材料应用于能源领域是目前的研究热点,如纳米材料在生物燃料电池领域的应用、纳米太阳能电池等。

纳米材料大小、形态等方面的特性使其在能源领域具有广泛应用前景。

3. 纳米材料在生物医学领域的应用纳米材料在生物医学领域的应用是热点领域之一,如纳米药物在癌症治疗中的应用。

纳米材料通过其特异性的体内和体外分布,可在小剂量下达到较好的疗效。

4. 纳米传感器技术纳米传感器技术是当前应用前景广泛的领域之一。

纳米材料作为传感器材料,可以实现对环境、食品、化学品等多方面的监测,更好地维护人类的健康和环境的安全。

三、纳米材料市场发展前景随着纳米科技的飞速发展,国内外纳米材料技术研究越来越多,纳米材料的应用领域得到了极大的拓展,其市场发展前景也越来越受到关注。

纳米材料的制备方法与技巧

纳米材料的制备方法与技巧

纳米材料的制备方法与技巧纳米材料是一种具有纳米级尺寸(1纳米=10^-9米)的材料,在材料科学和纳米技术领域有着广泛的应用。

制备纳米材料的方法有很多种,下面将介绍几种常用且重要的纳米材料制备方法与技巧。

1. 物理法物理法是通过物理手段实现纳米材料的制备,其中包括热蒸发法、磁控溅射法和高能球磨法等。

热蒸发法是将材料在高温条件下蒸发,并通过凝结形成纳米材料。

磁控溅射法是将材料置于惰性气体环境下,利用高能离子撞击材料表面产生离子化原子或离子,并通过表面扩散形成纳米材料。

高能球磨法是通过球磨机将原料粉末进行机械剪切和冲击,使其粒度减小到纳米级别。

2. 化学合成法化学合成法是通过化学反应合成纳米材料,其中包括溶液法、气相法和电化学法等。

溶液法是将金属盐或金属有机化合物溶解在溶剂中,通过控制反应条件和添加适当的保护剂或模板剂制备纳米材料。

气相法是在控制的气氛和温度下通过气相反应合成纳米材料,例如化学气相沉积法。

电化学法是通过利用电化学原理,在电解质溶液中施加电压或电流,使材料在电极表面形成纳米颗粒。

3. 生物法生物法是利用生物体或其代谢物合成纳米材料,其中包括生物模板法、生物还原法和植物提取法等。

生物模板法是使用生物体或其组织的特殊形态或功能作为模板,在其表面合成纳米材料。

生物还原法是利用生物体或其细胞酶的还原活性将金属离子还原为金属纳米团簇。

植物提取法是通过植物提取物作为还原剂和模板,在其作用下合成纳米材料。

4. 加工法加工法是通过物理或化学加工手段制备纳米材料,其中包括机械法、电化学法和光电化学法等。

机械法是通过机械加工方式如研磨、切割等将材料分解成纳米颗粒。

电化学法是通过在电解质中施加电压或电流,使材料在电极表面形成纳米结构。

光电化学法是通过光催化反应,在光照条件下制备纳米材料。

在纳米材料的制备过程中,还需要注意一些技巧和注意事项。

首先,要精确控制反应条件,包括温度、压力和pH值等。

不同条件对于纳米材料的形成过程和性能具有重要影响。

制备纳米材料的新方法和应用

制备纳米材料的新方法和应用

制备纳米材料的新方法和应用近年来,纳米材料的应用广泛,并在许多领域展现了强大的潜力。

纳米材料具有高比表面积、惊人的物理、化学和生物学特性以及高度定制化的结构。

然而,纳米材料制备过程中存在着诸多挑战。

许多传统的合成方法通常需要使用有害的溶剂或高温高压条件,这些条件不仅会给环境造成巨大的影响,同时也会限制纳米材料的应用,甚至不安全。

近年来,科学家们已经开发出新的方法来制备纳米材料。

这些方法旨在提高材料的效率和性能,并减少对环境的影响。

下面将介绍其中几种新的纳米材料制备方法及其应用。

1. 原子级沉淀:利用溶液中与纳米颗粒表面亲和力较强的离子,实现一层层原子的沉积,构建出纳米颗粒。

这种原子级沉淀技术在制备纳米银材料方面有着广泛的应用。

由于其良好的导电性能和抗菌性能,纳米银材料可以应用于医学、电子和水处理等领域。

2. 微生物法:利用微生物合成纳米颗粒。

不同的微生物合成不同种类的纳米材料,其中最常见的是利用银离子还原,获得银纳米颗粒。

这种方法专门运用于医学领域,制备的银纳米颗粒可用于有效地治疗皮肤病和烧伤。

3. 水热法:将金属离子和有机物质放入压力罐中,在高温高压条件下进行反应, 得到纳米材料。

这种方法常常被用于制备氧化锌、氧化铜等金属氧化物纳米材料。

这些纳米氧化物具有极高的表面积、可控制的光学特性和电化学性能,可以在光电催化、气体传感等领域得到广泛的应用。

4. 真空热蒸发法:利用高温下将材料蒸发成气态,再在低温的表面将其重结晶,制备出具有细小晶粒和高密度的纳米材料例如,这种方法可以制备出金纳米材料,应用领域包括生物医学、光学、纳米电子学等。

总的来说,这些新的纳米材料制备方法为我们提供了更多的机会,可以改善甚至革命传统的合成方法。

而这些纳米材料的应用领域,从医学到电子、环境科学等多个领域,并将不断拓展,变得更加广泛和多样。

制备纳米材料的方法及应用

制备纳米材料的方法及应用

制备纳米材料的方法及应用随着科技的不断发展,纳米技术已经开始成为了热门话题,其应用范围也在不断扩大。

而制备纳米材料的方法则是纳米技术的核心内容之一。

本文将对制备纳米材料的方法及应用进行探讨。

一、化学合成法化学合成法是制备纳米材料最常用的方法之一。

其基本原理是通过化学反应使溶液中的原料发生析出、沉淀或形成胶体颗粒,并在特定的条件下发生核化和晶化过程,最终制备纳米颗粒。

化学合成法的优点是操作简单、反应易控制、制备规模可调整、产品质量较高;缺点则是对化学反应熟练度要求较高,且有些合成方法需要使用有毒有害物质。

例如,制备金属纳米颗粒有水热法、热分解法、溶胶-凝胶法等。

其中国际上应用最广的是水热法,其原理是将金属离子在高温、高压条件下与纤维素、氨基酸等有机物分子作用,形成孔径为几纳米的金属氧化物胶体,在还原剂还原作用下转变为金属纳米颗粒。

该方法制备的金属纳米粒子大小均一、分散性好、晶体结构良好、纯度高。

二、物理方法物理方法制备纳米材料主要是通过物理方式来削减材料体积,以达到制备纳米材料的目的。

物理方法具有操作简单、反应过程无污染、实验条件易控制等优点;缺点则是生产规模较小、生产周期长、产品纯度较低。

例如,溅射法是制备纳米薄膜的一种物理方法。

溅射工艺是在真空环境中通过高能量粒子对固体材料进行轰击,使其释放出原子或分子形成气态粒子,再在高真空中沉积在物质表面。

相比其他物理方法,溅射法的产率较高,制备的薄膜均匀性和质量方面也更有保障。

三、生物制备法生物制备法也是一种比较新颖的纳米材料制备方法。

该方法利用生物体如细菌、真菌或真核细胞等生物资源提取、分离纳米颗粒,或者通过调控生物体内的生理代谢途径,将生物体内部生成的物质转化为纳米材料。

该方法具有绿色环保的特点,无需高温和高压,原料易得,生产规模较大,产品质量较高。

例如,通过利用微生物或其代谢产物制备纳米颗粒的方法,目前已经被广泛应用于生物医药、食品添加剂以及催化剂等领域,其中银纳米颗粒具有很强的光学、电学和生物活性,在医药、水处理、食品等行业有着广泛应用。

纳米结构材料的制备及其应用

纳米结构材料的制备及其应用

纳米结构材料的制备及其应用随着科技的不断发展,纳米材料的研究和应用也越来越广泛。

纳米结构材料,简称纳米材料,是指至少在一个维度上具有尺寸小于100纳米的材料。

纳米结构材料具有较大的比表面积、独特的物理和化学性质以及优异的机械性能,使得它们在多个领域具有广泛的应用前景。

一、纳米结构材料的制备方法1. 碳纳米管的制备碳纳米管是一种具有优异性能的纳米材料,它在电子学、储能、生物医学等领域有着广泛的应用。

碳纳米管的制备方法主要包括化学气相沉积、物理气相沉积和电化学沉积等。

2. 金属和合金纳米颗粒的制备金属和合金纳米颗粒是一类重要的纳米材料,具有广泛的应用前景。

常用的制备方法包括化学还原、气相沉积、溶胶-凝胶法、电化学方法等。

3. 二维材料的制备二维材料是指在一个方向上具有纳米尺度的材料,如石墨烯、硫化钼等。

二维材料具有独特的物理和化学性质,有着广泛的应用前景。

制备方法包括机械剥离、化学气相沉积、物理气相沉积等。

二、纳米结构材料的应用领域1. 电子学领域纳米材料在电子学领域的应用主要包括纳米电路的制备和纳米传感器的制备。

纳米材料的小尺寸和高表面积使得电路更为稳定,而纳米传感器的灵敏度和快速响应时间也可以得到保障。

2. 能源领域纳米材料在能源领域的应用主要包括锂离子电池、超级电容器和太阳能电池等。

纳米材料的高比表面积和小尺寸使其具有更好的电化学性能和更快的电子传输速度。

3. 生物医学领域纳米材料在生物医学领域的应用主要包括药物输送和成像等方面。

纳米材料作为药物传递系统可以在体内运输和释放药物,并减少药物的毒副作用。

而在成像方面,纳米材料作为对比剂能够提高成像的分辨率和对比度。

4. 环境领域纳米材料在环境领域的应用主要包括清除水污染、治理大气污染等。

纳米材料作为吸附剂可以去除废水中的有害物质,而其小尺寸也可以提高污染物的分散度和吸附量。

三、纳米结构材料面临的挑战纳米结构材料的应用前景广阔,但同时也面临着一些挑战。

纳米材料的制备方法及其应用

纳米材料的制备方法及其应用

纳米材料的制备方法及其应用现代科技的发展,促使着人们不断地追求更高效、更方便、更安全的材料。

纳米材料就是在这个时代背景下应运而生的一种新型材料。

纳米材料不仅具有出色的物理、化学和生物性质,还可以被广泛应用于医学、能源、环保等领域。

本文将为您介绍纳米材料的制备方法及其应用。

一、纳米材料的制备方法1. 化学合成法化学合成法是一种常用的纳米材料制备方法。

它通过在合成体系中引入外部化学剂,使粒子尺寸在纳米级别范围内稳定存在。

常见的化学合成法包括溶胶-凝胶法、汽相沉积法、热蚀刻法等。

其中热蚀刻法是一种通过热力学驱动的纳米材料制备方法,可以得到高质量、单一形态、单晶的纳米材料。

2. 物理法物理法是使用物理手段来制备纳米材料,包括气相凝聚法、溅射法、反应熔融法等。

其中,气相凝聚法最为常见,该方法可通过激光聚合使气体分子透过高温下的胶体,被聚集成纳米级别的小粒子。

3. 生物合成法生物合成法是一种可持续性的制备纳米材料的方法。

在此过程中,将生物材料或生物体分解或生长为纳米材料。

例如,通过细胞分辨功能酶促进蛋白聚合,来制备独特的纳米团簇。

二、纳米材料的应用1. 医学纳米材料广泛应用于医学领域,可制备出用于溶解癌细胞的纳米粒子和用以解决感染的纳米纤维。

例如,磷灰石纳米粒子是一种能够穿透细胞膜并溶解癌细胞的特殊纳米材料。

2. 环保纳米材料在环保领域的应用主要体现在三个方面:吸附、催化和膜分离。

其中,纳米吸附剂可以将污染物与纳米颗粒结合起来,从而净化环境。

另外,利用纳米化学反应可以生成一种新型纳米碳催化剂,再加上与空气接触后形成的紫外线,在污染源处形成的等离子体可以清除空气中的有害气体和污染物。

与此类似,纳米膜分离技术可以将分子分隔开来,其中重要的一步是将壳聚糖纳米颗粒制成过滤的膜。

3. 能源能源领域的纳米材料应用较为广泛,涉及 solar cells, catalysis,fuel cells 和supercapacitor等。

纳米科技使用方法详解与应用示例

纳米科技使用方法详解与应用示例

纳米科技使用方法详解与应用示例纳米科技是一门涉及纳米尺度(尺寸小于100纳米)物质的研究领域,旨在利用和控制纳米颗粒和纳米结构的特殊性质,以开发出用于不同领域的创新技术和产品。

本文将详细介绍纳米科技的使用方法,并给出一些应用示例。

一、纳米科技的使用方法1. 纳米材料制备纳米材料的制备是纳米科技研究的基础。

主要的制备方法包括物理法、化学法和生物法。

物理法可利用气相沉积、溅射、球磨等方法制备纳米材料。

化学法常用的有溶胶-凝胶、沉积、凝聚等方法。

生物法则运用生物体的功能,通过生物合成的方式制备纳米材料。

2. 表征与测试纳米材料与常规材料相比尺寸更小,具有特殊的物理、化学和生物特性。

因此,对纳米材料的表征与测试尤为重要。

常用的表征手段包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)等。

这些手段可以观察纳米材料的形貌、晶体结构和成分。

3. 纳米材料的功能化纳米材料的应用通常要求其具备特定的功能。

通过功能化,可以使纳米材料在电子器件、能源储存、生物医学等多个领域发挥更强大的效用。

常用的功能化方法有:表面修饰、包覆处理、掺杂或杂化以及修饰材料表面等。

4. 纳米材料的制备技术纳米材料的制备涉及到纳米级结构的控制和组装。

例子包括自组装法、电沉积法、溶液法、气相法等。

这些方法能够制备具有特定功能的纳米材料,如金属纳米粒子、纳米管、纳米线等。

5. 纳米材料的应用技术纳米科技的应用范围广泛,从电子学到生物医学,从能源储存到环境保护等。

一些常见的纳米材料应用技术包括纳米传感器、纳米显示器、纳米药物传递系统、纳米涂料等。

二、纳米科技应用示例1. 医疗领域纳米科技在医疗领域的应用十分广泛。

例如,利用纳米材料制备的药物传递系统可以实现精确的控释效果,提高药物的疗效同时减少副作用。

纳米技术还有助于癌症的早期诊断和治疗,通过纳米粒子的特殊性质可以实现准确的肿瘤检测和局部治疗。

2. 环境保护纳米科技在环境保护领域也有重要的应用。

纳米材料合成方法及其应用

纳米材料合成方法及其应用

纳米材料合成方法及其应用纳米材料是一种尺寸缩小到纳米级别的材料,具有特殊的物理、化学和生物学性质。

纳米材料合成方法的发展对于纳米科学和纳米技术的研究与应用至关重要。

本文将介绍几种常见的纳米材料合成方法,并探讨它们在不同领域的应用。

一、溶胶-凝胶法溶胶-凝胶法是一种通过溶胶的液态形态制备凝胶的方法。

常用的溶胶-凝胶法包括溶胶浸渍法、溶胶聚合法和溶胶凝聚法等。

通过调节溶液的组分、pH值以及温度等条件,可以获得不同形状和尺寸的纳米材料。

溶胶-凝胶法合成的纳米材料具有较高的比表面积和孔隙结构,广泛应用于催化剂、传感器、储能材料等领域。

二、气相法气相法是一种通过气态前驱体在高温条件下合成纳米材料的方法。

常见的气相法包括热蒸发法、烧结法和气相沉积法等。

这些方法不仅适用于金属纳米材料的合成,还可以制备复杂的纳米结构和纳米异质结构。

气相法合成的纳米材料具有较高的晶体质量和结晶度,广泛应用于微电子器件、光电器件等领域。

三、溶液法溶液法是利用溶解性前驱体在溶剂中发生化学反应制备纳米材料的方法。

常见的溶液法包括沉淀法、共沉淀法和水热法等。

通过调节反应条件、添加表面活性剂或模板剂,可以合成具有不同形貌、尺寸和结构的纳米材料。

溶液法合成的纳米材料具有较高的纯度和可控性,广泛应用于能源储存、生物传感和纳米药物等领域。

四、机械法机械法是通过机械加工或变形制备纳米材料的方法。

常见的机械法包括球磨法、压力法和拉伸法等。

这些方法通过机械力的作用将材料颗粒逐渐减小至纳米级别。

机械法合成的纳米材料具有较高的力学强度和韧性,广泛应用于材料加工、纳米传感和纳米器件等领域。

纳米材料具有许多独特的性质和潜在应用,如表面效应、量子效应和催化性能等。

在催化领域,纳米材料可用于提高化学反应速率和选择性,具有重要的应用潜力。

在材料科学领域,纳米材料的高比表面积和界面特性使其成为理想的电极材料和传感层材料,广泛用于能源存储、传感器和生物传感等方面。

在生物医学领域,纳米材料可用于药物传递、光学成像和生物传感等应用,具有广阔的发展前景。

制备纳米材料的方法与应用

制备纳米材料的方法与应用

制备纳米材料的方法与应用纳米技术是当今最热门的技术之一。

在纳米材料的制备方面有很多方法。

本文将介绍制备纳米材料的方法和它们在各个领域的应用。

1. 制备纳米材料的方法目前制备纳米材料的方法可以大致分为两类。

一种是自下而上的合成,即从原子、分子、离子等非宏观结构物质开始,逐渐组合形成纳米材料。

另一种是自上而下的制备方法,即通过将宏观的物质逐渐减小到纳米尺度,形成纳米材料。

1.1 自下而上的合成方法自下而上的合成方法包括凝胶法、共沉淀法、氢氧化合物沉淀法、水热合成法、微乳液法等。

凝胶法通过水溶胶或有机溶胶中高分子化合物的网络形成膜状或凝胶状结构。

凝胶的颗粒大小一般在10-1000纳米之间。

共沉淀法是将两种或两种以上的金属离子配比调整到一个适当的pH值,使它们在溶液中沉淀下来。

这种方法可以制备出粒径小于10纳米的金属氧化物纳米粒子。

氢氧化合物沉淀法利用金属离子在pH>9的溶液中水解得到金属氧化物的原理,来制备纳米材料。

该方法可以制备出大量的粒径小于10纳米的纳米金属氧化物。

水热合成法是利用高温高压水环境下的化学反应来制备纳米材料。

在水热合成法中,反应物在高温高压的条件下运转,可以制备出许多纳米材料。

微乳液法在制备纳米材料时被广泛应用。

该方法是在两种不相容的溶液中加入表面活性剂,从而在溶液中形成乳液。

通过添加溶剂可以将反响离子固定在微乳液中,从而制备出尺寸小而均一的纳米材料。

1.2 自上而下的制备方法自上而下的制备方法主要包括溅射法、气相合成法、电化学制备法和球磨法等。

溅射法是一种制备纳米材料的常用方法之一。

它通过激发源将物料溅射到基底上来制备纳米材料。

常用基底有玻璃、硅、铜等。

气相合成法是在气相条件下生成纳米材料的一种方法。

这种方法可用于制备各种金属纳米粒子、非金属纳米粒子等。

电化学制备法是通过电解或反应使物质在电极或溶液中生成或形成的一种方法。

在电极或溶液中加入的溶液成分会在电极或溶液中反应产生纳米材料。

功能纳米材料的制备与应用

功能纳米材料的制备与应用

功能纳米材料的制备与应用随着科技的不断进步,纳米技术也越来越成熟,功能纳米材料的制备和应用也越来越广泛。

功能纳米材料是指具有特殊功能,并且尺寸在纳米级别(1-100纳米)的材料。

这种材料因其独特的物理和化学性质,被广泛应用于生物、医药、环境、能源等多个领域中。

本文将从功能纳米材料的制备与应用两个方面进行探讨。

一、功能纳米材料的制备1.自下而上法自下而上法是一种制备纳米材料的方法,它是通过将分子、原子、离子等小单位组合成大分子、大晶体的过程,来制备具有特殊功能的纳米材料。

常见的自下而上法有溶胶凝胶法、水热法、湿化学法等。

其中,溶胶凝胶法利用溶胶和凝胶物质之间的化学反应,通过温度和时间的控制来制备纳米材料。

水热法则是在高温高压水的条件下,将溶液中的化学物质反应形成纳米材料。

湿化学法则是通过化学反应在水溶液中制备纳米材料。

2.自上而下法自上而下法则是利用通过物理方法,从宏观材料中削薄或切割出纳米尺寸的材料,来制备具有特殊功能的纳米材料。

常见的自上而下法有机械法、光刻法、化学气相沉积法等。

其中,机械法利用高能机械碰撞、剪切、研磨等方式把宏观材料分解成纳米材料。

光刻法则是通过光学掩模技术将光刻胶制备成掩模,再使用紫外光将掩模中没有被光照射到的部分去除,最后通过化学腐蚀等方法将宏观材料削薄到纳米尺寸。

化学气相沉积法则是通过将气态或液态的化学物质在特定条件下经过化学反应后,沉积在基底表面上制备纳米材料。

二、功能纳米材料的应用1.生物医药领域功能纳米材料在生物医药领域中的应用十分广泛,比如利用氧化石墨烯、纳米金、纳米银等材料可以制备出高灵敏度的传感器,用于检测蛋白质、DNA等生物标志物的含量。

此外,功能纳米材料还可以被应用于药物的传递和释放,通过改变材料的成分和结构,使药物得以精准地释放在需要治疗的位点。

2.环境治理领域功能纳米材料在环境治理领域中也有着广泛的应用,比如利用纳米催化剂和光催化剂可以有效地将有机污染物降解为无害的物质,去除水源中的重金属离子、有机污染物等物质。

纳米材料的制备方法与应用

纳米材料的制备方法与应用

纳米材料的制备方法与应用贾警(11081002) 蒙小飞(11091001)1引言自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得。

铁纳米微粒以来,由于纳米材料有明显不同于体材料和单个分子的独特性质—小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子轨道效应等,以及其在电子学、光学、化工、陶瓷、生物和医药等诸多方面的重要价值。

引起了世界各国科学家的浓厚兴趣。

几十年来,对纳米材料的制备、性能和应用等各方面的研究取得了丰硕的成果。

纳米材料指其基本组成颗粒尺寸为纳米数量级,处于原子簇和宏观物体交接区域的粒子。

颗粒直径一般为1~100nm之间。

颗粒可以是晶体,亦可以是非晶体。

由于纳米材料具有其特殊的物理、机械、电子、磁学、光学和化学特性,可以预见,纳米材料将成为21世纪新一轮产业革命的支柱之一。

2纳米材料的制备方法纳米材料有很多制备方法,在此只简要介绍其中几种。

2.1溶胶-凝胶法溶胶-凝胶法是材料制备的是化学方法中的较为重要的一种,它提供一种再常温常压下合成无机陶瓷、玻璃、及纳米材料的新途径。

溶胶-凝胶法制备纳米材料的主要步骤为选择要制备的金属化合物,然后将金属化合物在适当的溶剂中溶解,然后经过溶胶-凝胶过程而固化,在经过低温处理而得到纳米粒子。

2.2热合成法热合成法制备纳米材料是在高温高压下、水溶液中合成,在经过分离和后续处理而得到纳米粒子,水热合成法可以制备包括金属、氧化物和复合氧化物在内的产物。

主要集中在陶瓷氧化物材料的制备中。

2.3有机液相合成有机液相合成主要采用在有机溶剂中能稳定存在金属、有机化合物及某些具有特殊性质的无机化合物为反应原料,在适当的反应条件下合成纳米材料。

通常这些反应物都是对水非常敏感,在水溶剂中不能稳定存在的物质。

最常用的反应方式就是在有机溶剂中进行回流制备。

2.4惰性气体冷凝法惰性气体冷凝法是制备清洁界面的纳米粉体的主要方法之一。

其主要过程是在真空蒸发室内充入低压惰性气体,然后对蒸发源采用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体。

制备纳米材料的方法和应用

制备纳米材料的方法和应用

制备纳米材料的方法和应用纳米材料制备是一项复杂的科学技术,随着人们对纳米材料使用范围的拓展,其制备方法也逐渐被改善和升级。

下面将介绍一些常见的纳米材料制备方法以及其应用。

1. 气相沉积法气相沉积法是一种常用的纳米材料制备方法,它可以制备出高质量的纳米材料。

这种方法在一个由两个电极组成的装置中进行,其中一个电极上放置了一块制备纳米材料所需的化合物,另一个电极上放置了基板。

之后,向电极中加入气体,同时通入一定的能量,使化学反应在两个电极之间发生。

化学反应会产生某种材料的纳米颗粒,这些颗粒会沉积在基板上,形成一层纳米薄膜。

气相沉积法制备的纳米材料应用广泛,例如在太阳能电池、LED等领域有着广泛的应用。

2. 溶胶-凝胶法溶胶-凝胶法是一种化学合成方法,通过控制溶胶中的反应条件,如温度、pH值、添加剂或带电基团等,来控制颗粒的大小和形状。

该方法可以制备出高纯度、单晶或多晶的纳米晶体。

溶胶-凝胶法可以制备出各种复杂形状和组分的纳米材料,如二氧化硅、氧化铁、氧化铝、钨酸盐、硫化物及其他复合材料。

3. 高温熔融法该方法是通过高温熔融将金属或化合物融化,并通过控制降温速率控制晶粒大小。

这种方法可以高效、低成本地制备出纳米结构。

高温熔融法能够制备超过100种的纳米材料,包括硅(Si)、氮化硅(SiN)、二氧化钛(TiO2)、氧化锆(ZrO2)、氧化铝(Al2O3)等。

传统制备方法是通过化学合成与机械研磨相结合,研制时间过长、成本高等问题,而高温熔融方法可以避免这些问题。

除了以上三种方法,还有一些其他的方法也可以制备纳米材料,如机械球磨法、化学气相沉积法、水热合成法等。

每种方法都有其适用的材料和应用领域。

纳米材料可以应用于许多领域,例如生物医学、电子、信息、环境和能源等领域。

在生物医学领域,纳米材料被用于癌症、病毒和细菌治疗。

在电子和信息领域,纳米材料被用于制备与传统材料性质相似但性能更优的器件,如晶体管、激光器等。

纳米材料的制备与性能研究

纳米材料的制备与性能研究

纳米材料的制备与性能研究近年来,纳米科技逐渐成为各国科技发展的重点之一。

纳米材料作为纳米科技的基础,不断地在制备和性能方面迈进了新的步伐。

本文将详细讨论纳米材料的制备与性能研究,并简要介绍其应用前景。

一、纳米材料制备方法纳米材料的制备方法多种多样,根据其分散态、粒径大小和形态进行分类,其中常见的制备方法有:1.溶剂热法溶剂热法利用酸、碱等反应物在高温高压的条件下发生化学反应,生成纳米材料。

其优点是制备粒径均一、反应时间短等。

同时也有其缺陷,如反应物的使用存在限制、后处理麻烦等。

2.电化学法电化学法是利用电化学原理,在电极表面上制备纳米材料。

该方法具有简易、速度快等优点,但同时也需要注意电解液浓度、电极材料等影响因素。

3.球磨法球磨法采用机械能对大块材料进行高速球磨,实现纳米材料制备。

其优点在于操作简便,但需要注意球磨时间和配合剂等因素对材料的影响。

以上三种方法,分别适用于不同种类的材料制备,需要根据实际情况进行选择,才能达到更好的效果。

二、纳米材料性能研究纳米材料制备完毕后,下一步就是对其进行性能研究。

纳米材料的性能与普通材料不同,其表面能、电学、热学、光学等性质都随着粒径大小和形态的改变发生了显著的变化。

下面分别进行介绍:1.表面能的变化随着粒径的缩小,纳米材料比表面积相对于普通材料更大,因此表面能更高。

高表面能会导致纳米材料的活性提高,吸附能力也更强。

同时也会导致纳米粒子互相吸附并凝聚。

2.电学性质的变化由于纳米材料表面积较大,因此可以表现出电路系统中独特的特性。

纳米材料与电子之间的相互作用更强烈,电流密度更高。

同时,也可以利用纳米材料在电学上的独特性质,研究其在电池、超级电容器等器件上的应用。

3.热学性质的变化纳米材料的小尺寸和较大比表面积会影响其热学性质,如热传导和膨胀系数等。

纳米材料在热学上的独特性质,可用于太阳能电池、热电器件等领域,比如可以用纳米黑的方式来改善太阳能电池的利用效率。

纳米生物材料的制备和应用

纳米生物材料的制备和应用

纳米生物材料的制备和应用随着纳米科技迅速发展,纳米生物材料已经成为生物医学界研究的热点。

纳米生物材料的制备和应用是一项十分重要的研究工作,可以为生物医学领域带来许多新的机遇和挑战。

本文将介绍纳米生物材料的制备方法和应用领域。

一、纳米生物材料的制备方法1. 溶胶-凝胶法溶胶-凝胶法是一种非常常见的制备纳米生物材料的方法,也是制备SiO2、TiO2和Fe2O3等材料的基本方法。

该方法利用溶胶中的原子、离子或分子在溶液中自组装形成纳米颗粒,然后通过凝胶化将纳米颗粒固定在一起。

这种方法制备的纳米材料粒径分布较为均匀,表面光滑,可以广泛应用于生物医学领域。

2. 水热法水热法也是一种常用的纳米生物材料制备方法,适用于制备具有不同形貌和结构的纳米生物材料,比如 Fe3O4 纳米材料、CdS纳米材料和 ZnO 纳米材料等。

水热法制备纳米材料的过程中,流体、温度和压力等参数对制备效果具有很大的影响,因此需要精细控制。

3. 离子交换法离子交换法是一种利用吸附作用交换离子的基本原理,制备纳米生物材料的方法。

该方法广泛应用于制备颗粒小、均匀的纳米材料,比如离子交换树脂、二氧化硅纳米粒子等。

离子交换法可以为纳米生物材料的制备提供一种灵活可控、成本低、操作简单的方式。

二、纳米生物材料的应用领域1. 生物医学领域纳米生物材料在生物医学领域的应用特别广泛,可以作为药物载体、组织修复材料、免疫检测材料和医学成像剂等。

例如,纳米粒子可以利用其微小的体积,穿过体内难以进入的细胞膜,将药物精准地送达至病灶部位,实现针对性治疗。

同时,纳米生物材料还可以用于组织修复和再生,比如利用膜状纳米材料来包裹细胞,促进其再生和修复。

2. 环境保护领域纳米生物材料可以用于处理水和空气中的污染物,解决环境污染问题。

例如,利用纳米材料制备的污染物吸附剂可以有效去除水中的重金属和有机物污染物,利用光催化剂可以分解废气中的有害气体,提高空气质量。

3. 新能源领域纳米生物材料在新能源领域的应用也受到了广泛关注。

纳米材料的制备与应用

纳米材料的制备与应用

纳米材料的制备与应用纳米材料是指至少有一种尺寸在纳米级别(1纳米=10的-9次方米)的材料,具有独特的物理、化学和生物学特性。

近年来,随着纳米技术的迅速发展,纳米材料在众多领域中呈现出广泛的应用前景。

一、纳米材料的制备方法1. 溶胶-凝胶法溶胶-凝胶法是一种常用的制备纳米材料的方法。

它通过将溶液中的金属离子或有机分子逐渐凝胶化,形成高度分散的胶体颗粒,最终得到纳米粉末。

这种方法制备的纳米材料具有较高的纯度和均一的粒径分布。

2. 碳化方法碳化方法是一种制备碳基纳米材料的常用技术。

通过在高温下将含碳物质进行热分解,使其转变为纳米级别的碳结构,如碳纳米管和石墨烯。

碳基纳米材料具有优异的导电性和力学性能,在电子器件和储能材料等领域具有巨大的潜力。

3. 气相沉积法气相沉积法是一种将气态前驱体在高温下分解沉积到基底上形成纳米薄膜的方法。

常见的有化学气相沉积和物理气相沉积两种技术。

通过调节沉积条件和前驱体的组分,可以控制纳米薄膜的晶体结构和形貌,从而调控其性能。

二、纳米材料的应用领域1. 电子技术纳米材料在电子技术领域有着广泛的应用。

例如,纳米银材料具有较低的电阻率和较高的导电性能,可用于制备高效的导电浆料和导电胶粘剂,广泛应用于电子设备的连接和封装中。

另外,纳米碳管具有优异的导电性和导热性,可用于制备高性能的纳米电子器件。

2. 医学领域纳米材料在医学领域中有着广泛的应用前景。

例如,纳米金材料可以被用作肿瘤治疗的载体,通过表面修饰和药物包封,实现对肿瘤细胞的靶向治疗。

另外,纳米材料还可以被用作医学影像剂,通过改变其表面的功能性基团,可实现对不同组织和细胞的有针对性的成像。

3. 环境保护纳米材料在环境保护领域也有着广泛的应用。

例如,纳米催化剂可以被用于处理废水和废气中的有害物质,通过催化反应将其转化为无害或低毒的物质。

此外,纳米材料还可以被用于制备高效的太阳能电池和储能器件,实现对清洁能源的有效利用。

总结:纳米材料的制备与应用是一个极具潜力和重要性的研究领域。

新型无机纳米材料的制备和应用

新型无机纳米材料的制备和应用

新型无机纳米材料的制备和应用近年来,随着科技的发展和经济的进步,新型无机纳米材料越来越受到人们的关注。

这些材料具有诸多优点,如高比表面积、高化学活性、优异的物理、化学与生物性能等,可广泛应用于能源、环境、医疗、信息等领域。

本文将介绍无机纳米材料的制备和应用,并讨论其未来发展趋势。

一、无机纳米材料的制备无机纳米材料制备技术已经发展很成熟,并不断创新。

以下是几种典型的制备方法:1. 溶胶-凝胶法。

该方法利用溶胶和凝胶之间的化学反应,制备不同形态、尺寸和晶体结构的无机纳米材料。

这种方法在制备金属氧化物、硅类化合物、钙钛矿等材料时表现出色。

2. 碳热还原法。

碳热还原是化学物理学中一种将固体氧化体与还原剂作为反应物,在惰性气氛中建立高温高度还原气氛进行的化学反应。

该方法利用碳作为还原剂,在高温下,将金属离子还原成金属纳米粒子,制备具有优异电子输运性能的纳米材料。

3. 热氧化法。

热氧化法是利用氧化还原反应,在高温下将金属粉末和氧化剂进行反应,由此制得高纯度、带有特定形貌和尺寸的粒子。

该方法能够制备各种晶相的无机材料,具有制备简便、成本低廉等优点。

以上是几种主要的无机纳米材料制备方法,当然还有其他的方法,如:溶胶-气相法、高温气相合成、反应熔盐法等。

这些方法因其制备条件、成品纯度和晶体形貌等特点而应用于不同领域,因此它们的研究和优化至关重要。

二、无机纳米材料的应用无机纳米材料在各种领域都有着广泛的应用,以下是几个典型的应用领域:1. 环境领域。

无机纳米材料可以用于水污染治理、空气污染治理、油污除去等环境问题。

例如,硅类纳米材料可以用于水处理,降解水中污染物,钙钛矿太阳能电池也可以用于太阳能发电。

2. 医疗领域。

纳米材料在医疗领域的应用包括生物传感器、医用材料、药物传递等。

例如,纳米材料可以被用来制作药物载体,用来给药,还可以制作医用材料,例如人工骨骼和牙齿。

3. 电子领域。

纳米材料可以被应用于电子产品中,例如:可穿戴电子、智能手机、平板电脑、电子书等。

纳米材料的制备方法及其应用研究进展

纳米材料的制备方法及其应用研究进展

纳米材料的制备方法及其应用研究进展纳米材料是一种具有特殊物性和应用潜力的材料,其制备方法多种多样。

本文将介绍几种常见的纳米材料制备方法,并概述其在各个领域的应用研究进展。

一种常见的纳米材料制备方法是溶剂热法。

该方法通过在有机溶剂中加热混合物来控制反应速率,从而合成纳米材料。

溶剂热法可以用于合成各种纳米材料,如金属纳米粒子、金属氧化物纳米粒子和功能性纳米材料等。

例如,金属纳米粒子在催化、传感和生物医学领域具有重要应用。

另一种常见的制备方法是气相沉积法,其中包括化学气相沉积(CVD)和物理气相沉积(PVD)等方法。

化学气相沉积法是通过气体化学反应在固体表面上合成纳米材料的一种方法。

例如,碳纳米管和二维石墨烯就可以通过化学气相沉积法合成。

物理气相沉积法则主要是通过物质的凝聚在固体表面形成纳米材料。

溶胶凝胶法是一种常见的溶液制备纳米材料的方法。

该方法主要通过将溶解在溶剂中的金属离子或有机物与沉淀剂反应,形成胶体溶胶,并通过热处理产生凝胶材料。

该方法的优点是简单、制备周期短,且可以制备多种纳米材料。

该方法常用于制备氧化物基材料、过渡金属化合物纳米粒子等。

此外,还有电化学法、凝胶法、溶胶法、机械合金法、磁控溅射法等多种制备纳米材料的方法。

纳米材料具有较大的比表面积和特殊的物理、化学、力学等特性,因此在各个领域有广泛的应用研究。

在材料科学领域,纳米材料被用于制备高性能电池、储能材料、高性能催化剂等。

在电子学领域,纳米材料被用于制备高密度存储器、导电纳米墨等。

在医学领域,纳米材料被用于制备载药纳米粒子、仿生材料等。

在环境科学和能源领域,纳米材料被用于制备高效光催化剂、污水处理材料等。

尽管纳米材料在各个领域存在着广泛的应用前景,但其制备方法和应用研究仍然面临着诸多挑战。

例如,在大规模生产纳米材料过程中存在的成本和环境问题;纳米材料的生物相容性和毒性问题等。

因此,未来的研究还需要对纳米材料的制备方法和应用性能进行更深入的研究和探索,以推动纳米材料的应用进一步发展。

纳米材料的制备方法及其应用研究

纳米材料的制备方法及其应用研究

纳米材料的制备方法及其应用研究纳米材料作为当前最热门的研究领域之一,其制备方法和应用也一直备受关注。

纳米材料的研究和应用涉及到许多领域,如材料科学、化学、生物学、医学等等。

本文将重点探讨纳米材料的制备方法以及其在各个领域的应用研究。

一、纳米材料的制备方法1.1 机械法制备机械法是通过机械碾磨等方法制备纳米材料。

这种方法通常需要使用高速旋转的球磨机来对原材料进行研磨,可以获得尺寸稳定、形状规则的纳米粒子。

机械法制备的纳米材料在吸附、催化等方面应用广泛。

1.2 化学合成法制备化学合成法是通过化学反应来制备纳米材料。

这种方法可以根据不同的反应条件来控制纳米材料的形状、大小和结构等特性。

化学合成法是常用的纳米材料制备方法之一,例如常见的溶胶-凝胶法、气相沉积法、水热法等。

1.3 生物法制备生物法通过微生物、植物或动物等生物体来制备纳米材料,这种方法近年来得到了广泛应用。

生物法制备的纳米材料具有良好的生物相容性和可再生性,在生物医学、环境保护等领域具有广阔的应用前景。

二、纳米材料的应用研究2.1 纳米材料在医学领域中应用纳米材料在医学领域中的应用是近年来最受关注的一个领域。

纳米材料具有较大的比表面积、特殊催化性能和药物递送等特性,可以应用于肿瘤治疗、医学影像、生物检测等方面。

其中,纳米颗粒的药物递送系统具有较高的生物利用度和更迅速的药物放药速度,能够将药物更精确地释放到病灶处,减轻病人的痛苦。

2.2 纳米材料在环境领域中应用纳米材料在环境领域中的应用主要有净化水质、处理废物等方面。

纳米材料具有活性高、吸附能力强、抗生物腐蚀等特性,在水处理、废物处理等方面都有良好的应用前景。

例如,纳米颗粒可以通过吸附废物、分离杂质、杀死有害微生物等方法清洁水源、污水等。

2.3 纳米材料在能源领域中应用随着世界能源危机加剧,研究能源新材料的需求越发迫切。

纳米材料在能源领域中的应用主要有太阳能电池、燃料电池,储能装置等方面,主要是因为纳米材料本身具有良好的催化性、电化学活性和热稳定性等特性。

纳米材料的制备方法及其应用

纳米材料的制备方法及其应用

一、纳米粉末的制备方法
纳米材料包括纳米粉末和纳米固体两个层次。纳 米固体是用粉末冶金工艺以纳米粉末为原料,经过 成形和饶结制成的。
(1)按反应物状态可分为干法和湿法 (2)按反应介质可分为固相法、液相法、气相法 (3)按反应类型可分为物理法和化学法
(一)、纳米粉末的物理制备法
主要有:蒸发-冷凝法、机械合金化 法、物理粉碎法、块金属板分别作为阳极和阴极,阴极为蒸发用的材料, 在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围 为0.3~1.5kv。由于两电极间的辉光放电使Ar电离成离子,在电 场的作用下Ar离子冲击阴极靶材表面,使靶材原子从其表面蒸发 出来形成超微粒子并在附着面上沉积下来。 但产量较低、颗粒分布不均匀。
(二)、 纳米粉末的化学制备法
主要有:化学沉淀法、溶胶-凝胶法、微乳 液法、溶液热反应法(水热法,非水溶液热 合成)、溶液蒸发法、溶液还原法、电化学 法、光化学合成法、超声合成法、辐射合成 法、模板合成法、有序组装技术、化学气相 反应法(包括激光诱导化学沉积(LICVD)、 等离子体诱导化学气相沉积(PICVD)、热化 学气相沉积等)、火焰水解法、超临界流体技 术、熔融法等。
共沉淀法 是将沉淀剂加入混合金属盐溶液中,使各
组分混合均匀地沉淀,再将沉淀物过滤,干燥,煅 烧,即得纳米粉末。 如以ZrOCl2· 2O和YCl3 为起始原料,用过量氨水 8H 作沉淀剂,采用化学共沉法制备ZrO2-Y2O3 纳米粉 末。为了防止形成硬团聚,一般还采用冷冻干燥或 共沸蒸馏对前驱物进行脱水处理。

等离子体加热法制备纳米微粒的实验装置

但离子枪寿命短、功率低、热效率低。
(6)电子束照射法
是利用高能电子束照射母材(一般为金属氧化 物如Al2O3 等),表层的金属-氧(如Al-O键)被高 能电子“切断”,蒸发的金属原子通过瞬间 冷凝、成核、长大,最后形成纳米金属(如Al) 粉末。 目前该方法仅限于获得纳米金属粉末。

纳米光子学材料的制备和应用

纳米光子学材料的制备和应用

纳米光子学材料的制备和应用纳米技术的发展在各个领域都有所体现,而纳米光子学是其中的一种新兴领域,其应用前景广阔。

纳米光子学材料的制备是纳米光子学领域的重要基础,同时这些材料可以被应用于各种光学设备中,例如纳米激光,光通信设备以及太阳能电池等。

一、纳米光子学材料的制备制备纳米光子学材料常用的方法有物理法、化学法以及生物法。

物理法是通过物理手段将材料变成纳米尺寸,例如通过热折变法,气相合成法等制备出不同尺寸的纳米颗粒和纳米结构。

化学法是指化学反应过程中由于聚合或分散作用而形成的纳米级或亚纳米级颗粒,其制备方法包括沉淀法、胶体化学法、模板法等。

生物法是指利用生物体系的生长和代谢的方法制造纳米有机和无机材料。

例如,利用生物技术,可以利用单细胞藻类制造具有光催化和荧光等性质的纳米微颗粒。

二、纳米光子学材料的应用1.纳米激光纳米激光是一种用于生物医学和光电子学等领域的激光设备,其特点是具有纳米级的空间分辨率和高强度的光子流,因此能精准地照射到微观的生物组织或细胞中,实现对其进行控制或处理。

纳米光子学材料能够被用于制备纳米激光,如利用纳米石墨烯制备出的主动调谐激光器,其调节范围可达600纳米。

2.光通信设备光通信设备是一种基于光信号进行高速数据传输的通信设备。

纳米光子学材料在光通信设备方面的应用包括利用量子点进行单光子检测和加密、利用表面等离子体共振波导进行光通信和利用纳米线图案制备光通信芯片等。

3.太阳能电池在太阳能电池领域,纳米光子学材料能够提高太阳能电池的电池效率和稳定性,例如利用纳米结构增强太阳能电池的吸收率,或采用金属-半导体-金属结构的太阳能电池,其具有较高的光电转换效率。

三、纳米光子学材料的未来前景随着纳米技术的不断发展,纳米光子学材料的应用前景也将更为广阔。

未来纳米光子学材料可能会更多地应用于生物医疗、环境保护等领域,例如开发利用光敏材料治疗癌症、利用纳米颗粒加速水净化和气体分离、利用纳米结构提高传感设备的灵敏度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米材料的制备方法以及应用方式纳米材料的制备方法以及应用方式
摘要:综述了纳米材料研究概况,对纳米材料的研究进展、制备方法、及其应用领域进行了介绍,并与传统材料进行比对,介绍了纳米材料的的优点。

关键词:纳米材料;制备方法;应用
德国科学家H.Gleiter教授最先提出纳米晶体材料这一概念,指的是晶粒尺寸在纳米数量级(通常该尺寸<100nm)以下的超细材料,随着时代的进步科技的不断发展,人们对纳米材料的概念也在不断发生转变,理解初期阶段,它是指由纳米超微颗粒通过压制等方法形成的纳米固体或具有一定厚度的薄膜,时至今日,广义的纳米材料是指在材料的三维尺度中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料[1]。

经过时代的演变和发展,纳米材料的概念一直演绎更新,国际上普遍认同凡是尺寸在纳米数量级(1~100nm)或出现纳米效应的超细材料均可认为是纳米材料,在纳米材料中金属纳米粒子一直是人们关注的焦点,金属纳米粒子由于自身的独特性,在医药、光电、电子产业、热学、生物信息等方面具有重要的应用前景,在这些领域有许多新的突破和进展,如Frens采用不同浓度的柠檬酸钠作为还原剂而得到了金纳米颗粒系列,其粒径范围在 16~ 147nm[2];Nersisyam等利用溶胶-凝胶法制造银纳米粒子,通过使用不同的还原剂将银纳米粒子的范围控制在20~50mm[3];王睿等利用乙二醇还原性,在对溶剂进行高温加热的情况下并施以光诱导作用将银纳米粒子的尺寸控制在50nm左右同时得到三角形和圆盘形两种粒子形态[4]。

除开金银这些贵重金属,对铜纳米粒子的研究最近也掀起了一股热潮,李延君等人通过对不同温度和不同浓度试剂的调配在极性溶剂中制备了粒径范围在7~ 70nm的铜纳米粒子[5]。

纳米材料的晶粒尺寸一般在100nm以下数量级,在纳米材料中晶粒的晶界呈多面性,而晶界的体积百分数往往和材料缺陷密度呈正比,体积百分数越大其缺陷密度越高,这种独特的晶粒结构使得纳米材料相对于传统材料呈现出许多的优越性,它的奇特性能包括宏观量子隧道效应、量子尺寸效应、导电性好、力学性能优异等等。

纳米材料其实对我们每个人来说它并不陌生,自然界中就存在许多的天然的纳米材料,比如牙齿、陨石等都是由纳米颗粒组成,而如今大多数国家都将纳米材料制作及技术发展作为重要的科研领域,它在某种程度上反应了一个国家在材料领域的发展水平,时至今日,制备纳米材料的方法多种多样,例如机械研磨、物理粉碎、气相沉积、溶胶法及真空冷凝等方法[6]。

针对纳米材料的制备方法按照其原理不同分法亦不相同:发生反应的状态不同主要分为干法(固体之间的反应)和湿
法(水溶液里进行的反应);原料存在的状态不同亦可分为固相法(金属盐或金属氧化物混合后通过煅烧的方法直接发生固相反应)、气相法(物质在气体的状态下发生物理或化学反应)与液相法(可溶性性盐溶液通过蒸发、升华将金属粒子结晶出来);按制备手段也可分为化学法(沉淀法、相转变法、气溶胶反应法等)、物理法(蒸汽冷凝法、电火花法、离子溅射法等)和综合法(PECVD、LICVD等)。

这些方法各有所长各有所短,比如固相法利用热分解原理得到的产物容易再次凝结成块,需要重新粉碎、搅拌,增加了成本;物理粉碎法相对来说工艺简单、低成本高产量,但是极易引入杂质,造成产物质量纯度低;气相法制备的纳米颗粒纯度较高,与之相应的成本高,对纳米颗粒的粒径尺寸也有要求,这些制备方法既有优势也有自身的劣势,而这些劣势限制了纳米材料的进一步发展。

纳米材料作为材料科学领域的热点焦点,纳米技术也被国际公认为21世纪最具发展力的的科研领域,诺贝尔获奖者Feyneman早年就预言:如果能在极小的尺度下对粒子进行重新组合排列,物质就会显示出不一样的特性。

现在我们明白他所说的就是纳米材料,通过对纳米材料中超微颗粒结构的变化得到的独特性能解决科研领域中的许多难题,它的应用领域是非常广泛的,以下列领域为代表:
陶瓷领域纳米技术在陶瓷中的应用越来越流行,其原理是将纳米尺度的陶瓷粉加入瓷釉中,改善传统陶瓷性能,达到抗菌、自净等功能,特别是在力学增强方面,如材料的硬度、强度、韧性等。

传统陶瓷的'加工工艺离不开高温,可是通过高温烧结会增加材料的脆性,陶瓷的断裂韧度会随着脆性的增加而降低,这就使得传统陶瓷具有易碎的特点,纳米陶瓷材料所需要的温度在传统的基础上可降低接近600℃,同时无需催化剂,大大降低了对材料品质的污染,减少了能耗需要,纳米陶瓷材料在较低的温度下进行烧结,在保留陶瓷硬度的同时增加了它的韧性、弹性形变、耐腐蚀、耐高温高压等特点,新型的陶瓷甚至可以磨削,至此陶瓷材料远离高能耗、易碎。

催化方向纳米技术广泛的渗透到催化领域,纳米催化的出现及关于它相关研究越来越受到更多人的重视,普通的催化剂对温度有较高的要求,但是纳米催化剂对温度的要求较低的,通常在常温后者低温就可以进行,纳米催化剂是超微颗粒,尺寸小,故高表面能高,发生反应后其效果是普通催化剂的数十倍或百倍以上,例如金属纳米粒子Ni和Cu-Zn组成的催化剂与传统的催化剂Ni相比对有机加氢的效率增长了10倍。

医药方面纳米材料在医药方面的应用也有明显的优势,可增加患者的疗效,而纳米技术在医药生产上的应用可以使医疗技术更加细化,同时能研制出普通医药无法比拟具有特定功能的药品,而一些具有纳米技术的仪器在对疾病的诊断方面只需要患者极少的一点的血液,通过对蛋白质、DNA的匹对就可确定出疾病,如果将纳米粒子作为药物载体,那么药物就具有靶向作用,可以直击病灶。

使治疗更加直接,而药物产生的毒性也能明显降低。

复合材料复合材料由于其优良的综合性能而广泛应用于光电、航天材料、交通运输等领域,而纳米复合材料更具吸引力,现如今纳米复合材料主要括纳米聚合物基、纳米碳管功能、纳米钨铜,例如Wu-Cu纳米复合物具有较高的综合性能,导电性能优异,传热好,不易发生热膨胀。

参考文献:
[1]张立德,牟继美.纳米材料和纳米结构.第一版,北京科学出版社,2001年.
[2]Frens G. Regulation of the particle size in monodisperse gold suspensions[J]. Nature:Physical Science,1973,241(105):20-22.
[3]Nesisyan H H, Lee H, Son H T, et al. Materials Research Bulletin,2003,38:949-956.
[4]王睿,等.不同形态银纳米粒子的非线性光学特性.高等学校化学学报.2012,33:149-152.
[5]李延军,唐建国,等.粒径可控的铜纳米粒子的液相还原法制备.化学工程师.2008(5):17-20.
[6]Lu K,Lu J, Wang T, et al.A new method for synthesizing nanocrystaline alloys[J].Journal of Applied Physics,1991,69(1):522-524.。

相关文档
最新文档