第3章煤炭热解课件
煤热解原理
煤热解原理煤热解是指在缺氧或有限氧气条件下,将煤在高温下分解为气体、液体和固体产物的过程。
这个过程可以通过热解反应来实现,其中煤的大分子结构被断裂,形成小分子化合物。
煤热解是研究煤化学转化和煤加工技术的重要内容,也是煤直接液化和煤间接液化等技术的基础。
煤热解的原理可以简单地描述为煤的热分解反应。
煤热解的过程可以分为三个主要阶段:预处理阶段、主热解阶段和残渣处理阶段。
首先是预处理阶段。
在这个阶段,煤被加热到较高的温度,使其脱水和挥发分解,并且生成一些低分子量的气体。
预处理阶段是煤热解过程中的关键步骤,因为它会直接影响主热解阶段的反应产物。
接下来是主热解阶段。
在这个阶段,经过预处理的煤在高温下继续分解。
主热解阶段是煤热解过程中产生大量气体和液体产物的阶段。
煤中的大分子结构被破坏,产生一系列小分子化合物,如甲烷、乙烷、苯、酚等。
这些产物可以进一步用于能源生产或化工工业。
最后是残渣处理阶段。
在主热解阶段结束后,残留物中仍然存在一些未反应的碳质物质。
这些残留物通常被称为焦炭或焦炭渣。
残渣处理阶段的目的是将这些残留物进行处理或回收利用。
焦炭可以作为燃料使用,或者进一步转化为其他有用的化学产品。
煤热解的原理可以用一系列化学反应来描述。
在预处理阶段,煤中的水分首先被蒸发,然后煤中的氧原子与煤中的氢原子结合,形成水。
在主热解阶段,煤中的碳原子开始分解,生成一系列小分子化合物。
在残渣处理阶段,未反应的碳质物质被转化为焦炭或焦炭渣。
煤热解的原理是研究煤加工和利用的基础。
通过了解煤热解的原理,可以更好地理解煤热解过程中的化学反应和产物形成机制。
这有助于优化煤热解工艺,提高煤的利用率和产品质量。
煤热解是将煤在高温下分解为气体、液体和固体产物的过程。
煤热解的原理可以通过热分解反应来描述,其中煤的大分子结构被破坏,形成小分子化合物。
煤热解是研究煤加工和利用的重要内容,对于提高煤的利用率和产品质量具有重要意义。
洁净煤燃烧技术——煤的热解与气化ppt课件
26
2020年5月3日
27
一、简介
煤炭气化技术 煤炭气化是将固体(煤、半焦、焦炭)或液体燃料(水煤浆)与气化剂(空气、 氧气、富氧气、水蒸气或二氧化碳等)作用而转变成燃料煤气或合成煤气。
28
29
30
三、煤气化技术主要工艺
31
1、固定床气化
也称移动床气化。因为在气化过程中,煤料与气化剂 逆流接触,相对于气体的上升速度而言,煤料下降很 慢,甚至可视为固定不动,因此称之为固定气化床, 实际上,煤料在气化过程中的确是以很慢的速度向下 移动的,故以称为移动床气化
第一阶段:鼓空气燃烧煤蓄热,生产空气煤气
第二阶段:鼓水蒸气,生产热解煤气和水煤气
45
2、煤炭地下气化方法及工艺
46
47
48
总结
一、煤热解及意义 二、煤热解的分类及过程 三、煤炭热解技术与工艺 四、煤炭气化技术 五、煤炭地下气化技术
49
32
2、流化床气化(沸腾床气化)
以小颗粒煤为原料,并在气化炉内使其悬浮分散在垂 直上升的气流中,煤粒类似于沸腾的液体剧烈地运动 ,从而使得煤粒层几乎没有温度梯度和浓度梯度,从 而使得煤粒层内温度均一,易于控制,提高气化效率 。
33
3、气化床气化
34
Байду номын сангаас
4、熔浴床气化
也称熔融床气化,将煤粉和气化剂以切线方向 高速喷入一温度较高且高度稳定的熔池内,池 内熔融物保持高速旋转。作为粉煤与气化剂的 分散介质的熔融物可以是熔融的灰渣、熔盐等 可熔融的金属。
项目三 煤转化为燃料的技术
任务一 煤的热解与气化技术
1
任务一 煤的热解与气化技术
一、什么是煤热解及意义 二、煤热解的分类及过程 三、煤炭热解技术与工艺 四、煤炭气化技术 五、煤炭地下气化技术
煤的热解过程
特殊煤的热解速率曲线
(1)总体变化规律基本一致,但热解失重速率变化较大;(2)最大热 解失重速率峰值向前或向后推移;(3)碱土金属不同催化作用显现; (4)二次热解明显
煤热解特征参数
由热失重实验测定煤热解转化率时,可按下式计算:
W0—试样原始质量,mg;W—试样在某一时刻的质量,mg;Wf— 试样热解到规定终点时残余质量,mg;△W—试样在某一时刻的失 重,mg;△Wf—试样在规定热解终点的失重,mg。 定义如下几个热解特征温度:
热分析(thermal analysis)技术
热失重法的原理是:通过热天平测定煤热解中挥发分析出离开系统后 造成的质量损失,联用计算机自动收集和处理数据,从热分析曲线 上获得相关的动力学参数。
常用热分析技术包括:热重法(TG)、微商热重法(DTG)、差热分析 (DTA)、差示扫描量热法(DSC)、逸出气分析(GEA)。联用技术如: TG-DTA,TG-DTA-DTG,TG-MS和TG-FTIR联用等。 借用热分析技术来研究煤的热解及反应动力学,获得反应速度、反 应产物、反应控制因素、反应煤种及反应动力学常数。 煤热解常用热失重法来研究煤热解动力学。研究方法如:用程序升 温热重法,不同升温速率下的热天平研究了煤的热解及其动力学。 加热速度采用等温和程序升温两种,后者可以避免等温条件下热解 的不便,具有热解效果的可靠性,所以一般在实验中采用线性升温 的方法。
煤的热解过程或阶段
第一阶段,室温~300℃,干燥脱气阶段,煤的外形基本无变化。在120℃以前 脱水,CH4、CO2和N2等气体的脱除大致在200℃完成。褐煤在200℃以上发生 脱羧基反应,约300℃开始热解反应,烟煤和无烟煤一般不发生变化。 第二阶段,300℃~600℃,这一阶段以解聚和分解反应为主,形成半焦。生成 和排出大量挥发物,在450℃左右焦油量排出最大,在450℃~600℃气体析出量 最多。煤气成分主要包括气态烃和CO、CO2等;焦油主要是成分复杂的芳香和稠 环芳香化合物。烟煤约350℃开始软化、熔、融、流动和膨胀直到固化,出现一 系列特殊现象,形成气、液、固三相共存的胶质体。在500℃~600℃胶质体分 解、缩聚,固化形成半焦。煤化程度低的褐煤不存在胶质体形成阶段,仅发生激 烈分解,析出大量气体和焦油,形成粉状半焦。 第三阶段,600℃~1000℃,以缩聚反应为主,半焦变成焦炭。该阶段析出焦油 量极少,挥发分主要是煤气(H2和CH4),又成为二次脱气阶段。从半焦到焦炭, 一方面析出大量煤气,另一方面焦炭本身密度增加,体积收缩,形成具有一定强 度的碎块。
第3章 煤炭热解ppt课件
• 煤炭热解研究的重要性 • 煤炭热解发展的发展方向。
精选ppt课件2021
3
3.2 煤炭热解的分类
• 热解分类 – 按热解气氛分类:主要有惰性气氛热解、还原气氛(氢、甲烷、一氧化碳或 还原气体混合物等)热解,按是否存在催化剂,可以进一步分为催化热解、 催化加氢热解等。 – 按热解温度高低分类:主要有低温热解(500~650℃)、中温热解(650~ 800)、高温热解(900~1000)和超高温热解(>1200℃)。 – 按热源不同分类:主要有电加热热解、等离子体加热热解、微波加热热解、 热载体加热热解等。
热 品性状 解 温 焦油: 度
机械强度 挥发分(%)
比重 中性油(%) 酚类(%)
低
中
高
10
约5
<2
<1
1
>1
60
50.5
35~40
25
15~20
1.5
焦油盐基(%)
1~2
1~2
~2
沥青(%)
12
30
57
游离碳(%)
1~3
~5
4~10
中性油成分
脂肪烃 芳烃 脂肪烃 芳烃 芳烃
煤气主要
氢
31
45
55
成分(%)
– 按加热方式分类:主要有外热式热解,内热式热解和内外复合式热解。 – 按热载体类型不同分类:主要有固体热载体热解,气体热载体热解,以及固
煤的热分解-
2.3 影响煤热解过程的因素
终温/oC
600(低温干馏) <1 60 25 1~2 12 1~3 脂肪烃,芳烃 800(中温干馏) 1 50.5 15~20 1~2 30 ~5 脂肪烃,芳烃 1000(高温干馏) >1 35~40 1.5 ~2 57 4~10 芳烃
产品分布与性状 焦油 相对密度 中性油 酚类 焦油盐基 沥青 游离碳,% 中性油成分 煤气
2.3 影响煤热解过程的因素 煤的粒度的影响表现为,粒度越大,热失重率越低,半焦 产率越高,焦油产率越低,H2、CO和CO2的产率越高。例如, 某高挥发分烟煤粒度由l mm降为0.05 mm时,大粒子的失重比 小粒子的失重大约低3~4%。但具有大量开孔结构的褐煤则测 不出这种变化。这表明,当挥发物可以更自由地逸出时,二次 反应受到了抑制。
dvi k i (v i , 0 v i ) dt
式中 ki表示分解反应 i 的速度常数。在等温条件下积分上式得:
Ei vi ,0 vi vi ,0 exp[ k 0i t exp( )] RT vi、k0i、Ei 必须通过实验确定,在这种无穷多反应的情况下不 可能解析模型。
2.2 煤的热解机理及动力学
2.1 煤的热分解过程 第二阶段(Td~550oC) 活泼分解阶段,以解聚和分解反应为主,析出大量挥发物 (煤气和焦油),在450oC左右焦油量最大,在450~550oC气体 析出量最多。烟煤在350oC左右开始软化、粘结成半焦。烟煤 (尤其是中等煤阶的烟煤)在这一阶段经历了软化、熔融、流 动和膨胀直到再固化。形成气、液、固三相共存的胶质体。液 相中有液晶或中间相存在。胶质体的数量和质量决定了煤的粘 结性和结焦性。固体产物半焦与原煤相比,芳香层片的平均尺 寸和氦密度等变化不大,这表明半焦生成过程中缩聚反应并不 太明显。
第3章 煤炭热解
CH2
13
煤热解机理及研究新进展
14
15
16
3.3.3 影响煤低温热解的关键因素
– 原料煤性质
• 煤的变质程度:煤气焦油与挥发分含量密切相关; • 灰分:直接影响半焦质量; • 煤岩组分:煤气产率以稳定组最高,丝质组最低,镜质
后期斜率接近
初期 斜率 差别 很大
累积失重(%)
煤质的影响
显微组分影响
19
– 入煤粒度:煤粒度的大小影响加热速度和挥发物 从煤粒内部的导出。
• 煤粒越小,则易于达到较快的加热速度,能增加初次 焦油产率,且煤粒内外温差小,挥发物从煤粒内部逸 出路径短,有利于减少焦油的二次裂解,从而提高初 次焦油的产率。
– 结构单元之间的桥键断裂生成自由基; – 脂肪侧链受热易裂解,生成气态烃; – 含氧官能团的裂解-- —OH( 700~800℃ )
>—C=O( 400℃ )>—COOH( 200℃); – 低分子化合物的裂解,是以脂肪结构的低分子化
合物为主,其受热后,可分解成挥发性产物。
11
一次热解产物的二次热解反应
–煤热解工艺的特点
–工艺过程简单; 加工条件温和投资少; 生产成本低; 易实现 多联产等优于制取灯油和蜡。
–二次世界大战期间:德国,褐煤低温干馏工厂,低温煤焦油, 再高压加氢制取汽油和柴油
–上世纪70 年代:多种热解新工艺开发成功。
–上世纪70 年代以来:加氢热解,催化热解等。
• 第二阶段:低温热解阶段,此时热解温度为300~600℃。原料煤中有 机质开始发生变化,放出CO、CO2及水蒸气,生成热解水,产生焦 油,原料煤变软(??)并发生剧烈分解,放出大量挥发产物,绝大 部分焦油产生,形成半焦。这个过程主要发生解聚和分解反应。
煤化学-3-煤的热解.pptx
脱挥发份
1
根据煤在燃烧过程中温度和质量的变化, 煤粒要经历以下四个阶段 1 干燥,被加热到热解温度 2 热解,产生挥发份,焦油和焦 3 可燃挥发份的燃烧 4 焦的氧化
2
煤在燃烧过程经历示意图
3
4
传热 加热速率
q
kc
Ap
T2 T1 rp
mpCpdT p / dt hAp Tg Tp Ap Tg4 Tp4
11
煤热解的影响因素
热解过程中产生的挥发分由可燃气体混合物、 二氧化碳和水蒸气等组成,其中可燃气体主要 包括一氧化碳、氢气、气态烃和少量酚醛。 挥发分的质量和成分与其热解的条件有关,主 要取决于加热速率、加热的最终温度和在此温 度下的持续时间及颗粒尺寸等因素。 研究表明,随着加热温度的升高,挥发分的总 析出量及挥发物中气态和液态碳氢化合物的比 例增加。
k2 A2e RT
20
多方程热解模型和分布活化能模型
dVi dt
ki (Vi* Vi dE 1
0
f (E)
1
2
exp[
(E E0 )2
2 2
]
V
V*
0
1
exp
-
At
exp
E RT
f
(E)dE
21
基于煤结构的网络机理模型
以煤的结构为基础模拟煤的热解机理的模 型有:热解产物的组分模型、官能团-解聚、 蒸发与交联(FG-DVC)模型,FLASHCHAIN模型 和化学渗透脱挥发分(CPD)模型。
13
压力、温度对褐煤热解产率的影响示意图
14
热解终温对褐煤热解产率的影响示意图
15
热解模型
煤热解的数学模型 煤的热解是指煤在惰性、氧化性或还原性气氛条件 下持续加热到较高温度时,所发生的一系列物理变 化和化学反应的复杂过程。煤的热解与煤的组成和 结构有密切的关系,由于煤结构的复杂和不均一性 以及煤粉热解的快速和复杂性,现在仍然不能全面 地描述热解期间出现的化学反应。在实验结果的基 础上,从一些简化机理出发,先后提出了许多的脱 挥发分模型。煤的热解是许多其他转化利用过程 (如燃烧、气化、液化和焦化等)的初始步骤,而 且热解对后续过程有很大的影响,所以准确地描述 煤热解过程对于煤的高效清洁转化利用和污染控制 有重要意义。
煤的热分解PPT
第八页,共七十三页。
2.2 煤的热解机理(jī lǐ)及动力学 2.2.1 煤热解反响(fǎnxiǎng)模型
煤热解反响(fǎnxiǎng)历程
第九页,共七十三页。
2.2 煤的热解机理及动力学
第二十四页,共七十三页。
2.3 影响(yǐngxiǎng)煤热解过程的因素
在很高的加热速度下, 煤的最终(zuì zhōnɡ)总失重 可超过用工业分析方法 测得的挥发分。
第二十五页,共七十三页。
2.3 影响(yǐngxiǎng)煤热解过程的因素
2.3.4 压力和粒度
压力和粒度都是影响挥发分在煤的内部传递的参数,它们都对失重速 率和最终失重有影响。这些参数的影响取决于有效气孔率〔与煤化程度和 煤岩组成有关〕和释放出的物质的性质〔随温度而变化〕。
燥(kūzào)脱气阶段。此阶段析出H2O〔包括化学结合的〕、CO、CO2、 H2S〔少量〕、甲酸〔痕量〕、草酸〔痕量〕和烷基苯类〔少量〕等。 脱水主要在120oC前,200oC左右完成脱气〔CH4、CO2和N2〕, 200oC以上发生脱羧基反响。含氧化合物的析出源于包藏物、化学吸 附外表配合物及羧基和酚羟基的分解。这一阶段煤的外形无变化。
第十六页,共七十三页。
2.2 煤的热解机理及动力学
2〕多个平行的不可逆分解反响模型
假设煤的热分解是由许多独立的代表了煤分子(fēnzǐ)内不同键的断裂的化 学反响所组成。煤分子(fēnzǐ)中化学键强度的差异解释了不同温度范围内发生 不同的化学反响。单一的有机质组分的热分解可以描述为一个不可逆的一 级反响。起源于煤结构内部特定反响 i 的挥发物释放的速率就可以描述为:
煤的热分解-
2.3 影响煤热解过程的因素 2.3.2 温度 煤热解终温是产品 产率和组成的重要影响 因素,也是区别炭化或 干馏类型的标志。随着 温度的升高,使得具有 较高活化能的热解反应 有可能进行,同时生成 了具有较高热稳定性的 多环芳烃产物。随热解 温度提高,煤总失重率 增加。
煤热解温度对生成芳香族化合物的影响
2.1 煤的热分解过程
第三阶段(550~1000oC)
又称二次脱气阶段。经过活泼分解之后留下的半焦几乎全 部是芳构化的,其中仅含少量非芳香碳,但有较多的杂环氧、 杂环氮和杂环硫保留下来。此外,还有一部分醚氧和醌氧。随 着温度的不断升高,半焦逐渐变成焦炭。这一阶段的反应以缩 聚为主。析出的焦油量极少,挥发分主要是多种烃类气体、氢 气和碳的氧化物。气体产物中占主要地位的是H2和CO,伴有少 量GH4和CO2。氢主要是由芳香部分的缩聚作用产生,而碳的氧 化物的来源是热稳定性较好的醚氧、醌氧和氧杂环。焦炭的挥 发分小于2%,芳香核增大,排列的有序性提高,结构致密、坚 硬并有银灰色金属光泽。从半焦到焦炭,一方面析出大量煤气, 另一方面焦炭本身的密度增加,体积收缩,导致生成许多裂纹, 形成碎块。
2.2 煤的热解机理及动力学 2)多个平行的不可逆分解反应模型 假设煤的热分解是由许多独立的代表了煤分子内不同键的 断裂的化学反应所组成。煤分子中化学键强度的差异解释了不 同温度范围内发生不同的化学反应。单一的有机质组分的热分 解可以描述为一个不可逆的一级反应。起源于煤结构内部特定 反应 i 的挥发物释放的速率就可以描述为:
产品分布与性状 焦油 相对密度 中性油 酚类 焦油盐基 沥青 游离碳,% 中性油成分 煤气 H2,% CH4,% 发热量,MJ/m3
2.3 影响煤热解过程的因素 2.3.3 加热速度
煤的干馏 热解过程(煤化学课件)
低温干馏(500-600℃)-以液体产物为目标 中温干馏(700-800℃)-制取燃料煤气 高温干馏(950-1050℃)-炼焦
★典型(粘结性)烟煤热解过程
②胶质体的生成和固化阶段 (300~550℃)
③半焦转化为焦炭的阶段 (550 ~1000 ℃)
①干燥脱吸阶段 (室温~300℃)
煤化程度高的非粘结性煤(贫煤、无烟煤)
热解过程简单,以裂解为主,仅有少量热解气体放出。 区别:不产生胶质体,也不产生焦油。
煤热解是煤转化的关键步骤, 煤气化、液化、焦化和燃烧都要经过和发生热解过程。
对炼焦来说,可正确地选 择原料煤,寻求扩大原料 煤的途径确定合适的工艺 条件和提高产品(焦炭、 煤气、焦油等)质量和数 量。
炼焦
液化 气化
对液化和气化而言,可以 在比较温和的条件下得到 优质的焦油和煤气,为其 工艺条件的选取提供数据。
课程小结
黏结性烟煤受热时发生的变化
思考题:煤的热解过程中两次脱气阶段脱除的气体一样吗?
550~750℃
半焦分解析出大量的气体,主要是H2和少量 的CH4,成为热解的二次气体。半焦分解释 出大量气体后,体积收缩产生裂纹。在此阶 段基本上不产生焦油。
非粘结性烟煤的热解过程
低煤 化度
高煤 化度
煤化程度低的非粘结性煤(褐煤、长焰煤)
相同点:同样有分解、解聚和缩聚反应发生,生成大量气体和焦油。 不同点:没有胶质体生成,不产生熔融、膨胀等现象。热解后煤粒仍 成分离状态,不会粘结成块。
生成和排出大量挥发物。
为热解的一次脱气阶段。
气体
03
CH4及同系物,还有H2、CO、
CO2及不饱和烃
析出量
02 焦油在450℃时析出的量最大;
煤的热解技术
煤炭热解过程示意图
• 第一阶段为干燥阶段,此时热解温度在 300℃以下,原料煤在此阶段外形没有变化, 主要发生表面的吸附水蒸发,放出原料中 的吸附气体,并有少量CO2、CH4、H2S及 水蒸气产生。 • 该过程为吸热过程,主要发生脱羰基反应。
• 第二阶段为热解阶段,此时热解温度为 300~600 ℃ 。原料煤中有机质开始发生变 化,放出CO、CO2及水蒸气,生成热解水, 产生焦油,原料煤不变软并发生剧烈分解, 放出大量挥发产物,绝大部分焦油产生, 形成半焦。 • 这个过程主要发生解聚和分解反应
(1)鲁奇—鲁尔(Lurgi Ruhrgas)工艺
• 该法是由Lurgi GmbH公司(德国)和RuhrgasAG 公司(美国)开发研究的,是用热半焦作为热载 体的煤低温热解方法。粒度小于5mm的煤粉与焦 炭热载体混合后,在重力移动床直立反应器中进 行干馏。产生的煤气和焦油蒸气引致气体净化和 焦油回收系统,循环的半焦一部分离开直立炉用 风动运输机提升加热,并与废气分离后作为热载 体再返回直立炉。在常压下进行热解得到热值为 26~32MJ/m3的煤气、半焦以及焦油,焦油经过 加氢制得煤基原油。
(2)快速加氢热解工艺
• 煤的快速热解(简称FHP)是国外最近开发的一 种新的煤转化技术,它是以10000K/s以上极快的 升温速率加热煤,在温度600~900℃和压力 3~10Mpa条件下,煤于氢气中热解,仅以数秒的 短暂时间完成反应。由此最大程度从煤中获取笨、 甲苯、二甲苯(BTX)和苯酚、甲酚和二甲酚 (PCX)等液态轻质的芳烃(HCL)和轻质油等, 同时得到富甲烷的高热值煤气,其气、液态生成 物的总碳转化率可达50%左右,所以国际上称之 为介于气化和液化之间的第三种煤转化技术。
选/煤/技/术
煤化学 3 煤的热解
(1)芳香族的平均分子量(Mcl)
(2)侧链的平均分子量(Mδ)
(3)族的平均连接数(如侧链和桥键),
即配位数(σ+1)
29
桥键断裂机理及其动力学
30
CPD模型中动力学常数值
参数
Eb Ab σb Eg Ag σg ρ
Ec Ac
数值 232 kJ/mol 2.6×1015/s 7.5 kJ/mol 289 kJ/mol 3.0×1015/s 34 kJ/mol
The chemical percolation devolatilization (CPD) model
22
23
24
25
26
27
28
化学渗透脱挥发分模型(CPD)
基于煤的结构特征,用煤的化学结构参数
来描述煤结构及加热过程中煤的脱挥发分 行为。
原煤结构的描述
CPD模型直接使用由13C-NMR测得的四个化 学结构特征参数描述煤的结构:
5
热解 脱挥发份
由边界层传入的热量通过辐射和传导使煤 粒的温度升高,当一部分煤粒的温度达到 反应温度时就会发生热分解反应,生成挥 发份和焦。挥发份通过孔结构逸出,同时 带走一些热量。当煤粒持续加热时,热解 过程也会持续进行。通常脱挥发份过程起 始于颗粒的表面,逐步向颗粒内部推进。
6
7
煤热解是煤燃烧、气化、液化和干馏等煤 转化的基础。尽管在时间尺度上煤的热解 (数百毫秒)远短于后续的焦的氧化(对 粉煤为0.5~2秒),但对工业炉燃烧效率和 污染物的生成等有巨大的影响。热解条件 如煤种、压力、温度、升温速率和气氛不 仅影响着热解产物的分布, 而且决定着固体 产物焦的物理结构和化学结构, 从而影响着 煤转化的反应性能。
煤化学 3 煤的热解共41页
Байду номын сангаас
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
煤化学 3 煤的热解4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
200
400
600
T/℃
生物质与不同煤化程度煤共热解特性参数
生物质/
tv1/℃
tv2/℃
tb,max/℃
tc,max /℃
ts/℃
% 褐煤 烟煤 贫煤 褐煤 烟煤 贫煤 褐煤 烟煤 贫煤 褐煤 烟煤 贫煤 褐煤 烟煤 贫煤
20 302.6 304.3 302.1 392.5 389.3 443.5 368.3 366.8 366.8 472.2 479.7 535.4 548.3 513.1 462.2
热解压力
气体停留时间
1-H2 气氛 2-N2 气氛
1 BTX 2苯 3 PCX 4 二甲酚
组成(%)
芳烃 环烷烃 单烯烃 双烯烃 环烯烃 脂肪烃
茚 二硫化碳
噻吩 其它
干馏炉类型
低温干馏炉 15.56 8.00 16.26 1.36 9.55 46.53 0.15 0.06 0.66 1.07
炉型
• 煤粒越大,对挥发物逸出阻力也有越大,则干馏过程 易于受传热或传质过程控制,靠强化外部传热难以实 现快速干馏,反而因内外温差增大,挥发物析出经过 温度较高的半焦壳层,致使焦油的二次裂解加剧,因 而降低了焦油的产率。
– 热解温度
• 一般来讲,温度越 高,煤裂解的程度 越大,总挥发物产 率越高,固体残留 物(半焦或焦炭) 越少。
裂解、脱氢反应: 加氢反应:
缩合反应: 桥键分解:
—CH2—+H 2O → CO + 2H2 —CH2— + — O — →CO +H2
煤热解中的缩聚反应
• 胶质体固化过程的缩聚反应,主要是在热解生成的自由基之间的缩聚 ,其结果生成半焦。半焦分解,残留物之间缩聚,生成焦炭。缩聚反 应是芳香结构脱氢。苯、萘、联苯和乙烯参加反应。
– 按热源不同分类:主要有电加热热解、等离子体加热热解、微波加热热解、 热载体加热热解等。
– 按加热方式分类:主要有外热式热解,内热式热解和内外复合式热解。
– 按热载体类型不同分类:主要有固体热载体热解,气体热载体热解,以及固 体-气体复合载体热解等。
– 按反应器类型分类:主要有固定床、流化床、气流床,滚动床热解和输送床 热解等。
• Characteristic carbonization temperatures and stages.
按照热解终温的不同,煤的热解一般分为以下三类:
低温热解:500~700℃ 煤气、焦油和半焦; 中温热解:700~900℃,主要产品为城市煤气生产; 高温热解:1000℃左右,主要产品为焦炭。
• 第一阶段:干燥阶段,此时热解温度在300℃以下。原料煤在此阶段外 形没有变化,主要发生表面吸附、水蒸发,并放出原料中的吸附气体, 并有少量CO2、CH4、H2S及水蒸气产生。这个过程为吸热过程,主 要发生脱羰基反应。
• 第二阶段:低温热解阶段,此时热解温度为300~600℃。原料煤中有 机质开始发生变化,放出CO、CO2及水蒸气,生成热解水,产生焦 油,原料煤变软(??)并发生剧烈分解,放出大量挥发产物,绝大 部分焦油产生,形成半焦。这个过程主要发生解聚和分解反应。
– 按反应器内压力大小分类:可分为常压热解和加压热解。 – 按热解速度高低分类:可分为慢速热解,快速热解(10~200℃/s)和闪速
热解(超过200℃/s升温速率)。
3.3 煤炭热解原理
• 2.3.1煤炭热解过程:主要包括煤中吸附水 及气体的脱水干燥和脱气过程(物理过程 ),煤炭热分解过程(化学过程),小分 子物质(包脱附产物和分解产物)扩散过 程(物理过程),以及分解产物(小分子 有机物和半焦)二次反应(二次分解或聚 合)过程(化学过程)等四个过程。
• 煤炭热解研究的重要性 • 煤炭热解发展的发展方向。
3.2 煤炭热解的分类
• 热解分类
– 按热解气氛分类:主要有惰性气氛热解、还原气氛(氢、甲烷、一氧化碳或 还原气体混合物等)热解,按是否存在催化剂,可以进一步分为催化热解、 催化加氢热解等。
– 按热解温度高低分类:主要有低温热解(500~650℃)、中温热解(650~ 800)、高温热解(900~1000)和超高温热解(>1200℃)。
31
25
19
煤气中回收的轻油
气体汽油
粗苯-汽油
粗苯
产率(%)
1.0
1.0
1~1.5
组成
脂肪烃为主
芳烃50% 芳烃90%
– 加热速率
• 急速加热时产生的很强的热冲击 力,使大分子的缩合芳香族化合物 中具有不同键能的化学键同时被打 开、断裂,生成数量众多的自由基, 而氢气氛又提供了自由基的稳定条 件,使之生成气态或液态产物; • 缓慢的加热过程中,化学键的断 裂主要发生在煤的颗粒结构内部, 由此引起聚合反应生成半焦,故导 致气相生成物产率降低。
累积失重(%)
脱气
主要 失重 量
0 200 400 600 800
温度(oC)
• Hypothetical structure for coal and its use in understanding thermal conversion
3.3.2 煤热解的主要化学反应
• 煤热解中的裂解反应;
– 结构单元之间的桥键断裂生成自由基; – 脂肪侧链受热易裂解,生成气态烃; – 含氧官能团的裂解-- —OH( 700~800℃ )
>—C=O( 400℃ )>—COOH( 200℃); – 低分子化合物的裂解,是以脂肪结构的低分子化
合物为主,其受热后,可分解成挥发性产物。
一次热解产物的二次热解反应
分解温度(oC)
10 20 30 40
挥发分(daf,%)
后期规律接近 初期差别明显
后期斜率接近
初期 斜率 差别 很大
累积失重(%)
煤质的影响
显微组分影响
– 入煤粒度:煤粒度的大小影响加热速度和挥发物 从煤粒内部的导出。
• 煤粒越小,则易于达到较快的加热速度,能增加初次 焦油产率,且煤粒内外温差小,挥发物从煤粒内部逸 出路径短,有利于减少焦油的二次裂解,从而提高初 次焦油的产率。
• 催化剂上甲烷芳构化或甲烷二氧化碳重整 耦合热解。
• 与气化过程耦合热解。
生物质和不同煤化程度煤工业分析和元素分析
样品
样品平均 堆积密度/ 粒径/m kg/m3 高位发热量/
工业分析/%
元素分析w/%
MJ/kg Mad Vad Aad Cad Had Oad Nad Sad
生物质
65
293.3
8
6
褐煤
C/% 24.41 65.05 67.85 86.05
质量百分含量/% 质量变化率/(%/min)
80
DTG 70
ty tmax ts
60 0
200 400 600 800 T/℃
生物质单独热解曲线
4
烟煤
2
贫煤
00
200 400 600 800 T/℃
不同煤化程度煤单独热解曲线
质量变化率/(%/min)
质量变化率/(%/min) 质量变化率 /(%/min)
不同比例生物质与褐煤共热解 16
1:1
12
1:2
8
1:4
4Leabharlann 0 0200400
600 T/℃
不同比例生物质与贫煤共热解
16
1:1
12
8
1:2
4
1:4
0 0
200 400
600 T/℃
16
不同比例生物质混合物与烟煤共热解
1:1
12
8
1:2
1:4
4
0 0
燃料种类 生物质 褐煤 烟煤 贫煤
100
TG 90
生物质、不同煤化程度煤单独热解特性参数
tv/℃ 302.1 410.9 430.8 466.1
tmax/℃ 368.3 475.4 481.2 574.4
ts/℃ 409.2 579.6 613.6 671.0
V/% 69.04 30.05 27.26 12.92
生物质/
V试验/%
V计算/%
C试验/%
C计算/%
% 褐煤 烟煤 贫煤 褐煤 烟煤 贫煤 褐煤 烟煤 贫煤 褐煤 烟煤 贫煤
20 38.89 38.28 25.41 37.85 35.78 24.14 56.54 57.62 72.87 56.93 59.16 73.22
33 44.23 42.13 33.44 43.05 41.05 31.44 50.61 53.37 64.29 51.51 53.51 65.71
产品分布与性状
最终温度(℃)
600 ℃低温干馏 800 ℃中温干 1000 ℃高温
馏
干馏
固体产物
半焦
中温焦
高温焦
产焦
80~82
75~77
70~72
品 产率
(%)
焦油 煤气(标准米3/吨 干煤)
9~10 120
6~7
3.5
200
320
产 焦炭:着火点(℃)
450
490
700
热 品性状 解 温 焦油: 度
17.85
8.21 79.22 5.73 43.13 6.37 35.57 0.85 0.14
褐煤
40
569.3
20.20
6.03 38.60 25.58 49.30 4.16 12.40 1.19 1.34
烟煤
40
贫煤
40
645.5 575.3
25.41 23.78
5.79 34.81 12.44 66.44 4.20 9.80 0.84 0.49 1.58 15.98 26.95 62.47 2.82 4.59 1.00 0.59