某机械厂降压变电所电气设计答案
某机械厂降压变电所电气设计-答案
一、设计任务书(一)设计题目某机械厂降压变电所电气一次设计(二)设计要求要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与型式,确定变电所主变压器的台数与容量、类型,选择变电所主结线及高低压设备和进出线,最后按要求写出设计说明书,绘出设计图样。
(三)设计依据1.工厂总平面图2.工厂负荷情况:本厂多数车间为两班制,年最大负荷利用小时为5000h,日最大负荷持续时间为8h。
该厂筹造车间、电镀车间和锅炉房属二级负荷外,其余均属三级负荷。
低压动力设备均为三相,额定电压为380V。
电气照明及家用电器均为单相,额定电压为220V。
3.供电电源情况:按照工厂与当地供电部门签订的供用电协议规定,本厂可由附近一条10KV的公用电源干线取得工作电源。
该干线的走向参看工厂总平面图(附图1-4)。
该干线的导线品牌号为LGJ-185,导线为等边三角形排列,线距为2.0m。
干线首端(即电力系统的馈电变电站)距离本厂约10km.干线首端所装设的高压断路器断流容量为500MWA,此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为1.2s。
为满足工厂二级负荷的要求,可采用高压联络线由邻近的单位取得备用电源。
已知与本厂高压侧有电气联系的架空线路总长度为100km,电缆线路长度为25km。
表1 工厂负荷统计资料4.气象条件:本厂所在地区的年最高气温为38℃,年平均气温为23℃,年最低气温为-8℃,年最热月平均最高气温为33℃,年最热月平均气温为26℃,年最热月地下0.8m处的平均温度为25℃。
当地主导风向为东北向风,年暴日数为20。
5.地质水文条件:本厂所在的地区平均海拔500m。
地层以砂粘土(土质)为主;地下水位为4m。
6.电费制度:本厂与当地供电部门达成协议,在本厂变电所高压侧计量电能,设专用计量柜,按两部电费交电费。
某机械厂降压变电所电气设计
某机械厂降压变电所电气设计一、设计要求:1.变电所的功率6000KVA,负荷主要为机械厂的设备;2.变电所的主要电气设备包括主变压器、低压开关柜、配电室等;3.变电所应具备稳定可靠的供电能力,满足机械厂的用电需求;4.设计应符合相关电气安全规范和标准。
二、设计方案:1.主变压器:根据题设条件,主变压器的额定功率为6000KVA。
选用三相油浸式变压器,额定电压为10kV/0.4kV。
变压器的绕组应选用C级绝缘材料,以保证变压器的可靠性和耐久性。
变压器还应配备绝缘油温控制装置、油温表、避雷器等保护设备,以确保变压器的安全运行。
2.低压开关柜:低压开关柜是变电所的重要组成部分,主要用于供电和配电控制。
选用三相交流380V低压开关柜,额定电流根据机械厂的负荷需求确定。
低压开关柜的主要配电设备包括断路器、接触器、过载保护器等。
开关柜还应配备漏电保护器、短路保护装置等安全设备,以确保供电过程中的安全性。
3.配电室:配电室是变电所的重要组成部分,主要用于对电力进行配电控制。
配电室的主要设备包括配电柜、电流互感器、电能仪表等。
配电室的电缆布线应合理,防火性能要符合相关标准要求,以确保供电过程中的安全性。
配电室还应配备消防器材,以确保供电过程中的安全性。
4.接地系统:接地系统是变电所电气设计的重要组成部分,用于确保供电过程中的安全性。
设计中应设置地网以确保设备和人员的安全。
地网的设计应根据地质条件和相关规范确定,地网的接地电阻要符合相关标准要求。
地网还应与设备的金属外壳、框架等导电部分连接,以确保设备的安全运行。
5.照明系统:变电所的照明系统是为了提供工作环境的照明,确保工作人员的安全。
设计中应选用高效节能的照明设备,并合理设置灯具位置,保证照明光线的均匀性和良好的照明效果。
照明系统还应具备防爆、防水等安全特性,以确保供电过程中的安全性。
三、安全措施:为确保供电过程中的安全,设计中应采取以下安全措施:1.设备选择应符合相关国家标准和规范;2.电气设备布局合理,各设备之间保持安全距离;3.设备的维护保养应定期进行,确保设备的正常运行;4.设置明显的安全警示标志,提醒人员注意安全;5.加强人员的电气安全培训,提高人员的安全意识。
某厂降压变电所电气设计
课程设计(论文)课程设计(论文)题目某厂降压变电所的电气设计学生姓名班级电气工程及其自动化(2)班学号指导教师完成日期2011 年12 月 2 日课程设计(论文)任务书一、课程设计(论文)题目:某厂降压变电所的电气设计二、课程设计(论文)使用的原始资料(数据)及设计技术要求:(一)设计要求要求根据本厂所能取得的电源及本厂用电负荷情况,并适当考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与形式,确定变电所主变压器的台数与数量、类型,选择变电所主结线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护装置,确定防雷和接地装置,最后按照要求写出设计说明书,绘出设计图样。
(二)设计依据1、工厂总平面图2、工厂负荷情况该厂多数车间为两班制,年最大负荷利用小时为4200小时,日最大负荷持续时间为6小时。
低压动力设备均为三相,额定电压为380V。
电气照明及1机械与电气工程学院系电气工程及其自动化(1)班学生:日期:自 2010 年 11 月 22 日至 2010 年 12 月 5 日指导教师:助理指导教师(并指出所负责的部分):教研室:电气工程教研室主任:某厂降压变电所的电气设计Certain Factory Step-down Substation The Electrical Design总计课程设计(论文)页表格个插图幅摘要设计过程中运用了很多的知识,因此如何将知识系统化就成了关键。
如本设计中用到了工厂供电的绝大多数的基础理论和设计方案,因此在设计过程中侧重了知识系统化能力的培养。
设计可分为几部分:负荷计算和无功功率计算及补偿;变电所位置和形式的选择;变电所主变压器台数和容量及主接线方案的选择;短路电流的计算;变电所一次设备的选择与校验;变电所高、低压线路的选择;变电所二次回路方案选择及继电保护的整定;防雷和接地装置的确定。
关键词:负荷计算无功功率主接线AbstractThe design process using a lot of knowledge, therefore how knowledge systematic became the key. If this design using the factory of the overwhelming majority of power supply of basic theory and design scheme, so in the design process emphasis on knowledge systematic ability. Design can be divided into several parts: load calculation and reactive power calculation and compensation, Substation position and form the choice, Main transformer substation sets and capacity and main wiring schemes choice; The calculation of short-circuit current, Once substation equipment choice and calibration, Substation high and low voltage circuit choice; The secondary circuit substation plan selection and relay protection setting, Lightning protection and grounding device is identified.Key Words: Load calculation Reactive power The Lord wiring目录前言 (1)一、负荷计算和无功功率计算及补偿 (2)二、变电所位置和形式的选择 (5)三、变电所主变压器台数和容量及主接线方案的选择 (6)四、短路电流的计算 (8)五、变电所一次设备的选择与校验 (10)六、变电所高、低压线路的选择 (14)七、变电所二次回路方案选择及继电保护的整定 (15)八、防雷和接地装置的确定 (20)九、心得和体会 (21)十、附录参考文献 (22)十一、附图 (22)前言课程设计是教学过程中的一个重要环节,通过课程设计可以巩固本课程理论知识,掌握供配电设计的基本方法,通过解决各种实际问题,培养独立分析和解决实际工程技术问题的能力,同时对电力工业的有关政策、方针、技术规程有一定的了解,在计算、绘图、设计说明书等方面得到训练,为今后的工作奠定基础。
工厂供电阶段练习一答案
工厂供电课程阶段练习一(第一章——第二章)一填空题→电力系统是由发电厂、变电所、电力线路和电能用户组成的一个整体。
→变电所的功能是接受电能、变换电能和分配电能。
配电所的功能是接受电能和分配电能。
换流站的功能是用于交流电流和直流电能的相互转换。
→高压配电所集中接收6~10KV电压,再分配到附近各变电所和高压用电设备。
一般负荷分散、厂区大的大型企业需设置高压配电所。
→对供配电的基本要求是安全、可靠、优质、经济。
→如图所示,发电机G的额定电压为10.5KV,变压器1T的额定电压为10.5 / 38.5KV,变压器2T的额定电压为35 / 10.5KV,变压器3T的额定电压为10 / 0.4KV 。
→电力系统中性点的运行方式有四种:中性点不接地系统、中性点经消弧线圈接地系统、中性点经电阻接地系统、中性点直接接地系统。
→中性点的运行方式主要取决于单相接地时电气设备绝缘的要求和对供电可靠性的要求。
→我国3~63KV系统,一般采用中性点不接地运行方式;当3~10KV系统接地电流大于30A,20~63KV系统接地电流大于10A时,应采用中性点经消弧线圈接地的运行方式;110KV及以上系统和1KV以下的低压系统,采用中性点直接接地运行方式。
→当中性点不接地系统的单相接地电流超过规定值时,为了避免产生断续电弧,引起过电压和造成短路,减小接地电弧电流,中性点应经消弧线圈接地。
→电能的质量指标为电压、频率和可靠性。
→电压偏离是电压偏移额定电压的幅度。
→电压波动是指电压的急剧变化。
→周期性电压急剧变化引起光源光通量急剧波动而造成人眼视觉不舒服的现象,称为闪变。
→我国将电力负荷按其对供电可靠性的要求划分为三类。
→一级负荷应由两个独立电源供电。
→二级负荷应由两回线路供电。
→按其工作制,电力负荷可分为连续工作制负荷、短时工作制负荷和反复短时工作制负荷。
→反复短时工作制负荷可用负荷持续率来表示。
→负荷曲线是表征电力负荷随时间变动情况的一种图形,反映了用户用电的特点和规律。
某机械厂降压变电所的电气设计
110KV/0.4KV降压变电所设计1基础资料1.1负荷情况本变电所为某机加企业10/0.4kV变电所电气一次部分,有4回路0.4KV出线,每回路负荷按 KW考虑,cos¢=0.8,T max=4500h,一、二级负荷各占50%。
1.2系统情况本变电所有两回路10KV进线,长度为2km,系统阻抗0.5(Sb=100MVA Ub=37kv)。
本变电所与系统的连接情况如图附1-1所示。
最大运行方式下,两台变压器均投入运行;最小运行方式下,只投入一台发电机。
1.3自然条件本变电所所在地最高温度41.7℃,最热月平均最高温度32.5,最低温度-18.6,最热月地面下0.8米处土壤平均温度25.3;。
1.4设计任务本设计只作电气初步设计,不做施工设计。
设计内容包括:(1)主变压器选择;(2)确定电气主接线方案;(3)短路电流计算;(4)主要电气设备及导线选择和校验;2,电气部分设计说明2.1主变压器的选择本变电所由两回路供电,两个电压等级,只有少量一、二级负荷,所以装设两台两相变压器即可。
0.4KV侧总负荷为P30 = ,即总负荷S30 = ;每台主变压器容量应该满足全部负荷70%的需要,并能满足全部一、二级负荷的需要,即S NT≥0.7 S30 =且故主变压器容量选为 MVA,查表,选用变压器。
2.2 电气主接线本变电所10KV有两回路进线,可采用单母线分段接线,当一段母线发生故障时,分段断路器自动切除故障段,保证正常母线不间断供电。
0.4KV出线供电如果出现故障,轻则工件损坏,重则加工机床报废,所以均采用单母线分段接线方式,主变压器10KV侧中性点经过隔离开关接地,并装设避雷器进行防雷保护。
本所设两台所用变压器,分别接在0.4KV分段母线上。
电气主接线如附图1-2所示。
2.3短路电流计算2.3.1 绘制短路等效电路图根据系统接线图,绘制短路等效电路图如图附1-3所示。
取基准容量Sb=100MVA ,基准电压Ub=37kv。
6某机械厂总降压变电所及配电系统设计
1 绪论配电网络与输电系统相比有几个明显的特点:配电馈线中的断路器沿线链状布置,线路中没有母线;线路中有任意数量的断开点,断开点随运行方式变化,电流方向不确定,因此保护必须是双向的;配电网络是有分支的网络,配电线路中节点的分支具有任意性,使保护配合关系复杂化;配电网络中有分布负荷,线路两端负荷不平衡;在双端供电的配电系统中电源可能有不相等的相角。
根据配电网的特点,以常开型联络开关为界可以将配电网划分成两种基本类型的网络:一种是单侧电源供电网络,例如辐射状、树状网和处于开环运行的环状网络;另一种是双侧电源供电网络或处于闭环运行的配电网络环状网络。
我国配电网自动化的发展是电力市场和经济建设的必然结果,长期以来配电网的建设未得到应有的重视, 建设资金短缺, 设备技术性能落后, 事故频繁发生, 严重影响了人民生活和经济建设的发展, 随着电力的发展和电力市场的建立, 配电网的薄弱环节显得越来越突出, 形成电力需求与电网设施不协调的局面。
国家颁布设施的电力法的贯彻后, 电力作为一种商品进入市场, 接受用户的监督和选择, 甚至于对电力供应中的停电影响追究电力经营者的责任。
另一方面, 高精密的技术和装备对电能质量要求, 配电网供电可靠性已是电力经营者必须考虑的主要问题。
随着市场观念的转变和电力发展的需求, 配电网的自动化已经作为供电企业十分紧迫的任务。
城市电网, 从八十年代就意识到配电网的潜在危险, 并竭力呼吁致力于城市电网的改造工程,并组织全国性的大型会议对配电网改造提出了具体实施计划, 各种渠道凑集资金, 提出更改计划,利用高技术、好性能的设备从事电网的改造。
当前我国配电网处于高速发展的时期, 国家从政策上给予很大支持, 具有相应的资金条件, 但我国配电网仍处于方案的探索时期, 特别是我国配电网的规模及覆盖面, 市场之大是任何一个经济发达或发展中国家无法比拟的, 而我国配电网的发展也是随经济发展同步进行, 为了探索我国配电网自动化方案, 先后对国外配电网的模式进行考察并在国内进行实验试点。
某机械厂降压变电所电气设计
某机械厂降压变电所电气设计1. 引言本文档是关于某机械厂降压变电所电气设计的详细说明。
降压变电所是机械厂电力系统的重要组成部分,负责将高压电流转换为适用于机械设备使用的低压电流。
本文档将介绍降压变电所的电气设计要求、设计流程、主要设备及其选型等内容。
2. 设计要求2.1 电源接入方式降压变电所的电源接入方式一般分为两种:直接接入变电站和通过配电变压器接入变电站。
根据某机械厂的实际情况,选择适合的电源接入方式,确保供电的可靠性和稳定性。
2.2 降压变电设备容量根据某机械厂的用电负荷需求,确定降压变电所的设备容量。
考虑到未来的扩展需求,建议留有一定的余量,以便后续增加负荷时不需更换或增加设备。
2.3 电气设备安装布局根据厂区的实际布局和安全要求,确定降压变电所的电气设备的安装布局。
保证设备之间的合理距离,便于运行和维护。
3. 设计流程3.1 方案设计根据电源接入方式和设备容量要求,设计降压变电所的初步方案。
考虑到降压变电所的安全性和可靠性,建议采用双路供电方案,以确保在一路电源故障时仍能正常供电。
3.2 设备选型根据初步方案确定的设备容量,选择合适的降压变电设备。
要考虑设备的质量和性能,确保其稳定运行和长寿命。
3.3 系统设计根据设备选型结果,进行降压变电所的系统设计。
设计系统的电缆和配电线路,确保其满足负荷需求,并且具备合适的安全保护机制。
3.4 施工图纸根据系统设计结果,绘制降压变电所的施工图纸。
图纸应包括设备布局、电缆线路、接地系统等详细信息,以便施工人员进行准确的安装和调试。
4. 主要设备及其选型4.1 变压器降压变电所的核心设备为变压器,用于将高压电流降压为适用于机械设备使用的低压电流。
变压器的选型应考虑负载容量、绝缘等级、效率等因素。
4.2 开关柜开关柜用于控制和保护降压变电所的电路。
根据需求选择合适的开关柜,应考虑其负载容量、保护功能、操作方式等因素。
4.3 电缆和配电线路电缆和配电线路是降压变电所的输电通道,负责将电能传输到各个用电设备。
某-机械厂降压变电所的电气设计
设计说明书《工厂供电》课程设计设计题目某机械厂降压变电所的电气设计所在系信息与机电工程系姓名学号指导老师专业年级2018年12月27日目录1.引言 (3)2.设计要求 (4)2.1设计题目 (4)2.2设计要求 (4)2.3设计依据 (4)3. 负荷计算和无功功率补偿 (5)3.1负荷计算的内容和目的 (5)3.2 负荷计算 (5)3.3 无功功率补偿 (6)4.变电所位置和选择 (7)5.变电所主变压器的选择和主结线方案的选择 (8)5.1 变电所主变压器的选择 (8)5.2 变压器主接线方案的选择 (8)5.3两种主线方案的技术经济比较 (10)6.短路电流的计算 (11)6.1绘制计算电路 (11)6.2确定短路计算基准值 (11)6.3计算短路电路中各元件的电抗标幺值 (12)6.410KV侧三相短路电流和短路容量 (12)7.变电所一次设备的选择校验 (13)7.110KV侧一次设备的选择校验 (13)7.2380v侧一次设备的选择校验 (13)7.3高压母线的选择 (16)8.变电所的进出线和联络线的选择 (16)8.1 10KV高压进线和引入电缆的选择 (16)8.2 380V低压出线的选择 (17)8.3作为备用电源的高压联络线的选择校验 (20)9.变电所二次回路的选择与继电保护的整定 (21)9.1高压断路器的操动机构控制与信号回路 (21)9.2变电所的电能计量回路 (21)9.3变电所的测量和绝缘监察回路 (21)10.变电所的防雷装置与接地装置的设计 (24)10.1变电所防雷保护 (24)10.2变电所的公共接地线的设计 (24)11.设计图样 (25)12.参考文献 (27)1 引言电能是现代工业生产的主要能源和动力。
电能既易于由其它形式的能量转换而来,又易于转换为其它形式的能量以供应用;电能的输送的分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化。
电气工程及其自动化专业毕业论文某机械厂降压变电所电气设计
电气工程及其自动化专业毕业论文某机械厂降压变电所电气设计一、绪论随着工业技术的不断进步与发展,电气工程及其自动化专业在各个领域的应用越来越广泛。
特别是在机械制造业中,电气系统的设计与优化对于提高生产效率、保障设备安全运行具有重要意义。
降压变电所作为机械厂电气系统的重要组成部分,其电气设计的质量直接关系到整个机械厂的运行效率和安全性。
本研究旨在深入探讨某机械厂降压变电所的电气设计,为相关领域提供有益的参考与借鉴。
本研究背景基于当前机械厂电气设备升级与改造的需求,通过对某机械厂降压变电所电气设计的探讨,为机械厂提供科学、合理、高效的电气设计方案。
研究的意义在于,不仅能够提高机械厂电气系统的运行效率,而且有助于保障设备的安全运行,减少因电气故障导致的生产事故。
本研究还可为类似机械厂的电气设计提供借鉴,推动电气工程及其自动化专业的发展。
在文献综述方面,本研究通过对前人关于降压变电所电气设计的研究进行梳理与分析,发现目前研究主要集中在电气主接线设计、电气设备选择、防雷保护措施等方面。
针对特定机械厂降压变电所的电气设计研究相对较少。
本研究旨在填补这一空白,为某机械厂降压变电所的电气设计提供具体的解决方案。
本研究将详细介绍某机械厂降压变电所的电气设计过程,包括设计原则、设计方案、关键技术等。
通过实证分析,验证设计的可行性与有效性。
研究方法主要包括文献调研、现场勘查、设计实践等。
研究的预期成果将为某机械厂降压变电所的电气设计提供科学依据,为类似项目的电气设计提供借鉴。
本研究旨在深入探讨某机械厂降压变电所的电气设计,为提高机械厂运行效率和保障设备安全运行提供科学依据。
研究的开展具有重要的理论意义与实际应用价值。
1. 背景介绍:简要阐述电气工程的重要性和在某机械厂的应用场景。
电气工程作为现代工业发展的重要支柱,在现代社会科技进步和工业升级的大背景下具有举足轻重的地位。
其重要性不仅体现在为社会经济发展提供持续稳定的电力供应上,更表现在优化能源结构、提升能源利用效率、推动技术创新等多个方面。
某机械厂降压变电所的电气设计
1 绪论工厂供电,就是指工厂所需电能地供应和分配,亦称工厂配电.电能是现代工业生产地主要能源和动力.电能既易于由其它形式地能量转换而来,又易于转换为其它形式地能量以供应用;电能地输送地分配既简单经济,又便于控制、调节和测量,有利于实现生产过程自动化.因此,电能在现代工业生产及整个国民经济生活中应用极为广泛.电能在工业生产中地重要性,并不在于它在产品成本中或投资总额中所占地比重多少,而在于工业生产实现电气化以后可以大大增加产量,提高产品质量,提高劳动生产率,降低生产成本,减轻工人地劳动强度,改善工人地劳动条件,有利于实现生产过程自动化.电能虽然是工业生产地主要能源和动力,但是它在产品成本中所占地比重一般很小.如果工厂地电能供应突然中断,则对工业生产可能造成严重地后果.由于能源节约是工厂供电工作地一个重要方面,而能源节约对于国家经济建设具有十分重要地战略意义,因此做好工厂供电工作,对于节约能源、支援国家经济建设,也具有重大地作用.工厂供电工作要很好地为工业生产服务,切实保证工厂生产和生活用电地需要,并做好节能工作,就必须达到以下基本要求:首先是安全,在电能地供应、分配和使用中,不应发生人身事故和设备事故.其次是要可靠, 应满足电能用户对供电可靠性地要求.再者就是优质,电力系统应满足电能用户对电压和频率等质量地要求.还有就是要经济,供电系统地投资要少,运行费用要低,并尽可能地节约电能和减少有色金属地消耗量[1].目前,我国一般大、中型城市地市中心地区每平方公里地负荷密度平均已达左右,有些城市市中心局部地区地负荷密度甚至高达上万千瓦,乃至几万千瓦,且有继续增长地势头.因此供配电系统地发展趋势是:提高供电电压:如以进城,用配电.以解决大型城市配电距离长,配电功率大地问题,这在我国城市已经有先例. 简化配电地层次:如按地电压等级供电.逐步淘汰等级:因为过细地电压分级不利于电气设备制造和运行业地发展.提高设备配套能力,只是由于我国在设备上还不能全面配套而尚未推广. 广泛使用配电自动化系统:借助计算机技术和网络通信技术,对配电网进行离线和在线地智能化监控管理.做到保护、运行、管理地自动化,提高运行人员工作效率,增强供配电系统可靠性.1.1 工厂供电设计地一般原则按照国家标准GB50052-95 《供配电系统设计规范》、GB50053-94 《10kv及以下设计规范》、GB50054-95 《低压配电设计规范》等地规定,进行工厂供电设计必须遵循以下原则:(1)遵守规程、执行政策;(2)安全可靠、先进合理;(3)近期为主、考虑发展;(4)全局出发、统筹兼顾.1.2 工厂供电设计地基本内容工厂供电设计主要内容包括工厂变配电所设计、工厂高压配电线路设计、车间低压配电线路设计及电气照明设计等.其基本内容如下:(1)负荷计算全厂总降压变电所地负荷计算,是在车间负荷计算地基础上进行地.考虑车间变电所变压器地功率损耗,从而求出全厂总降压变电所高压侧计算负荷及总功率因数.列出负荷计算表、表达计算成果.(2)工厂总降压变电所地位置和主变压器地台数及容量选择参考电源进线方向,综合考虑设置总降压变电所地有关因素,结合全厂计算负荷以及扩建和备用地需要,确定变压器地台数和容量.(3)工厂总降压变电所主结线设计根据变电所配电回路数,负荷要求地可靠性级别和计算负荷数综合主变压器台数,确定变电所高、低接线方式.对它地基本要求,即要安全可靠有要灵活经济,安装容易维修方便.(4)厂区高压配电系统设计根据厂内负荷情况,从技术和经济合理性确定厂区配电电压.参考负荷布局及总降压变电所位置,比较几种可行地高压配电网布置放案,计算出导线截面及电压损失,由不同放案地可靠性,电压损失,基建投资,年运行费用,有色金属消耗量等综合技术经济条件列表比值,择优选用.按选定配电系统作线路结构与敷设方式设计.用厂区高压线路平面布置图,敷设要求和架空线路杆位明细表以及工程预算书表达设计成果.(5)工厂供、配电系统短路电流计算工厂用电,通常为国家电网地末端负荷,其容量运行小于电网容量,皆可按无限容量系统供电进行短路计算.由系统不同运行方式下地短路参数,求出不同运行方式下各点地三相及两相短路电流.(6)改善功率因数装置设计按负荷计算求出总降压变电所地功率因数,通过查表或计算求出达到供电部门要求数值所需补偿地无功率.由手册或厂品样本选用所需移相电容器地规格和数量,并选用合适地电容器柜或放电装置.如工厂有大型同步电动机还可以采用控制电机励磁电流方式提供无功功率,改善功率因数.(7)变电所高、低压侧设备选择参照短路电流计算数据和各回路计算负荷以及对应地额定值,选择变电所高、低压侧电器设备,如隔离开关、断路器、母线、电缆、绝缘子、避雷器、互感器、开关柜等设备.并根据需要进行热稳定和力稳定检验.用总降压变电所主结线图,设备材料表和投资概算表达设计成果.(8)继电保护及二次结线设计为了监视,控制和保证安全可靠运行,变压器、高压配电线路移相电容器、高压电动机、母线分段断路器及联络线断路器,皆需要设置相应地控制、信号、检测和继电器保护装置.并对保护装置做出整定计算和检验其灵敏系数.设计包括继电器保护装置、监视及测量仪表,控制和信号装置,操作电源和控制电缆组成地变电所二次结线系统,用二次回路原理接线图或二次回路展开图以及元件材料表达设计成果.(9)变电所防雷装置设计参考本地区气象地质材料,设计防雷装置.进行防直击地避雷针保护范围计算,避免产生反击现象地空间距离计算,按避雷器地基本参数选择防雷电冲击波地避雷器地规格型号,并确定其接线部位.进行避雷灭弧电压,频放电电压和最大允许安装距离检验以及冲击接地电阻计算[2].2 负荷计算和无功功率补偿2.1 负荷计算表2.1 机械厂负荷计算表2.2 无功功率补偿由表2.1可知,该厂380V 侧最大负荷是地功率因数只有0.74.而供电部门要求该厂10KV 进线侧最大负荷是功率因数不应该低于0.94.考虑到主变压器地无功损耗远大于有功损耗,因此380V 侧最大负荷是功率因素应稍大于0.94,暂取0.94来计算380V 侧所需无功功率补偿容量:Q C = P 30( tan φ1 - tan φ2)=771.03( tan(arccos 0.74) -tan(arccs0.94))Kvar=372.35Kvar故选PGJ1型低压自动补偿屏,并联电容器为BW0.4-14-3型,采用其方案1(主屏)1台与方案3(辅屏)4台相组合,总共容量84kvar 5=420kvar ⨯.因此无功补偿后工厂380V 侧和10KV 侧地负荷计算如表2.2所示.表2.2 无功补偿后工厂地计算地负荷3 变电所位置和型式地选择工厂是10kv 以下,变电所地位置应尽量接近工厂地负荷中心,工厂地负荷中心按负荷功率矩法来确定.在工厂地平面图下侧和左侧,分别作一条直角坐标地x 轴和y 轴,然后测出各车间和宿舍区负荷点地坐标位置,p1、p2、p3……p10分别代表厂房1、2、3……10号地功率,设定p1、p2……p10并设定p11为生活区地中心负荷.而工厂地负荷中心地力矩方程,可得负荷中心地坐标:ii i 321332211P )x P (P P P x P x P x P x ∑∑=++++=⋯⋯ (3.1)iii 321332211P )y P (P P P y P y P y P y ∑∑=++++=⋯⋯ (3.2)变电所地位置应尽量接近工厂地负荷中心.图3.1 机械厂总平面图在工厂平面图地下边和左侧,分别作一条直角坐标地x 轴和y 轴,然后测出各车间(建筑)和生活区负荷点地坐标位置p1(2.5,5.51);p2(3.6,3.54);p3(5.56,1.3);p4(4,6.7);p5(6.2,6.7);p6(6.2,5);p7(6.2,3.4);p8(8.55,6.7);p9(8.55,5);p10(8.55,3.4);p0(1.2,1.1)(工厂生活区),如图3-1所示:而工厂地负荷中心假设在P (x,y ),其中P=P1+P2+P3…=∑P i.仿照《力学》计算重心地力矩方程,可得负荷中心地坐标如图3-2:112233123119.1 2.5121.9 3.674.8 5.56944108.1 6.267 6.249.8 6.2119.1121.974.894108.16749.8P x P x P x x P P P ++⨯+⨯+⨯+⨯+⨯+⨯+⨯==+++++++++32.28.5557.48.55 5.3224 1.232.257.4 5.3224+⨯+⨯+⨯+⨯=++++4745.94.331095.5≈ 112233123119.1 2.5121.9 3.674.8 5.56944108.1 6.267 6.249.8 6.2119.1121.974.894108.16749.8P y P y P y y P P P ++⨯+⨯+⨯+⨯+⨯+⨯+⨯==+++++++++32.28.5557.48.55 5.3224 1.232.257.4 5.3224+⨯+⨯+⨯+⨯=++++4573.64.171095.5≈由计算结果可知,x=4.33 y=4.17工厂地负荷中心在2号厂房地东北角.考虑地方便进出线及周围环境情况,决定在2号厂房地东侧紧靠厂房修建工厂变电所,其型式为附设式.4 变电所主变压器地选择和主接线方案地选择4.1 变电所主变压器地选择根据工厂地负荷性质和电源情况,工厂变电所地主变压器考虑有下列两种可供选择地方案:(1)装设一台主变压器型式采用S9型,而容量根据式.30N T S S ≥,选,301000N T S kVA S =>=771.03KAV,即选一台S9-1000/10型低损耗配电变压器[3].至于工厂二级负荷所需地备用电源,考虑由与邻近单位相联地高压联络线来承担.图4.1 装设一台主变压器地主接线方案(2)装设两台主变压器地主接线方案,如图4.2所示图4.2 装设两台主变压器地主接线方案(2)装设两台主变压器型式亦采用S9型,而每台变压器容量按式i iip yy p=∑∑和式().3012N T S S +≥选择,即S NT ≈(0.6~0.7)×771.03KAV=(462.62~539.72)KAV且 KVA S S II T N 7.3321.734.1282.13130.=++=≥)(因此选两台S9-800/10型低损耗配电变压器.工厂二级负荷所需地备用电源亦由与邻近单位相联地高压联络线来承担.主变压器地联结组均采用Yyn0. 4.2 变压器主接线方案地选择按上面考虑地两种主变压器方案可设计下列两种主接线方案: (1) 装设一台主变压器地主接线方案,如图4.1所示 4.3 两种主接线方案地技术经济比较两种主结线方案地技术经济比较如表4.1所示:表4.1 两种主接线方案地比较供电贴费按800元/KVA计,贴费为1000×0.08=80万元贴费为2×800×0.08万元=128万元,比一台主变地方案多交48万元从表 4.1可以看出,按技术指标,装设两台主变地主接线方案略优于装设一台主变地主接线方案,但按经济指标,则装设一台主变地方案优于装设两台主变地方案,因此决定采用装设两台主变地方案.(说明:如果工厂负荷近期可有较大增长地话,则宜采用装设两台主变地方案.)5 短路电流地计算5.1 绘制计算电路如图5-1本厂地供电系统采用两路电源供线,一路为距本厂15km地变电站经LJ-120架空线,该干线首段所装高压断路器地断流容量为300MVA;一路为邻厂高压联络线.下面计算本厂变电所高压10kV母线上k-1点短路和低压380V母线上k-2点短路地三相短路电流和短路容量.图5.1 短路计算电路5.2 确定短路计算基准值设100dS MVA=, 1.05d c NU U U==,即高压侧110.5dU kV=,低压侧20.4dU kV=,则 :115.53310.5dddI kAU kV===⨯22144330.4dddI kAU kV===⨯5.3 计算短路电路中各元件地电抗标幺值 (1)电力系统 已知400oc S MVA =,S OC =300MVA,故 X *1=100MVA/300MAV=0.33(2)架空线路 查附录A-12,得LJ-120地km /33.00Ω=X ,X 0=0.341Ω/km,而线路长25km,故7.7)25341.0(2)k 5.10(100*2=⨯Ω⨯=V MVAX (3)电力变压器 查表2-8,得z U %=4.5,故5.4k 10001001005.4*3=⨯=VAMVAX 因此绘短路计算等效电路如图5.2所示.图5.2 等效电路 5.4 10KV 侧三相短路电流和短路容量 (1) 总电抗标幺值03.87.733.0*2*1*)1k (=+=+=-∑X X X(2)三相短路电流周期分量有效值 I (3)K-1=X IK d *)1(1∑-=03.85.5KA=0.685KA (3)其他短路电流I (3)=I ∞(3)=I (3)(K-1)=0.685KAi (3)sh =2.55I (3)=2.55×0.685KA=1.75KA I (3)sh =1.51I (3)=1.51×0.685KA=1.03KA (4)三相短路容量 S (3)K-1=X SK d *)1(∑-=03.8100MVA=12.45MVA 5.5 380V 侧三相短路电流和短路容量 (1)总电抗标幺值83.106.56.56.56.57.733.0*3*2*1*)2k (=+⨯++=++=-∑X X X X(2)三相短路电流周期分量有效值I (3)K-2=*)2(2X IK d ∑-=83.10144KA=13.3KA (3)其他短路电流KA I I I 3.13(3))2(k )3()3(''===-∞kA kA I 5.243.1384.184.1i )3(''(3)sh =⨯==kA kA I 5.143.1309.109.1I )3(''(3)sh =⨯==(4)三相短路容量MVA MVAX S S d23.983.10100*)2k 32k ===-∑-()(以上计算结果综合如表5.16 变电所一次设备地选择校验6.1 10kV 侧一次设备地选择校验表6.2 10kV 侧一次设备地选择校验5126.2 380V侧一次设备地选择校验表6.1 380V侧一次设备地选择校验表6.2所选一次设备均满足要求.6.3 高低压母线地选择参照表5—28,10kV 母线选LMY-3(404⨯),即母线尺寸为40mm 4mm ⨯;380V 母线选LMY-3(12010)806⨯+⨯,即母线尺寸为12010mm mm ⨯,而中性线母线尺寸为806mm mm ⨯.7 变电所进出线以及邻近单位联络线地选择7.1 10kV 高压进线和引入电缆地选择(1)10kV 高压进线地选择校验采用LJ 型铝绞线架空敷设,接往10kV 公用干线[4].1) 按发热条件选择 由A I I T N 7.57130==⋅及室外环境温度32C ︒,查表8-36,初选LJ-16,其380C 时地3093.5al I A I =>满足发热条件.2)校验机械强度查表8-34,最小允许截面2min 35A mm =,因此按发热条件选择地LJ-16不满足机械强度要求,故改选LJ-35.由于此线路很短,不需校验电压损耗.(2)由高压配电室至主变地一段引入电缆地选择校验采用YJL22-10000型交联聚乙烯绝缘地铝芯电缆直接埋地敷设.1)按发热条件选择 由A I I T N 7.57130==⋅及土壤温度25C ︒查表8-44,初选缆芯截面为2min 25A mm =地交联电缆,其3090al I A I =>,满足发热条件.2)校验短路热稳定 按式C MWδ=计算满足短路热稳定地最小截面 222)3(min 2508.16mm 7775.01430t mm A mm C I A ima =<=⨯==∞式中C 值由表5-13差得;ima t 按终端变电所保护动作时间0.5s,加断路器断路时间0.2s,再加0.05s 计,故0.75ima t s =.因此YJL22-10000-3⨯25电缆满足短路热稳定条件. 7.2 380V 低压出线地选择(1)馈电给1号厂房(铸造车间)地线路 采用VLV22-1000型聚氯乙烯绝缘铝芯电缆直接埋地敷设.1)按发热条件选择 由A I 3.19930=及地下0.8m 土壤温度25C ︒,查表8-43,初选缆芯截面2120mm ,其30212al I A I =>,满足发热条件.2)校验电压损耗 由图3.1所示工厂平面图量得变电所至1号厂房距离约为80m,而由表8-42查得2120mm 地铝芯电缆00.31R km =Ω(按缆芯工作温度75C ︒计),00.07X =km Ω,又1号厂房地W P k 2.9130=,kvar 3.9430=Q ,因此按式()NpR qX U U +∆=∑得:V kVkW W U 3.738.0)08.007.0(3.94)08.031.0(k 2.91=Ω⨯⨯+Ω⨯⨯=∆%5%%2%1003803.7%al =∆<=⨯=∆U VVU故满足允许电压损耗地要求. 3) 短路热稳定度校验 按式C MWδ=计算满足短路热稳定地最小截面 22)3(min 9.243mm 7675.021400t mm CI A ima =⨯==∞由于前面按发热条件所选2120mm 地缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为2mm 300地电缆,即选22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆,中性线芯按不小于相线芯一半选择.(2)馈电给2号厂房(锻压车间)地线路亦采用22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆直埋敷设[5].1)按发热条件选择 由A I 9.17630=及地下0.8m 土壤温度25C ︒,查表8-43,初选缆芯截面25mm 9,其30al 189I A I >=,满足发热条件.2)校验电压损耗 由图3.1所示工厂平面图量得变电所至2号厂房距离约为86m,而由表8-42查得25mm 9地铝芯电缆m R k /4.00Ω=(按缆芯工作温度75C ︒计),00.07X =km Ω,又2号厂房地W P k 7630=,kvar 1.8830=Q ,因此按式()NpR qX U U +∆=∑得:V kVkW W U 28.838.0)086.007.0(1.88)086.04.0(k 76=Ω⨯⨯+Ω⨯⨯=∆%5%%2.2%10038028.8%al =∆<=⨯=∆U VVU故满足允许电压损耗地要求. 3) 短路热稳定度校验 按式C MWδ=计算满足短路热稳定地最小截面 22)3(min 9.243mm 7675.021400t mm CI A ima =⨯==∞由于前面按发热条件所选2120mm 地缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为2mm 300地电缆,即选22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆,中性线芯按不小于相线芯一半选择.(3)馈电给3号厂房(金工车间)地线路亦采用22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆直埋敷设.1)按发热条件选择 由A I 18930=及地下0.8m 土壤温度25C ︒,查表8-43,初选缆芯截面220mm 1,其30al 212I A I >=,满足发热条件.2)校验电压损耗 由图3.1所示工厂平面图量得变电所至3号厂房距离约为105m,而由表8-42查得2120mm 地铝芯电缆00.31R km =Ω(按缆芯工作温度75C ︒计),00.07X =km Ω,又3号厂房地W P k 6.8230=,kvar 9330=Q ,因此按式()NpR qX U U +∆=∑得:V kVkW W U 87.838.0)04.007.0(93)105.031.0(2.6k 8=Ω⨯⨯+Ω⨯⨯=∆%5%%3.2%10038087.8%al =∆<=⨯=∆U VVU故满足允许电压损耗地要求. 3) 短路热稳定度校验 按式C MWδ=计算满足短路热稳定地最小截面 22)3(min 9.243mm 7675.021400t mm CI A ima =⨯==∞由于前面按发热条件所选2120mm 地缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为2mm 300地电缆,即选22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆,中性线芯按不小于相线芯一半选择[6].(4)馈电给4号厂房(工具车间)地线路采用15013003100022⨯+⨯--VLV 地四芯聚氯乙烯绝缘地铝芯电缆直埋敷设.1)按发热条件选择 由A I 5.23530=及地下0.8m 土壤温度25C ︒,查表8-43,初选缆芯截面2150mm ,其30242al I A I =>,满足发热条件.2)校验电压损耗 由图3.1所示工厂平面图量得变电所至4号厂房距离约为150m,而由表8-42查得2150mm 地铝芯电缆00.25R km =Ω(按缆芯工作温度75C ︒计),00.07X =km Ω,又4号厂房地W P k 6.10330=,kvar 3.11530=Q ,因此按式()NpR qX U U +∆=∑得:V kVkW W U 1.538.0)15.007.0(3.115)15.025.0(03.6k 1=Ω⨯⨯+Ω⨯⨯=∆%5%%3.1%1003801.5%al =∆<=⨯=∆U VVU故满足允许电压损耗地要求. 3) 短路热稳定度校验 按式C MWδ=计算满足短路热稳定地最小截面 22)3(min 9.243mm 7675.021400t mm CI A ima =⨯==∞由于前面按发热条件所选2120mm 地缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为2mm 300地电缆,即选15013003100022⨯+⨯--VLV 地四芯聚氯乙烯绝缘地铝芯电缆,中性线芯按不小于相线芯一半选择.(5)馈电给5号厂房(电镀车间)地线路亦采用22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆直埋敷设.1)按发热条件选择 由A I 1.19530=及地下0.8m 土壤温度25C ︒,查表8-43,初选缆芯截面2mm 120,其30242al I A I =>,满足发热条件.2)校验电压损耗 由图3.1所示工厂平面图量得变电所至5号厂房距离约为42m,而由表8-42查得2mm 120地铝芯电缆00.31R km =Ω(按缆芯工作温度75C ︒计),00.07X =km Ω,又5号厂房地W P k 3.9530=,kvar 1.8630=Q ,因此按式()NpR qX U U +∆=∑得:V kVkW W U 93.338.0)044.007.0(1.86)042.031.0(5.3k 9=Ω⨯⨯+Ω⨯⨯=∆%5%%1.1%10038093.3%al =∆<=⨯=∆U VVU故满足允许电压损耗地要求. 3) 短路热稳定度校验 按式C MWδ=计算满足短路热稳定地最小截面 22)3(min 9.243mm 7675.021400t mm CI A ima =⨯==∞由于前面按发热条件所选2120mm 地缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为2mm 300地电缆,即选22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆,中性线芯按不小于相线芯一半选择.(6)馈电给6号厂房(热处理车间)地线路用22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆直埋敷设.1)按发热条件选择 由A I 9.12430=及地下0.8m 土壤温度25C ︒,查表8-43,初选缆芯截面2mm 50,其30a 134I A I l >=,满足发热条件.2)校验电压损耗 由图3.1所示工厂平面图量得变电所至6号厂房距离约为55m,而由表8-42查得20mm 5地铝芯电缆km /76.00Ω=R (按缆芯工作温度75C ︒计),00.07X =km Ω,又4号厂房地W P k 6630=,kvar 4930=Q ,因此按式()NpR qX U U +∆=∑得:V kVkW W U 16.738.0)055.007.0(49)055.076.0(6k 6=Ω⨯⨯+Ω⨯⨯=∆%5%%04.2%10038016.7%al =∆<=⨯=∆U VVU故满足允许电压损耗地要求.3) 短路热稳定度校验 按式C MWδ=计算满足短路热稳定地最小截面 22)3(min 9.243mm 7675.021400t mm CI A ima =⨯==∞由于前面按发热条件所选2120mm 地缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为200mm 3地电缆,即选22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆,中性线芯按不小于相线芯一半选择.(7)馈电给7号厂房(装配车间)地线路亦用22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆直埋敷设.1)按发热条件选择 由A I 4.11230=及地下0.8m 土壤温度25C ︒,查表8-43,初选缆芯截面2mm 50,其30a 134I A I l >=,满足发热条件.2)校验电压损耗 由图3.1所示工厂平面图量得变电所至7号厂房距离约为78m,而由表8-42查得20mm 5地铝芯电缆km /76.00Ω=R (按缆芯工作温度75C ︒计),00.07X =km Ω,又4号厂房地W P k 4.5330=,kvar 3.5130=Q ,因此按式()NpR qX U U +∆=∑得:V kVkW W U 08.938.0)078.007.0(3.51)078.076.0(3.4k 5=Ω⨯⨯+Ω⨯⨯=∆%5%%4.2%10038008.9%al =∆<=⨯=∆U VVU故满足允许电压损耗地要求. 3) 短路热稳定度校验 按式C MWδ=计算满足短路热稳定地最小截面 22)3(min 9.243mm 7675.021400t mm CI A ima =⨯==∞由于前面按发热条件所选2120mm 地缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为200mm 3地电缆,即选22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆,中性线芯按不小于相线芯一半选择.(8)馈电给8号厂房(机修车间)地线路 亦采用22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆直埋敷设.1)按发热条件选择 由A I 3.7930=及地下0.8m 土壤温度25C ︒,查表8-43,初选缆芯截面25mm 2,其30a 90I A I l >=,满足发热条件.2)校验电压损耗 由图3.1所示工厂平面图量得变电所至8号厂房距离约为48m,而由表8-42查得25mm 2地铝芯电缆km /51.10Ω=R (按缆芯工作温度75C ︒计),075.00=X km Ω,又8号厂房地W P k 2.3530=,kvar 5.3830=Q ,因此按式()NpR qX U U +∆=∑得: V kVkW W U 08.738.0)048.0073.0(5.38)048.051.1(5.2k 3=Ω⨯⨯+Ω⨯⨯=∆ %5%%86.1%10038008.7%al =∆<=⨯=∆U VV U 故满足允许电压损耗地要求. 3) 短路热稳定度校验 按式C M Wδ=计算满足短路热稳定地最小截面 22)3(min 9.243mm 7675.021400t mm C I A ima =⨯==∞ 由于前面按发热条件所选2120mm 地缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为200mm 3地电缆,即选22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆,中性线芯按不小于相线芯一半选择.(9)馈电给9号厂房(锅炉房)地线路 亦采用22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆直埋敷设.1)按发热条件选择 由A I 11130=及地下0.8m 土壤温度25C ︒,查表8-43,初选缆芯截面2mm 50,其30a 134I A I l >=,满足发热条件.2)校验电压损耗 由图3.1所示工厂平面图量得变电所至9号厂房距离约为65m,而由表8-42查得20mm 5地铝芯电缆km /76.00Ω=R (按缆芯工作温度75C ︒计),00.07X =km Ω,又4号厂房地W P k 6630=,kvar 4930=Q ,因此按式()NpR qX U U +∆=∑得: V kVkW W U 79.738.0)065.007.0(6.47)065.076.0(5.5k 5=Ω⨯⨯+Ω⨯⨯=∆ %5%%1.2%10038079.7%al =∆<=⨯=∆U VV U 故满足允许电压损耗地要求. 3) 短路热稳定度校验 按式C M Wδ=计算满足短路热稳定地最小截面 22)3(min 9.243mm 7675.021400t mm C I A ima =⨯==∞ 由于前面按发热条件所选2120mm 地缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为200mm 3地电缆,即选5013003100022⨯+⨯--VLV 地四芯聚氯乙烯绝缘地铝芯电缆,中性线芯按不小于相线芯一半选择.(10)馈电给10号厂房(仓库)地线路 亦采用22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆直埋敷设.1)按发热条件选择 由A I 1.1830=及地下0.8m 土壤温度25C ︒,查表8-43,初选缆芯截面2mm 4,其30a 31I A I l >=,满足发热条件.2)校验电压损耗 由图3.1所示工厂平面图量得变电所至6号厂房距离约为55m,而由表8-42查得2mm 4地铝芯电缆km /45.90Ω=R (按缆芯工作温度75C ︒计),093.00=X km Ω,又4号厂房地W P k 1.1030=,kvar 2.630=Q ,因此按式()NpR qX U U +∆=∑得: V kVkW W U 1.1538.0)06.0093.0(2.6)06.045.9(0.1k 1=Ω⨯⨯+Ω⨯⨯=∆ %5%%9.3%1003801.15%al =∆<=⨯=∆U VV U 故满足允许电压损耗地要求. 3) 短路热稳定度校验 按式C M W δ=计算满足短路热稳定地最小截面22)3(min 9.243mm 7675.021400t mm C I A ima =⨯==∞ 由于前面按发热条件所选2120mm 地缆心截面小于min A ,不满足短路热稳定要求,故改选缆芯截面为200mm 3地电缆,即选22100033001150VLV --⨯+⨯地四芯聚氯乙烯绝缘地铝芯电缆,中性线芯按不小于相线芯一半选择.(11)馈电给生活区地线路 采用BLX-1000型铝芯橡皮绝缘线架空敷设.1)按发热条件选择 由A I 7.42030=及室外环境温度为C O 32,查表8-40,初选BLX-10002401⨯-,其C O 32时地30a 455I A I l >=,满足发热条件.2)校验机械强度 查表8-35,最小允许截面积2min 10A mm =,因此BLX-10002401⨯-满足机械强度要求.3)校验电压损耗 由图3.1所示工厂平面图量得变电所至生活区负荷中心距离约86m,而由表8-36查得其阻抗与BLX-10002401⨯-近似等值地LJ-240地阻抗km /14.00Ω=R ,30.00=X km Ω,又生活区W P k 6.26830=,kvar 3.6730=Q ,因此按式()NpR qX U U +∆=∑得: V kVkW W U 61.638.0)086.003.0(3.67)086.014.0(68.6k 2=Ω⨯⨯+Ω⨯⨯=∆ %5%%74.1%10038061.6%al =∆<=⨯=∆U V V U 故满足允许电压损耗地要求.7.3 作为备用电源地高压联络线地选择校验采用YJL22-10000型交联聚乙烯绝缘地铝芯电缆,直接埋地敷设,与相距约2km 地邻近单位变配电所地10kV 母线相联.(1)按发热条件选择工厂二级负荷容量共332.7KVA,A KV KVA I 2.19)103(7.33230=⨯=,而最热月土壤平均温度为25C ︒,因此查表8-44,初选缆芯截面为225mm 地交联聚乙烯绝缘铝芯电缆,其3090al I A I =>,满足发热条件.(2)校验电压损耗 由表8-42可查得缆芯为25mm 地铝芯电缆地0R =1.54km Ω (缆芯温度按80C ︒计),0X =0.12km Ω,而二级负荷地kw Q P 228,kw 2423030==线路长度按2km 计,因此按式()N pR qX U U +∆=∑得: V kVkW W U 1.8010)212.0(228)254.1(k 242=Ω⨯⨯+Ω⨯⨯=∆ %5%%8.0%100100001.80%al =∆<=⨯=∆U VV U 故满足允许电压损耗地要求.(3)短路热稳定校验 按本变电所高压侧短路校验,由前述引入电缆地短路热稳定校验,可知缆芯225mm 地交联电缆是满足短路热稳定要求地.综合以上所选变电所进出线和联络线地导线和电缆型号规格如表7.1所示.表7.1变电所进出线和联络线地导线和电缆型号规格8 电气主接线图8.1 二次回路方案选择1)二次回路电源选择二次回路操作电源有直流电源,交流电源之分.考虑到交流操作电源可使二次回路大大简化,投资大大减少,且工作可靠,维护方便.这里采用交流操作电源.2)高压断路器地控制和信号回路高压断路器地控制回路取决于操作机构地形式和操作电源地类别.结合上面设备地选择和电源选择,采用弹簧操作机构地断路器控制和信号回路.3)电测量仪表与绝缘监视装置这里根据GBJ63-1990地规范要求选用合适地电测量仪表并配用相应绝缘监视装置.a)10KV电源进线上:电能计量柜装设有功电能表和无功电能表;为了解负荷电流,装设电流表一只.b)变电所每段母线上:装设电压表测量电压并装设绝缘检测装置.c)电力变压器高压侧:装设电流表和有功电能表各一只.d)380V地电源进线和变压器低压侧:各装一只电流表.e)低压动力线路:装设电流表一只.4)电测量仪表与绝缘监视装置在二次回路中安装自动重合闸装置、备用电源自动投入装置.8.2 继电保护地整定继电保护要求具有选择性,速动性,可靠性及灵敏性.由于本厂地高压线路不很长,容量不很大,因此继电保护装置比较简单.对线路地相间短路保护,主要采用带时限地过电流保护和瞬时动作地电流速断保护;对线路地单相接地保护采用绝缘监视装置,装设在变电所高压母线上,动作于信号.继电保护装置地接线方式采用两相两继电器式接线;继电保护装置地操作方式采用交流操作电源供电中地“去分流跳闸”操作方式;带时限过电流保护采用反时。
电气工程某机械厂降压变电所设计说明
1 简介1.1 设计任务及要求要求变电站的位置和类型应根据供电情况和工厂用电负荷的实际情况确定,并适当考虑工厂生产的发展。
变电站主变台数、容量及型号,选择变电站主接线方案、高低压设备及进出线,确定二次回路方案,选择和设置继电保护装置,确定防雷接地装置,最后按要求进行。
编写设计规范并绘制设计图纸。
1.2 实用价值和意义在国民经济高速发展的今天,电能的应用越来越广泛,生产、科学、研究和日常生活对电能的供应提出了更高的要求。
因此,保证良好的供电质量非常重要。
这本设计书侧重于理论与实践的融合。
理论知识力求全面、通俗易懂,实践技能注重实用性、可操作性和针对性。
同时,重点引进和体现现代供配电技术新技术。
这本设计书讨论了供配电系统的整体功能和相关技术知识,重点介绍了工厂供配电系统的组成部分。
系统的设计和计算相关系统的运行管理根据工厂的实际供电和用电负荷,适当考虑工厂的发展,并符合安全要求,可靠性、先进技术和经济合理性。
讨论了变电站的位置和形式,变电站到变电站的数量和容量,变电站主布线方案的类型和选择,高低设备,进出线。
本设计包括:负荷计算与无功补偿、变电站选址及形式选择、短路电流计算、变电站电气主接线图等。
1.3 工厂电源设计的基本内容厂区供电设计主要包括厂区变压器设计、配电站设计、厂区高压配电电路设计、车间低压配电电路设计、电气设备的设计。
光。
其基本内容如下:(1)负荷计算全厂总降压变电所的负荷计算是在车间负荷计算的基础上进行的。
考虑车间变电站变压器的功率损耗,得到全厂总降压变电站高压侧的计算负荷和总功率因数。
列出负荷计算表并表达计算结果。
(2)厂区总降压变电站的选址和主变台数、容量的选择应参考进线电源方向,综合考虑设置总变的相关因素。
降压变电站,并结合全厂计算负荷,满足扩容和后备需求。
.如有必要,确定变压器的数量和容量。
(3)厂区通用降压变电所主接线设计根据变电站内配电回路的数量、负荷要求的可靠性等级和计算负荷的数量,结合主变的数量确定变电站的高低接线方式。
某机械厂降压变电所的电气设计课程设计
某机械厂降压变电所的电气设计课程设计某机械厂的降压变电所电气设计课程设计,真是个挺有意思的课题。
说实话,一开始我也没太弄明白降压变电所是个啥东西。
听名字就觉得有点专业又神秘,像是什么高深莫测的魔法阵一样。
可越往里一钻,哎呀,倒是没想象中的那么复杂,反倒是有点像我们家里那些电器插头、插座,背后其实都是有着严密的设计和安排的。
就是要给那些大功率的设备降压,让电流变得温柔一些,别一开始就直接把机器给电得吓一跳,得循序渐进嘛。
你看看,现在这个机械厂里面,大大小小的机器,整天不停地运转,消耗着海量的电能。
可这些机器可不是随便哪个电压就能适应的。
特别是咱们这种高负荷、大功率的设备,一旦电压过高,那机器就得“受不了了”,干脆就“罢工”了。
所以,降压变电所就成了厂里的“心脏”,它的任务就是在从电力系统引进的高电压中“找点水分”,把电压降低到合适的范围,让这些机器能安安稳稳地干活,既不“烧坏”又不“撑坏”,你说它重要不重要?这可是整厂运转的基础!总不能电压一高,机器就打个喷嚏,停工了,那可真是太让人头疼了。
再来说说这电气设计,听起来是不是就有点专业了?其实呢,背后大多是一些非常简单的道理。
就拿电气设备来说,得保证它们能在合适的电压范围内工作,这样机器才能发挥出最佳效果。
为了保证电力系统的安全,设计时得考虑到每一根电线、每一个开关、每一个保护装置都要做到位。
这就像咱们装修房子一样,电路走线得合理,不然一不小心就可能发生什么短路、火灾什么的,谁也不想在自己的“家”里看见火苗跳舞。
对于变电所来说,这点儿安全可得放在心头上,不能掉以轻心。
设计的时候,不仅要有电压的控制,还得考虑到过载保护、短路保护、甚至电气设备的故障诊断。
要是这些方面设计不到位,出了问题,电压不稳,设备损坏,厂里的生产就得停摆,损失可就大了去了。
有的人说,设计电气系统就是让电流顺利“上路”,让它们按部就班地流动。
这个说法还挺形象。
电气设计师就像是给电流指路的“交通警察”,在繁忙的“电流高速公路”上指引它们走哪条路,什么时候该停,什么时候可以加速,谁也不希望电流开个“违章”搞得乱七八糟。
6某机械厂总降压变电所及配电系统设计
6某机械厂总降压变电所及配电系统设计一、项目背景机械厂总降压变电所及配电系统设计是为了满足机械厂的电能供应需求,确保稳定可靠的电力供应,并保证机械设备的正常运行。
本文设计的总降压变电所及配电系统将提供给机械厂的三相交流电能,以满足机械设备的供电需求。
二、总降压变电所设计总降压变电所是机械厂电力供应的核心设施,负责将来自电网的高压交流电降压为适合机械设备使用的低压电能。
总降压变电所设计如下:1.变电站配置总降压变电所采用户外型箱式变电站,变电设备采用高低压开关设备配合变压器进行电能变换。
箱式变电站具有防锈、防雷、抗震等特性,可在恶劣气候条件下稳定运行。
2.变压器配置总降压变电所采用干式变压器,具有低噪音、低损耗、易维护等特点。
根据机械厂的用电需求,变压器的容量合理配置,确保正常运行时供电稳定,同时考虑到未来的扩容需求。
3.配电系统总降压变电所将提供三相交流低压电能给机械厂的配电系统。
配电系统应满足机械厂各个工作区域的供电需求,在设计时需要考虑以下几个方面:主配电室、机械设备区、照明区、办公区的用电需求,合理确定配电线路的走向和容量,以及配置相应的低压开关设备。
配电系统设计是总降压变电所设计的延伸,主要包括低压开关设备的配置、线路的走向与容量的确定、电气保护装置的选型等。
1.低压开关设备根据机械厂各个工作区域的用电需求,选择合适的低压开关设备,包括断路器、接触器、保护装置等。
低压开关设备应具有可靠性高、维护方便等特点,以确保配电系统的安全性和可靠性。
2.线路的走向与容量根据机械厂的布局及用电需求,确定配电线路的走向和容量。
考虑到用电负荷的变化,可适当预留一定的线路容量,以满足未来的扩容需求。
3.电气保护装置为了确保配电系统的安全运行,需要配置适当的电气保护装置,如过流保护装置、短路保护装置等。
这些保护装置能够快速检测到电路中的故障,从而及时切断电路,保护设备和人员的安全。
四、总结机械厂总降压变电所及配电系统的设计将提供可靠、稳定的电力供应,确保机械设备的正常运行。
「某机械厂降压变电所的电气设计」
「某机械厂降压变电所的电气设计」机械厂的降压变电所是该厂电力系统的重要组成部分,其电气设计需要满足工艺流程需求和相关电力设备的要求。
本文将对该降压变电所的电气设计进行详细介绍。
首先,根据工艺流程及设备要求,确定了变电所的容量和电压等级。
经过综合考虑,确定了该工地的降压变电所的容量为1000KVA,中压侧额定电压为10KV,低压侧额定电压为0.4KV。
根据变电所的负荷需求及工艺流程,设计了变电所的主要电气系统和设备,包括高压侧进线柜、10KV主变压器、低压配电柜等。
其中,高压侧进线柜采用了固定式进线柜,能够对10KV进线的电能进行安全的接入和切断。
主变压器选择了适当容量的变压器,可以进行中压侧到低压侧的电能变压。
低压配电柜则用于对变压器输出的低压电能进行分配和控制。
根据电气安装规范和设备使用要求,进行了降压变电所的布置设计。
根据设备的尺寸和安全距离要求,合理安排了高低压设备的布置位置,并保证了设备之间的安全间距。
此外,在设备的周围还设置了足够的通道和未来的扩容空间。
为了保证降压变电所的安全可靠运行,进行了相应的电气保护和接地设计。
电气保护方面,采用了过电流保护、短路保护、过载保护等安全措施,能够对系统的异常情况进行及时切断和保护。
接地设计方面,根据电气设备的接地要求,设计了合适规模的接地装置,确保电气设备和工人的安全。
此外,还进行了低压配电系统的设计。
根据工艺流程和设备需求,设计了适当容量的低压配电柜,并设置了合适的断路器、接触器和保护装置,以实现对电能的分配和控制。
同时,根据设备的耗电量、负载需求等因素,合理划分了不同区域的配电线路和断路器。
最后,对降压变电所的接线和布线进行了详细设计。
根据设备的电气连接要求,进行了线缆的选择和敷设方案的设计。
在敷设时,考虑了线缆长度、散热、敷设通道等因素,避免了电缆拥挤、短路等问题。
总之,机械厂降压变电所的电气设计充分考虑了工艺流程需求和设备要求,通过合理选择设备、布置设计、保护装置和接线布线等措施,确保了系统的安全可靠运行。
某冶金机械厂降压变电所的电气设计(1)知识分享
某冶金机械厂降压变电所的电气设计(1)某冶金机械厂降压变电所的电气设计1.设计资料1.1工厂总平面图工厂总平面图如图1所示图1 工厂总平面图1.2工厂负荷情况该厂多数车间为两班制,年最大负荷小时数为4600h,日最大负荷持续时间为6h。
该厂除铸造车间、电镀车间和锅炉房属二级负荷处,其余为三级负荷。
该厂的负荷统计资料如下表1。
表1 工厂各车间负荷情况厂房编厂房名负荷类设备容量需要系数功率因数tan1 铸造车间动力520 0.4 0.7 1.02照明10 0.9 1.0 02 锻压车间动力240 0.3 0.65 1.17照明10 0.9 1.0 03 金工动力390 0.32 0.65 1.12车间照明10 0.9 1.0 04 工具车间动力290 0.35 0.65 1.33照明10 0.9 1.0 0续表1厂房编厂房名负荷类设备容量需要系数功率因数tan5 电镀车间动力450 0.6 0.80 0.75照明10 0.9 1.0 06 热处理车间动力260 0.62 0.82 0.82照明10 0.9 1.0 07 装配车间动力170 0.4 0.75 1.02照明10 0.9 1.0 08 机修车间动力100 0.3 0.7 1.17照明 5 0.9 1.0 09锅炉车间动力115 0.8 0.8 1.05 照明 3 0.9 1.0 010仓库动力50 0.4 0.9 0.75照明 2 0.9 1.0 0 11生活区照明400 0.8 1.0 0.481.3供电电源情况按照工厂与当地供电部门登定的供用电协议规定,本厂可由附近一条10kV的公用电源干线取得工作电源。
该干线的走向参看工厂总平面图。
该干线的导线牌号为LGT-150(0.36 Ω/km),干线首端距离本厂约8km。
干线首端所装设的高压断路器断流容量为500MVA。
为满足工厂二级负荷的要求,可采用高压联络线由邻近的单位取得备用电源。
1.4气象资料本地区的年最高气温为38℃,年平均气温为23℃,年最低气温为-8℃,年最热月平均气温为33℃,年最热月平均气温为26℃,年最热月地下0.8m处平均温度为25℃。
某机械厂降压变电所电气设计_毕业设计论文
某机械厂降压变电所电气设计说明书目录摘要 (1)第1章绪论 (2)1.1 (2)1.2 工厂总平面图 (2)1.3 工厂内部和周边情况 (2)第2章负荷计算和无功功率补偿 (4)2.1 负荷计算 (4)2.1.1 单组用电设备计算负荷的计算公式 (4)2.1.2 多组用电设备计算负荷的计算公式 (4)2.2 无功功率补偿 (5)第3章变电所位置和接线方案的选择 (8)3.1 变配电所的位置选择 (8)3.2 变电所主接线方案 (9)3.3变压器型号的选择 (10)3.4变电所进出线与临近单位联络线的选择 (13)第4章短路电流的计算 (14)4.1 短路电流 (14)4.2 绘制计算电路 (15)4.3 确定短路计算基准值 (15)4.4 计算短路电路中各个元件的电抗标幺值 (16)第5章降压变电所防雷与接地装置的设计 (17)5.1 变电所的防雷保护 (17)5.1.1 直接防雷保护 (17)5.1.2 雷电侵入波的防护 (17)5.2 变电所公共接地装置的设计 (17)5.2.1 接地电阻的要求 (17)5.2.2 接地装置的设计 (18)结论 (19)参考文献 (21)致谢 (20)摘要为保障工业生产安全进行,保证电能合理分配、输送,灵活改变运行方式。
特进行本次设计。
本设计主要阐述了对机械厂总降压变电所的电气设计方案。
在设计中进行了对工厂负荷的统计计算;变电所位置与型式的选择;变电所主变压器及主接线方案的选择;短路电流的计算;变电所进出线与邻近单位联络线的选择;降压变电所防雷与接地装置的设计等。
本机械厂降压变电所电气设计为毕业设计,其目的是通过设计实践,综合运用所学知识,理论联系实际,锻炼独立分析和解决建筑电气设计问题的能力,为未来的工作奠定坚实的基础。
关键词:工厂供电,变电所,无功功率补偿,变压器,短路电流计算,一次设备,避雷器。
第一章 前言 1.1 设计背景本次设计要求根据本厂所能取得的电源及本厂用电负荷情况,并适当考虑工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置和型式,确定变电所主变压器的台数、容量与类型,选择变电所主接线方案、一次设备的选择、高低压设备和进出线,确定防雷和接地装置。
某机械厂降压变电所的电气设计
某机械厂降压变电所的电气设计1. 引言本文档旨在对某机械厂降压变电所的电气设计进行详细介绍和说明。
该变电所是为了满足机械厂正常运营所需的电能供应而建设的。
电气设计是变电所建设的关键环节,包括供电系统、变压器选型、保护设备等方面的设计。
2. 变电所概述2.1 变电所位置和规模该变电所位于某机械厂占地面积内,距离主生产区较近,方便供电。
变电所设计容量为XXX kW,以满足全厂的电能需求。
2.2 变电所布置图变电所布置图如下所示:变电所布置图变电所布置图3. 供电系统设计供电系统设计是变电所电气设计的核心之一,包括主要设备的选型和系统的配置。
3.1 主变压器选型根据机械厂的电能需求以及电网情况,我们选择了一台XXX kVA的主变压器作为供电系统的核心设备。
主变压器的选型需要考虑负载容量、变比、温升等因素,以确保电能的稳定供应。
3.2 主开关柜设计主开关柜作为供电系统的控制中心,选用合适的开关设备和保护装置非常重要。
我们选择了XXX型号的主开关柜,配备了过电流保护装置、欠压保护装置等功能,以保证供电系统的可靠性和安全性。
3.3 配电柜设计变电所配电柜的设计需要考虑供电负荷的分配和系统的可靠性。
根据实际需求,我们设计了多台配电柜,分别连接到不同的设备和区域。
配电柜配备了相应的断路器、接触器、电能表等设备,以实现对不同电路的控制和计量。
4. 保护系统设计为了确保供电系统的安全运行,我们设计了完善的保护系统,包括过电流保护、短路保护、接地保护等。
4.1 过电流保护过电流保护是变电所保护系统的重要组成部分。
我们选用了电流互感器配合继电器,实现对供电系统中过电流的及时检测和保护。
4.2 短路保护短路保护是变电所保护系统的另一个关键方面。
我们选择了短路保护器件,实现对供电系统中短路故障的迅速切断和保护,以避免设备损坏和人员安全事故的发生。
4.3 接地保护为确保供电系统的安全接地,我们设计了接地系统。
接地系统包括接地装置和接地线,通过对设备和设施的接地,降低了电气设备的绝缘电阻,减少了触电危险。
某机械厂降压变电所电气设计-(附答案)
一、设计任务书(一)设计题目某机械厂降压变电所电气一次设计(二)设计要求要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与型式,确定变电所主变压器的台数与容量、类型,选择变电所主结线及高低压设备和进出线,最后按要求写出设计说明书,绘出设计图样。
(三)设计依据1.工厂总平面图2.工厂负荷情况:本厂多数车间为两班制,年最大负荷利用小时为5000h,日最大负荷持续时间为8h。
该厂筹造车间、电镀车间和锅炉房属二级负荷外,其余均属三级负荷。
低压动力设备均为三相,额定电压为380V。
电气照明及家用电器均为单相,额定电压为220V。
3.供电电源情况:按照工厂与当地供电部门签订的供用电协议规定,本厂可由附近一条10的公用电源干线取得工作电源。
该干线的走向参看工厂总平面图(附图1-4)。
该干线的导线品牌号为185,导线为等边三角形排列,线距为 2.0m。
干线首端(即电力系统的馈电变电站)距离本厂约10.干线首端所装设的高压断路器断流容量为500,此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为1.2s。
为满足工厂二级负荷的要求,可采用高压联络线由邻近的单位取得备用电源。
已知与本厂高压侧有电气联系的架空线路总长度为100,电缆线路长度为25。
表1 工厂负荷统计资料厂房编号厂房名称负荷类别设备容量需用系数功率因数1 铸造车间动力400 0.4 0.70照明10 0.8 1.002 锻造车间动力300 0.2 0.65照明10 0.8 1.003 金工车间动力350 0.2 0.65照明10 0.7 1.004 工具车间动力380 0.2 0.60照明10 0.8 1.005 电镀车间动力260 0.5 0.80照明7 0.7 1.006 热处理室动力200 0.5 0.75照明8 0.7 1.007 装配车间动力150 0.4 0.70照明 5 0.8 1.008 机修车间动力150 0.3 0.60照明 4 0.7 1.009 锅炉房动力80 0.7 0.8照明 1 0.9 1.0010 仓库动力25 0.4 0.80 照明 1 0.9 1.0011 生活区动力300 0.8 1.004.气象条件:本厂所在地区的年最高气温为38℃,年平均气温为23℃,年最低气温为-8℃,年最热月平均最高气温为33℃,年最热月平均气温为26℃,年最热月地下0.8m处的平均温度为25℃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、设计任务书(一)设计题目某机械厂降压变电所电气一次设计(二)设计要求要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与型式,确定变电所主变压器的台数与容量、类型,选择变电所主结线及高低压设备和进出线,最后按要求写出设计说明书,绘出设计图样。
(三)设计依据1.工厂总平面图2.工厂负荷情况:本厂多数车间为两班制,年最大负荷利用小时为5000h,日最大负荷持续时间为8h。
该厂筹造车间、电镀车间和锅炉房属二级负荷外,其余均属三级负荷。
低压动力设备均为三相,额定电压为380V。
电气照明及家用电器均为单相,额定电压为220V。
3.供电电源情况:按照工厂与当地供电部门签订的供用电协议规定,本厂可由附近一条10KV的公用电源干线取得工作电源。
该干线的走向参看工厂总平面图(附图1-4)。
该干线的导线品牌号为LGJ-185,导线为等边三角形排列,线距为2.0m。
干线首端(即电力系统的馈电变电站)距离本厂约10km.干线首端所装设的高压断路器断流容量为500MWA,此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为1.2s。
为满足工厂二级负荷的要求,可采用高压联络线由邻近的单位取得备用电源。
已知与本厂高压侧有电气联系的架空线路总长度为100km,电缆线路长度为25km。
表1 工厂负荷统计资料厂房编号厂房名称负荷类别设备容量/kw需用系数功率因数1 铸造车间动力400 0.4 0.70照明10 0.8 1.002 锻造车间动力300 0.2 0.65照明10 0.8 1.003 金工车间动力350 0.2 0.65照明10 0.7 1.004 工具车间动力380 0.2 0.60照明10 0.8 1.005 电镀车间动力260 0.5 0.80照明7 0.7 1.006 热处理室动力200 0.5 0.75照明8 0.7 1.007 装配车间动力150 0.4 0.70照明 5 0.8 1.008 机修车间动力150 0.3 0.60照明 4 0.7 1.009 锅炉房动力80 0.7 0.8照明 1 0.9 1.0010 仓库动力25 0.4 0.80 照明 1 0.9 1.0011 生活区动力300 0.8 1.004.气象条件:本厂所在地区的年最高气温为38℃,年平均气温为23℃,年最低气温为-8℃,年最热月平均最高气温为33℃,年最热月平均气温为26℃,年最热月地下0.8m处的平均温度为25℃。
当地主导风向为东北向风,年暴日数为20。
5.地质水文条件:本厂所在的地区平均海拔500m。
地层以砂粘土(土质)为主;地下水位为4m。
6.电费制度:本厂与当地供电部门达成协议,在本厂变电所高压侧计量电能,设专用计量柜,按两部电费交电费。
每月基本电费按主变压器容量计为20元/KVA,动力电费为0.3元/kwh,照明(含家电)电费为0.5元/kwh。
工厂最大负荷时的功率因数不得低于0.95.此外,电力用户需按新装变压器容量计算,一次性地向供电部门交供电贴费:6~10KV为800元/KV A。
(四)设计任务要求在规定时间内独立完成下列工作量:1、设计说明书1份,需包括:1)封面及目录2)前言及确定了赋值参数的设计任务书3)负荷计算和无功功率补偿4)变电所位置和型式的选择5)变电所主变压器台数、容量、类型及主结线方案的选择6)短路电流的计算7)变电所一次设备的选择与校验8)变电所高、低压进出线的选择与效验9)附录及参考文献10)设计收获和体会2、设计图纸1份变电所主结线图1张(3号图纸)(五)设计时间第二章(一)负荷计算和无功功率补偿1.负荷计算个厂房和生活区的负荷计算如表1所示表2 某机械厂负荷计算表编号名称类别设备容量需要系数cosφtanφ计算负荷P30/Kw Q30/Kw S30/KVA I30/A1 铸造车间动力400 0.4 0.7 1.02 160 163.2 - -照明10 0.8 1 0 8 0 - -小计410 - 168 163.2 234 3562 锻压车间动力300 0.2 0.65 1.17 60 70.15 - -照明10 0.8 1 0 8 0 - -小计310 - 68 70.15 97.7 1493 金工车间动力350 0.2 0.65 1.17 70 81.83 - -照明10 0.7 1 0 7 0 - -小计360 - 77 81.83 112 1704 工具车间动力380 0.2 0.6 1.33 76 101.33 - -照明8 0.8 1 0 6.4 0 - -小计388 - 82.4 101.33 131 1995 电镀车间动力260 0.5 0.8 0.75 130 97.5 - -照明7 0.7 1 0 4.9 0 - -小计267 - 134.9 97.5 166 2536 热处理室动力200 0.5 0.75 0.78 100 78 - -照明8 0.7 1 0 5.6 0 - -小计208 - 105.6 78 131 1997 装配车间动力150 0.4 0.7 1.02 60 61.2 - -照明 5 0.8 1 0 4 0 - -小计155 - 64 61.2 88.6 1358 机修车间动力150 0.3 0.6 1.33 45 60 - -照明 4 0.7 1 0 2.8 0 - -小计154 - 47.8 60 76.7 1179 锅炉房动力80 0.7 0.8 0.75 56 42 - -照明 1 0.9 1 0 0.9 0 - -小计81 - 56.9 42 70.7 10810 仓库动力25 0.4 0.8 0.75 10 7.5 - -照明 1 0.9 1 0 0.9 0 - -小计26 - 10.9 7.5 13.2 2011 生活区照明300 0.8 1 0 240 0 240 365总计(380V侧) 动力22951055.5 762.71 - -照明364计入KΣp=0.85 KΣq=0.9 0.79 897.18 686.44 1129.66 1718.382.无功功率补偿由表2可知,该厂380侧最大负荷是的功率因数只有0.75。
而供电部门要求该厂10KV进线侧最大负荷时功率因数不应低于0.95。
考虑到主变电器的无功损耗远大于有功损耗,因此380V侧最大负荷时功率因数应稍大于0.95,暂取0.92来计算380V侧所需无功功率补偿容量:Qc=P30(tanφ1-tanφ2)=897.18[tan(arccos0.79)-tan(arccos0.97)]=471 kvar参照图,选PGJ1型低压自动补偿屏,并联电容器为BW0.4-14-3型,采用其方案2(主屏)1台与方案3(辅屏-)6台相组合,总共容量84kvar×6=504kvar。
项目cosφ计算负荷P30/KW Q30/kvar S30/KV A I30/A380V侧补偿前负荷0.79 897.18 686.44 1129.66 1718.38380V侧无功补偿容量-504380V侧补偿后负荷0.98 897.18 182.44 915.54 1392.67主变压器功率损耗0.015S30=14.04 0.06S30=56.1610KV侧负荷总计0.97 911.22 238.6 941.94 54.45第三章(二)变电所位置和型式的选择变电所的位置应尽量接近工厂的负荷中心。
工厂的负荷中心按功率矩法来确定,计算公式为x= (P1x1+P2x2+P3x3+…)/( P1+P2+P3+…)=∑(PiXi)/ ∑Pi,y=(P1y1+P2y2+P3y3…)/(P1+P2+P3+…) =∑(PiYi)/ ∑Pi。
计算:x=4.22 y=3.97由计算结果可知,工厂的负荷中心在2,3,5,6号车间之间。
考虑到方便进出线,周边环境及交通情况,决定在5号车间的西侧仅靠车间修建工厂变电所,其形式为附设式。
第四章(三)变电所主变压器和主结线方案的选择1.变电所主变压器的选择根据工厂的负荷性质和电源情况,工厂变电所的主变压器可有下列两种方案:(1)装设一台主变压器型式采用S9,而容量根据式SN*T≥S30,选SN*T=1000KVA>S30=906.05A,即选一台S9-1000/10型低损耗配电变压器。
至于工厂二级负荷的备用电源,由与邻近单位相联的高压联络线来承担。
(2)装设两台主变压器型号亦采用S9,二每台容量按式SN*T≈(0.6-0.7)S30和SN*T≥S30(Ⅰ+Ⅱ),即SN*T≈(0.6-0.7)906.05VA=(543.63-634.235)KVA而且 SN*T≥S30(Ⅰ+Ⅱ)=(234+166+70.7)KVA=470.7KVA因此选两台S9-630/10型低损耗配电变压器。
工厂二级负荷的备用电源亦由与邻近单位相联的高压联络线来承担。
主变压器的联结组别均采用Yyn02变电所主结线方案的选择按上面考虑的两种主变压器的方案可设计下列两种主结线方案:(1)装设一台主变压器的主结线方案如图所示(见附图1)(2)装设两台主变压器的主结线方案如图所示(见附图2)(3)两种主结线方案的计算经济比较表表表11-6两种主结线方案的比较比较项目装设一台主变的方案(图11-5)装设两台主变的方案(图11-6)技术指标供电安全性满足要求满足要求供电可靠性基本满足要求满足要求供电质量由于一台主变,电压损耗略大由于两台主变并列,电压损耗略小灵活方便性只一台主变,灵活性稍差由于有两台主变,灵活性较好扩建适应性稍差一些更好一些经济指标电力变压器的综合投资额由表2-8查得S9-1000单价为10.76万元,而由表4-1查得变压器综合投资约为其单价的2倍,因此其投资为2*10.76万元=21.52万元由表2-8查得S9-630单价为7.47万元,因此两台综合投资为4*7.47万元=29.88万元,比1台主变方案多投资8.36万元高压开关柜的综合投资额查表4-10得GG-1A(F)型柜按每台3.5万元计,查表4-1得其综合投资按设备价1.5倍计,因此其综合投资约为4*1.5*3.5万元=21万元本方案采用6台GG—1A(F)柜,其综合投资约为6*1.5*3.5万元=31.5万元,比1台主变的方案多投资10.5万元电力变压器和高压开关柜的年运行费参照表4-2计算,主变和高压开关柜的折旧和维修管理费每年为4.893万元主变和高压开关柜的折旧费和维修管理费每年为7.067万元,比1台主变的方案多耗2.174万元交供电部门的一次性供电贴费按800元/KVA计,贴费为1000*0.08万元=80万元贴费为2*630*0.08万元=100.8万元,比1台主变的方案多交20.8万元从上表可以看出,按技术指标,装设两台主变的主结线方案(图)略优于装设一台主变的主结线方案(图),但按经济指标,则装设一台主变的方案(图)远优于装设两台主变的方案(图),因此决定采用装设一台主变的方案(图)。