九年级数学:图形的旋转练习(含答案)
中考数学元复习《图形的旋转》练习题含答案
中考数学复习图形的旋转一、选择题1.下列图形中是中心对称图形的有( B )A.1个B.2个C.3个D.4个2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,连结AD.下列结论一定正确的是( C )A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC,第2题图),第3题图) 3.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( A )A.△ABC绕点C顺时针旋转90°,再向下平移3个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移1个单位D.△ABC绕点C逆时针旋转90°,再向下平移3个单位4.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为( A )A.10 B.2 2 C.3 D.25【解析】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD=BE2+DE2=10.故选A.,第4题图),第5题图) 5.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是( B )A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)【解析】∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′-∠COA′=∠COC′-∠COA′,∴∠AOC=∠A′OC′.∴△ACO≌△A′C′O,∴AC=A′C′,CO=C′O.∵A(-2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选B.6.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连结AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( D ) A.0个B.1个C.2个D.3个【解析】∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE =∠BCA=60°,A C=CD=DE=CE,∴∠ACD=120°-60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.二、填空题7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是__60°__.,第7题图),第8题图) 8.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:__将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).__.9.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A恰好落在AC上的点A′处,连结CC′,则∠ACC′=__110°__.【解析】∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°-2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°.10.如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连结AP并延长交CD于点E,连结PC,则△PCE的面积为__9-53__.【解析】∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP =60°,AP=AB=23,∵AD=23,∴AE=4,DE=2,∴CE=23-2,PE=4-23,过P作PF ⊥CD 于F ,∴PF =32PE =23-3,∴△PCE 的面积为12CE ·PF =12×(23-2)×(23-3)=9-5 3.故答案为9-5 3.,第10题图) ,第11题图)11.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,则DE 2+BG 2=__2a 2+2b 2__.【解析】连结BD ,EG ,如图所示,∴DO 2+BO 2=BD 2=BC 2+CD 2=2a 2,EO 2+OG 2=EG 2=CG 2+CE 2=2b 2,则BG 2+DE 2=DO 2+BO 2+EO 2+OG 2=2a 2+2b 2.三、解答题12. 如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A (-2,3),B (-1,2),C (-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为__132π__;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标.,题图),答图)解:(1)如图所示: (2)在旋转过程中,点A 经过的路径AA 1︵的长度为90×π×13180=132π (3)∵点B ,B 1在y 轴两旁,连结BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B +D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的解析式为y =kx +b ,依据题意得⎩⎨⎧-k +b =2,2k +b =1,解得⎩⎨⎧k =-13,b =53,∴y =-13x +53,∴D (0,53) 13.如图,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:△DEF ≌△DMF ;(2)若AE =1,求FM 的长.解:(1)∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F ,C ,M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠MDF =90°,∵∠EDF=45°,∴∠MDF =∠EDF =45°,在△DEF 和△DMF 中,∵⎩⎨⎧DE =DM ,∠EDF =∠MDF ,DF =DF ,∴△DEF ≌△DMF (SAS ) (2)由(1)得EF =MF ,设EF =MF =x ,∵AE =CM =1,且BC =3,∴BM =BC +CM =3+1=4,∴BF =BM -MF =BM -EF =4-x ,∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即22+(4-x )2=x 2,解得x =52,∴FM =5214.如图①,将一个边长为2的正方形ABCD 和一个长为2,宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,旋转角为α.(1)当点D ′恰好落在EF 边上时,求旋转角α的值;(2)如图②,G 为BC 中点,且0°<α<90°,求证:GD ′=E ′D ;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△CBD ′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.解:(1)∵DC ∥EF ,∴∠DCD ′=∠CD′E =α,∵sin α=CE CD′=CE CD =12,∴α=30° (2)∵G 为BC 中点,∴GC =CE′=CE =1.∵∠D′CG =∠DCG +∠DCD′=90°+α,∠DCE ′=∠D′CE′+∠DCD′=90°+α,∴∠D ′CG =∠DCE′.又∵CD′=CD ,∴△GCD ′≌△E ′CD (SAS ),∴GD ′=E′D (3)能.α=135°或α=315°。
中考数学《旋转》专题练习含答案解析
旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA PB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB ﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【链接】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点A、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=45度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE 绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60度,图中除△ABC外,还有等边三形是△AOD.【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ.【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。
初中数学九年级上册《图形的旋转》基础典型练习题(整理含答案)
《图形的旋转》基础典型练习题一、选择题(每题3分,共18分)1.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.在10分钟的时间内,分针转过的角度是()A.15°B.30°C.15°D.30°3.在10分钟的时间内,时钟的时针旋转过的角度是()A.5°B.10°C.15°D.30°4.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是()A.1 B.2 C.3 D.45.在图形的旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离都相等B.图形上的每一点转动的角度都相同C.图形上可能存在不动的点D.旋转前和旋转后的图形全等6.有一种平面图形,它绕着中心旋转,不论旋转多少度,•所得到的图形都与原图形完全重合,你觉得它可能是()A.三角形B.等边三角形C.正方形D.圆二、填空题(7题4分,11题5分,其余每题3分,共18分)7.经过旋转后的图形与原图形的关系是________,它们的对应线段_______,•对应角________,对应点到旋转中心的距离________.8.一架风车有分布均匀的四个叶片,旋转一周可与原来的位置重合______次.9.如图所示,图①沿逆时针方向旋转90°可得到图_________.10.如上图所示,图①按顺时针方向至少旋转_______度可得图③.11.如图所示,在△ABC中,∠C=90°,AB=5cm,BC=3cm,•把这个三角形在平面内绕点C逆时针旋转60°至△A′B′C′,那么AA′的长度是______cm.(•不取近似值)三、作图题(每题6分,共18分)12.如图所示,△ABC绕点A旋转后,点B与点D•重合,•作出旋转后的三角形ADE.13.把边长为2cm的正方形ABCD,绕着点D逆时针旋转45°后,变为正方形A′B•′C′D′,作出上述图形.14.如图所示是计算机操作人员用Flash设计出的美丽图案,•试把它按逆时针方向旋转180°,作出旋转后的图案.四、解答题(6分)15.如图所示,①图怎样变化可成②图呢?请你分析变化过程.参考答案:一、1.C 点拨:骑自行车的人的运动可以看作是平移.2.D 点拨:分针60分钟经过的角度为360°,则1分钟转6°,10分钟转6•°×10=60°.3 .A 点拨:时针1小时转过的角度是360°×112=30°, 则时针在10•分钟内经过30°×16=5°,故选A . 4.C 点拨:转过120°,240°,360°,均可与原图形重合.5.A 点拨:图形上的点到旋转中心的距离不一定相等,•但对应点到旋转中心的距离相等,一定要熟练掌握图形旋转的性质和定义.6.D 点拨:在平面图形中,具有这种性质的有圆,在立体图形中有球体,•这种性质叫图形的旋转不变性.二、7.全等;相等;相等;相等点拨:考查旋转图形的性质.8.四 点拨:在旋转一周的过程中,当风车旋转90°,180°,270°,360°时均可与原来的位置重合.9.⑤ 点拨:单独观察图形中的食指,原来的图案中食指向右,•当图案沿逆时针旋转90°时,食指向上,故应是图⑤.10.180 点拨:原来图案中的食指指向右,图③中的食指指向左,•故让图①按顺时针旋转180°即可.11.4 点拨:根据旋转的性质,可知AC=A ′C ,依题意∠ACA ′=60°,所以△ACA ′为等边三角形,故AA ′=AC .在Rt △ABC 中,AC=22AB BC -=2253-=4(cm),故AA ′=4cm .三、12.解:作法:①作∠DAE=∠BAC .②在∠DAE 的边AE 上取AE=AC .③连接DE . △ADE 即为所求.(如答图所示)点拨:回忆作一个角等于已知角的方法.13.解:如答图所示.点拨:作图时要注意旋转中心,旋转方向,旋转角度.14.解:如答图所示.点拨:原来的图案中“头发”向上,按逆时针方向旋转180°后,图案中“头发”向下.四、15.解:(1)先把①图向右平移直到两个大圆重合.(2)把图案按逆时针方向旋转90°即得②图.或把图案按顺时针方向旋转270°也可得到②图.点拨:先把图案向右平移,再把图案旋转即可.。
九年级(初三)《旋转》知识点及练习(带答案)
1. F 面的图形中,是中心对称图形的是(旋转一. 知识框架 二. 知识概念1•旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心, 转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固 定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小 相等,旋转前后图形的大小和形状没有改变。
)2•旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对 称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于 0°大于360°。
3. 中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转 180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转 180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4. 中心对称的性质:关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
、精心选一选(每小题3分,共30分) |> 4)D .2.平面直角坐标系内一点 P (- 2,3)关于原点对称的点的坐标是 ( C . (- 2,- 3)D .(2 , - 3)3. 3张扑克牌如图1所示放在桌子上,小敏把其中一张旋转的牌从左数起是( ) A •第一张B •第二张C .第三张D •第四张4•在下图右侧的四个三角形中,不能由 △ ABC 经过旋转或平移得到的是(5.如图3的方格纸中,左边图形到右边图形的变换是( )A .向右平移7格B .以AB 的垂直平分线为对称轴作轴对称,再以 AB 为对称轴作轴对称图C .绕AB 的中点旋转1800,再以AB 为对称轴作轴对称D .以AB 为对称轴作轴对称,再向右平移7格6 •从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A . A NEGC . X I HO 7.如图4, C 是线段BD 上一点,分别以 BC 、CD 为边在 △ ABC 和等边△ CDE,AD 交CE 于F , BE 交AC 于G , 转而相互得到的三角形对数有( ).C . 3对&下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A . ( 3,- 2)B . (2,3)180。
人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)
旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
九年级数学上册第二十三章旋转经典大题例题(带答案)
九年级数学上册第二十三章旋转经典大题例题单选题1、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD=DC=1AC=2√22∴OD是△ABC的中位线∴BC=2OD∵OA2=OD2+AD2∴(4−x)2=x2+(2√2)2,解得x=1∴BC=2OD=2x=2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD的长是解题的关键.2、如图,有①~⑤5个条形方格图,每个小方格的边长均为1,则②~⑤中由实线围成的图形与①中由实线围成的图形全等的有()A.②③④B.③④⑤C.②④⑤D.②③⑤答案:C分析:根据旋转变换及全等图形的定义对应边相等,对应角相等的图形是全等图形对个图进行一一分析判断即可解:②以右下角顶点为定点顺时针旋转90°后,两个实线图形刚好重合,③中为平行四边形,而①中为梯形,所以不能和①中图形完全重合,④可上下反转成②的情况,然后旋转可和①中图形完全重合,⑤可旋转180°后可和①中图形完全重合,∴与①中由实线围成的图形全等的有②④⑤.故选择C.小提示:本题考查多边形全等的判定,掌握全等图形的定义,关键是会通过图形的旋转使它们全等.3、在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣12答案:D分析:首先根据关于原点对称的点的坐标特点可得a+2+4=0,2−b=0,可得a,b的值,再代入求解即可得到答案.解:∵点(a+2,2)关于原点的对称点为(4,﹣b),∴a+2+4=0,2−b=0,解得:a=−6,b=2,∴ab=−12,故选D小提示:本题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的横纵坐标都互为相反数.4、如图,△OAB中,∠AOB=60°,OA=4,点B的坐标为(6,0),将△OAB绕点A逆时针旋转得到△CAD,当点O的对应点C落在OB上时,点D的坐标为()A.(7,3√3)B.(7,5)C.(5√3,5)D.(5√3,3√3)答案:A分析:如图,过点D作DE⊥x轴于点E.证明△AOC是等边三角形,解直角三角形求出DE,CE,可得结论.解:如图,过点D作DE⊥x轴于点E.∵B(6,0),∴OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,∠ACD=∠AOB=60°,∵∠AOC=60°,∴△AOC是等边三角形,∴OC=OA=4,∠ACO=60°,∴∠DCE=60°,∴CE=1CD=3,DE=√CD2−CE2=3√3,2∴OE=OC+CE=4+3=7,∴D(7,3√3),故选:A.小提示:本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质.5、如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有()A.1种B.2种C.3种D.4种答案:C分析:根据轴对称图形的概念,找到对称轴即可得答案.解:如下图,∵图形是轴对称图形,对称轴是直线AB,∴把1、2、3三个正方形涂黑,与原来涂黑的小正方形组成的新图案仍然是轴对称图形,故选:C.小提示:本题考查了轴对称图形的概念,解题的关键是找到对称轴.6、连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.△CEH是等边三角形答案:D分析:根据正八边形和圆的性质进行解答即可.解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH与四边形EFGH 全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=360°=45°8∵OE=OH∠DOE=22.5°∴∠OEH=∠OHE=12∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=1(180°-∠CHE)=67.5°2∴△CEH不是等边三角形,故选项错误,符合题意.故选:D.小提示:本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.7、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.8、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.9、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.10、已知两点M1(x1,y1),M2(x2,y2),若x1+x2=0,y1+y2=0,则点M1与M2()A.关于y轴对称B.关于x轴对称C.关于原点对称D.以上均不对答案:C分析:首先利用等式求出x1=−x2,y1=−y2,然后可以根据横纵坐标的关系得出结果.∵x1+x2=0,y1+y2=0,∴x1=−x2,y1=−y2,∵两点M1(x1,y1),M2(x2,y2),∴点M1与M2关于原点对称,故选:C.小提示:本题主要考查平面直角坐标系中关于原点对称的点,属于基础题,利用等式找到点M1与M2横纵坐标的关系是解题关键.填空题11、如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,AB=5,BC=9,则BD=______.答案:√106分析:连接BE,如图,根据旋转的性质得∠BCE=60°,CB=CE,BD=AE,再判断△BCE为等边三角形得到BE=BC=9,∠CBE=60°,从而有∠ABE=90°,然后利用勾股定理计算出AE即可.解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=9,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE=√52+92=√106.所以答案是:√106.小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12、以原点为中心,把M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.答案:(−4,3)分析:建立平面直角坐标系,根据旋转的性质得出N点坐标,由此即可得出答案.解:如图:由旋转的性质可得:M点横坐标等于N点纵坐标的值,M点纵坐标的值等于N点横坐标的绝对值,又∵M(3,4),∴N(-4,3),所以答案是:(-4,3).小提示:此题考查有关点的坐标旋转的性质,结合坐标轴和旋转的特点确定坐标即可.13、如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是__________.答案:2分析:点F 运动所形成的图象是一条直线,当OF ⊥F 1F 2时,垂线段OF 最短,当点F 1在x 轴上时,由勾股定理得:P 1O =F 1O =4√33,进而得P 1A =P 1F 1=AF 1=8√33,求得点F 1的坐标为(4√33,0),当点F 2在y 轴上时,求得点F 2的坐标为(0,-4),最后根据待定系数法,求得直线F 1F 2的解析式为y =√3x -4,再由线段中垂线性质得出F 1F 2=AF 1=8√33,在Rt △OF 1F 2中,设点O 到F 1F 2的距离为h ,则根据面积法得12×OF 1×OF 2=12×F 1F 2×ℎ,即12×4√33×4=12×8√33×ℎ,解得h =2,根据垂线段最短,即可得到线段OF 的最小值为2.解:∵将线段PA 绕点P 顺时针旋转60°得到线段PF ,∴∠APF =60°,PF =PA ,∴△APF 是等边三角形,∴AP =AF ,如图,当点F 1在x 轴上时,△P 1AF 1为等边三角形,则P 1A =P 1F 1=AF 1,∠AP 1F 1=60°,∵AO ⊥P 1F 1,∴P 1O =F 1O ,∠AOP 1=90°,∴∠P 1AO =30°,且AO =4,由勾股定理得:P 1O =F 1O =4√33, ∴P 1A =P 1F 1=AF 1=8√33, ∴点F 1的坐标为(4√33,0), 如图,当点F 2在y 轴上时,∵△P 2AF 2为等边三角形,AO ⊥P 2O ,∴AO =F 2O =4,∴点F 2的坐标为(0,-4),∵tan∠OF 1F 2=OF 2OF 1=4√33=√3,∴∠OF 1F 2=60°,∴点F 运动所形成的图象是一条直线,∴当OF ⊥F 1F 2时,线段OF 最短,设直线F 1F 2的解析式为y =kx +b , 则{4√33k +b =0b =−4,解得{k =√3b =−4, ∴直线F 1F 2的解析式为y =√3x -4,∵AO =F 2O =4,AO ⊥P 1F 1,∴F 1F 2=AF 1=8√33, 在Rt △OF 1F 2中,OF ⊥F 1F 2,设点O 到F 1F 2的距离为h ,则12×OF 1×OF 2=12×F 1F 2×ℎ,∴12×4√33×4=12×8√33×ℎ,解得h =2,即线段OF的最小值为2,故答案为2.小提示:本题属于三角形的综合题,主要考查了旋转的性质,勾股定理的应用,等边三角形的性质以及待定系数法的运用等,解决问题的关键是作辅助线构造等边三角形以及面积法求最短距离,解题时注意勾股定理、等边三角形三线合一以及方程思想的灵活运用.14、已知点P(m−2,m)关于原点对称的点在第三象限,则m的取值范围是_______.答案:m>2分析:根据关于原点对称的点的性质可得点P在第一象限,进而得出不等式组,再解不等式组即可.解:∵点P(m−2,m)关于原点对称的点在第三象限,∴点P(m−2,m)在第一象限,∴{m−2>0,m>0解得:m>2,所以答案是:m>2.小提示:此题主要考查了关于原点对称的点的坐标特点,解一元一次不等式组,关键是掌握各象限内点的坐标符号.15、如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△AB,则线段B1D的长度为______.A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,OD=12答案:1.5cm##3cm2分析:先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出ODAB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,则问题得解.=12∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=√OA2+OB2=5cm,∴OD=1AB=2.5cm,2∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.所以答案是:1.5cm.小提示:本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握勾股定理是解题的关键.解答题16、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.答案:(1)画图见解析,(2)画图见解析分析:(1)分别确定A,B向右平移4个单位后的对应点A1,B1,再连接A1B1即可;(2)分别确定A,B绕原点O旋转180°后的对应点A2,B2,再连接A2B2即可.解:(1)如图,线段A1B1即为所求作的线段,(2)如图,线段A2B2即为所求作的线段,小提示:本题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键. 17、如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形.(1)写出△OAB各顶点的坐标;(2)以点O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,写出A′,B′的坐标.答案:(1)A(-2,0),B(-1,√3),C(0,0)(2)A′(−1,√3),B′(1,√3)分析:(1)作高线BC,根据等边三角形的性质和勾股定理求OC和BC的长,写出三点的坐标,注意象限的符号问题;(2)如图2,由旋转可知:A′与B重合,B与B′关于y轴对称,可得:A′,B′的坐标.(1)解:如图1,过B作BC⊥OA于C,∵△AOB是等边三角形,且OA=2,OA=1,∴OC=12由勾股定理得:BC=√22−12=√3,∴A(−2,0),B(−1,√3),O(0,0);(2)解:如图2,∵∠AOB=60°,OA=OB,∴A′与B重合,∴A′(−1,√3),由旋转得:∠BOB′=60°,OB=OB′,∵∠AOD=90°,∴∠BOD=30°,∴∠DOB′=30°,∴BB′⊥OD,DB=DB′,∴B′(1,√3).小提示:本题考查了坐标与图形变换、等边三角形的性质、旋转的性质,熟练掌握旋转和等边三角形的性质是关键,并注意点所在象限的符号问题.18、如图,一伞状图形,已知∠AOB=120°,点P是∠AOB角平分线上一点,且OP=2,∠MPN=60°,PM与OB交于点F,PN与OA交于点E.(1)如图一,当PN与PO重合时,探索PE,PF的数量关系(2)如图二,将∠MPN在(1)的情形下绕点P逆时针旋转α度(0<α<60°),继续探索PE,PF的数量关系,并求四边形OEPF的面积.答案:(1)PE=PF,证明详见解析;(2)PE=PF,√3分析:(1)根据角平分线定义得到∠POF=60°,推出△PEF是等边三角形,得到PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,根据角平分线的性质得到PQ=PH,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF,S四边形OEPF=S四边形OQPH,求得OQ=1,QP=√3,根据三角形的面积公式即可得到结论.解:(1)∵∠AOB=120°,OP平分∠AOB,∴∠POF=60°,∵∠MPN=60°,∴∠MPN=∠FOP=60°,∴ΔPEF是等边三角形,∴PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,∵OP平分∠AOB,∴PQ=PH,∠PQO=∠PHO=90°,∵∠AOB=120°,∴∠QPH=60°,∴∠QPE+∠FPH+∠EPH,∴∠QPE=∠EPF,在ΔQPE与ΔHPF中{∠EQP=∠FHP ∠QPE=∠HPFPQ=PH,∴ΔQPE≌ΔHPF(AAS),∴PE=PF,S四边形OEPF =S四边形OQPH,∵PQ⊥OA,PH⊥OB,OP平分∠AOB,∴∠QPO=30°,∴OQ=1,QP=√22−12=√3,∴SΔOPQ=12×1×√3=√32,∴四边形OEPF的面积=2SΔOPQ=√3小提示:本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.。
中考数学真题《图形的旋转》专项测试卷(附答案)
中考数学真题《图形的旋转》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(30题)一 、单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD =3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12. 其中正确结论有( )A .1个B .2个C .3个D .4个4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF 与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)ky x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧) 现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,ADDC的值为________.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2)边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明.17.(2023·四川自贡·统考中考真题)如图1 一大一小两个等腰直角三角形叠放在一起 M N 分别是斜边DE AB 的中点 2,4DE AB ==.(1)将CDE 绕顶点C 旋转一周 请直接写出点M N 距离的最大值和最小值(2)将CDE 绕顶点C 逆时针旋转120︒(如图2) 求MN 的长.18.(2023·四川达州·统考中考真题)如图,网格中每个小正方形的边长均为1 ABC 的顶点均在小正方形的格点上.(1)将ABC 向下平移3个单位长度得到111A B C △ 画出111A B C △ (2)将ABC 绕点C 顺时针旋转90度得到222A B C △ 画出222A B C △ (3)在(2)的运动过程中请计算出ABC 扫过的面积.19.(2023·辽宁·统考中考真题)在Rt ABC ∆中 90°ACB ∠= CA CB = 点O 为AB 的中点 点D 在直线AB 上(不与点,A B 重合) 连接CD 线段CD 绕点C 逆时针旋转90° 得到线段CE 过点B 作直线l BC ⊥ 过点E 作EF l ⊥ 垂足为点F 直线EF 交直线OC 于点G .(1)如图,当点D 与点O 重合时 请直接写出线段AD 与线段EF 的数量关系 (2)如图,当点D 在线段AB 上时 求证:2CG BD BC +=(3)连接DE CDE 的面积记为1S ABC 的面积记为2S 当:1:3EF BC =时 请直接写出12S S 的值.20.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后 刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板ABC 绕点A 逆时针旋转θ到达AB C ''△的位置 那么可以得到:AB AB '=AC AC '= BC B C ''= BAC B AC ''∠=∠ ABC AB C ''∠=∠ ACB AC B ''∠=∠( )刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中 即“变”中蕴含着“不变” 这是我们解决图形旋转的关键 故数学就是一门哲学. 【问题解决】(1)上述问题情境中“( )”处应填理由:____________________(2)如图,小王将一个半径为4cm 圆心角为60︒的扇形纸板ABC 绕点O 逆时针旋转90︒到达扇形纸板A B C '''的位置.①请在图中作出点O①如果=6cm BB '则,在旋转过程中 点B 经过的路径长为__________ 【问题拓展】小李突发奇想 将与(2)中完全相同的两个扇形纸板重叠 一个固定在墙上 使得一边位于水平位置 另一个在弧的中点处固定 然后放开纸板 使其摆动到竖直位置时静止 此时 两个纸板重叠部分的面积是多少呢?如图所示 请你帮助小李解决这个问题.21.(2023·浙江绍兴·统考中考真题)在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列) 12,10,AB AD B ==∠为锐角 且4sin 5B =.(1)如图1 求AB 边上的高CH 的长.(2)P 是边AB 上的一动点 点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''. ①如图2 当点C '落在射线CA 上时 求BP 的长. ①当AC D ''△是直角三角形时 求BP 的长.22.(2023·四川南充·统考中考真题)如图,正方形ABCD 中 点M 在边BC 上 点E 是AM 的中点 连接EDEC .(1)求证:ED EC =(2)将BE 绕点E 逆时针旋转 使点B 的对应点B '落在AC 上 连接MB '.当点M 在边BC 上运动时(点M 不与B C 重合) 判断CMB '的形状 并说明理由.(3)在(2)的条件下 已知1AB = 当45DEB ∠'=︒时 求BM 的长.23.(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上 李老师让同桌两位同学用相同的两块含30︒的三角板开展数学探究活动 两块三角板分别记作ADB 和,90,30A D C ADB A D C B C ∠=∠=︒∠''''=∠=︒△ 设2AB =. 【操作探究】如图1 先将ADB 和A D C ''的边AD A D ''重合 再将A D C ''绕着点A 按顺时针...方向旋转 旋转角为()0360αα︒≤≤︒ 旋转过程中ADB 保持不动 连接BC .(1)当60α=︒时 BC =________ 当22BC = α=________︒ (2)当90α=︒时 画出图形 并求两块三角板重叠部分图形的面积(3)如图2 取BC 的中点F 将A D C ''绕着点A 旋转一周 点F 的运动路径长为________. 24.(2023·湖南·统考中考真题)(1)[问题探究]如图1 在正方形ABCD 中 对角线AC BD 、相交于点O .在线段AO 上任取一点P (端点除外) 连接PD PB 、.①求证:PD PB =①将线段DP 绕点P 逆时针旋转 使点D 落在BA 的延长线上的点Q 处.当点P 在线段AO 上的位置发生变化时 DPQ ∠的大小是否发生变化?请说明理由 ①探究AQ 与OP 的数量关系 并说明理由. (2)[迁移探究]如图2 将正方形ABCD 换成菱形ABCD 且60ABC ∠=︒ 其他条件不变.试探究AQ 与CP 的数量关系 并说明理由.25.(2023·湖北随州·统考中考真题)1643年 法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A B C 求平面上到这三个点的距离之和最小的点的位置 意大利数学家和物理学家托里拆利给出了分析和证明 该点也被称为“费马点”或“托里拆利点” 该问题也被称为“将军巡营”问题. (1)下面是该问题的一种常见的解决方法 请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空 ①处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空 ①处填写角度数 ①处填写该三角形的某个顶点)当ABC 的三个内角均小于120︒时如图1 将APC △绕 点C 顺时针旋转60︒得到A P C '' 连接PP '由60PC P C PCP ''=∠=︒, 可知PCP '△为 ① 三角形 故PP PC '= 又P A PA ''= 故PA PB PC PA PB PP A B '''++=++≥由 ① 可知 当B P P ' A 在同一条直线上时 PA PB PC ++取最小值 如图2 最小值为A B ' 此时的P 点为该三角形的“费马点” 且有APC BPC APB ∠=∠=∠= ①已知当ABC 有一个内角大于或等于120︒时 “费马点”为该三角形的某个顶点.如图3 若120BAC ∠≥︒则,该三角形的“费马点”为 ① 点.(2)如图4 在ABC 中 三个内角均小于120︒ 且3430AC BC ACB ==∠=︒,, 已知点P 为ABC 的“费马点” 求PA PB PC ++的值(3)如图5 设村庄A B C 的连线构成一个三角形 且已知4km 23km 60AC BC ACB ==∠=︒,,.现欲建一中转站P 沿直线向A B C 三个村庄铺设电缆 已知由中转站P 到村庄A B C 的铺设成本分别为a 元/km a 元/km 2a 元/km 选取合适的P 的位置 可以使总的铺设成本最低为___________元.(结果用含a 的式子表示)26.(2023·四川·统考中考真题)如图1 已知线段AB AC 线段AC 绕点A 在直线AB 上方旋转 连接BC 以BC 为边在BC 上方作Rt BDC 且30DBC ∠=︒.(1)若=90BDC ∠︒ 以AB 为边在AB 上方作Rt BAE △ 且90AEB ∠=︒ 30EBA ∠=︒ 连接DE 用等式表示线段AC 与DE 的数量关系是(2)如图2 在(1)的条件下 若DE AB ⊥ 4AB = 2AC = 求BC 的长(3)如图3 若90BCD ∠=︒ 4AB = 2AC = 当AD 的值最大时 求此时tan CBA ∠的值.27.(2023·湖北黄冈·统考中考真题)【问题呈现】CAB △和CDE 都是直角三角形 90,,ACB DCE CB mCA CE mCD ∠=∠=︒== 连接AD BE 探究ADBE 的位置关系.(1)如图1 当1m =时 直接写出AD BE 的位置关系:____________(2)如图2 当1m ≠时 (1)中的结论是否成立?若成立 给出证明 若不成立 说明理由. 【拓展应用】(3)当3,7,4m AB DE ===时 将CDE 绕点C 旋转 使,,A D E 三点恰好在同一直线上 求BE 的长.28.(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图① 把一个含有45︒角的三角尺放在正方形ABCD 中 使45︒角的顶点始终与正方形的顶点C 重合 绕点C 旋转三角尺时 45︒角的两边CM CN 始终与正方形的边AD AB 所在直线分别相交于点M N 连接MN 可得CMN .【探究一】如图① 把CDM 绕点C 逆时针旋转90︒得到CBH 同时得到点H 在直线AB 上.求证:CNM CNH ∠=∠【探究二】在图①中 连接BD 分别交CM CN 于点E F .求证:CEF CNM △∽△【探究三】把三角尺旋转到如图①所示位置 直线BD 与三角尺45︒角两边CM CN 分别交于点E F .连接AC 交BD 于点O 求EFNM的值.29.(2023·湖南·统考中考真题)问题情境:小红同学在学习了正方形的知识后 进一步进行以下探究活动:在正方形ABCD 的边BC 上任意取一点G 以BG 为边长向外作正方形BEFG 将正方形BEFG 绕点B 顺时针旋转.特例感知:(1)当BG 在BC 上时 连接DF AC ,相交于点P 小红发现点P 恰为DF 的中点 如图①.针对小红发现的结论 请给出证明(2)小红继续连接EG 并延长与DF 相交 发现交点恰好也是DF 中点P 如图① 根据小红发现的结论 请判断APE 的形状 并说明理由 规律探究:(3)如图① 将正方形BEFG 绕点B 顺时针旋转α 连接DF 点P 是DF 中点 连接AP EP AEAPE 的形状是否发生改变?请说明理由.30.(2023·贵州·统考中考真题)如图① 小红在学习了三角形相关知识后 对等腰直角三角形进行了探究 在等腰直角三角形ABC 中 ,90CA CB C =∠=︒ 过点B 作射线BD AB ⊥ 垂足为B 点P 在CB 上.(1)【动手操作】如图① 若点P 在线段CB 上 画出射线PA 并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 根据题意在图中画出图形 图中PBE ∠的度数为_______度 (2)【问题探究】根据(1)所画图形 探究线段PA 与PE 的数量关系 并说明理由 (3)【拓展延伸】如图① 若点P 在射线CB 上移动 将射线PA 绕点P 逆时针旋转90︒与BD 交于点E 探究线段,,BA BP BE 之间的数量关系 并说明理由.参考答案一 单选题1.(2023·江苏无锡·统考中考真题)如图,ABC 中 55BAC ∠=︒ 将ABC 逆时针旋转(055),αα︒<<︒得到ADE DE 交AC 于F .当40α=︒时 点D 恰好落在BC 上 此时AFE ∠等于( )A .80︒B .85︒C .90︒D .95︒【答案】B【分析】根据旋转可得B ADB ADE ∠=∠=∠ 再结合旋转角40α=︒即可求解. 【详解】解:由旋转性质可得:55BAC DAE ∠=∠=︒ AB AD = ①40α=︒①15DAF ∠=︒ 70B ADB ADE ∠=∠=∠=︒ ①85AFE DAF ADE ∠=∠+∠=︒故选:B .【点睛】本题考查了几何—旋转问题 掌握旋转的性质是关键.2.(2023·天津·统考中考真题)如图,把ABC 以点A 为中心逆时针旋转得到ADE 点B C 的对应点分别是点D E 且点E 在BC 的延长线上 连接BD 则,下列结论一定正确的是( )A .CAE BED ∠=∠B .AB AE =C .ACE ADE ∠=∠D .CE BD = 【答案】A【分析】根据旋转的性质即可解答. 【详解】根据题意 由旋转的性质可得AB AD = AC AE = BC DE = 故B 选项和D 选项不符合题意=ABC ADE ∠∠=ACE ABCBAC∴=ACE ADEBAC 故C 选项不符合题意=ACB AED =ACB CAECEA=AED CEA BED∴=CAE BED 故A 选项符合题意故选:A .【点睛】本题考查了旋转的性质 熟练掌握旋转的性质和三角形外角运用是解题的关键.3.(2023·四川宜宾·统考中考真题)如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 把ADE 以A 为中心顺时针旋转 点M 为射线BD CE 的交点.若3AB 1AD =.以下结论: ①BD CE = ①BD CE ⊥ ①当点E 在BA 的延长线上时 33MC -=①在旋转过程中 当线段MB 最短时 MBC 的面积为12.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D【分析】证明BAD CAE ≌即可判断① 根据三角形的外角的性质得出① 证明DCM ECA ∠∠∽得出313-= 即可判断① 以A 为圆心 AD 为半径画圆 当CE 在A 的下方与A 相切时 MB 的值最小 可得四边形AEMD 是正方形 在Rt MBC 中22MC BC MB -21 然后根据三角形的面积公式即可判断①.【详解】解:①ABC 和ADE 是以点A 为直角顶点的等腰直角三角形 ①,,90BA CA DA EA BAC DAE ==∠=∠=︒ ①BAD CAE ∠=∠ ①BAD CAE ≌①ABD ACE ∠=∠ BD CE = 故①正确 设ABD ACE α∠=∠= ①45DBC α∠=︒-,①454590EMB DBC BCM DBC BCA ACE αα∠=∠+∠=∠+∠+∠=︒-+︒+=︒ ①BD CE ⊥ 故①正确当点E 在BA 的延长线上时 如图所示①DCM ECA ∠=∠ 90DMC EAC ∠=∠=︒ ①DCM ECA ∠∠∽①MC CDAC EC= ①3AB = 1AD =.①31CD AC AD =-= 222CE AE AC =+= 313-=①33MC -=故①正确 ①如图所示 以A 为圆心 AD 为半径画圆①90BMC ∠=︒ ①当CE 在A 的下方与A 相切时 MB 的值最小 90ADM DAE AEM ∠=∠=∠=︒①四边形AEMD 是矩形 又AE AD =①四边形AEMD 是正方形 ①1MD AE ==①222BD EC AC AE =- ①21MB BD MD =-= 在Rt MBC 中 22MC BC MB -①PB 取得最小值时 222MC AB AC MB +-()2332121+--①)()1112121222BMCSMB MC =⨯==故①正确 故选:D .【点睛】本题考查了旋转的性质 相似三角形的性质 勾股定理 切线的性质 垂线段最短 全等三角形的性质与判定 正方形的性质 熟练掌握以上知识是解题的关键.4.(2023·山东聊城·统考中考真题)如图,已知等腰直角ABC 90ACB ∠=︒ 2AB = 点C 是矩形ECGF与ABC 的公共顶点 且1CE = 3CG = 点D 是CB 延长线上一点 且2CD =.连接BG DF 在矩形ECGF 绕点C 按顺时针方向旋转一周的过程中 当线段BG 达到最长和最短时 线段DF 对应的长度分别为m 和n 则,mn的值为( )A .2B .3C 10D 13【答案】D【分析】根据锐角三角函数可求得1AC BC == 当线段BG 达到最长时 此时点G 在点C 的下方 且BC G 三点共线 求得4BG = 5DG = 根据勾股定理求得26DF = 即26m = 当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线则,2BG = 1DG = 根据勾股定理求得2DF 即2n = 即可求得13mn【详解】①ABC 为等腰直角三角形 2AB = ①2sin 4521AC BC AB ==⋅︒== 当线段BG 达到最长时 此时点G 在点C 的下方 且B C G 三点共线 如图:则4BG BC CG =+= 5DG DB BG =+=在Rt DGF △中 22225126DF DG GF =++ 即26m =当线段BG 达到最短时 此时点G 在点C 的上方 且B C G 三点共线 如图:则2BG CG BC =-= 1DG BG DB =-=在Rt DGF △中 2222112DF DG GF =++ 即2n = 故26132m n == 故选:D .【点睛】本题考查了锐角三角函数 勾股定理等 根据旋转推出线段BG 最长和最短时的位置是解题的关键.二 填空题5.(2023·江苏连云港·统考中考真题)以正五边形ABCDE 的顶点C 为旋转中心 按顺时针方向旋转 使得新五边形A B CD E ''''的顶点D 落在直线BC 上则,正五边ABCDE 旋转的度数至少为______°.【答案】72【分析】依据正五边形的外角性质 即可得到DCF ∠的度数 进而得出旋转的角度. 【详解】解:①五边形ABCDE 是正五边形①530726DCF ∠÷=︒=︒①新五边形A B CD E ''''的顶点D 落在直线BC 上则,旋转的最小角度是72︒故答案为:72.【点睛】本题主要考查了正多边形 旋转性质 关键是掌握正多边形的外角和公式的运用.6.(2023·湖南张家界·统考中考真题)如图,AO 为BAC ∠的平分线 且50BAC ∠=︒ 将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C ''' 且100OAC '∠=︒则,四边形ABOC 旋转的角度是______.【答案】75︒【分析】根据角平分线的性质可得25BAO OAC ==︒∠∠ 根据旋转的性质可得50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠ 求得75OAO '∠=︒ 即可求得旋转的角度.【详解】①AO 为BAC ∠的平分线 50BAC ∠=︒①25BAO OAC ==︒∠∠①将四边形ABOC 绕点A 逆时针方向旋转后 得到四边形AB O C '''①50BAC B AC ''∠=∠=︒ 25B AO O AC ''''==︒∠∠①1002575OAO OAC O AC ''''∠=∠-∠=︒-︒=︒故答案为:75︒.【点睛】本题考查了角平分线的性质 旋转的性质 熟练掌握以上性质是解题的关键.7.(2023·湖南常德·统考中考真题)如图1 在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = D 是AB 上一点 且2AD = 过点D 作DE BC ∥交AC 于E 将ADE 绕A 点顺时针旋转到图2的位置.则图2中BDCE的值为__________.【答案】45【分析】首先根据勾股定理得到2210AC AB BC += 然后证明出ADE ABC △△∽ 得到AD AEAB AC= 进而得到ADABAE AC = 然后证明出ABD ACE ∽ 利用相似三角形的性质求解即可.【详解】①在Rt ABC △中 90ABC ∠=︒ 8AB = 6BC = ①2210AC AB BC +①DE BC ∥①90ADE ABC ∠=∠=︒ AED ACB ∠=∠①ADE ABC △△∽ ①ADAEAB AC = ①ADABAE AC =①BAC DAE ∠=∠①BAC CAD DAE CAD ∠+∠=∠+∠①BAD CAE ∠=∠①ABD ACE ∽ ①84105BD AB CD AC ===. 故答案为:45.【点睛】此题考查了相似三角形的性质和判定 解题的关键是熟练掌握相似三角形的性质和判定定理.8.(2023·江苏无锡·统考中考真题)已知曲线12C C 、分别是函数2(0),(0,0)k y x y k x x x=-<=>>的图像 边长为6的正ABC 的顶点A 在y 轴正半轴上 顶点B C 在x 轴上(B 在C 的左侧)现将ABC 绕原点O 顺时针旋转 当点B 在曲线1C 上时 点A 恰好在曲线2C 上则,k 的值为__________.【答案】6【分析】画出变换后的图像即可(画AOB 即可) 当点A 在y 轴上 点B C 在x 轴上时 根据ABC 为等边三角形且AO BC ⊥ 可得3OB OA = 过点A B 分别作x 轴垂线构造相似则,BFO OEA ∽ 根据相似三角形的性质得出3AOE S =△ 进而根据反比例函数k 的几何意义 即可求解.【详解】当点A 在y 轴上 点B C 在x 轴上时 连接AOABC 为等边三角形且AO BC ⊥则,30BAO ∠=︒∴tan tan30BAO ∠=︒=3OB OA = 如图所示 过点,A B 分别作x 轴的垂线 交x 轴分别于点,E FAO BO ⊥ 90BFO AEO AOB ∠=∠=∠=︒∴90BOF AOE EAO ∠=︒-∠=∠∴BFO OEA ∽ ∴213BFO AOE S OB SOA ⎛⎫== ⎪⎝⎭ ∴212BFO S -==∴3AOE S =△∴6k =.【点睛】本题考查了反比例函数的性质 k 的几何意义 相似三角形的性质与判定 正确作出辅助线构造相似三角形是解题关键.9.(2023·辽宁·统考中考真题)如图,线段8AB = 点C 是线段AB 上的动点 将线段BC 绕点B 顺时针旋转120°得到线段BD 连接CD 在AB 的上方作Rt DCE ∆ 使90,30DCE E ∠=∠= 点F 为DE 的中点 连接AF 当AF 最小时 BCD ∆的面积为___________.3【分析】连接CF BF , BF ,CD 交于点P 由直角三角形的性质及等腰三角形的性质可得BF 垂直平分CF 60ABF ∠=︒为定角 可得点F 在射线BF 上运动 当AF BF ⊥时 AF 最小 由含30度角直角三角形的性质即可求解.【详解】解:连接CF BF , BF ,CD 交于点P 如图,①90DCE ∠= 点F 为DE 的中点①FC FD =①30E ∠=①60FDC ∠=︒,①FCD 是等边三角形①60DFC FCD ∠=∠=︒①线段BC 绕点B 顺时针旋转120°得到线段BD①BC BD =①FC FD =①BF 垂直平分CF 60ABF ∠=︒①点F 在射线BF 上运动①当AF BF ⊥时 AF 最小此时9030FAB ABF ∠=︒-∠=︒ ①142BF AB == ①1302BFC DFC ∠=∠=︒ ①90FCB BFC ABF ∠=∠+∠=︒①122BC BF == ①112PB BC == ①由勾股定理得223PC BC PB - ①223CD PC == ①11231322BCD S CD PB =⋅=⨯△3【点睛】本题考查了等腰三角形性质 含30度直角三角形的性质 斜边中线性质 勾股定理 线段垂直平分线的判定 勾股定理 旋转的性质 确定点F 的运动路径是关键与难点.10.(2023·江西·统考中考真题)如图,在ABCD 中 602B BC AB ∠=︒=, 将AB 绕点A 逆时针旋转角α(0360α︒<<︒)得到AP 连接PC PD .当PCD 为直角三角形时 旋转角α的度数为_______.【答案】90︒或270︒或180︒【分析】连接AC 根据已知条件可得90BAC ∠=︒ 进而分类讨论即可求解.【详解】解:连接AC 取BC 的中点E 连接AE 如图所示①在ABCD 中 602B BC AB ∠=︒=, ①12BE CE BC AB ===①ABE 是等边三角形①60BAE AEB ∠=∠=︒ AE BE =①AE EC = ①1302EAC ECA AEB ∠=∠=∠=︒ ①90BAC ∠=︒①AC CD ⊥如图所示 当点P 在AC 上时 此时90BAP BAC ∠=∠=︒则,旋转角α的度数为90︒当点P 在CA 的延长线上时 如图所示则,36090270α=︒-︒=︒当P 在BA 的延长线上时则,旋转角α的度数为180︒ 如图所示①PA PB CD == PB CD ∥①四边形PACD 是平行四边形①AC AB ⊥①四边形PACD 是矩形①90PDC ∠=︒即PDC △是直角三角形综上所述 旋转角α的度数为90︒或270︒或180︒故答案为:90︒或270︒或180︒.【点睛】本题考查了平行四边形的性质与判定 等边三角形的性质与判定 矩形的性质与判定 旋转的性质 熟练掌握旋转的性质是解题的关键.11.(2023·上海·统考中考真题)如图,在ABC 中 35C ∠=︒ 将ABC 绕着点A 旋转(0180)αα︒<<︒ 旋转后的点B 落在BC 上 点B 的对应点为D 连接AD AD ,是BAC ∠的角平分线则,α=________.【答案】1103⎛⎫︒ ⎪⎝⎭【分析】如图,AB AD = BAD ∠=α 根据角平分线的定义可得CAD BAD α∠=∠= 根据三角形的外角性质可得35ADB α∠=︒+ 即得35B ADB α∠=∠=︒+ 然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB AD = BAD ∠=α①AD 是BAC ∠的角平分线①CAD BAD α∠=∠=①35ADB C CAD α∠=∠+∠=︒+ AB AD =①35B ADB α∠=∠=︒+则在ABC 中 ①180C CAB B ∠+∠+∠=︒①35235180αα︒++︒+=︒ 解得:1103α⎛⎫=︒ ⎪⎝⎭故答案为:1103⎛⎫︒ ⎪⎝⎭【点睛】本题考查了旋转的性质 等腰三角形的性质 三角形的外角性质以及三角形的内角和等知识 熟练掌握相关图形的性质是解题的关键.12.(2023·湖南郴州·统考中考真题)如图,在Rt ABC △中 90BAC ∠=︒ 3cm AB = =60B ∠︒.将ABC 绕点A 逆时针旋转 得到AB C ''△ 若点B 的对应点B '恰好落在线段BC 上则,点C 的运动路径长.....是___________cm (结果用含π的式子表示).3π【分析】由于AC 旋转到AC ' 故C 的运动路径长是CC '的圆弧长度 根据弧长公式求解即可.【详解】以A 为圆心作圆弧CC ' 如图所示.在直角ABC 中 =60B ∠︒则,30C ∠=︒则()2236cm BC AB ==⨯=. ①)22226333cm AC BC AB =--.由旋转性质可知 AB AB '= 又=60B ∠︒①ABB '是等边三角形.①60BAB '∠=︒.由旋转性质知 60CAC '∠=︒.故弧CC '的长度为:()602333cm 3603AC πππ⨯⨯⨯=⨯ 3π【点睛】本题考查了含30︒角直角三角形的性质 勾股定理 旋转的性质 弧长公式等知识点 解题的关键是明确C 点的运动轨迹.13.(2023·内蒙古·统考中考真题)如图,在Rt ABC △中 90,3,1ACB AC BC ∠=︒== 将ABC 绕点A 逆时针方向旋转90︒ 得到AB C ''△.连接BB ' 交AC 于点D 则,AD DC 的值为________.【答案】5【分析】过点D 作DF AB ⊥于点F 利用勾股定理求得10AB根据旋转的性质可证ABB ' DFB △是等腰直角三角形 可得DF BF = 再由1122ADB SBC AD DF AB =⨯⨯=⨯⨯ 得=10AD DF 证明AFD ACB 可得DF AF BC AC = 即3AF DF = 再由=10AF DF 求得10=DF 从而求得52AD = 12CD = 即可求解. 【详解】解:过点D 作DF AB ⊥于点F①90ACB ∠=︒ 3AC = 1BC = ①223110AB +①将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△ ①==10AB AB ' 90BAB '∠=︒①ABB '是等腰直角三角形①45ABB '∠=︒又①DF AB ⊥①45FDB ∠=︒①DFB △是等腰直角三角形①DF BF = ①1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ① 90C AFD ∠=∠=︒ CAB FAD ∠=∠①AFD ACB ①DF AF BC AC= 即3AF DF = 又①=10AF DF ①10=DF ①105=10=2AD 51=3=22CD - ①52==512AD CD 故答案为:5.【点睛】本题考查旋转的性质 等腰三角形的判定与性质 相似三角形的判定与性质 三角形的面积 熟练掌握相关知识是解题的关键.14.(2023·黑龙江绥化·统考中考真题)已知等腰ABC 120A ∠=︒ 2AB =.现将ABC 以点B 为旋转中心旋转45︒ 得到A BC ''△ 延长C A ''交直线BC 于点D .则A D '的长度为_______. 【答案】423423+-或【分析】根据题意 先求得23BC = 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F 分别画出图形 根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示 过点A 作AM BC ⊥于点M①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒ ①112AM AB == 223BM CM AB AM =- ①23BC =如图所示 当ABC 以点B 为旋转中心逆时针旋转45︒ 过点B 作BE A B '⊥交A D '于点E①120BAC ∠=︒①60DA B '∠=︒ 30A EB '∠=︒在Rt A BE '中 24A E A B ''== 2223BE A E A B ''-= ①等腰ABC 120BAC ∠=︒ 2AB =. ①30ABC ACB ∠=∠=︒①ABC 以点B 为旋转中心逆时针旋转45︒ ①45ABA '∠=︒①180********DBE ∠=︒-︒-︒-︒=︒ 1804530105A BD '∠=︒-︒-︒=︒ 在A BD '中 1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒, ①D EBD ∠=∠ ①23EB ED ==①423A D A E DE ''=+=+如图所示 当ABC 以点B 为旋转中心顺时针旋转45︒ 过点D 作DF BC '⊥交BC '于点F在BFD △中 45BDF CBC ∠'=∠=︒ ①DF BF =在Rt DC F '中 30C '∠=︒ ①3'DF ①33BC BF BF ==①33DF BF ==①2623DC DF '==-①6232423A D C D A C ''''=-=-=- 综上所述 A D '的长度为423-423+ 故答案为:43-43+【点睛】本题考查了旋转的性质 勾股定理 含30度角的直角三角形的性质 熟练掌握旋转的性质 分类讨论是解题的关键.15.(2023·浙江嘉兴·统考中考真题)一副三角板ABC 和DEF 中90304512C D B E BC EF ∠=∠=︒∠=︒∠=︒==,,,.将它们叠合在一起 边BC 与EF 重合 CD 与AB 相交于点G (如图1) 此时线段CG 的长是___________ 现将DEF 绕点()C F 按顺时针方向旋转(如图2) 边EF 与AB 相交于点H 连结DH 在旋转0︒到60︒的过程中 线段DH 扫过的面积是___________.【答案】6662 1218318π-【分析】如图1 过点G 作GH BC ⊥于H 根据含30︒直角三角形的性质和等腰直角三角形的性质得出3BH GH = GH CH = 然后由12BC =可求出GH 的长 进而可得线段CG 的长 如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 作1DN CD ⊥于N 过点B 作1BM D D ⊥交1D D 的延长线于M 首先证明1CDD 是等边三角形 点1D 在直线AB 上 然后可得线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 求出DN 和BM 然后根据线段DH 扫过的面积111121D DBCD DD DBD D D CD D S SS SS=+=-+弓形扇形列式计算即可.【详解】解:如图1 过点G 作GH BC ⊥于H①3045ABC DEF DFE ∠=︒∠=∠=︒, 90GHB GHC ∠=∠=︒ ①3BH GH = GH CH = ①312BC BH CH GH GH =+=+= ①36GH =①()226366662CG GH ===如图2 将DEF 绕点C 顺时针旋转60︒得到11D E F 1FE 与AB 交于1G 连接1D D 由旋转的性质得:1160E CB DCD ∠=∠=︒ 1CD CD = ①1CDD 是等边三角形①30ABC ∠=︒ ①190CG B ∠=︒ ①112CG BC =①1CE BC =①1112CG CE = 即AB 垂直平分1CE①11CD E 是等腰直角三角形 ①点1D 在直线AB 上连接1AD 22D E F 是DEF 旋转0︒到60︒的过程中任意位置 则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积 ①12BC EF == ①22DC DB === ①1162DC D D == 作1DN CD ⊥于N 则,132ND NC == ①()()222211623236DN D D ND =-=-过点B 作1BM D D ⊥交1D D 的延长线于M 则,90M ∠=︒ ①160D DC ∠=︒ 90CDB ∠=︒①118030BDM D DC CDB ∠=︒-∠-∠=︒ ①1322BM BD == ①线段DH 扫过的面积112D DBD D D S S =+弓形111CD DD DBCD D S S S=-+扇形(260621123623236022π⋅=-⨯⨯ 1218318π=-故答案为:6662 1218318π-.【点睛】本题主要考查了旋转的性质 含30︒直角三角形的性质 二次根式的运算 解直角三角形 等边三角形的判定和性质 勾股定理 扇形的面积计算等知识 作出图形 证明点1D 在直线AB 上是本题的突破点 灵活运用各知识点是解题的关键.三 解答题16.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明. 【答案】(1)见解析 (2)90AEF ∠=︒ 证明见解析【分析】(1)由旋转的性质得DM DE = 2MDE α∠= 利用三角形外角的性质求出C DEC α∠=∠= 可得DE DC = 等量代换得到DM DC =即可(2)延长FE 到H 使FE EH = 连接CH AH 可得DE 是FCH 的中位线 然后求出B ACH ∠∠= 设DM DE m == CD n = 求出2BF m CH == 证明()SAS ABF ACH ≅ 得到AF AH = 再根据等腰三角形三线合一证明AE FH ⊥即可.。
九年级上册初中数学图形的旋转同步专项练习题含答案
九年级上册初中数学图形的旋转同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,其中是旋转的有()A.①②B.②③C.①④D.③④2. 如图,点P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为()A.2√2B.3√2C.3D.无法确定3. 如图,将Rt△ABC(其中∠B=35∘,∠C=90∘)绕点A顺时针旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于( )A.55∘B.70∘C.125∘D.145∘4. 将如图所示的图形绕中心按顺时针方向旋转60∘后可得到的图形是( )A. B. C. D.5. 在下面A,B,C,D四幅图案中,通过图案逆时针旋转90∘后得到的是()A. B. C. D.6. 如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33∘,∠B=30∘,则∠ACE的大小是()A.63∘B.58∘C.54∘D.52∘7. 如图,将等腰直角三角尺ABC绕着点C顺时针旋转到A′B′C的位置,使点A,C,B′在同一条直线上,则旋转角的大小为()A.45∘B.90∘C.120∘D.135∘8. 如图,正方形ABCD的边长是3cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB→BC→CD→DA连续翻转(小正方形起始位置在AB边上),那么这个小正方形翻转到DA边的终点位置时,它的方向是()A. B. C. D.9. 如图所示的叙述正确的是()A.由图形的1绕其中心位置按同一方向连续旋转90∘、180∘、270∘前后共四个图形所构4成绕中心位置旋转45∘、90∘、135∘、225∘、270∘、315∘前后的图形共同组成B.由图形的18的的旋转100∘所得C.由图形12D.绕该图形的中心旋转100∘后所得图形还能与原图形重合10. 如图,△AOC≅△ABOD,点C,D是对应点,下列结论中错误的是()A.∠A与∠B是对应角B.∠AOC与∠BOD是对应角C.OC与OB是对应边D.OC与OD是对应边二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 如图,已知∠EAD=32∘,△ADE绕着点A旋转50∘后能与△ABC重合,则∠BAE=________度.12. 时钟的分针每分钟转________度的角,时针每分钟转________度的角.从1时5分到1时35分,时钟的分针转了________度的角,时针转了________度的角.13. 钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了________度.14. 一条线段绕其上一点旋转90∘与原来的线段位置________关系.15. 如图所示,∠BCD=120∘,把△BCD绕C点按顺时针方向旋转60∘到△ACE的位置,则BC旋转到________的位置,∠ACD=________.16. 时钟上的分针匀速旋转一周需要60min,则经过10min,分针旋转了________.17. 钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了________度.A.27018. 如图,将△ABC绕点B逆时针旋转60∘得到△A′C′B,且BC=2,那么CC′的长是________.19. 如图,Rt△ABC中,∠ABC=90∘,AB=BC=2,将△ABC绕点C逆时针旋转60∘,得到△MNC,连接BM,那么BM的长是________.20. 时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角为________度,从上午9时到下午5时时针旋转的旋转角为________度.三、解答题(本题共计 20 小题,每题 10 分,共计200分,)21. 如果把钟表的时针在任一时刻所在的位置作为起始位置,那么时针旋转出一个平角及一个周角,至少需要多长时间?22. 将两个不全等的直角三角板,Rt△AOB与Rt△DOE叠放在一起,使得两直角∠AOB 与∠DOE的顶点重合,已知∠OAB=∠ODE=30∘,下图是直角三角板△DOE绕顶点O 顺时针旋转三个瞬间的平面图形.(1)在旋转过程中,AD:BE的值是否是定值?请利用图1求出这个定值或说明不是定值的理由;(2)在旋转过程中,AD与BE有什么位置关系?请分别利用图2、图3说明理由.23. 举出现实生活中旋转的一些实例.24. 如图,△ABC中,∠ACB=90∘,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90∘至CE位置,连接AE.求证:AE=BD.25. 如图,把一个直角三角尺绕着30∘角的顶点B顺时钟方向旋转,使得点A与CB延长线上的点E重合,连接CD交AB于F.(1)直角三角尺旋转了多少度?(2)试判断△CBD的形状.(3)求∠AFC的度数.26. 一个时钟的时针长10厘米,时针尖12小时走了多少厘米?27. (1)如图1是两个有一边重合的正三角形,那么由其中一个正三角形绕平面内某一点旋转后能与另一个正三角形重合,平面内可以作为旋转中心的点有________个. 27.(2)如图2是两个有一边重合的正方形,那么由其中一个正方形绕平面内某一点旋转后能与另一个正方形重合,平面内可以作为旋转中心的点有________个.27.(3)如图3是两个有一边重合的正五边形,那么由其中一个正五边形绕平面内某一点旋转后能与另一个正五边形重合,平面内可以作为旋转中心的点有________个.27.(4)如图4是两个有一边重合的正六边形,那么由其中一个正六边形绕平面内某一点旋转后能与另一个正六边形重合,平面内可以作为旋转中心的点有________个.27.(5)拓展探究:两个有一边重合的正n(n≥3)边形,那么由其中一个正n边形绕平面内某一点旋转后能与另一个正n边形重合平面内可以作为旋转中心的点有多少个?(直接写结论)28. 如图,在四边形ABCD中,∠BAD=∠C=90∘,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA重合.如图,在四边形ABCD中,∠BAD=∠C=90∘,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA重合.(1)△BEA绕________点________时针旋转________度能与△DFA重合;(2)若AE=√6cm,求四边形AECF的面积.29. 我们小时候都玩过荡秋千的游戏.在夏天,我们会打开电扇,扇叶会绕着中心转轴转动起来.如图,单摆上小木球会从位置A运动到位置A′.(1)上述几种运动是做直线运动还是做曲线运动?(2)运动有何共同点?30. 如图,△ABD与△BCE都是等边三角形,图中哪两个三角形可以通过怎样的旋转相互得到?旋转角是多少度?31. 如图,四边形ABCD中,∠ABC=∠ADC=45∘,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.32. 如图,将△ABC绕点A按顺时针方向旋转60∘,得到△AB′C′.试判断△ABB′,△ACC′的形状.33. 如图在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△AB1C1,使点C1落在直线BC上(点C1与点C不重合),求证:AB1 // CB.34. 如图,在等边△ABC内有一点P,且PA=2,PB=√3,PC=1,求∠BPC的度数和等边△ABC的边长.A.解:∵等边△ABC,∴∠ABC=60∘,将△BPC绕点B逆时针旋转60∘得出△ABP′,∴AP′=CP=1,BP′=BP=√3,∠PBC=∠P′BA,∠AP′B=∠BPC,∵∠PBC+∠ABP=∠ABC=60∘,∴∠ABP′+∠ABP=∠ABC=60∘,∴△BPP′是等边三角形,∴PP′=√3,∠BP′P=60∘,∵AP′=1,AP=2,∴AP′2+PP′2=AP2,∴∠AP′P=90∘,∴∠BPC=∠AP′B=90∘+60∘=150∘,过点B作BM⊥AP′,交AP′的延长线于点M,∴∠MP′B=30∘,BM=√32,由勾股定理得:P′M=32,∴AM=1+32 =52,由勾股定理得,等边△ABC的边长AB=√AM2+BM2=√735. 如图,在Rt△ABC中,∠BAC=90∘,AB=AC,点D是△ABC内一点,连结AD,将线段AD绕点A逆时针旋转一定角度得到线段AE使∠BAD=∠CAE(E在AC右侧),连结BD,CE.(1)求证:BD=CE;(2)若AD=2,求点D绕点A旋转到点E所经过的路径长.36. 如图,四边形ABCD的∠BAD=∠C=90∘,AB=AD,AE⊥BC于E,△BEA旋转一定角度后能与△DFA重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm,求四边形ABCD的面积.37. 如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的1张牌旋转180∘成第二行的样子,你能判断出被旋转过的1张牌是哪一张吗?为什么?38. 问题背景:在Rt△ABC中,∠B=90∘,将一直角三角板PMN的直顶点P放在斜边AC上的点P处,将三角板绕点P旋转,三角板的两直角边分别与边AB、BC交于D、E两点(假设三角板的两直角边足够长).(1)当△ABC是等腰直角三角形,且P为AC中点时,如图1,直接写出旋转过程中PD与PE的数量关系:________.的值;(2)类比延伸:如图2,当∠ACB=30∘,且P为AC中点时,求PDPE(3)拓展探究:如图3,当AB:BC=m:n,AP:PC=a:b时,直接写出PD的值.PE39. 已知∠AOB=90∘,在∠AOB的角平分线OM上有一点C,且OC=a,将一块三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E,△OCD的面积记作S1,△OCE的面积记作S2.(1)当三角板绕点C旋转到CD与OA垂直时,如图1,则S1+S2的值(用a表示)=________;(2)当三角板绕点C旋转到CD与OA不垂直时,如图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,S1、S2之间又有怎样的数量关系?请写出你的猜想,不需证明.40. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3√3,将线段AC绕点A按逆时针方向旋转60∘,得到线段AD,连接DC,DB.(1)线段DC=________;(2)求线段DB的长度.参考答案与试题解析九年级上册初中数学图形的旋转同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】生活中的旋转现象【解析】根据旋转的定义,在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转;对每一项分析、判断即可.【解答】解:①时针转动,是旋转;故本项符合题意;②电风扇叶片的转动,是旋转;故本项符合题意;③转呼拉圈,不只是旋转;故本项不符合题意;④传送带上的电视机,不是旋转;故本项不符合题意;故选:A.2.【答案】B【考点】旋转的性质【解析】根据旋转的性质,可得BP′的长,∠PAP′的度数,根据勾股定理,可得答案.【解答】由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90∘.在Rt△PBP′中,由勾股定理,得PP′=√BP2+P′B2=√32+32=3√2,3.【答案】C【考点】旋转的性质【解析】通过灵活运用旋转的性质,掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了即可以解答此题.【解答】解:∵C,A,B1在同一条直线上,∠C=90∘,∠B=35∘,∴旋转角=∠BAB1=∠C+∠B=125∘.故选C.4.【答案】A【考点】生活中的旋转现象【解析】根据旋转的意义,找出图中阴影三角形3个关键处按顺时针方向旋转60∘后的形状即可选择答案.【解答】解:观察图形可知,图形由三个三角形组成,在旋转过程中,阴影三角形的变化更易观察,将图绕中心按顺时针方向旋转60∘后得到的图形是.故选A.5.【答案】D【考点】生活中的旋转现象【解析】根据旋转方向及旋转角度,结合选项即可得出答案.【解答】解:所给图案逆时针旋转90∘后得到的是.故选D.6.【答案】C【考点】旋转的性质【解析】此题暂无解析【解答】此题暂无解答7.【答案】D【考点】旋转的性质【解析】△ABC为等腰直角三角形,∴ A=∠ACB=45∘∠BCB=180∘−45∘=135∘等腰直角三角尺ABC绕着点C顺时针旋转到|ABC的位置,∠BCB等于旋转角,即旋转角为135∘故选:D.【解答】此题暂无解答8.【答案】C【考点】生活中的旋转现象【解析】根据题意可得这个小正方形第一次回到起始位置时需16次翻转,而每翻转4次,它的方向重复依次,则此时就不难得到这个小正方形回到DA边的终点位置时的方向.【解答】解:根据题意分析可得:小正方形沿着正方形ABCD的边AB⇒BC⇒CD⇒DA⇒AB 连续地翻转,正方形ABCD的边长是3cm,一个边长为1cm的小正方,即这个小正方形回到DA边的终点位置时需16次翻转,而每翻转4次,它的方向重复依次,故回到DA边的终点位置时它的方向是向下.故选:C.9.【答案】A【考点】生活中的旋转现象【解析】旋转中心为图形的中心,每两个“花瓣”之间的夹角为360∘÷8=45∘,基本图形,可以是一个、两个、四个“花瓣”.【解答】为两个“花瓣”,绕其中心位置按同一方向连续旋转90∘、180∘、270∘前解:A、图形的14后共四个图形所构成,正确;B、图形的1为一个“花瓣”,还可以绕中心位置旋转180∘,错误;8C、由图形1的旋转180∘所得,错误;2D、100∘不是45∘的倍数,绕中心旋转100∘后所得图形不能与原图形重合,错误;正确的是A.故选A.10.【答案】C【考点】旋转的性质【解析】【解答】解:A,∠A与∠B是对应角,正确;B,∠AOC与∠BOD是对应角正确;CD,OC与OD是对应边,C错误D正确.故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】18【考点】旋转的性质【解析】根据旋转对称图形的定义解答.【解答】解:∵△ADE绕着点A旋转50∘后能与△ABC重合,∴∠BAD=50∘.又∵∠EAD=32∘,∴∠BAE=∠BAD−∠EAD=50∘−32∘=18∘.故答案为:18.12.【答案】,6,0.5,180,15【考点】生活中的旋转现象【解析】利用时钟的分针一小时转动360∘,进而求出分针每分钟转动角度以及时针每分钟转动角度,进而求出从1时5分到1时35分,分针与时针转动角度.【解答】解:∵时钟的分针一小时转动360∘,∴分针每分钟转:360∘=6∘,60∵时钟的时针一小时转动30∘,∴时针每分钟转:30∘=0.5∘,60∴从1时5分到1时35分,时钟的分针转了:30×6∘=180∘,时针转了:0.5∘×30=15∘.故答案为:6,0.5,180,15.13.【答案】270【考点】生活中的旋转现象【解析】先求出时钟上的分针匀速旋转一分钟时的度数为6∘,再求45分钟分针旋转的度数.【解答】解:∵时钟上的分针匀速旋转一周的度数为360∘,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6∘,那么45分钟,分针旋转了45×6∘=270∘.故答案为:270.垂直【考点】旋转的性质【解析】根据旋转角的定义即可作出判断.【解答】解:一条线段绕其上一点旋转90∘与原来的线段位置垂直关系.15.【答案】AC,60∘【考点】旋转的性质【解析】由∠BCD=120∘,把△BCD绕C点按顺时针方向旋转60∘到△ACE的位置,根据旋转的性质,即可求得答案.【解答】解:∵∠BCD=120∘,把△BCD绕C点按顺时针方向旋转60∘到△ACE的位置,∴BC旋转到AC的位置,∠BCA=60∘,∴∠ACD=∠BCD−∠BCA=60∘.故答案为:AC;60∘.16.【答案】60∘【考点】生活中的旋转现象【解析】时钟上的分针匀速旋转一周需要60min,分针旋转了360∘;求经过10分,分针的旋转度数,列出算式,计算即可.【解答】×360∘=60∘.解:根据题意得,1060故答案为:60∘.17.【答案】270【考点】生活中的旋转现象【解析】先求出时钟上的分针匀速旋转一分钟时的度数为6∘,再求45分钟分针旋转的度数.【解答】解::时钟上的分针匀速旋转一周的度数为360∘,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6∘那么45分钟,分针旋转了45×6∘=270∘故答案为:270.2【考点】旋转的性质【解析】根据旋转的性质得出BC=BC′=2、∠CBC′=60∘,即△BCC′为等边三角形,可知CC′=BC=BC′=2.【解答】解:∵△ABC绕点B逆时针旋转60∘得到△A′C′B,∴BC=BC′=2,∠CBC′=60∘,∴△BCC′为等边三角形,∴CC′=BC=BC′=2,故答案为:2.19.【答案】√6+√2【考点】旋转的性质勾股定理等腰直角三角形【解析】如图,连接AM,由题意得:CA=CM,∠ACM=60∘,得到△ACM为等边三角形根据AC=√2,OM=CM⋅AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=12sin60∘=√6,最终得到BM=BO+OM.【解答】如图,连接AM,由题意得:CA=CM,∠ACM=60∘,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60∘;∵∠ABC=90∘,AB=BC=2,∴AC=CM=2√2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=1AC=√2,OM=CM⋅sin60∘=√6,2∴BM=BO+OM=√2+√6,20.【答案】90,240【考点】生活中的旋转现象【解析】根据钟表的一个大格是30∘,从上午6时到上午9时时针转过3个大格,上午9时到下午5时时针转过8个大格分别列式计算即可得解.【解答】解:从上午6时到上午9时时针转过3个大格,所以,3×30∘=90∘,上午9时到下午5时时针转过8个大格,所以,8×30∘=240∘.故答案为:90;240.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:∵时针旋转一小时转动30∘,∴时针旋转出一个平角需要6小时,时针旋转出一个周角需要12小时.【考点】生活中的旋转现象【解析】利用时针每小时旋转30∘,进而得出答案.【解答】解:∵时针旋转一小时转动30∘,∴时针旋转出一个平角需要6小时,时针旋转出一个周角需要12小时.22.【答案】解:(1)AD:BE的值是定值.如图1,∵∠AOB=∠DOE=90∘,∴∠AOB−∠BOD=∠DOE−∠BOD,即∠AOD=∠BOE,∵∠OAB=∠ODE=30∘,∴OAOB =√3,ODOE=√3,∴OAOB =ODOE,∴△AOD∽△BOE,∴ADBE =OAOB=√3;(2)AD⊥BE.理由如下:如图2,延长EB交AD于F,∵OAOB =ODOE,而∠AOD=∠BOE=90∘,∴△AOD∽△BOE,∴∠ADO=∠BEO,∵∠BEO+∠OBE=90∘,∠OBE=∠DBF,∴∠DBF+∠FDB=90∘,∴∠DFB=90∘,∴BE⊥AD;如图3,AD与BE相交于P,∵∠AOB=∠DOE=90∘,∴∠AOB+∠BOD=∠DOE+∠BOD,即∠AOD=∠BOE,∵OAOB =ODOE=√3,∴△AOD∽△BOE,∴∠1=∠2,∵∠2+∠3=90∘,∠3=∠4,∴∠1+∠4=90∘,∴∠DPE=90∘,∴AD⊥BE.【考点】旋转的性质【解析】(1)如图1,由∠AOB=∠DOE=90∘得到∠AOD=∠BOE,再利用含30度的直角三角形三边的关系得到OAOB ODOE=√3,于是根据相似的判定方法得到△AOD∽△BOE,所以AD BE =OAOB=√3;(2)如图2,延长EB交AD于F,由OAOB =ODOE,∠AOD=∠BOE=90∘可判断△AOD∽△BOE,则∠ADO=∠BEO,然后计算出∠DBF+∠FDB=90∘,于是可判断BE⊥AD;如图3,AD与BE相交于P,与前面的方法得到AD⊥BE.【解答】解:(1)AD:BE的值是定值.如图1,∵∠AOB=∠DOE=90∘,∴∠AOB−∠BOD=∠DOE−∠BOD,即∠AOD=∠BOE,∵∠OAB=∠ODE=30∘,∴OAOB =√3,ODOE=√3,∴OAOB =ODOE,∴△AOD∽△BOE,∴ADBE =OAOB=√3;(2)AD⊥BE.理由如下:如图2,延长EB交AD于F,∵OAOB =ODOE,而∠AOD=∠BOE=90∘,∴△AOD∽△BOE,∴∠ADO=∠BEO,∵∠BEO+∠OBE=90∘,∠OBE=∠DBF,∴∠DBF+∠FDB=90∘,∴∠DFB=90∘,∴BE⊥AD;如图3,AD与BE相交于P,∵∠AOB=∠DOE=90∘,∴∠AOB+∠BOD=∠DOE+∠BOD,即∠AOD=∠BOE,∵OAOB =ODOE=√3,∴△AOD∽△BOE,∴∠1=∠2,∵∠2+∠3=90∘,∠3=∠4,∴∠1+∠4=90∘,∴∠DPE=90∘,∴AD⊥BE.23.【答案】汽车开动时的车轮:旋转中心是轴心;钟表:旋转中心是三个指针重叠的表盘心;酒店的转门:旋转中心是中间的立柱;另外还有很多,像风车,电风扇,荡秋千都是.【考点】生活中的旋转现象【解析】根据旋转的定义,结合实际生活可得答案.【解答】汽车开动时的车轮:旋转中心是轴心;钟表:旋转中心是三个指针重叠的表盘心;酒店的转门:旋转中心是中间的立柱;另外还有很多,像风车,电风扇,荡秋千都是.24.【答案】证明:∵线段CD绕点C顺时针旋转90∘至CE位置,∴CD=CE,∠DCE=90∘,∵CB=CA,∠BCA=90∘,∴△BCD绕点C顺时针旋转90∘得到△ACE,∴AE=BD.【考点】旋转的性质【解析】先根据旋转的性质,由线段CD绕点C顺时针旋转90∘至CE位置得到CD=CE,∠DCE= 90∘,加上CB=CA,∠BCA=90∘,于是根据旋转的定义可把△BCD绕点C顺时针旋转90∘得到△ACE,然后根据旋转的性质即可得到结论.【解答】证明:∵线段CD绕点C顺时针旋转90∘至CE位置,∴CD=CE,∠DCE=90∘,∵CB=CA,∠BCA=90∘,∴△BCD绕点C顺时针旋转90∘得到△ACE,∴AE=BD.25.【答案】解:(1)依题意得:∵∠ABC=30∘,∴∠ABE=180∘−30∘=150∘,即旋转了150∘.(2)∵根据旋转的性质知,CB=BD,∴△CBD为等腰三角形.(3)∵BD=CB,∴∠DCB=∠BDC,又∵∠DBE=∠ABC=30∘,∠DBE=∠DCB+∠BDC,∴∠DCB=∠CDB=15∘,∴∠AFC=∠ABC+∠DCB=30∘+15∘=45∘.【考点】旋转的性质【解析】(1)根据题意知∠ABC=30∘,求出旋转角∠ABE的度数即可.(2)根据旋转得出BC=BD,即可得出答案.(3)根据旋转的性质求出∠DBE=30∘,三角形三角形外角性质求出∠DCB,根据三角形外角性质求出即可.【解答】解:(1)依题意得:∵∠ABC=30∘,∴∠ABE=180∘−30∘=150∘,即旋转了150∘.(2)∵根据旋转的性质知,CB=BD,∴△CBD为等腰三角形.(3)∵BD=CB,∴∠DCB=∠BDC,又∵∠DBE=∠ABC=30∘,∠DBE=∠DCB+∠BDC,∴∠DCB=∠CDB=15∘,∴∠AFC=∠ABC+∠DCB=30∘+15∘=45∘.26.【答案】时针尖12小时走了20π厘米【考点】弧长的计算生活中的旋转现象【解析】(弧长为l,圆心角度数为n,圆的半径为R)代入对应数可得答根据弧长公式:l=nπR180案.【解答】=20π(cm),解:由题意得:l=360π×1018027.【答案】3;(2)如图2,如果把正方形CDFE经过旋转后能与正方形ABCD重合,那么图形所在的平面上可作为旋转中心的点有C、D,以及线段CD的中点共三个.故答案为:3.(3)如图3,如果把正五边形ABCDE经过旋转后能与正五边形ABGHF重合,那么图形所在的平面上可作为旋转中心的点有A、B,以及线段AB的中点以及HF与DE的延长线交点Q、HG与DC的延长线交点S,共5个;故答案为:5;(4)如图4,如果把正六边形ABCDEF经过旋转后能与正六边形ABNMHG重合,那么图形所在的平面上可作为旋转中心的点有A、B,和线段AB的中点以及EF与HG的延长线交点H、MN与DC的延长线交点T,共5个;故答案为:5;(5)利用上面所求可得:n为奇数时,有n个,n为偶数时,有n−1个.【考点】旋转的性质【解析】(1)根据旋转的性质,分析对应点的不同情况,易得答案.(2)根据旋转的性质,把正方形CDFE经过旋转后能与正方形ABCD重合,分析对应点的不同情况,易得答案.(3)根据旋转的性质,把如果把正五边形ABCDE经过旋转后能与正五边形ABGHF重合,分析对应点的不同情况,易得答案.(4)根据旋转的性质,把正六边形ABCDEF经过旋转后能与正六边形ABNMHG重合,分析对应点的不同情况,易得答案.(5)利用以上所求得出旋转中心的个数,进而得出答案.【解答】解:(1)如图1,根据图形间的关系,可得△ABC绕A顺时针旋转60∘可与△ABF重合,△ABC绕B逆时针旋转60∘可与△ABF重合,△ABC绕AB的中点O旋转180∘可与△ABF 重合;(2)如图2,如果把正方形CDFE经过旋转后能与正方形ABCD重合,那么图形所在的平面上可作为旋转中心的点有C、D,以及线段CD的中点共三个.(3)如图3,如果把正五边形ABCDE经过旋转后能与正五边形ABGHF重合,那么图形所在的平面上可作为旋转中心的点有A、B,以及线段AB的中点以及HF与DE的延长线交点Q、HG与DC的延长线交点S,共5个;(4)如图4,如果把正六边形ABCDEF经过旋转后能与正六边形ABNMHG重合,那么图形所在的平面上可作为旋转中心的点有A、B,和线段AB的中点以及EF与HG的延长线交点H、MN与DC的延长线交点T,共5个;(5)利用上面所求可得:n为奇数时,有n个,n为偶数时,有n−1个.28.【答案】A,逆,90【考点】旋转的性质【解析】连接ODC相交于点G,判断出ODAC,根据同弧所对圆心角等圆角倍可∠AO=2∠DCF 根同的余角等求出AF∠AOD,然后求出∠DC=∠AOD,即可得证;利用径定理求出D再据等腰形两腰的高相可AG=DH,然后求出△AFH和△AOG似,再利相三角形对应边成比例式求AF根据FC2AG−AF计算可得解.【解答】∵D=OAEOA,AG⊥OD,∴AG=D=,∴AFOA =AHAG,∴D2=ABH=1×4=4,则∠AD=2∠DC,∵=1,BH=4,解得A=54,∴H=2,证:连接D与C相交于点G,∴∠+∠AFH=A+∠OG=90,即AF2.5=12,AO=12AB2.5,解:∵E⊥AB,H=1,BH=,∴OD⊥A,∴B=1+45,∵⊥OA,AC⊥OD,∴∠D=∠AOD,∴FC2AGA=2×2−54=114.29.【答案】解:(1)上述几种运动是做曲线运动;(2)运动共同点是属于旋转.【考点】生活中的旋转现象【解析】(1)根据几种运动的路线分析得出答案;(2)利用运动方式可得出是旋转.【解答】解:(1)上述几种运动是做曲线运动;(2)运动共同点是属于旋转.30.【答案】答:△DBC向逆时针方向旋转60∘得到△ABE.【考点】旋转的性质【解析】此题暂无解析【解答】略31.【答案】如图,设AC与BD的交点为点M,BD与AE的交点为点N,∵旋转∴AC=BC,∠DBC=∠CAE又∵∠ABC=45∘,∴∠ABC=∠BAC=45∘,∴∠ACB=90∘,∵∠DBC+∠BMC=90∘∴∠AMN+∠CAE=90∘∴∠AND=90∘∴AE⊥BD,如图,连接DE,∵旋转∴CD=CE=3,BD=AE,∠DCE=∠ACB=90∘∴DE=√CD2+CE2=3√2,∠CDE=45∘∵∠ADC=45∘∴∠ADE=90∘∴EA=√AD2+DE2=√22∴BD=√22【考点】旋转的性质【解析】(1)由旋转的性质可得AC=BC,∠DBC=∠CAE,即可得∠ACB=90∘,根据直角三角形的性质可得AE⊥BD,(2)由旋转的性质可得CD=CE=3,BD=AE,∠DCE=∠ACB=90∘,由勾股定理可求BD的长.【解答】如图,设AC与BD的交点为点M,BD与AE的交点为点N,∵旋转∴AC=BC,∠DBC=∠CAE又∵∠ABC=45∘,∴∠ABC=∠BAC=45∘,∴∠ACB=90∘,∵∠DBC+∠BMC=90∘∴∠AMN+∠CAE=90∘∴∠AND=90∘∴AE⊥BD,如图,连接DE,∵旋转∴CD=CE=3,BD=AE,∠DCE=∠ACB=90∘∴DE=√CD2+CE2=3√2,∠CDE=45∘∵∠ADC=45∘∴∠ADE=90∘∴EA=√AD2+DE2=√22∴BD=√2232.【答案】如图,∵将△ABC绕点A按顺时针方向旋转60∘,得到△AB′C′.∴AB=AB′,AC=AC′,∴△ABB′是等边三角形,△ACC′是等边三角形.【考点】旋转的性质【解析】由旋转的性质可得AB=AB′,AC=AC′,∠BAB′=∠CAC′=60∘,由等边三角形的判定可得结论.【解答】如图,∵将△ABC绕点A按顺时针方向旋转60∘,得到△AB′C′.∴AB=AB′,AC=AC′,∴△ABB′是等边三角形,△ACC′是等边三角形.33.【答案】解:∵△ABC绕点A沿顺时针方向旋转得到△AB1C1,∴AC1=AC,∠B1AC1=∠BAC,∵AB=BC,∴∠BAC=∠C,∴∠B1AC1=∠C,∵AC=AC1,∴∠AC1C=∠C,∴∠B1AC1=∠AC1C,∴AB1 // CB.【考点】旋转的性质【解析】由旋转性质可得:∠B1AC1=∠BAC AC1=AC,进而用”等边对等角“证得∠AC1C=∠C,∠BAC=∠C,可得∠B1AC1=∠AC1C1,从而证得AB1|CB.【解答】此题暂无解答34.【答案】解:∵等边△ABC,∴∠ABC=60°,将△BPC绕点B逆时针旋转60°得出△ABP′,∴ AP′=CP=1,BP′=BP= ,∠PBC=∠P′BA,∠AP′B=∠BPC,∵∠PBC+∠ABP=∠ABC=60°,∴∠ABP′+∠ABP=∠ABC=60°,∴△BPP′是等边三角形,∴ PP′= ,∠BP′P=60°,∵ AP′=1,AP=2,∴ AP′2+PP′2=AP2,∴∠AP′P=90°,∴∠BPC=∠AP′B=90°+60°=150°,过点B作BM⊥AP′,交AP′的延长线于点M,∴∠MP′B=30°,BM= ,由勾股定理得:P′M= ,∴ AM=1+ = ,由勾股定理得,等边△ABC的边长AB=【考点】生活中的旋转现象【解析】根据旋转得出AP′=CP=1,BP′=BP=√3,∠PBC=∠P′BA,∠APB=∠BPC,求出|∠ABP′+∠ABP=60∘,得到等边△BPP,推出|PP′=√3,∠BP=60∘,求出|∠AP= 90∘即可求出|∠BPC;过点B作:BM⊥AP,交AP的延长线于点M,由ZMPB=30∘,求出BM=√32PM=32,根据勾股定理即可求出答案.【解答】此题暂无解答35.【答案】(1)证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠DAC+∠CAE,即∠BAC=∠DAE=90∘,∵线段AD绕点A逆时针旋转一定角度得到线段AE,∴AD=AE,而AB=AC,∴△ABD绕点A逆时针旋转90度可得到△ACE,∴BD=CE;(2)解:点D经过的路径长=90⋅π⋅2180=π.所以点D绕点A旋转到点E所经过的路径长为π.【考点】旋转的性质【解析】(1)由∠BAD=∠CAE可得∠BAC=∠DAE=90∘,再根据旋转的性质,由线段AD绕点A逆时针旋转一定角度得到线段AE得到AD=AE,加上AB=AC,则根据旋转的定义可将△ABD绕点A逆时针旋转90度得到△ACE,于是根据旋转的性质可得BD=CE;(2)点D绕点A旋转到点E所经过的路径为以A点为圆心,AD为半径,圆心角为90的弧,然后根据弧长公式计算即可.【解答】(1)证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠DAC+∠CAE,即∠BAC=∠DAE=90∘,∵线段AD绕点A逆时针旋转一定角度得到线段AE,∴AD=AE,而AB=AC,∴△ABD绕点A逆时针旋转90度可得到△ACE,∴BD=CE;=π.(2)解:点D经过的路径长=90⋅π⋅2180所以点D绕点A旋转到点E所经过的路径长为π.36.【答案】解:(1)由图可知,点A为旋转中心;(2)∠EAF为旋转角,在正方形AECF中,∠EAF=90∘,所以,旋转了90∘或270∘;(3)∵△BEA旋转后能与△DFA重合,∴△BEA≅△DFA,∴S△BEA=S△DFA,∴四边形ABCD的面积=正方形AECF的面积,∵AE=5cm,∴四边形ABCD的面积=52=25(cm2).【考点】旋转的性质【解析】(1)根据图形确定旋转中心即可;(2)对应边AE、AF的夹角即为旋转角,再根据正方形的每一个角都是直角解答;(3)根据旋转变换只改变图形的位置不改变图形的形状与大小可得△BAE的面积等于△DAF的面积,从而得到四边形ABCD的面积等于正方形AECF的面积,然后求解即可.【解答】解:(1)由图可知,点A为旋转中心;(2)∠EAF为旋转角,在正方形AECF中,∠EAF=90∘,所以,旋转了90∘或270∘;(3)∵△BEA旋转后能与△DFA重合,∴△BEA≅△DFA,∴S△BEA=S△DFA,∴四边形ABCD的面积=正方形AECF的面积,∵AE=5cm,∴四边形ABCD的面积=52=25(cm2).37.【答案】解:被旋转过的1张牌是第二张牌.理由如下:第一张牌,因为最中间的图案不是中心对称,所以不是中心对称图形,第二张牌是中心对称图形,第三张牌,因为最中间只有一张,所以不是中心对称图形,第四张牌,因为最中间的图案不是中心对称,所以不是中心对称图形,∵将其中的1张牌旋转180∘成第二行的样子,∴被旋转过的1张牌是第二张.【考点】生活中的旋转现象【解析】根据旋转的性质,找出四张牌中成中心对称的一张即可.【解答】解:被旋转过的1张牌是第二张牌.理由如下:第一张牌,因为最中间的图案不是中心对称,所以不是中心对称图形,第二张牌是中心对称图形,第三张牌,因为最中间只有一张,所以不是中心对称图形,第四张牌,因为最中间的图案不是中心对称,所以不是中心对称图形,∵将其中的1张牌旋转180∘成第二行的样子,∴被旋转过的1张牌是第二张.38.【答案】【考点】旋转的性质【解析】此题暂无解析【解答】此题暂无解答39.【答案】a2;(2)如图,过点C作CF⊥OA于F,作OG⊥OB于G,。
中考数学复习考点专题练习---图形的旋转综合(含答案)
中考数学复习考点专题练习---图形的旋转综合一.选择题1.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数为()A.55°B.75°C.85°D.90°2.下列图形:①平行四边形;②矩形;③菱形;④等边三角形中,是中心对称图形的有()A.①②③B.②③④C.①②④D.①②③④3.如图,在△ABC中,∠C=20°,将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于点F,则∠AFB的度数是()A.60°B.70°C.80°D.90°4.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有()个是正确的.①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2A.4 B.3 C.2 D.15.如图,在等腰直角△ABC中,∠ACB=90°,D为△ABC内一点,将线段CD绕点C逆时针旋转90°后得到CE,连接BE,若∠DAB=10°,则∠ABE是()A.75°B.78°C.80°D.92°6.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△ABC,M是BC 的中点,P是A’B’的中点,连接PM.若BC=4,∠BAC=30°,则线段PM的最大值是()A.8 B.6 C.4 D.57.在平面直角坐标系xOy中,点O(0,0),A(2,0),B(0,),C(﹣2,0).将△OAB 绕点O顺时针旋转α(0°<α<360°)得到△OA′B′((其中点A旋转到点A′的位置),设直线AA′与直线BB′相交于点P,则线段CP长的最小值是()A.B.C.2 D.8.如图,四边形ABCD为正方形,AB=1,把△ABC绕点A逆时针旋转60°得到△AEF,连接DF,则DF的长为()A.B.C.D.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=116°,则∠α的大小是()A.64°B.36°C.26°D.22°10.如图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的,如图②,移动正方形A的位置,使正方形B的一个顶点与正方形A的对称中心重合,则重叠部分面积是正方形B面积的()A.B.C.D.二.填空题11.如图,△ABC为等边三角形,D是△ABC内一点,将△ABD绕点A按逆时针方向旋转到△ACP位置,则∠P AD=°.12.如图,在△ABC中,∠C=90°,AC=3cm,AB=5cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是cm.13.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为.14.如图,将矩形ABCD绕点B顺时针旋转90°至EBGF的位置,连接AC,EG,取AC,EG的中点M,N连接MN,若AB=8,BC=6,则MN=.15.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC′,联结B′C′,当α+β=60°时,我们称△AB′C′是△ABC 的“双旋三角形”,如果等边△ABC的边长为a,那么它所得的“双旋三角形”中B′C′=(用含a的代数式表示).16.如图,正方形ABCD的边长为,点E是正方形ABCD内一点,将△BCE绕着点C 顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为.17.如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD=.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2019的坐标为.19.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC,连接B′C′,当α+β=60°时,我们称△AB′C’是△ABC 的“双展三角形”,已知一直角边长为2的等腰直角三角形,那么它的“双展三角形”的面积为.20.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是.三.解答题21.将一副三角尺的直角重合放置(∠B=30°,∠C=45°),如图1所示,(1)图1中∠BEC的度数为;(2)三角尺AOB的位置保持不动,将三角尺COD绕其直角顶点O顺时针方向旋转:①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;②若将三角尺COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在△COD其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.22.在四边形ABCD中,AB∥CD,∠ABC=60°,AB=BC=4,CD=3.(1)如图1,求△BCD的面积;(2)如图2,M是CD边上一点,将线段BM绕点B逆时针旋转60°,可得线段BN,过点N作NQ⊥BC,垂足为Q,设NQ=n,BQ=m,求n关于m的函数解析式.(自变量m的取值范围只需直接写出)23.如图,将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(3,3),点B(3,0),点O(0,0),将△AOB沿OA翻折得到△AOD(点D为点B的对应点).(Ⅰ)求OA的长及点D的坐标:(Ⅱ)点P是线段OD上的点,点Q是线段AD上的点.①已知OP=1,AQ=,R是x轴上的动点,当PR+QR取最小值时,求出点R的坐标及点D到直线RQ的距离;②连接BP,BQ,且∠PBQ=45°,现将△OAB沿AB翻折得到△EAB(点E为点O的对应点),再将∠PBQ绕点B顺时针旋转,旋转过程中,射线BP,BQ交直线AE分别为点M,N,最后将△BMN沿BN翻折得到△BGN(点G为点M的对应点),连接EG,若,求点M的坐标(直接写出结果即可).24.如图,把直角三角形ABC按逆时针方向旋转到△EBD的位置,使得A、B、D三点在一直线上.(1)旋转中心是哪一点?旋转角是多少度?(2)AC与DE的位置关系怎样?请说明理由.25.将一副直角三角尺按图1摆放,其中∠C=90°,∠EDF=90°,∠B=60°,∠F=45°,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=4cm.(1)求DG的长;(2)如图2.将△DEF绕点D按顺时针方向旋转,直角边DF经过点C,另一直角边DE 与AC相交于点H,分别过点H,D作AB,BC的垂线,垂足分别为点M,N.猜想HM 与CN之间的数量关系,并证明;(3)如图3,在旋转的过程中,若△DEF两边DE,DF与△ABC两边AC,BC分别交于K、T两点,则KT的最小值为.26.如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)判断A E、BE、BC之间的数量关系(直接写出结果,不必证明);(2)如图2,过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角a(0°<a <<144°)得到△AE'F',连结CE',BF′,求证:CE'=BF':(3)在(2)的旋转过程中,当a=时,CE'∥AB?(请直接写出结果).27.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CF A度数;(2)求证:AD∥BC.28.如图1,在Rt△ABC中,∠ABC=90°,AB=BC,将△ABC绕点A逆时针旋转,得到△ADE,旋转角为α(0°<α<90°),连接BD交CE于点F.(1)如图2,当α=45°时,求证:CF=EF;(2)在旋转过程中,①问(1)中的结论是否仍然成立?证明你的结论;②连接CD,当△CDF为等腰直角三角形时,求tan的值.29.综合与实践数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC进行以下操作:第一步:折叠三角形纸片ABC使点C与点A重合,然后展开铺平,得到折痕DE;第二步:将△ABC沿折痕DE展开,然后将△DEC绕点D逆时针方向旋转得到△DFG,点E,C的对应点分别是点F,G,射线GF与边AC交于点M(点M不与点A重合),与边AB交于点N,线段DG与边AC交于点P.数学思考:(1)求DC的长;(2)在△DEC绕点D旋转的过程中,试判断MF与ME的数量关系,并证明你的结论;问题解决:(3)在△DEC绕点D旋转的过程中,探究下列问题:①如图2,当GF∥BC时,求AM的长;②如图3,当GF经过点B时,AM的长为;③当△DEC绕点D旋转至DE平分∠FDG的位置时,试在图4中作出此时的△DFG和射线GF,并直接写出AM的长.(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)30.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD、CE的交点.(1)判断线段BD与CE的关系,并证明你的结论;(2)若AB=8,AD=4,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②求旋转过程中线段PB长的最大值.参考答案一.选择题1.解:根据旋转的性质可知:∠C=∠A=110°,在△COD中,∠COD=180°﹣110°﹣40°=30°.旋转角∠AOC=85°,所以∠α=85°﹣30°=55°.故选:A.2.解:平行四边形,矩形,菱形是中心对称图形.故选:A.3.解:∵△ABC绕点A顺时针旋转60°得△ADE,∴∠CAE=60°,∵∠C=20°,∴∠AFC=100°,∴∠AFB=80°.故选:C.4.解:由旋转可知:△BAE≌△CAF,∴∠BAE=∠CAF,∴∠EAF=∠BAC=90°,∵∠EAD=45°,∴∠EAD=∠F AD=45°,∴AD平分∠EAF,∵AD=AD,AE=AF,∴△DAE≌△DAF(SAS),故①③正确,∴DE=DF,∵∠ACF∠B=∠ACB=45°,∴∠DCF=90°,∴DF2=CD2+CF2,∵DF=DE,BE=CF,∴BE2+CD2=DE2,故④正确,无法判断△ABE≌△ACD,故②错误.故选:B.5.解:∵△ABC是等腰直角三角形,∴∠ABC=∠BAC=45°.∴∠DAC=45°﹣10°=35°.在△BEC和△ADC中∴△BCE≌△ACD(SAS).∴∠EBC=∠DAC=35°.∴∠ABE=∠EBC+∠DAC=80°.故选:C.6.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=4,∴AB=8,根据旋转不变性可知,A′B′=AB=8,∴A′P=PB′,∴PC=A′B′=4,∵CM=BM=2,又∵PM≤PC+CM,即PM≤6,∴PM的最大值为3(此时P、C、M共线).故选:B.7.解:∵△OAB是直角三角形,点P在以AB为直径的圆上运动,∵A(2,0),B(0,),∴AB=4,AB的中点为(1,),∵C(﹣2,0),∴CP的最小值为2﹣2;故选:B.8.解:如图,连接BE,CE,过E作EG⊥BC于G,由旋转可得,AB=AE=1=AD,AC=AF,∠BAC=∠EAF=45°=∠DAC,∴∠CAE=∠F AD,∴△ADF≌△AEC(SAS),∴DF=CE,由旋转可得,AB=AE=1,∠BAE=60°,∴△ABE是等边三角形,∴BE=1,∠ABE=60°,∴∠EBG=30°,∴EG=BE=,BG=,∴CG=1﹣,∴Rt△CEG中,CE======,∴DF=,故选:A.9.解:如图设BC交C′D′于K.在四边形ABKD ′中,∵∠B =∠D ′=90°,∠BKD ′=∠1=116°,∴∠BAD ′=180°﹣116°=64°,∵∠BAD =90°,∴∠DAD ′=90°﹣64°=26°,故选:C .10.解:设正方形B 对角线的交点为O ,如图1,设正方过点O 作边的垂线,则OE =OM ,∠EOM =90°,∵∠EOF +∠EON =90°,∠MON +∠EON =90°,∴∠EOF =∠MON ,在△OEF 和△OMN 中,∴△OEF ≌△OMN (ASA ),∴阴影部分的面积=S 四边形NOEP +S △OEF =S 四边形NOEP +S △OMN =S 四边形MOEP =S 正方形CTKW ,即图1中阴影部分的面积=正方形B 的面积的四分之一,同理图2中阴影部分烦人面积=正方形A 的面积的四分之一,∵图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的,∴正方形B 的面积=正方形A 的面积的2倍,∴图2中重叠部分面积是正方形B面积的,故选:D.二.填空题(共10小题)11.解:∵△ABC为等边三角形,∴∠BAC=60°,∵将△ABD绕点A按逆时针方向旋转到△ACP,∴∠DAP=∠BAC=60°,故答案为:60.12.解:连接EC,即线段EC的长是点E与点C之间的距离,在Rt△ACB中,由勾股定理得:BC===4(cm),∵将△ABC绕点B顺时针旋转60°得到△FBE,∴BC=BE,∠CBE=60°,∴△BEC是等边三角形,∴EC=BE=BC=4cm,故答案为:4.13.解:连接CD,在Rt△ABC中,∵∠ACB=90°,BC=2,∠ABC=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵DB′=DA′,∴CD=A′B′=2,∴BD≤CD+CB=4,∴BD的最大值为4,14.解:连接BM、BN,在Rt△ABC中,利用勾股定理可得AC=10,∵M为AC中点,∴BM=AC=5.∵矩形ABCD绕点B顺时针旋转90°至EBGF的位置,∴BM=BN,且∠MBN=90°,∴MN=BM=5.故答案为5.15.解:∵△ABC为等边三角形,∴AB=AC=a,∠BAC=60°,∵△AB′C′是△ABC的“双旋三角形”,∴α+β=60°,AB′=AB=a,AC′=AC=a,∴∠B′AC=120°,∴∠B′=∠C′=30°,作AH⊥B′C′于H,如图,则B′H=C′H,在Rt△AB′H中,AH=AB′=a,∴B′H=AH=a,∴B′C′=2A′H=a.16.解:作CH⊥BF于H,GK⊥BC于K.∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,∵∠ECF=90°,∴∠BCD=∠ECF,∴∠BCE=∠DCF,∵CE=CF,∴△BCE≌△DCF(SAS),∴BE=DF=6,∵CE=CF,∠ECF=90°,CH⊥EF,∴EH=HF,∴CH=HE=HF,设CH=HE=HF=a,在Rt△BCH中,∵BC2=BH2+CH2,∴50=(6+a)2+a2,解得a=1或﹣7(舍弃),∴CH=HE=HF=1,BF=8,∵tan∠CBH===,设GK=k,BK=7k,则GK=CK=k,∴8k=5,∴k=,∴BG==5k=,∴FG=BF﹣BG=8﹣=,故答案为.17.解:如图,过点A作AE⊥AD交CD于E,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°,∴AE=AD=1,DE=,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△BAE≌△CAD(SAS),∴CD=BE=3,∠AEB=∠ADC=45°,∴∠BED=90°,∴BD===.故答案为.18.解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(﹣3,3),点P4的坐标为(﹣2,﹣1),点P5的坐标为(2,0),…,而2019=4×504+3,所以点P2019的坐标与点P3的坐标相同,为(﹣3,3).故答案为(﹣3,3).19.解:如图1中,当△AB′C′是△ABC的“双展三角形”时,作C′D⊥B′A交B′A的延长线于D,在C′D上取一点F,使得F A=FC,连接AF.∵B∠B′AC′=60°+45°=105°,∴∠DAC′=75°,∵∠D=90°,∴∠DC′A=15°,∵F A=FC′,∴∠F AC=∠FC′A=15°,∴∠AFD=∠F AC+∠FC′A=30°,设AD=x,则AF=FC′=2x.DF=x,∵AB=BC=2,∠B=90°,∴AC=AC′=2,在Rt△ADC′中,则有x2+(x+2x)2=(2)2,解得x=﹣1(负根已经舍弃),∴DC′=2x+x=+1,∴S△AB′C′=•AB′•C′D=+1.如图2中,当△A′BC′是△ABC的“双展三角形”时,作C′D⊥B′A交A′B的延长线于D.由题意:∠A′BC′=60°+90°=150°,∴∠C′BD=30°,∴C′D=BC′=1,∴S△A′BC′=•BA′•C′D=1,综上所述,满足条件的+1或1.故答案为+1或1.20.解:由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.三.解答题(共10小题)21.解:(1)∠CAE=180°﹣∠BAO=180°﹣60°=120°,∴∠BEC=∠C+∠CAE=45°+120°=165°,故答案为:165°.(2)①∵OD∥AB,∴∠BOD=∠B=30°,又∠BOD+∠BOC=90°,∠AOC+∠BOC=90°,∴∠AOC=∠BOD=30°.′②存在,如图1,当AB∥OC时,则∠COB=∠B=30°,∴∠AOC=90°+30°=120°;如图2,当AB∥CD时,延长DO交AB于D′,∴∠AD′O=∠D=45°,∴∠AOD′=75°,∴∠AOC=∠AOD′+90°=165°;如图3,当AB∥OD时,∠DOB=∠B=30°,∴∠AOC=∠DOB=30°;如图4,当AB∥OD时,∠AOD=∠A=60°,∴∠AOC=90°+60°=150°;如图5,当AB∥OC时,∴∠AOC=∠A=60°;如图6,当AB∥CD时,∠1=∠A=60°,∴∠AOC=60°﹣45°=15°;综上所述,∠AOC的度数为:15°,30°,60°,120°,150°,165°.22.解:(1)过点D作DE⊥BC,则∠DEB=90°.∵AB∥CD,∴∠ABC=∠DCE=60°.∴在Rt△CDE中,∠CDE=30°.∴CE=CD=.∴DE==.∴△BCD的面积为BC•DE=×4×=(2)方法一:连接AN,∵线段BM绕点B逆时针旋转60°得到线段BN,∴NB=MB,∠NBM=60°.∵∠MBC+∠MBA=∠MBA+∠NBA.∴∠MBC=∠NBA,∵AB=BC,∴△MBC≌△NBA(SAS).∴∠NAB=∠BCM=120°.连接AC,∵∠ABC=60°,AB=BC,∴△ABC为等边三角形.∴∠BAC=∠ACB=60°.∴∠NAB+∠BAC=180°.∴N,A,C三点在一条直线上.∵NQ=n,BQ=m,∴CQ=4﹣m.∵NQ⊥BC,∴∠NQC=90°.∴在Rt△NQC中,NQ=CQ•tan∠NCQ.∴n=(4﹣m).即n=﹣m+4.所以n关于m的函数解析式为:n=﹣m+4(≤m≤2).方法二:∵线段BM绕点B逆时针旋转60°得到线段BN,∴NB=BM,∠NBM=60°.∵∠MBC+∠MBA=∠MBA+∠NBA.∴∠MBC=∠NBA,∵AB=BC,∴△MBC≌△NBA.∴∠NAB=∠BCM=120°.设AB与NQ交于H点,∵NQ⊥BC,∴∠HQB=90°.∵∠ABC=60°,∴∠BHQ=∠NHA=30°.∴∠HNA=180°﹣30°﹣120°=30°.∴NA=AH.∴在Rt△BHQ中,HQ=BQ•tan∠HBQ=m.又∵BH=2m,∴AH=4﹣2m.过点A作AG⊥NH,∴NG=GH.在Rt△AGH中,GH=AH•cos∠AHN=(4﹣2m)=2﹣m,∴NH=2GH=4﹣2m.∵NQ=N H+HQ,∴n=﹣m+4.所以n关于m的函数解析式为:n=﹣m+4(≤m≤2).23.解:(Ⅰ)如图1中,∵A(3,3),B(3,0),∴AB=OB=3,∠ABO=90°,∴∠BOA=45°,∵将△AOB沿OA翻折得到△AOD,∴∠AOD=∠AOB=45°,∴∠BOD=90°,∴点D在y轴的正半轴上,∴D(0,3).(Ⅱ)①如图1中,作点P关于点O的对称点K,连接KQ交OB于R′,此时PR′+QR′的值最小.作DH⊥QK于H.由题意:K(0,﹣1),Q(,3).∴直线KQ的解析式为y=x﹣1,令y=0,得到x=,∵DH⊥KQ,∴直线KQ的解析式为y=﹣x+3,由,解得,∴H(,),∴DH==∴R′(,0),点D到直线KQ的距离为.②如图2中,易证△ABM≌△EBG(SAS),∴∠BAM=∠BEC=45°,∵∠AEB=45°,∴∠GEN=90°,∵,∴可以假设EN=12k,EG=5k,则NG=MN=13k,∵AM=EG=5k,∴5k+13k+12k=3,∴k=,作MH⊥AB于H,∵∠MAH=45°,AM=,∴AH=MH=,可得M(,).24.解:(1)直角三角形ABC按逆时针方向旋转到△EBD的位置,∴旋转中心是点B,旋转角是90°;(2)AC⊥DE,理由:延长DE交AC于F,∵把直角三角形ABC按逆时针方向旋转到△EBD的位置,∴∠C=∠D,∠DBE=∠ABC=90°,∴∠C+∠A=∠D+∠A=90°,∴∠DF A=90°,∴AC⊥DE.25.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,BC=4,∠CAB=30°∴AB=2BC=8,∵DF垂直平分线段AB,∴AD=DB=4,在Rt△ADG中,DG=AD•tan30°=4×=4.(2)结论:CN=HM.理由:如图2中,∵∠ACB=90°,AD=DB,∴CD=DA=DB,∵∠B=60°,∴△BDC是等边三角形,∴∠DCB=∠CDB=60°,∵∠ACB=∠CDH=90°,∴∠MDH=∠HCD=30°,∴CD=DH,∵∠DHM=∠DCN=60°,∠DMH=∠DNC=90°,∴△DMH∽△DNC,∴==,∴CN=HM.(3)如图3中,连接CD.∵∠KCT=∠KDT=90°,∴∠KCT+∠KDT=180°,∴K,D,T,C四点共圆,∴KT是该圆的直径,当CD是该圆的直径时,KT的长最短,此时KT=CD=AB=4.26.解:(1)∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°,∵BE平分∠ABC,∴∠ABE=∠CBE=×72°=36°,∴∠BEC=∠A+∠ABE=36°+36°=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BE=BC,故答案为:AE=BE=BC;(2)证明:∵AB=AC,EF∥BC,∴AE=AF,由旋转的性质得,∠E′AC=∠F′AB,AE′=AF′,在△CAE′和△BAF′中,,∴△CAE′≌△BAF′(SAS),∴CE′=BF′;(3)解:由(1)可知AE=BC,由旋转知,AE'=AE,∴AE'=BC,如图,在△AEF绕点A逆时针旋转过程中,点E经过的路径(圆弧)与过点C且与AB 平行的直线l相交于点M、N,①当点E'与点M重合时,∵CM∥AB,∴四边形ABCM是等腰梯形,∴∠BAM=∠ABC=72°,又∵∠BAC=36°,∴α=∠CAM=36°;②当点E′与点N重合时,∵CE′∥AB,∴∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣72°×2=36°,∴α=∠CAN=∠CAM+∠MAN=36°+36°=72°,综上所述,当旋转角为36°或72°时,CE′∥AB.故答案为:36°或72°.27.解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC ∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CF A=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC28.(1)证明:如图2中,∵∠EAC=∠DAB,AE=AC,AD=AB,∴∠AEC=∠ACE=∠ADB=∠ABD,∵∠ADB=∠CDF,∴∠FDC=∠FCD,∴FD=FC,∵∠EDC=90°,∴∠DEF+∠ECD=90°,∠FDE+∠FDC=90°,∴∠FED=∠FDE,∴FE=FD,∴EF=FC.(2)①解:如图1中,结论仍然成立.理由:连接AF.∵∠FCA=∠ABF,∴A,B,C,F四点共圆,∴∠AFC+∠ABC=180°,∵∠ABC=90°,∴∠AFC=90°,∴AF⊥EC,∵AE=AC,∴EF=CF.②如图3﹣1中,当CF=CD,∠FCD=90°时,连接AF,作CH⊥BF于H.设CF=CD =a.则DE==a,DF=a,∵CF=CD,CH⊥DF,∴HF=HD,∴CH=DF=a,∴BC=DE=a,∴BH==a,∵AE=AC,EF=CF,∴AF平分∠EAC,∵A,B,C,F四点共圆,∴∠CAF=∠CBH=α,∴tanα===.如图3﹣2中,当DF=DC,∠CDF=90°时,作DH⊥CF于H,连接AF.设CD=DF=m.则CF=EF=a,DH=CF=a,∴DE=BC==a,∴BD==2a,∴tanα==.29.解:(1)如图1中,∵DE⊥AC,∴∠DEC=∠A=90°,∴DE∥AB,∵AE=EC,∴BD=DC,在Rt△ABC中,∵AB=6,AC=8,∴BC===10,∴CD=BC=5.(2)结论:MF=ME.理由:如图1中,连接DM,∵∠DFM=∠DEM=90°,DM=DM,DF=DE,∴Rt△DMF≌Rt△DME(HL),∴MF=ME.(3)①如图2中,作AH⊥BC于H,交FG于K.易知AH==,四边形DFKH是矩形,∴DF=KH=3,∴AK=AH﹣KH=,∵KM∥CH,∴=,∴=,∴AM=3.②如图3中,∵DG=DB=DC,∴∠G=∠DBG,∵∠G=∠C,∴∠MBC=∠C,∴BM=MC,设BM=MC=x,在Rt△ABM中,∵BM2=AB2+AM2,∴62+(8﹣x)2=x2,∴x=,∴AM=AC﹣CM=8﹣=.故答案为.③尺规作图如图4﹣1所示.作DR平分∠CDF,在DR上截取DG=DC,分别以D,G 为圆心,DE,CE为半径画弧,两弧交于点F,△DFG即为所求.如图4﹣1中,连接DM,设DG交AC于T,作TH⊥CD于H,作DK平分∠CDG交TH 于K,作KJ⊥DG于J.易证△DEM≌△DHK(AAS),推出EM=HK,只要求出HK即可.∵TE⊥DE,TH⊥DC,DG平分∠CDE,∴TE=TH,设TE=TH=x,在Rt△TCH中,x2+22=(4﹣x)2,∴x=,∴DT==,∵DK平分∠CDT,KJ⊥DT,KH⊥CD,∴KJ=KH,设KJ=KH=y,在Rt△KTJ中,y2+(﹣3)2=(﹣y)2,∴y=3﹣6,∴EM=3﹣6,∴AM=AE﹣EM=4﹣(3﹣6)=10﹣3.30.解:(1)结论:BD=CE,BD⊥CE.理由如图1中,∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE.∠ACE=∠ABD设CP与AB交于点O,∵∠AOC=∠BOP∴∠BPC=∠OAC=90°∴BD⊥CE;(2)解:a:如图2中,当点E在AB上时,BE=AB﹣AE=4.∵∠EAC=90°,∴CE===4,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=,b:如图3中,当点E在BA延长线上时,BE=AB+AE=12.∵∠EAC=90°,∴CE==4,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB =,∴PB 的长为或.(3)a 、如图4中,以A 为圆心AD 为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PB 的值最小.理由:此时∠BCE 最小,因此PB 最小,(△PBC 是直角三角形,斜边BC 为定值,∠BCE 最小,因此PB 最小)∵AE ⊥EC ,∴EC ==4,由(1)可知,△ABD ≌△ACE ,∴∠ADB =∠AEC =90°,BD =CE =4,∴∠ADP =∠DAE =∠AEP =90°,∴四边形AEPD 是矩形,∴PD =AE =4,∴PB =BD ﹣PD =4﹣4.b 、如图5中,以A 为圆心,AD 为半径画圆,当CE 在⊙A 上方与⊙A 相切时,PB 的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE 最大,因此PB最大)∵AE⊥EC,∴EC===4,同(1)可证△ADB≌△AEC∴∠ADB=∠AEC=90°,BE=CE=4,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴P D=AE=4,∴PB=BD+PD=4+4.∴PB最大值是4+4;。
人教版九年级数学上册 第23章 练习题(含答案)
人教版九年级数学上册23.1图形的旋转一.选择题(共6小题)1.如图△ABC绕点A旋转至△ADE,则旋转角是()A.∠BAD B.∠BAC C.∠BAE D.∠CAD2.香港特别行政区的区徽中间紫金花图案如图所示,则至少需要旋转()和原图案重合.A.72°B.60°C.36°D.18°3.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=30°,则旋转角度是()A.10°B.30°C.40°D.70°4.如图,△OAB绕某点旋转到△OCD的位置,则旋转中心是()A.点A B.点B C.点O D.无法确定5.在平面直角坐标系中,已知点A(﹣2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,用左面的三角形连续的旋转可以得到右面的图形,每次旋转()度.A.60B.90C.120D.150二.填空题(共6小题)7.如图,将△ABC绕点A逆时针旋转50°得△ADE,若∠BAC=20°,则∠BAE的度数是.8.如图,△ABC中,∠ACB=30°,将△ABC绕点A按顺时针方向旋转85°得到△ADE,则∠AED的度数为°.9.如图,风车图案围绕着旋转中心至少旋转度,会和原图案重合.10.时钟的时针不停地旋转,从上午6时到上午10时,时针旋转的旋转角是度.11.如图,将△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,连接BB'.若AC=1,AB=3,则BC′=.12.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点O,并能绕O点自由旋转,设∠AOC=α,∠BOD=β,则α与β之间的数量关系是.三.解答题(共3小题)13.如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.(1)指出旋转中心;(2)若∠B=21°,∠ACB=26°,求出旋转的度数;(3)若AB=5,CD=3,则AE的长是多少?为什么?14.如图,P是等边三角形ABC内一点,且P A=6,PB=8,PC=10,若将△P AC绕点A 逆时针旋转后,得到△P′AB.求:(1)PP′的长度;(2)∠APB的度数.15.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.求证:△BCD≌△FCE.参考答案一.选择题(共6小题)1.如图△ABC绕点A旋转至△ADE,则旋转角是()A.∠BAD B.∠BAC C.∠BAE D.∠CAD【解答】解:∵△ABC绕点A旋转至△ADE,∴旋转角为∠BAD或∠CAE,故选:A.2.香港特别行政区的区徽中间紫金花图案如图所示,则至少需要旋转()和原图案重合.A.72°B.60°C.36°D.18°【解答】解:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是360°÷5=72°,∴这四次旋转中,旋转角度最小是72°,故选:A.3.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=30°,则旋转角度是()A.10°B.30°C.40°D.70°【解答】解:∵∠AOB=40°,∠BOC=30°,∴∠AOC=70°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=70°,故选:D.4.如图,△OAB绕某点旋转到△OCD的位置,则旋转中心是()A.点A B.点B C.点O D.无法确定【解答】解:由题意得△OAB绕某点旋转到△OCD的位置,则旋转中心是点O.故选:C.5.在平面直角坐标系中,已知点A(﹣2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:如图,∵点A(﹣2,3),若将OA绕原点O逆时针旋转180°得到OA′,∴A′的坐标是(2,﹣3),即点A′在第四象限,故选:D.6.如图,用左面的三角形连续的旋转可以得到右面的图形,每次旋转()度.A.60B.90C.120D.150【解答】解:根据图形可得出:这是一个由基本图形绕着中心连续旋转3次,每次旋转120度角形成的图案.故选:C.二.填空题(共6小题)7.如图,将△ABC绕点A逆时针旋转50°得△ADE,若∠BAC=20°,则∠BAE的度数是30°.【解答】解:由题意可得,∠CAE=50°,∵∠BAC=20°,∴∠BAE=∠CAE﹣∠BAC=50°﹣20°=30°,故答案为:30°.8.如图,△ABC中,∠ACB=30°,将△ABC绕点A按顺时针方向旋转85°得到△ADE,则∠AED的度数为30°.【解答】解:∵将△ABC绕点A按顺时针方向旋转85°得到△ADE,∴△ABC≌△ADE,∴∠ACB=∠AED=30°,故答案为:30°.9.如图,风车图案围绕着旋转中心至少旋转60度,会和原图案重合.【解答】解:∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.故答案为:60.10.时钟的时针不停地旋转,从上午6时到上午10时,时针旋转的旋转角是120度.【解答】解:∵时针从上午的6时到10时共旋转了4个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×4=120°.故答案为:120.11.如图,将△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,连接BB'.若AC=1,AB=3,则BC′=2.【解答】解:∵△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,∴AC′=AC=1,∴BC′=AB﹣AC′=3﹣1=2.故答案为2.12.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点O,并能绕O点自由旋转,设∠AOC=α,∠BOD=β,则α与β之间的数量关系是α+β=180°.【解答】解:∵使直角的顶点重合于点O,并能绕O点自由旋转,∴∠BOC=∠AOD,∵∠BOC+∠AOC=90°,∴∠AOD+∠AOC=90°,∵α+β=∠AOC+∠BOD=∠AOC+∠BOC+∠AOC+∠AOD=180°,∴α+β=180°,故答案为:α+β=180°.三.解答题(共3小题)13.如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.(1)指出旋转中心;(2)若∠B=21°,∠ACB=26°,求出旋转的度数;(3)若AB=5,CD=3,则AE的长是多少?为什么?【解答】解:(1)旋转中心为点A;(2)∵∠B=21°,∠ACB=26°,∴∠BAC=180°﹣21°﹣26°=133°,∴旋转的度数为133°;(3)由旋转性质知:AE=AC,AD=AB,∴AE=AB﹣CD=2.14.如图,P是等边三角形ABC内一点,且P A=6,PB=8,PC=10,若将△P AC绕点A 逆时针旋转后,得到△P′AB.求:(1)PP′的长度;(2)∠APB的度数.【解答】解:(1)∵△P AC绕点A逆时针旋转后,得到△P′AB,∴∠P AP′=60°,P′A=P A=6,∴△APP′是等边三角形,∴PP′=P A=6;(2)∵△P AC绕点A逆时针旋转后,得到△P′AB,∴P′B=PC=10,∵△APP′是等边三角形,∴∠APP′=60°,∵PB2+PP′2=82+62=100,P′B2=102=100,∴PB2+PP′2=P′B2,∴△P′PB是直角三角形,∠BPP′=90°,∴∠APB=∠APP′+∠BPP′=60°+90°=150°.15.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.求证:△BCD≌△FCE.【解答】证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).人教版九年级数学上册23.2.1中心对称一.选择题(共6小题)1.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′2.下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组3.如图,△ABC与△A′B′C′成中心对称,ED是△ABC的中位线,E′D′是△A′B′C′的中位线,已知BC=4,则E′D′=()A.2B.3C.4D.1.54.如图,已知图形是中心对称图形,则对称中心是()A.点C B.点D C.线段BC的中点D.线段FC的中点5.已知下列命题,其中正确的个数是()(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等形;(3)两个全等的图形一定关于中心对称.A.0个B.1个C.2个D.3个6.已知△ABC和△DEF关于点O对称,相应的对称点如图所示,则下列结论正确的是()A.AO=BO B.BO=EOC.点A关于点O的对称点是点D D.点D在BO的延长线上二.填空题(共6小题)7.关于某一点成中心对称的两个图形,对称点的连线都经过,并且被平分.8.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为.9.如图,△ABC与△DEC关于点C成中心对称,则线段AB与DE的大小关系是.10.如图,△ABC绕点A旋转180°,得到△A′B′C′,A为旋转中心,则△ABC与△A′B′C′关于点中心对称;若∠C=90°,∠B=30°,BC=1,则BB′的长为.11.与电子显示的四位数6925不相等,但为全等图形的四位数是.12.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,观察点A 与点P,点B与点Q,点C与点R的坐标之间的关系.在这种变换下,如果△ABC中任意一点M的坐标为(x,y),那么它们的对应点N的坐标是.三.解答题(共3小题)13.如图所示的两个图形成中心对称,请找出它的对称中点.14.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.15.如图,矩形ABCD和矩形A'B'C'D关于点D成中心对称.求证:四边形ACA'C'是菱形.参考答案一.选择题(共6小题)1.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′【解答】解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.2.下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组【解答】解:根据中心对称的概念,知②③④都是中心对称.故选:C.3.如图,△ABC与△A′B′C′成中心对称,ED是△ABC的中位线,E′D′是△A′B′C′的中位线,已知BC=4,则E′D′=()A.2B.3C.4D.1.5【解答】解:∵△ABC与△A′B′C′成中心对称,∴△ABC≌△A′B′C′,∴B′C′=BC=4,∵E′D′是△A′B′C′的中位线,∴E′D′=B′C′=×4=2.故选:A.4.如图,已知图形是中心对称图形,则对称中心是()A.点C B.点DC.线段BC的中点D.线段FC的中点【解答】解:∵此图形是中心对称图形,∴对称中心是线段FC的中点.故选:D.5.已知下列命题,其中正确的个数是()(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等形;(3)两个全等的图形一定关于中心对称.A.0个B.1个C.2个D.3个【解答】解:关于中心对称的两个图形一定全等,两个全等的图形不一定关于中心对称.故只有(2)说法正确,故选:B.6.已知△ABC和△DEF关于点O对称,相应的对称点如图所示,则下列结论正确的是()A.AO=BOB.BO=EOC.点A关于点O的对称点是点DD.点D在BO的延长线上【解答】解:A、AO=OE,错误;B、BO=DO,错误;C、点A关于点O的对称点是点E,错误;D、点D在BO的延长线上,正确;故选:D.二.填空题(共6小题)7.关于某一点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.【解答】解:根据中心对称的性质,得对称点的连线都经过对称中心,并且被对称中心平分.8.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为4.【解答】解:∵在Rt△ABC中,∠B=30°,AC=1,∴AB=2AC=2,根据中心对称的性质得到BB′=2AB=4.故答案为:4.9.如图,△ABC与△DEC关于点C成中心对称,则线段AB与DE的大小关系是AB=DE.【解答】解:∵△ABC与△DEC关于点C成中心对称,∴AB=DE故答案为:AB=DE.10.如图,△ABC绕点A旋转180°,得到△A′B′C′,A为旋转中心,则△ABC与△A′B′C′关于点A中心对称;若∠C=90°,∠B=30°,BC=1,则BB′的长为.【解答】解:∵如图,△ABC绕点A旋转180°,得到△A′B′C′,A为旋转中心,∴△ABC与△A′B′C′关于点A中心对称;∵在直角△ABC中,∠B=30°,BC=1,∴AB===∴BB′=2AB=.故答案是:A;.11.与电子显示的四位数6925不相等,但为全等图形的四位数是5269.【解答】答:5269.12.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,观察点A 与点P,点B与点Q,点C与点R的坐标之间的关系.在这种变换下,如果△ABC中任意一点M的坐标为(x,y),那么它们的对应点N的坐标是(﹣x,﹣y).【解答】解:由图可知两三角形关于点O成中心对称,关于原点成中心对称的坐标的特点为横纵坐标均互为相反数,故点N的坐标是(﹣x,﹣y).三.解答题(共3小题)13.如图所示的两个图形成中心对称,请找出它的对称中点.【解答】解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.14.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.【解答】解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8;(3)∵在△ABD和△CDE中,,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<8,∴1<AD<4.15.如图,矩形ABCD和矩形A'B'C'D关于点D成中心对称.求证:四边形ACA'C'是菱形.【解答】解:∵矩形ABCD与矩形AB′C′D′关于点D成中心对称,∴∠ADC=90°,CD=CD′,DA=DA′,∴四边形ACA'C'是平行四边形,AA′⊥CC′,∴四边形ACA'C'是菱形.人教版九年级数学上册23.2.2中心对称图形一.选择题(共6小题)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.下列所述图形中,仅是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形4.下列图形中(不考虑颜色),不是中心对称图形的是()A.B.C.D.5.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个6.如图,在平面直角坐标系xOy中,△ABC与△A1B1C1是中心对称图形.则对称中心的坐标是()A.(1,1)B.(1,0)C.(1,﹣1)D.(1,﹣2)二.填空题(共6小题)7.在平面内将一个图形绕某一定点旋转度,图形的这种变化叫做中心对称.8.下列4种图案中,既是轴对称图形,又是中心对称图形的有个.9.下列图形中,其中是中心对称图形有个.①圆;②平行四边形;③长方形;④等腰三角形.10.如图,△A1B1C1是△ABC关于点O成中心对称的图形,点A的对称点是点A1,已知AO=4cm,那么AA1=cm.11.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是.12.如图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在处(填写区域对应的序号).三.解答题(共3小题)13.如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.14.下列这些是电子屏上显示的数字.(1)仔细观察后回答下列问题:①是中心对称图形而不是轴对称图形的数字是;②是轴对称图形,而不是中心对称图形的数字是;③既是轴对称又是中心对称图形的数字是;④能成中心对称的两个数字是;⑤能成轴对称的两个数字是.(2)小丽站在镜子前,从镜子中看到镜子对面墙上挂着的电子钟上显示的读数如图所示,那么这时的实际时间是.15.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是度,它中心对称图形.图形B的最小旋转角是度,它中心对称图形.图形C的最小旋转角是度,它中心对称图形.图形D的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.参考答案一.选择题(共6小题)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形又是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:B.2.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、该图既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B、该图不是中心对称图形,是轴对称图形,故本选项不合题意;C、该图既是轴对称图形,又是中心对称图形,故本选项符合题意;D、该图不是中心对称图形,是轴对称图形,故本选项不合题意.故选:C.3.下列所述图形中,仅是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形【解答】解:A、等边三角形不是中心对称图形,是轴对称图形,故本选项不合题意;B、平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意;C、矩形既是中心对称图形,又是轴对称图形,故本选项不合题意;D、菱形既是中心对称图形,又是轴对称图形,故本选项正确.故选:B.4.下列图形中(不考虑颜色),不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项不合题意;C、不是中心对称图形,是轴对称图形,故此选项符合题意;D、是中心对称图形,故此选项不合题意;故选:C.5.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个【解答】解:矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选:C.6.如图,在平面直角坐标系xOy中,△ABC与△A1B1C1是中心对称图形.则对称中心的坐标是()A.(1,1)B.(1,0)C.(1,﹣1)D.(1,﹣2)【解答】解:对称中心的坐标是(1,﹣1),故选:C.二.填空题(共6小题)7.在平面内将一个图形绕某一定点旋转180度,图形的这种变化叫做中心对称.【解答】解:在平面内将一个图形绕某一定点旋转180度,图形的这种变化叫做中心对称.故答案为180.8.下列4种图案中,既是轴对称图形,又是中心对称图形的有1个.【解答】解:第一个图形是轴对称图形,也是中心对称图形;第二个图形不是轴对称图形,也不是中心对称图形;第三个图形不是轴对称图形,也不是中心对称图形;第四个图形是轴对称图形,不是中心对称图形.故答案为:1.9.下列图形中,其中是中心对称图形有3个.①圆;②平行四边形;③长方形;④等腰三角形.【解答】解:①圆;②平行四边形;③长方形是中心对称图形,共3个,故答案为:3.10.如图,△A1B1C1是△ABC关于点O成中心对称的图形,点A的对称点是点A1,已知AO=4cm,那么AA1=8cm.【解答】解:∵△A1B1C1是△ABC关于点O成中心对称的图形,点A的对称点是点A1,AO=4cm,∴OA1=OA=4cm,∴AA1=OA+OA1=8cm,故答案为:8.11.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是方块5.【解答】解:方块5旋转180°后得到图乙,故答案为:方块5.12.如图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在②处(填写区域对应的序号).【解答】解:把正方形添加在②处,使它与阴影部分组成的新图形是中心对称图形,故答案为:②.三.解答题(共3小题)13.如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.【解答】解:连接BB′,找BB′中点O或者连接BB′、CC′,交点为对称中心O.如图所示:14.下列这些是电子屏上显示的数字.(1)仔细观察后回答下列问题:①是中心对称图形而不是轴对称图形的数字是2和5;②是轴对称图形,而不是中心对称图形的数字是3;③既是轴对称又是中心对称图形的数字是1,8,0;④能成中心对称的两个数字是6和9;⑤能成轴对称的两个数字是2和5.(2)小丽站在镜子前,从镜子中看到镜子对面墙上挂着的电子钟上显示的读数如图所示,那么这时的实际时间是21:01.【解答】解:(1)①是中心对称图形而不是轴对称图形的数字是2和5;②是轴对称图形,而不是中心对称图形的数字是3;③既是轴对称又是中心对称图形的数字是1,8,0;④能成中心对称的两个数字是6和9;⑤能成轴对称的两个数字是2和5.故答案为:2和5;3;1,8,0;6和9;2和5.(2)从镜子中看到镜子对面墙上挂着的电子钟上显示的读数如图所示,那么这时的实际时间是21:01,故答案为:21:01.15.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.【解答】解:(1)如图所示,(2)图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.故答案为:60,是;72,不是;72,不是;120,不是;90,是.人教版九年级数学上册23.2.3关于原点对称的点的坐标一.选择题(共6小题)1.点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)2.点P(5,﹣3)关于原点对称的点P'的横坐标是()A.5B.﹣5C.D.﹣3.已知点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,则()A.x=﹣1,y=2B.x=﹣1,y=8C.x=﹣1,y=﹣2D.x=1,y=8 4.点P(m,2)关于原点O的对称点为P'(﹣3,n),则m、n的值为()A.m=3,n=2B.m=3,n=﹣2C.m=﹣3,n=2D.m=﹣3,n=﹣2 5.已知A点坐标为(﹣4,5),将点A向右平移5个单位,再向下平移8个单位,得到点A1,再作点A1关于原点的对称点A2,则A2坐标为()A.(﹣1,3)B.(1,﹣3)C.(9,8)D.(﹣9,﹣8)6.若点P(a+1,a﹣2)关于原点对称的点位于第二象限,则a的取值范围表示正确的是()A.B.C.D.二.填空题(共6小题)7.点M(1,﹣4)关于原点对称的点的坐标是.8.若点A(3,5)与点B(﹣3,n)关于原点对称,则n的值为.9.如果点P(x,y)关于原点的对称点为(2,3),则x+y=.10.在平面直角坐标中,点A(2,3)关于x轴的对称点是;关于y轴的对称点是;关于原点的对称点是.11.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.12.在平面直角坐标系中,点P(m2+1,﹣3)关于原点对称点在第象限.三.解答题(共3小题)13.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.14.如图,已知M(3,4),点N是点M关于原点的对称点,过点M作x轴的垂线,过点N作y轴的垂线,两条垂线相交于点P,求△MNP的面积.15.如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴角左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标;(2)从对称的角度来考虑,说一说你是怎样得到的;(3)直接写出右图案中的嘴角左右端点关于原点的对称点的坐标.参考答案一.选择题(共6小题)1.点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)【解答】解:点M(1,2)关于原点对称的点的坐标是(﹣1,﹣2).故选:C.2.点P(5,﹣3)关于原点对称的点P'的横坐标是()A.5B.﹣5C.D.﹣【解答】解:点P(5,﹣3)关于原点对称的点P'的横坐标是:﹣5.故选:B.3.已知点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,则()A.x=﹣1,y=2B.x=﹣1,y=8C.x=﹣1,y=﹣2D.x=1,y=8【解答】解:∵点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,y﹣5=﹣3,解得:x=﹣1,y=2,故选:A.4.点P(m,2)关于原点O的对称点为P'(﹣3,n),则m、n的值为()A.m=3,n=2B.m=3,n=﹣2C.m=﹣3,n=2D.m=﹣3,n=﹣2【解答】解:∵点P(m,2)关于原点O的对称点为P'(﹣3,n),∴m、n的值为:m=3,n=﹣2,故选:B.5.已知A点坐标为(﹣4,5),将点A向右平移5个单位,再向下平移8个单位,得到点A1,再作点A1关于原点的对称点A2,则A2坐标为()A.(﹣1,3)B.(1,﹣3)C.(9,8)D.(﹣9,﹣8)【解答】解:∵A点坐标为(﹣4,5),将点A向右平移5个单位,再向下平移8个单位,得到点A1,∴点A1的坐标为:(1,﹣3),∵点A1关于原点的对称点A2,∴A2坐标为(﹣1,3).故选:A.6.若点P(a+1,a﹣2)关于原点对称的点位于第二象限,则a的取值范围表示正确的是()A.B.C.D.【解答】解:∵点P(a+1,a﹣2)关于原点的对称的点在第二象限,∴点P在第四象限,∴a+1>0,a﹣2<0,解得:﹣1<a<2,∴a的取值范围表示正确的是C.故选:C.二.填空题(共6小题)7.点M(1,﹣4)关于原点对称的点的坐标是(﹣1,4).【解答】解:M(1,﹣4)关于原点对称的点的坐标是(﹣1,4),故答案为:(﹣1,4).8.若点A(3,5)与点B(﹣3,n)关于原点对称,则n的值为﹣5.【解答】解:由点A(3,5)与点B(﹣3,n)关于原点对称,可得n=﹣5.故答案为:﹣5.9.如果点P(x,y)关于原点的对称点为(2,3),则x+y=﹣5.【解答】解:∵点P(x,y)关于原点的对称点为(2,3),∴x=﹣2,y=﹣3;∴x+y=﹣2﹣3=﹣5.故答案是:﹣5.10.在平面直角坐标中,点A(2,3)关于x轴的对称点是(2,﹣3);关于y轴的对称点是(﹣2,3);关于原点的对称点是(﹣2,﹣3).【解答】解:在平面直角坐标中,点A(2,3)关于x轴的对称点是(2,﹣3);关于y 轴的对称点是(﹣2,3);关于原点的对称点是(﹣2,﹣3).故答案为:(2,﹣3);(﹣2,3);(﹣2,﹣3).11.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是a<2.【解答】解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.12.在平面直角坐标系中,点P(m2+1,﹣3)关于原点对称点在第二象限.【解答】解:点P(m2+1,﹣3)关于原点对称点为(﹣m2﹣1,3),∵﹣m2﹣1<0,∴(﹣m2﹣1,3)在第二象限.故答案为:二.三.解答题(共3小题)13.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.【解答】解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.14.如图,已知M(3,4),点N是点M关于原点的对称点,过点M作x轴的垂线,过点N作y轴的垂线,两条垂线相交于点P,求△MNP的面积.【解答】解:如图所示:∵点N是点M关于原点的对称点,M(3,4),∴N(﹣3,﹣4),∴过点M作x轴的垂线,过点N作y轴的垂线,两条垂线相交于点P,∴△MNP的面积:6×8=24.15.如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴角左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标;(2)从对称的角度来考虑,说一说你是怎样得到的;(3)直接写出右图案中的嘴角左右端点关于原点的对称点的坐标.【解答】解:(1)左图案中的左眼睛坐标为(﹣4,3),右眼睛坐标为(﹣2,3),嘴角的左端点坐标为(﹣4,1),右端点坐标为(﹣2,1).(2)关于y轴对称的两个图形横坐标互为相反数,纵坐标不变;(3)(﹣2,﹣1),(﹣4,﹣1).。
人教版九年级上册数学同步练习《图形的旋转》(习题+答案)
23.1图形的旋转内容提要1.在平面内,将一个图形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动称为旋转.定点叫旋转中心,转动的角度叫做旋转角.2.旋转的三要素:旋转中心、旋转方向、旋转角.3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.4.旋转作图步骤:(1)首先确定旋转中心和图形中的关键点(如线段的端点、角的顶点等);(2)将这些关键点沿指定的方向旋转指定的角度;(3)然后连接对应部分,形成相应的图形.23.1.1旋转的特征基础训练1.将如图的图案按逆时针方向旋转90︒后得到的是()2.下列说法不正确的是()A.旋转后的图形与原来图形面积相等B.旋转后的图形改变了图形的大小C.旋转不改变图形的大小D.旋转不改变图形的形状3.如图,将ABC∆绕点A旋转后得到ADE∆,则旋转方式是()A.顺时针旋转90︒B.逆时针旋转90︒C.顺时针旋转45︒D.逆时针旋转45︒4.如图,ABC∆,图中旋转中心是,旋∆按顺时针方向转动一个角度后成为''A B C转了度.5.如图,Rt ABC ∆的斜边16AB =,Rt ABC ∆绕点O 顺时针旋转后得到'''Rt A B C ∆,则'''Rt A B C ∆的斜边''A B 上的中线'C D 的长度为.6.如图,将OAB ∆绕着点O 逆时针旋转两次得到OA B ''''∆,每次旋转的角度都是50︒,若120B OA ''∠=︒,则AOB ∠=.7.如图,在正方形ABCD 中,点E 在AB 边上,点F 在BC 边的延长线上,且AE CF =. (1)求证AED CFD ∆∆≌;(2)将AED ∆按逆时针方向至少旋转多少度才能与CFD ∆重合,旋转中心是什么?8.如图,ABC ∆中,1AB AC ==,45BAC ∠=︒,AEF ∆是由ABC ∆绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证BE CF =;(2)当四边形ACDE 为菱形时,求BD 的长.9.在ABC ∆中,AB BC =,120ABC ∠=︒,将ABC ∆绕点B 顺时针旋转角()090αα︒<<︒得11A BC ∆,1A B 交AC 于点E ,11A C 分别交AC ,BC 于D ,F 两点.(1)如图(1),观察并猜想,在旋转过程中,线段BE 与BF 有怎样的数量关系?并证明你的结论.(2)如图(2),当30α=︒时,试判断四边形1BC DA 的形状,并说明理由.10.如图,在直角坐标系中,Rt AOB ∆的两条直角边OA ,OB 分别在x 轴的负半轴,y 轴的负半轴上,且2OA =,1OB =.将Rt AOB ∆绕点O 按顺时针方向旋转90︒,再把所得的图象沿x 轴正方向平移1个单位,得CDO ∆.(1)写出点A ,C 的坐标; (2)求点A 和点C 之间的距离.23.1.2 简单的旋转作图及图案设计基础训练1.将如图所示的图案以圆心为中心,旋转180︒后得到的图案是( )2.……依次观察左边这三个图形,并判断照此规律从左到右第四个图形是( )3.如图,在44⨯的正方形网格中,MNP ∆绕某点旋转一定的角度,得到111M N P ∆,则其旋转中心一定是.4.如图,将图①绕某点经过几次旋转后得到图②,则每次旋转的最小角度是.5.如图,把五角星图案绕着它的中心点O至少旋转(角度)时,它与自身重合;把等边三角形绕着它的中心O至少旋转(角度)时,它与自身重合.6.如图所示的图案由三个叶片组成,绕点O旋转120︒后可以和自身重合,若每个叶片的面积为24cm,AOBcm.∠为120︒,则图中阴影部分的面积之和为27.在格纸上按以下要求作图,不用写作法:(1)作出“小旗子”向右平移6格后的图案;(2)作出“小旗子”绕O点按逆时针方向旋转90︒的图案.8.如图,在等腰直角ABC ∆中,90C ∠=︒,2BC cm =,如果以AC 的中点O 为旋转中心,将这个三角形旋转180︒,点B 落在点'B 处,求'BB 的长度.9.如图所示,画出ABC ∆绕点A 顺时针旋转90︒后的图形.10.如图,在平面直角坐标系中,有一Rt ABC ∆,且()1,3A -,()3,1B --,()3,3C -.已知11A AC ∆是由ABC ∆旋转得到的, (1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出11A AC ∆顺时针旋转90︒,180︒的三角形.能力提高1.如图,在方格纸中,ABC∆经过变换得到DEF∆,正确的变换是()A.把ABC∆绕点C逆时针方向旋转90︒,再向下平移2格B.把ABC∆绕点C顺时针方向旋转90︒,再向下平移5格C.把ABC∆向下平移4格,再绕点C逆时针方向旋转180︒D.把ABC∆向下平移5格,再绕点C逆时针方向旋转180︒2.图ABC∆,且'C在BC上,则∆中,67AB C∆绕点A顺时针旋转后,得到''C∠=︒,将ABC∠的度数为()''B C BA.56︒B.50︒C.46︒D.40︒3.下列图形中,旋转60︒后可以和原图形重合的是()A.正六边形B.正五边形C.正方形D.正三角形4.如图,已知直线443y x =-+与x 轴、y 轴分别交于A ,B 两点,把AOB ∆绕点A 按顺时针方向旋转90︒后得到''AO B ∆,则点'B 的坐标是.5.如图,在等边ABC ∆中,6AB =,D 是BC 的中点,将ABD ∆绕点A 旋转后得到ACE ∆,那么线段DE 的长度为.6.如图,把ABC ∆绕着点C 顺时针旋转35︒,得到''A B C ∆,''A B AC ⊥于点D ,则A ∠的度数是.7.如图所示,在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,1AC =,60ACD ∠=︒,求四边形ABCD 的面积.8.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别是()3,2A -,()1,4B -,()0,2C . (1)将ABC ∆以点C 为旋转中心旋转180︒,画出旋转后对应的11A B C ∆; (2)平移ABC ∆,若点A 的对应点2A 的坐标为()5,2--,画出平移后的222A B C ∆; (3)若将222A B C ∆绕某一点旋转可以得到11A B C ∆,请直接写出旋转中心的坐标.9.如图①,正方形ABCD是一个66⨯网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图②的程序移动.(1)请在图①中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).拓展探究1.如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,90∆绕点A旋转,AF,AG与边BC的∆固定不动,AFGBAC AGF∠=∠=︒,若ABC交点分别为D ,E (点D 不与点B 重合,点E 不与点C 重合),在旋转过程中,等量关系222BD CE DE +=是否成立?若成立,请证明;若不成立,请说明理由.2.在ABC ∆中,90BAC ∠=︒,AB AC =,P 是ABC ∆内一点,2PA =,1PB =,3PC =,求APB ∠的度数.3.在ABC ∆中,AB AC =,BAC α∠=(060α︒<<︒),将线段BC 绕点B 逆时针旋转60︒得到线段BD .(1)如图①,直接写出ABD ∠的大小(用含α的式子表示);(2)如图②,150BCE ∠=︒,60ABE ∠=︒,判断ABE ∆的形状并加以证明; (3)在(2)的条件下,连接DE ,若45DEC ∠=︒,求α的值.23.1 参考答案:23.1.1 旋转的特征基础训练1.D 2.B 3.B 4.点C 40 5.8 6.20︒7.(1)证明:在正方形ABCD 中,90A BCD ∠=∠=︒,AD CD =,90FCD ∴∠=︒.90A FCD ∴∠=∠=︒.又AE CF =,(SAS)AED CFD ∴∆∆≌.(2)90ADC ∠=︒,∴将AED ∆按逆时针方向至少旋转90度才能与CFD ∆重合,旋转中心是点D .8.(1)证明:由旋转可知EAF BAC ∠=∠,AF AC =,AE AB =.EAF BAF BAC BAF ∴∠=∠=∠+∠,即BAE CAF ∠=∠.又AB AC =,AE AF ∴=.ABE ACF ∴∆∆≌.BE CF ∴=.(2)四边形ACDE 是菱形,1AB AC ==,AC DE ∴∥,1DE AE AB ===. 又45BAC ∠=︒,45AEB ABE BAC ∴∠=∠=∠=︒.180AEB BAE ABE ∠+∠+∠=︒,90BAE ∴=︒.2222112BE AB AE ∴=++=21BD BE DE ∴=-=.9.(1)AB BC =,A C ∴∠=∠.由旋转可知,1AB BC =,1A C ∠=∠,1ABE C BF ∠=∠,1ABE C BF ∴∆∆≌.BE BF ∴=.(2)四边形1BC DA 是菱形.证明:1130A ABA ∠=∠=︒,11AC AB ∴∥,同理1AC BC ∥.∴四边形1BC DA 是平行四边形.又1AB BC =,∴四边形1BC DA 是菱形.10.(1)点A 的坐标是(2,0)-,点C 的坐标是(1,2);(2)连接AC ,在Rt ACD ∆中,3AD OA OD =+=,2CD =,222222313AC CD AD ∴=+=+=,13AC ∴=.23.1.2 简单的旋转作图及图案设计基础训练1.D 2.D 3.B 4.60︒ 5.72︒ 120︒ 6.4 7.如图 8.25 9.如图10.(1)(0,0) 90 (2)画出图形如图能力提高1.B 2.C 3.A 4.(7,3) 5.33 6.55︒ 7.3 8.(1)图略 (2)图略 (3)旋转中心的坐标为(1,0)-9.(1)如图;(2)因为12364ππ⨯⨯=,所以点P 经过的路径总长为6π.拓展探究1.如图,将ACE ∆绕点A 顺时针旋转90︒至ABH ∆的位置,则CE HB =,AE AH =,45ABH C ∠=∠=︒,旋转角90GAH ∠=︒. 连接HD ,在EAD ∆和HAD ∆中,AE AH =,45HAD EAH FAG EAD ∠=∠-∠=︒=∠,AD AD =,EAD HAD ∴∆∆≌. DH DE ∴=.又90HBD ABH ABC ∠=∠+∠=︒,222BD HB DH ∴+=,即222BD CE DE +=.2.135︒3.(1)1302α︒-. (2)ABE ∆为等边三角形.证明:连接AD ,CD ,ED . 线段BC 绕点B 逆时针旋转60︒得到线段BD ,BC BD ∴=,60DBC ∠=︒.60ABE ∠=︒,160302ABD DBE EBC α∴∠=︒-∠=∠=︒-. 又BD BC =,60DBC ∠=︒,BCD ∴∆为等边三角形,BD CD ∴=. 又AB AC =,AD AD =,(SSS)ABD ACD ∴∆∆≌.1122BAD CAD BAC α∆∠=∠=∠=. 150BCE ∠=︒,11180(30)15022BEC αα∴∠=︒-︒--︒=.BAD BEC ∴∠=∠. 在ABD ∆与EBC ∆中,,,,BEC BAD EBC ABD BC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)ABD EBC ∴∆∆≌.AB BE ∴=. 又60ABE ∠=︒,ABE ∴∆为等边三角形.(3)60BCD ∠=︒,150BCE ∠=︒,1506090DCE ∴∠=︒-︒=︒. 45DEC ∠=︒,DCE ∴∆为等腰直角三角形.CD CE BC ∴==. 150BCE ∠=︒,(180150)152EBC ︒-︒∴∠==︒. 又130152EBC α∠=︒-=︒,30α∴=︒.。
23.1_图形的旋转及答案(最新人教版数学九年级上册)
最新人教版数学九年级上册23.1 图形的旋转附答案班级 姓名 座号 月 日主要内容:旋转及对应点的有关概念及其应用一、课堂练习:1.把一个图形绕着某一点O 转动一个角度的图形变换叫做 ,点O 叫做 ,转动的角叫做 .2.如图,OAB ∆绕点O 按顺时针方向旋转得到OEF ∆,在这个旋转过程中:(1)旋转中心是点 ;旋转角是 ;(2)经过旋转,点A 、B 分别移动到点 的位置;(3)对应线段:线段OF 与线段 ,线段OE 与线段 ,线段EF 与线段 ;(4)对应角:∠EOF 与 ,∠E 与 ,∠F 与 .3.(课本63页)时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是多少度?从上午9时到上午10时呢?4.(课本63页)如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?二、课后作业:1.在下列现象中,不属于旋转现象的是( )A.方向盘的转动B.水龙头开关的转动C.电梯的上下移动D.钟摆的运动2.如图,将正方形图案绕点O 旋转180后,得到的图案是( )A B C D3.钟表分针从2点15分到2点20分,旋转的度数为( ) A.20 B.26 C.30 D.364.如图,在Rt ABC ∆中,90ACB ∠=,40A ∠=,以直角顶点C 为旋转中心,将ABC ∆逆时针旋转到A B C ∆''的位置,其中,A B ''分别是,A B 的对应点,且点B 在斜边A B ''上,直角边CA '交AB 于D ,则旋转角等于( )第4题A.70B.80C.60D.505.如图,ABC ∆与ADE ∆都是等腰直角三角形,C ∠和AED ∠都是直角,点E 在AB 上,如果ABC ∆经逆时针旋转后能与ADE ∆重合,那么旋转中心是点 ;旋转的度数是 . 6.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,ABD ∆经过旋转后到达ACP ∆的位置,则(1)旋转中心是点 ;(2)旋转角度是 ;(3)ADP ∆是 三角形.7.(课本66页)如图,说出压水机压水时的旋转中心和旋转角.8.(课本66页)如图,吃米的小鸡是站立的小鸡经过旋转得到的,旋转中心是O .从图上量一量旋转角是多少度.三、新课预习:1.对应点到旋转中心的距离 ;对应点与旋转中心所连线段的夹角等于 ; 旋转前、后的图形 .2.如图,OAB ∆绕O 点按顺时针方向旋转得到OEF ∆,在这个旋转过程中,找出图中相等的角和相等的线段.3.如图,E 是正方形ABCD 中,CD 边上任意一点,以点B 为中心,把EBC ∆逆时针旋转90,画出旋转后的图形.第5题第6题参考答案一、课堂练习:1.把一个图形绕着某一点O 转动一个角度的图形变换叫做 旋转 ,点O 叫做 旋转中心 ,转动的角叫做 旋转角 .2.如图,OAB ∆绕点O 按顺时针方向旋转得到OEF ∆,在这个旋转过程中:(1)旋转中心是点 O ;旋转角是 ∠AOE 、∠BOF ;(2)经过旋转,点A 、B 分别移动到点 E 、F 的位置;(3)对应线段:线段OF 与线段 OB ,线段OE 与线段 OA ,线段EF 与线段 AB ;(4)对应角:∠EOF 与 ∠AOB ,∠E 与 ∠A ,∠F 与 ∠B .3.(课本63页)时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是多少度?从上午9时到上午10时呢?解:时针1小时转30,从上午6时到9时,时针要旋转30390⨯=;从9时到10时,时针要旋转30.4.(课本63页)如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?解:杠杆的旋转中心在点O ,旋转角是∠AOA '.二、课后作业:1.在下列现象中,不属于旋转现象的是( C )A.方向盘的转动B.水龙头开关的转动C.电梯的上下移动D.钟摆的运动2.如图,将正方形图案绕点O 旋转180后,得到的图案是( D )A B C D3.钟表分针从2点15分到2点20分,旋转的度数为( C ) A.20 B.26 C.30 D.364.如图,在Rt ABC ∆中,90ACB ∠=,40A ∠=,以直角顶点C 为旋转中心,将ABC ∆逆时针旋转到A B C ∆''的位置,其中,A B ''分别是,A B 的对应点,且点B 在斜边A B ''上,直角边CA '交AB 于D ,则旋转角等于( B )A.70B.80C.60D.505.如图,ABC ∆与ADE ∆都是等腰直角三角形,C ∠和AED ∠都是直角,点E 在AB 上,如果ABC ∆经逆时针旋转后能与ADE ∆重合,那么旋转中心是点 A ;旋转的度数是 45°.6.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,ABD ∆经过旋转后到达ACP ∆的位置,则(1)旋转中心是点 A ;(2)旋转角度是 60° ;(3)ADP ∆是 等边 三角形.第4题第5题第6题7.(课本66页)如图,说出压水机压水时的旋转中心和旋转角.解:压水机的旋转中心为把手柄与机体的连接点,旋转角为把手柄旋转的角度.8.(课本66页)如图,吃米的小鸡是站立的小鸡经过旋转得到的,旋转中心是O .从图上量一量旋转角是多少度.解:经测量旋转角∠'AOA 约等于85.三、新课预习:1.对应点到旋转中心的距离 相等 ;对应点与旋转中心所连线段的夹角等于 旋转角 ; 旋转前、后的图形 全等 .2.如图,OAB ∆绕O 点按顺时针方向旋转得到OEF ∆,在这个旋转过程中,找出图中相等的角和相等的线段.答:相等的角是:A E ∠=∠,B F ∠=∠,AOB EOF ∠=∠,AOE BOF ∠=∠.相等的线段是:AB EF =,OA OE =,OB OF =.3.如图,E 是正方形ABCD 中,CD 边上任意一点,以点B 为中心,把EBC ∆逆时针旋转90,画出旋转后的图形.答:E BA ∆'是由∆EBC 逆时针旋转90后得到的.。
人教版九年级数学上册第23章第1节《图形的旋转》课后练习题(附答案)
人教版九年级数学上册第23章第1节《图形的旋转》课后练习题(附答案) 第1课时1.填空:如图,钟表的时针在不停地旋转,从3时到5时,时针的旋转中心是点 , 旋转角等于 °,点B的对应点是点 .2.填空:如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是点 ,旋转角是∠ ,点A 的对应点是点 .3.如图,扎西坐在旋转的秋千上,请在图中画出点A ,B ,C 的对应点A ′,B ′,C ′.第2课时(一)基本训练,巩固旧知1.填空:把一个平面图形绕着平面内某一点O 转动一个角度,就叫做图形的旋转,点O 叫做旋转 ,转动的角叫做旋转 .如果图形上的点P 经过旋转变为点P ′,那么这两个点叫做旋转的 .2.填空: EDA C B(1)如图,△ABC 绕点A 旋转得到△ADE ,旋转中心 是点 ,点B 的对应点是点 ,点C的对应点是点 ,∠ 等于于旋转角;(2)如图,△ABC 绕点O 旋转得到△DEF ,旋转中心是点 ,点A 的对应点是点 ,点B 的对应点是点 ,点C 的对应点是点 ,∠ 等于于旋转角.3.利用“对应点与旋转中心所连线段的夹角等于旋转角”,画出下图中的旋转角,并用量角器量出旋转角的度数.4.如图,四边形ABCD 是正方形,以点A 为中心,把△ADE 顺时针旋转90°,利用图形旋转的性质,画出旋转后的图形.(先让生做4题,然后师出示旋转后的图形,并利用性质解释点D 转到了点B ,点E 转到了点F )第3课时(一)基本训练,巩固旧知 O .F E D A B C E D CB A1.填空:图形旋转的性质是:(1)旋转前后的图形 ; (2)对应点到旋转中心的距离 ;(3)对应点与旋转中心所连线段的夹角等于 .2.如图,以点O 为中心,把点P 顺时针旋转45°.3.如图,以点O 为中心,把线段AB 逆时针旋转90°.4.如图,以点O 为中心,把△ABC 顺时针旋转120°.5.如图,以点B 为中心,把△ABC 旋转180°.B AC B AC .O A B O ..O P .。
人教版九年级数学第二十三章第1节《图形的旋转》解答题提高训练 (40)(含答案)
第二十三章第1节《图形的旋转》解答题提高训练 (40)一、解答题1.将ABC ∆的边AB 绕点A 顺时针旋转α得到AB ',边AC 绕点A 逆时针旋转β得到AC ',180αβ+=︒,连接B C '',作AB C ''∆的中线AD .图① 图② 图③(初步感知)(1)如图①,当90BAC ∠=︒,4BC =时,AD 的长为 ;(探究运用)(2)如图②,ABC ∆为任意三角形时,猜想AD 与BC 的数量关系,并证明. (应用延伸)(3)如图③,已知等腰ACB ∆,AC BC m ==,延长AC 到D ,延长CB 到E ,使CD CE n ==,将CED ∆绕点C 顺时针旋转一周得到CE D ''∆,连接BE '、AD ',若90CBE '∠=︒,求AD '的长度(用含m 、n 的代数式表示).2.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4), (1)将△ABC 各顶点的横坐标保持不变,纵坐标分别减5后得到△111A B C ,请在图中画出△111A B C ;(2)将△ABC 绕点(1,0)按逆时针方向旋转90°后得到的△222A B C ,请在图中画出△222A B C ,并分别写出△222A B C 的顶点坐标.3.定义:如图,,A B 为直线l 同侧的两点,过点A 作直线l 的对称点'A ,连接'A B 交直线l 于点P ,连接AP ,则称点P 为点,A B 关于直线l 的“等角点”.如图①,在ABC 中,,D E 分别是AB AC 、上的点,,AB AC AD AE ==,然后将ADE 绕点A 顺时针旋转一定角度,连接,BD CE ,得到图②,延长CE 交BA 的延长线于点N ,延长BD 至点M ,使DM EN =,连接AM ,得到图③,请解答下列问题: (1)在图②中,BD 与CE 的数量关系是 ;(2)在图③中,求证:点A 为点C ,M 关于直线BN 的“等角点”.4.如图,Rt △ABC 的三个顶点的坐标分别为A (-3,2)、B (0,4)、C (0,2).⑴将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C .平移△ABC ,若A 对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;⑵若将△A 1B 1C 绕某一点旋转得到△A 2B 2C 2,请直接写出旋转中心的坐标为 .⑶在x 轴上找一点P ,使得直线CP 将△ABC 的面积分为1:2,直接写出P 点的坐标为 .5.如图,在边长为6的正方形ABCD 内部有两个大小相同的长方形AEFG 、HMCN ,HM 与EF 相交于点P ,HN 与GF 相交于点Q ,AG=CM=x ,AE=CN=y .(1)用含有x 、y 的代数式表示长方形AEFG 与长方形HMCN 重叠部分的面积S 四边形HPFQ ,并求出x应满足的条件;(2)当AG=AE,EF=2PE时,①AG的长为_______;②四边形AEFG旋转后能与四边形HMCN重合,请指出该图形所在平面内能够作为旋转中心的所有点,并分别说明如何旋转的.6.如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,∠DCE=120°,当∠DCE 的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)由(图1)的位置将∠DCE绕点C逆时针旋转θ角(0<θ<90°),线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,并说明理由.△的三个顶点都在格点上,7.在正方形网格中,建立如图所示的平面直角坐标xoy,ABC4,4,请解答下列问题:点A的坐标()(1)画出ABC △关于y 轴对称的111A B C △,并写出点11,A B 的坐标;(2)将ABC △绕点C 逆时针旋转90,画出旋转后的222A B C △, 并写出点22,A B 的坐标. 8.(1)如图:已知D 为等腰直角△ABC 斜边BC 上的一个动点(D 与B 、C 均不重合),连结AD,△ADE 是等腰直角三角形,DE 为斜边,连结CE,求∠ECD 的度数.(2)当(1)中△ABC 、△ADE 都改为等边三角形,D 点为△ABC 中BC 边上的一个动点(D 与B 、C 均不重合),当点D 运动到什么位置时,△DCE 的周长最小?请探求点D 的位置,试说明理由,并求出此时∠EDC 的度数.(3)在(2)的条件下,当点D 运动到使△DCE 的周长最小时,点M 是此时射线AD 上的一个动点,以CM 为边,在直线CM 的下方画等边三角形CMN,若△ABC 的边长为4,请直接写出DN 长度的最小值.9.在平面直角坐标系xOy 中,旋转角α满足0180α︒≤≤︒,对图形M 与图形N 给出如下定义:将图形M 绕原点逆时针旋转α得到图形'M .P 为图形'M 上任意一点,Q 为图形N 上的任意一点,称PQ 长度的最小值为图形M 与图形N 的“转后距”.已知点()1,3A ,点()4,0B ,点()2,0C .(1)当90α=︒时,记线段OA 为图形M .①画出图形'M ;②若点C 为图形N ,则“转后距”为_________;③若线段AC 为图形N ,求“转后距”;(2)已知点(),0P m 在点B 的左侧,点13,2Q m ⎛⎫-- ⎪ ⎪⎝⎭,记线段AB 为图形M ,线段PQ 为图形N ,对任意旋转角α,“转后距”大于1,直接写出m 的取值范围. 10.四边形ABCD 的位置如图所示,解答下列问题:(1)将四边形ABCD 先向左平移4格,再向下平移6格,得到四边形A 1B 1C 1D 1,画出平移后的四边形A 1B 1C 1D 1;(2)将四边形A 1B 1C 1D 1绕点A 1逆时针旋转90°得到四边形A 1B 2C 2D 2,画出旋转后的四边形A 1B 2C 2D 2.11.如图(a ),两个不全等的等腰直角三角形OAB 和OCD 叠放在一起,并且有公共的直角顶点O .(1)将图(a )中的OAB 绕点O 顺时针旋转90角,在图(b )中作出旋转后的OAB (保留作图痕迹,不写作法,不证明).(2)在图(a )中,你发现线段AC ,BD 的数量关系是 ,直线AC ,BD 相交成 度角.(3)将图(a )中的OAB 绕点O 顺时针旋转一个锐角,得到图(c ),这时(2)中的两个结论是否成立?作出判断并说明理由.若OAB 绕点O 继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.12.如图,已知四边形ABCD为正方形,点E是边AD上任意一点,△ABE接逆时针方向旋转一定角度后得到△ADF,延长BE交DF于点G,且AF=4,AB=7.(1)请指出旋转中心和旋转角度;(2)求BE的长;(3)试猜测BG与DF的位置关系,并说明理由.13.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,1),C(0,1).(1)画出与△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出以C1为旋转中心,将△A1B1C1逆时针旋转90°后的△A2B2C2;(3)尺规作图:连接A1A2,在C1A2边上求作一点P,使得点P到A1A2的距离等于PC1的长(保留作图痕迹,不写作法);(4)请直接写出∠C1A1P的度数.14.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是__,B4的坐标是__;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是__,B n的坐标是__.15.如图,在已知的平面直角坐标系中,△ABC的顶点都在正方形网格的格点上,若A,B 两点的坐标分别是A(-1,0),B(0,3).(1)将△ABC绕原点O顺时针旋转90°得到△A1B1C1,画出△A1B1C1;(2)以点O为位似中心,与△ABC位似的△A2B2C2满足A2B2:AB=2:1,请在网格内画出△A2B2C2,并直接填写△A2B2C2的面积为______.16.(1)探究证明:在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E,当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;(2)发现探究:当直线MN绕点C旋转到图2的位置时,(1)中的结论是否成立,如果不成立,DE、A D、BE应满足的关系是_____.(3)解决问题:当直线MN绕点C旋转到图3的位置时,若BE=8,AD=2,请直接写出DE的长为_____.17.如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A 、B 、C 的坐标分别是A (﹣2,3)、B (﹣1,2)、C (﹣3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径弧A A 1的长度为 ;(结果保留π)(3)在y 轴上找一点D ,使DB+DB 1的值最小,并求出D 点坐标.18.阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB 的中点O 旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG. 请你参考小明的做法解决下列问题:⑴ 现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.在图3中画出示意图,标注字母,指明拼接而成的平行四边形;⑵ 如图4,在面积为2的平行四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,分别连结AF 、BG 、CH 、DE 得到一个新的平行四边形MNPQ ,请在图4中探究平行四边形MNPQ 面积的大小(画图并直接写出结果).19.如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A ,B 的坐标分别是A (3,3)、B (1,2),△AOB 绕点O 逆时针旋转90°后得到△11OB A .(1)画出△11OB A ,直接写出点1A ,1B 的坐标;(2)在旋转过程中,点B 经过的路径的长;(3)求在旋转过程中,线段AB 所扫过的面积. OBA20.如图,在正方形ABCD 中,点M 、N 是BC 、CD 边上的点,连接AM 、BN ,若BM=CN(1)求证:AM ⊥BN(2)将线段AM 绕M 顺时针旋转90°得到线段ME ,连接NE ,试说明:四边形BMEN 是平行四边形;(3)将△ABM 绕A 逆时针旋转90°得到△ADF ,连接EF ,当1 BM BC n 时,请求出四边形四边形ABCDAMEFS S 的值【答案与解析】一、解答题1.(1)2;(2)12AD BC =,证明见解析;(3)223AD m n '=+. (1)只要证明BC=B′C′=4,再利用直角三角形斜边中线的性质即可解决问题;(2)如图①中,延长AD 到E ,使得DE=AD .连接EB′,EC′.只要证明△AB ′E ≌△BAC ,即可解决问题;(3)分两种情形,利用(2)中结论以及勾股定理计算即可;(1)90αβ+=︒,180BAB CAC ''∴∠+∠=︒,90BAC ∠=︒,90B AC ''∴∠=︒,AB AB AC AC ''∴==,BAC B AC ''∠=∠,ABC AB C ''∴∆≅∆,4BC B C ''∴==,AD是直角三角形AB C ''∆斜边的中线,122AD B C ''∴==. 故答案为2.(2)证明:如图中,延长AD 到E ,使得DE AD =.连接EB ',EC '.B D DC ''=,AD DE =,。
2022年春苏科版九年级数学中考一轮复习《图形的旋转》专题训练(附答案)
2022年春苏科版九年级数学中考一轮复习《图形的旋转》专题训练(附答案)1.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.2.如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.3.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.4.已知△ABC是等边三角形.(1)将△ABC绕点A逆时针旋转角θ(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.①如图a,当θ=20°时,△ABD与△ACE是否全等?(填“是”或“否”),∠BOE=度;②当△ABC旋转到如图b所在位置时,求∠BOE的度数;(2)如图c,在AB和AC上分别截取点B′和C′,使AB=AB′,AC=AC′,连接B′C′,将△AB′C′绕点A逆时针旋转角(0°<θ<180°),得到△ADE,BD 和EC所在直线相交于点O,请利用图c探索∠BOE的度数,直接写出结果,不必说明理由.5.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC (0°<∠CBE<∠ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.6.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段P A绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.7.如图1,O为正方形ABCD的中心,分别延长OA、OD到点F、E,使OF=2OA,OE=2OD,连接EF.将△EOF绕点O逆时针旋转α角得到△E1OF1(如图2).(1)探究AE1与BF1的数量关系,并给予证明;(2)当α=30°时,求证:△AOE1为直角三角形.8.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.9.如图,P是矩形ABCD下方一点,将△PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB,问△ABE是什么特殊三角形?请说明理由.10.在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换.活动一:如图1,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF是正方形,求阴影部分的面积.小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),一眼就看出这题的答案,请你写出阴影部分的面积:.活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A作AE⊥BC,垂足为点E,求AE的长.小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图4所示),则①四边形AECG是怎样的特殊四边形?答:.AE的长是.活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B 旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.11.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.12.平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.当三角板绕点A顺时针旋转至图2、图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.13.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a 的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.14.如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.15.如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.16.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).17.已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF 绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=S△ABC;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.18.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.19.(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.20.已知:正方形ABCD.(1)如图1,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.(2)如图2,等腰直角三角形F AE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.(3)如图3,等腰直角三角形F AE绕直角顶点A顺时针旋转∠α,当a=90°时,连接BE、DF,猜想AE与AD满足什么数量关系时,直线DF垂直平分BE.请直接写出结论.(4)如图4,等腰直角三角形F AE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.参考答案1.(1)解:连接AD,如图1,∵△ABC绕点C顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣75°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠ACB=30°,∴AB=AC,∴BF=AB,∵△ABC绕点C顺时针旋转60°得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.2.解:(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠CAD=∠BAD=30°,∠DAD′=15°,∴α=15°.(2)∵∠C′B′D′=60°,∴∠EB′G=120°,∵∠EAG=60°,∴∠EAG+∠EB′G=180°,∴四边形EAGB′四点共圆,∴∠AEB′=∠AGD′,∵∠EAB′=∠GAD′,AB′=AD′,∴△AEB′≌△AGD′(AAS),∴EB′=GD′,AE=AG,∵AH=AH,∠HAE=∠HAG,∴△AHE≌△AHG(SAS),∴EH=GH,∵△EHB′的周长为2,∴EH+EB′+HB′=B′H+HG+GD′=B′D′=2,∴AB′=AB=2,∴菱形ABCD的周长为8.3.(1)解:∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°,∵CD∥EF,∴∠α=30°;(2)证明:∵G为BC中点,∴CG=1,∴CG=CE,∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′和△E′CD中,∴△GCD′≌△E′CD(SAS),∴GD′=E′D;(3)解:能.理由如下:∵四边形ABCD为正方形,∴CB=CD,∵CD=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形,当∠BCD′=∠DCD′时,△BCD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,则旋转角α==135°,当△BCD′与△DCD′为锐角三角形时,∠BCD′=∠DCD′=∠BCD=45°则α=360°﹣=315°,即旋转角a的值为135°或315°时,△BCD′与△DCD′全等.4.解:(1)①∵△ADE是由△ABC绕点A旋转θ得到,△ABC是等边三角形,∴AB=AD=AC=AE,∠BAD=∠CAE=20°,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS);∵θ=20°,∴∠ABD=∠AEC=(180°﹣20°)=80°,又∵∠BAE=θ+∠BAC=20°+60°=80°,∴在四边形ABOE中,∠BOE=360°﹣80°﹣80°﹣80°=120°;②由已知得:△ABC和△ADE是全等的等边三角形,∴AB=AD=AC=AE,∵△ADE是由△ABC绕点A旋转θ得到的,∴∠BAD=∠CAE=θ,∴△BAD≌△CAE,∴∠ADB=∠AEC,∵∠ADB+∠ABD+∠BAD=180°,∴∠AEC+∠ABD+∠BAD=180°,∵∠ABO+∠AEC+∠BAE+∠BOE=360°,∵∠BAE=∠BAD+∠DAE,∴∠DAE+∠BOE=180°,又∵∠DAE=60°,∴∠BOE=120°;(2)如图,∵AB=AB′,AC=AC′,∴==,∴B′C′∥BC,∵△ABC是等边三角形,∴△AB′C′是等边三角形,根据旋转变换的性质可得AD=AE,∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠BOC=180°﹣(∠OBC+∠OCB),=180°﹣(∠OBC+∠ACB+∠ACE),=180°﹣(∠OBC+∠ACB+∠ABD),=180°﹣(∠ACB+∠ABC),=180°﹣(60°+60°),=60°,当0°<θ<30°时,∠BOE=∠BOC=60°,当θ=30°时,点B,点O,点E共线.当30°<θ<180°时,∠BOE=180°﹣∠BOC=180°﹣60°=120°.5.(1)证明:∵∠DBE=∠ABC,∴∠ABD+∠CBE=∠DBE=∠ABC,∵△ABE′由△CBE旋转而成,∴BE=BE′,∠ABE′=∠CBE,∴∠DBE′=∠DBE,在△DBE与△DBE′中,∵,∴△DBE≌△DBE′(SAS),∴DE′=DE;(2)证明:如图所示:把△CBE逆时针旋转90°,连接DE′,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCE=45°,∴图形旋转后点C与点A重合,CE与AE′重合,∴AE′=EC,∴∠E′AB=∠BCE=45°,∴∠DAE′=90°,在Rt△ADE′中,DE′2=AE′2+AD2,∵AE′=EC,∴DE′2=EC2+AD2,同(1)可得DE=DE′,∴DE2=AD2+EC2.6.解:(1)∵BA=BC,∠BAC=60°,M是AC的中点,∴BM⊥AC,AM=MC,∵将线段P A绕点P顺时针旋转2α得到线段PQ,∴AM=MQ,∠AMQ=120°,∴CM=MQ,∠CMQ=60°,∴△CMQ是等边三角形,∴∠ACQ=60°,∴∠CDB=30°;(2)如图2,连接PC,AD,∵AB=BC,M是AC的中点,∴BM⊥AC,即BD为AC的垂直平分线,∴AD=CD,AP=PC,PD=PD,在△APD与△CPD中,∵,∴△APD≌△CPD(SSS),∴∠ADB=∠CDB,∠P AD=∠PCD,又∵PQ=P A,∴PQ=PC,∠ADC=2∠1,∠4=∠PCQ=∠P AD,∴∠P AD+∠PQD=∠4+∠PQD=180°,∴∠APQ+∠ADC=360°﹣(∠P AD+∠PQD)=180°,∴∠ADC=180°﹣∠APQ=180°﹣2α,∴2∠CDB=180°﹣2α,∴∠CDB=90°﹣α;(3)如图1,延长BM,CQ交于点D,连接AD,∵∠CDB=90°﹣α,且PQ=QD,∴∠P AD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠P AD>∠MAD,∵点P在线段BM上运动,∠P AD最大为2α,∠P AD最小等于α,∴2α>180°﹣2α>α,∴45°<α<60°.7.(1)解:AE1=BF1.证明:∵O为正方形ABCD的中心,∴OA=OD,∵OF=2OA,OE=2OD,∴OE=OF,∵将△EOF绕点O逆时针旋转α角得到△E1OF1∴OE1=OF1,∵∠F1OB=∠E1OA,OA=OB,∴△E1AO≌△F1BO,∴AE1=BF1;(2)证明:∵取OE1中点G,连接AG,∵∠AOD=90°,α=30°,∴∠E1OA=90°﹣α=60°,∵OE1=2OA,∴OA=OG,∴∠E1OA=∠AGO=∠OAG=60°,∴AG=GE1,∴∠GAE1=∠GE1A=30°,∴∠E1AO=90°,∴△AOE1为直角三角形.8.解:(1)如图2中,结论:EG=CG,EG⊥CG.(2)如图3中,EG=CG,EG⊥CG.证明:延长FE交DC延长线于M,连MG.∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,∠EMC=90°,由图(3)可知,∵BD平分∠ABC,∠ABC=90°,∴∠EBF=45°,又∵EF⊥AB,∴△BEF为等腰直角三角形∴BE=EF,∠F=45°.∴EF=CM.∵∠EMC=90°,FG=DG,∴MG=FD=FG.∵BC=EM,BC=CD,∴EM=CD.∵EF=CM,∴FM=DM,又∵FG=DG,∠CMG=∠EMC=45°,∴∠F=∠GMC.在△GFE与△GMC中,,∴△GFE≌△GMC(SAS).∴EG=CG,∠FGE=∠MGC.∵∠FMC=90°,MF=MD,FG=DG,∴MG⊥FD,∴∠FGE+∠EGM=90°,∴∠MGC+∠EGM=90°,即∠EGC=90°,∴EG⊥CG.9.解:等边三角形.理由:由题意可知:∠APD=60°,∴△P AD是等边三角形,∴∠DAP=∠PDA=60°,∴∠PDC=∠P AE=30°,∴∠DAE=∠DAP﹣∠P AE=30°,∴∠P AB=30°,即∠BAE=60°,又∵CD=AB=EA,∴△ABE是等边三角形,故答案为等边三角形.10.解:活动一:∵四边形DECF是正方形,∴DE=DF=x,DE∥BC,DF∥AC,∴,,∵AD=2,BD=1,∴AC=3x,BC=x,∵AC2+BC2=AB2,∴9x2+(x)2=9,解得:x=,∴DE=DF=,AE=,BF=,∴S△ADE+S△BDF=1,∴S阴影=1;故答案为:1;活动二:根据题意得:∠EAG=90°,∵AE⊥BC,∴∠AEB=∠AEC=∠G=90°,∴四边形AECG是矩形,∵AE=AG,∴四边形AECG是正方形,∵BC=5,CD=3,∴设AE=x,则BE=GD=CG﹣CD=x﹣3,BE=BC﹣EC=5﹣x,∴x﹣3=5﹣x,解得:x=4,∴AE=4.故答案为:正方形,4;活动三:过点B作BG⊥DC于点G,过点E作EF⊥AB与AB的延长线交于点F.∵∠BAD=∠D=∠DGB=90°,∴四边形ABGD是矩形,∴DG=AB=2,∴CG=DC﹣DG=4﹣2=2.∵∠CBG+∠CBF=90°,∠EBF+∠CBF=90°,∴∠CBG=∠EBF.在△BCG与△BEF中,∠CBG=∠EBF,∠CGB=∠EFB=90°,BC=BE,∴△BCG≌△BEF,∴CG=EF=2.∴S△ABE=AB•EF=2.11.解:(1)答:AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2;∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG,∴∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.12.解:图2,AF+BF=2CE仍成立,证明:过B作BH⊥CE于点H,∵∠BCH+∠ACE=90°,又∵在直角△ACE中,∠ACE+∠CAE=90°,∴∠CAE=∠BCH,又∵AC=BC,∠AEC=∠BHC=90°∴△ACE≌△CBH.∴CH=AE,BF=HE,CE=BH,∴AF+BF=AE+EF+BF=CH+EF+HE=CE+EF=2EC.图3中,过点C作CG⊥BF,交BF延长线于点G,∵AC=BC,可得∠AEC=∠CGB,∠ACE=∠BCG,∴△CBG≌△CAE,∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF﹣BF=2CE.13.(1)证明:①如图2:∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE,②∵△BPM≌△CPE,∴PM=PE∴PM=ME,∴在Rt△MNE中,PN=ME,∴PM=PN.(2)解:成立,如图3.证明:延长MP与NC的延长线相交于点E,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,在△BPM和△CPE中,,∴△BPM≌△CPE,∴PM=PE,∴PM=ME,则Rt△MNE中,PN=ME∴PM=PN.(3)解:如图4,四边形BMNC是矩形,理由:∵MN∥BC,BM⊥AM,CN⊥MN,∴∠AMB=∠ANC=90°,∠AMB+∠CBM=180°,∴∠CBM=∠AMB=∠CNA=90°,∴四边形BMNC是矩形.∵BM=CN,∠PBM=∠PCN,BP=CP,∴△PBM≌△PCN(SAS)∴PM=PN.14.(1)证明:∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)解:∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角,∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°﹣75°﹣75°=30°.15.解:(1)BG=AE,证明:∵△ABC是等腰直角三角形,AD⊥BC,∴BD=DA,又∵正方形DEFG中:GD=DE,∠GDB=∠EDA;∴Rt△BDG≌Rt△ADE;∴BG=AE;(2)成立:证明:连接AD,∵Rt△BAC中,D为斜边BC的中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°,∵EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE,在△BDG和△ADE中,∴△BDG≌△ADE(SAS),∴BG=AE;(3)由(2)可得BG=AE,当BG取得最大值时,AE取得最大值;分析可得:当旋转角度为270°时,BG=AE最大值为1+2=3,此时如图:AF=.16.(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG=FD,同理,在Rt△DEF中,EG=FD,∴CG=EG.(2)解:(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC,在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=MC,∴EG=CG.(3)解:(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,∵∠GCD=∠GMF,∠CGD=∠MGF,GF=GD,∴△CDG≌△MFG(AAS),∴CD=FM,又因为BE=EF,易证∠EFM=∠EBC,∴△EFM≌△EBC(SAS),∴∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形,∵G为CM中点,∴EG=CG,EG⊥CG.17.解:(1)显然△AED,△DEF,△ECF,△BDF都为等腰直角三角形,且全等,则S△DEF+S△CEF=S△ABC;(2)图2成立;图3不成立.图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°,又∵∠C=90°,∴DM∥BC,DN∥AC,∵D为AB边的中点,由中位线定理可知:DN=AC,MD=BC,∵AC=BC,∴MD=ND,∵∠EDF=90°,∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°,∴∠MDE=∠NDF,在△DME与△DNF中,∵,∴△DME≌△DNF(ASA),∴S△DME=S△DNF,∴S四边形DMCN=S四边形DECF=S△DEF+S△CEF,由以上可知S四边形DMCN=S△ABC,∴S△DEF+S△CEF=S△ABC.图3不成立,连接DC,证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°)∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+,∴S△DEF﹣S△CFE=.故S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.18.解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.19.解:(1)如图3,∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图4∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8﹣∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠6﹣∠5=∠2+∠5﹣∠5=∠2,∴∠AEB=60°.20.解:(1)BE=DF且BE⊥DF;(2)在△DF A和△BEA中,∵∠DAF=90°﹣∠F AB,∠BAE=90°﹣∠F AB,∴∠DAF=∠BAE,又AB=AD,AE=AF,∴△DF A≌△BEA,∴BE=DF;∠ADF=∠ABE,∴BE⊥DF;(3)AE=(﹣1)AD;(4)正方形.。
人教版九年级上册数学第二十三章旋转23.1图形的旋转课后练习(含答案)
九年级上册数学《第二十三章23.1 图形的旋转》课后练习一、单项选择题1.如图,在平面直角坐标系中,将点P(2,3) 绕原点O顺时针旋转90°获得点P,则P的坐标为()A.(3,2)B. (3, 1)C.(2,3)D.(3, 2)2.如图,在同一平面内,将△ ABC 绕点 A 逆时针旋转50°到△AB′ C的′地点,使得 C′C∥ AB ,则∠ CAB 等于()A .50°B. 60°C. 65°D. 70°3.如图,四边形ABCD 是边长为 5 的正方形, E 是DC 上一点,DE1,将ADE绕着点 A 顺时针旋转到与ABF重合,则EF()A.41B.42C.52D.2134.如图,△ A′ B′是C由′△ ABC 经过平移获得的,△ A′ B′还C可′以看作是△ ABC经过如何的图形变化获得?以下结论:① 1 次旋转;② 1 次旋转和 1 次轴对称;③ 2 次旋转;④ 2 次轴对称.此中全部正确结论的序号是()A .①④B . ②③C . ②④D . ③④5.在平面直角坐标系中,以原点为对称中心,把点A ( 3, 4)逆时针旋转90°,获得点 B ,则点B 的坐标为()A .(4, -3)B .( -4, 3)C .( -3, 4)D .( -3, -4)二、填空题6.在以下图的方格纸 (1 格长为 1 个单位长度 )中, △ABC 的极点都在格点上,将△ ABC绕点O 按顺时针方向旋转获得△ A'B'C' ,使各极点仍在格点上,则其旋转角的度数是____________ ..7.如图, 已知ABC 是等腰三角形, AB AC , BAC45 ,点 D 在 AC 边上,将 ABD绕点 A 逆时针旋转 45°获得 ACD ' ,且点 D ′、D 、B 三点在同一条直线上,则ABD 的度数是 _____.8.如图将 △ ABC 绕点 C 逆时针旋转获得△AB C ,此中点 A 与 A 是对应点,点 B ′与 B 是对应点,点B ′AC上,连结 A B ,若ACB 45 , AC 3 , BC 2 ,则 A B的落在边长为 __________.9.如图,在菱形ABCD 中,AB 2 , BAD 60,将菱形 ABCD 绕点 A 逆时针方向旋转,对应获得菱形AEFG ,点E在AC上,EF与CD交于点 P ,则DP的长是 _____.10.如图,将Rt ABC的斜边 AB 绕点 A 顺时针旋转090获得 AE,直角边AC绕点 A 逆时针旋转090 获得AF,连结EF.若AB=3,,且 B ,AC=2则 EF = _____.11.如图,等边三角形ABC 内有一点 P,分別连结 AP 、 BP、 CP,若AP6, BP8 ,CP 10 .则 S ABP S BPC=_______.12.如图,在平面直角坐标系中,点A1的坐标为 (10),,以OA1为直角边作Rt OA1 A2,并使AOA =60 12,再以OA 为直角边作2Rt OA A ,并使23A OA=6023,再以OA 为直角3边作 Rt OA3 A4,并使A3OA4=60按此规律进行下去,则点A2019的坐标为_______.13.如图,将绕直角极点 C 顺时针旋转,获得,连结AD ,若,则______.三、解答题14. (1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ ACB=90° ,B,C,D在一条直线上.填空 :线段AD,BE之间的关系为.(2) 拓展研究如图2,△ACB和△DCE均为等腰直角三角形,∠ ACB= ∠ DCE=90° ,请判断AD,BE的关系 ,并说明原因.(3) 解决问题如图 3,线段 PA=3,点 B 是线段 PA 外一点 ,PB=5, 连结 AB, 将 AB 绕点 A 逆时针旋转 90°获得线段AC, 跟着点 B 的地点的变化 ,直接写出 PC 的范围 .15.如图 1,ABC 中,CA CB,ACB, D 为ABC内一点,将CAD 绕点 C 按逆时针方向旋转角获得CBE ,点A, D的对应点分别为点B, E ,且 A, D, E 三点在同向来线上.( 1)填空:CDE(用含的代数式表示);( 2)如图 2,若60,请补全图形,再过点C作CF AE 于点F,而后研究线段CF , AE, BE 之间的数目关系,并证明你的结论;(3)若90 , AC 5 2 ,且点G知足AGB 90 , BG 6,直接写出点 C 到 AG 的距离.16.如图,在△ ABC 和△ADE 中,点 E 在 BC 边上,∠ BAC =∠ DAE ,∠ B=∠ D, AB =AD .(1)试说明△ ABC ≌△ ADE ;(2)假如∠ AEC = 75°,将△ ADE 绕点 A 旋转一个锐角后与△ ABC 重合,求这个旋转角的大小.17.如图,在Rt △ABC 中,∠ C=90°, AB=10 ,AC=8 .线段 AD 由线段 AB 绕点 A 按逆时针方向旋转90°获得,△ EFG 由△ ABC 沿 CB 方向平移获得,且直线EF 过点 D.(1)求∠BDF 的大小;(2)求 CG 的长.18.请仔细阅读下边的数学小研究系列,达成所提出的问题:研究1:如图1,在等腰直角三角形ABC中,,,将边AB绕点B 顺时针旋转获得线段BD,连结求证:的面积为提示:过点 D 作BC 边上的高 DE,可证≌研究2:如图2,在一般的中,,,将边AB 绕点B 顺时针旋转获得线段BD ,连结请用含 a 的式子表示的面积,并说明原因.研究 3:如图 3,在等腰三角形ABC 中,获得线段BD ,连结尝试究用含 a 的式子表示,,将边AB绕点B顺时针旋转的面积,要有研究过程.19.如图 1,矩形 ABCD 中, E 是 AD 的中点,以点 E 直角极点的直角三角形EFG 的两边EF,EG 分别过点 B , C,∠ F= 30°.( 1)求证: BE=CE( 2)将△ EFG 绕点 E 按顺时针方向旋转,当旋转到EF与 AD重合时停止转动.若EF,EG分别与AB,BC订交于点M,N.(如图2)①求证:△ BEM ≌△ CEN ;②若 AB = 2,求△ BMN 面积的最大值;③当旋转停止时,点 B 恰幸亏 FG 上(如图3),求 sin∠ EBG 的值 .答案1. D2.C 3.D 4.D 5.B6. 90°7. 22.5 °8.139.31 10.|13|11.2416 322017 ,22017 313.12.14.解( 1)结论: AD=BE ,AD ⊥BE.原因:如图 1 中,∵△ ACB 与△ DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ ACB= ∠ ACD=90°,在 Rt△ ACD 和 Rt△BCE 中AC=BCACD=BCECD=CE∴△ ACD ≌△ BCE ( SAS),∴AD=BE ,∠ EBC=∠ CAD延伸 BE交AD于点 F,∵BC⊥AD ,∴∠ EBC+∠ CEB=90°,∵∠ CEB=AEF ,∴∠ EAD+ ∠ AEF=90°,∴∠ AFE=90°,即 AD ⊥BE .∴AD=BE , AD ⊥ BE .故答案为 AD=BE , AD ⊥BE .( 2)结论: AD=BE , AD ⊥ BE .原因:如图 2 中,设 AD 交 BE 于 H,AD 交 BC 于 O.∵△ ACB 与△ DCE 均为等腰直角三角形,∴AC=BC , CE=CD ,∠ ACB= ∠ECD=90°,∴ACD= ∠ BCE ,在 Rt△ ACD 和 Rt△BCE 中AC=BCACD=BCE ,CD=CE∴△ ACD ≌△ BCE ( SAS),∴AD=BE ,∠CAD= ∠CBE ,∵∠ CAO+ ∠ AOC=90°,∠ AOC= ∠BOH ,∴∠ BOH+ ∠ OBH=90°,∴∠ OHB=90°,∴AD ⊥BE,∴AD=BE ,AD ⊥BE.(3)如图 3 中,作 AE ⊥ AP,使得 AE=PA ,则易证△ APE ≌△ ACP ,∴ PC=BE ,,图 3-1 中,当 P、 E、 B 共线时, BE 最小,最小值 =PB-PE=5-3 2,图 3-2 中,当 P、 E、 B 共线时, BE 最大,最大值 =PB+PE=5+3 2∴5-3 2 ≤BE≤5+32,即 5-3 2 ≤PC≤5+32.15.解:(1)将CAD 绕点 C 按逆时针方向旋转角获得 CBE ACD BCE , DCE aCD CECDE 1802故答案为:1802(2)AE BE23CF 3原因以下:如图,将CAD 绕点 C 按逆时针方向旋转角60 获得CBE ACD BCEAD BE,CD CE,DCE60CDE是等边三角形,且CF DEDF EF3 CF3AE AD DF EF2 3AE BE CF3( 3)如图,当点G 在AB上方时,过点C作CE AG 于点 E ,ACB90, AC BC52CAB ABC45,AB10ACB90AGB点C,点G ,点 B ,点 A 四点共圆AGC ABC45 ,且CE AGAGC ECG 45CE GEAB10,GB6, AGB 90AG AB2GB28AC2 AE2 CE2 ,(52) 2(8CE) 2CE 2CE 7 (不合题意舍去),CE1若点 G在AB的下方,过点C作CF AG,同理可得: CF7点C到 AG的距离为1或7.16.解:( 1)、∵∠ BAC= ∠DAE , AB=AD ,∠ B=∠ D,∴△ ABD ≌△ ADE.( 2)、∵△ ABC ≌△ ADE ,∴ AC 与 AE 是一组对应边,∴∠ CAE的旋转角,∵ AE=AC ,∠AEC=75°,∴∠ ACE= ∠ AEC=75°,∴∠ CAE=180° —75°—75°=30°17.解( 1)∵线段 AD 是由线段AB 绕点 A 按逆时针方向旋转90°获得,∴∠ DAB=90°, AD=AB=10 ,∴∠ ABD=45°,∵△ EFG 是△ ABC 沿 CB 方向平移获得,∴AB ∥ EF,∴∠ BDF= ∠ ABD=45°;(2)由平移的性质得, AE ∥ CG, AB ∥ EF,∴∠ DEA= ∠ DFC= ∠ABC ,∠ ADE+ ∠ DAB=180°,∵∠ DAB=90°,∴∠ ADE=90°,∵∠ ACB=90°,∴∠ ADE= ∠ ACB ,∴△ ADE ∽△ ACB ,∴,∵AB=8 , AB=AD=10 ,∴ AE=12.5 ,由平移的性质得, CG=AE=12.5 .18.解如图1,过点D作交CB的延伸线于E,,由旋转知,,,,,,在和中,,≌,,;的面积为,原因:如图2,过点 D 作 BC 的垂线,与BC 的延伸线交于点E,,线段AB绕点,B 顺时针旋转,获得线段BE ,,,,在和中,,≌,,,如图;3,过点 A 作与 F,过点 D 作的延伸线于点E,,,,,,,线段 BD 是由线段 AB 旋转获得的,,在和中,,≌,,,的面积为.19.解( 1)证明:如图 1 中,∵四边形 ABCD 是矩形,∴AB=DC ,∠A= ∠D=90°,∵E 是 AD 中点,∴AE=DE ,∴△ BAE ≌△ CDE ,∴BE=CE .(2)①解:如图 2 中,由( 1)可知,△ EBC 是等腰直角三角形,∴∠ EBC=∠ ECB=45°,∵∠ ABC= ∠ BCD=90°,∴∠ EBM= ∠ ECN=45°,∵∠ MEN= ∠ BEC=90°,∴∠ BEM= ∠ CEN,∵EB=EC ,∴△ BEM ≌△ CEN ;②∵△ BEM ≌△ CEN ,∴BM=CN ,设 BM=CN=x ,则 BN=4-x ,2∴S△BMN =?x( 4-x ) =-(x-2)+2,∵—< 0,∴ x=2 时,△ BMN 的面积最大,最大值为2.③解:如图 3 中,作 EH⊥ BG 于 H .设 NG=m ,则 BG=2m , BN=EN=m,EB= m.∴ EG=m+ m= ( 1+)m,∵S△BEG= ?EG?BN= ?BG?EH,∴ EH==m,在 Rt△ EBH 中, sin∠ EBH=.。
九年级数学上册23-1《图形的旋转》基础课时练习题(含答案解析)
九年级数学上册23-1《图形的旋转》基础课时练习题(含答案解析)1、如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是().A. 60m2B. 63m2C. 64m2D. 66m22、星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1) 若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.(2) 垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.(3) 当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.3、某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.4、某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足y=−2x+80(20⩽x⩽40),设销售这种产品每天的利润为W(元).(1) 求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式.(2) 当销售单价定为多少元时,每天的利润最大?最大利润是多少元?5、某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1) 求y与x之间的函数关系式.(2) 在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3) 当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?6、解答:(1) 一辆宽2米的货车要通过跨度为8米,拱高为4米的单行抛物线隧道(从正中通过),为保证安全,车顶左右两侧离隧道的垂直距离至少要0.5米,求货车的限高为多少?(2) 若将(1)中的单行道改为双行道,即货车必须从隧道中线的右侧通过,求货车的限高应是多少?7、把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度ℎ(米)适用公式ℎ=20t−5t2(0⩽t⩽4).(1) 经过多少时间足球能到达最大高度,最大高度是几米?(2) 足球从开始踢至回到地面需要多少时间?(3) 若存在两个不相等的实数t,能使足球距离地面的高度都为m(米),请直接写出m的取值范围.8、运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度ℎ(m)与它的飞行时间t(s)满足二次函数关系,t与ℎ的几组对应值如下表所示:(1) 求ℎ与t之间的函数关系式(不要求写t的取值范围).(2) 求小球飞行3s时的高度.(3) 问:小球的飞行高度能否达到22m.请说明理由.9、军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的x2+10x,经过秒时间,炮弹落到地上爆炸了.关系满足y=−1510、如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A出发沿AC向点C以1cm/s的速度运动,同时点Q从点C出发沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小为().A. 19cm2B. 16cm2C. 15cm2D. 12cm211、如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成,若墙长为18米,设这个苗圃垂直于墙的一边长为x米.(1) 若苗圃园的面积为100平方米,求x的值.(2) 若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.12、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.(1) 求S与x的函数关系式.(2) 如果要围成面积为45m2的花圃,AB的长是多少米?(3) 能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.13、某种水果进价为每千克20元,市场调查发现,该水果每天的销售量y(千克)与售价x(元/千克)有如下关系:y=−2x+80,设这种水果每天的销售利润为w元.(1) 求w与x之间的函数关系式.(2) 该水果售价定为每千克多少元时,每天销售利润最大?最大利润是多少元.(3) 如果商家为“薄利多销”,规定这种水果售价每千克不高于28元,则商家要想每天获利150元的销售利润,售价应定为每千克多少元.14、服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1) 求y与x之间所满足的函数关系式,并写出x的取值范围.(2) 设服装厂所获利润为w(元),若10⩽x⩽50(x为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?15、一条单车道的抛物线形隧道如图所示,隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.(1) 建立适当的平面直角坐标系,求抛物线的表达式.(2) 现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.16、如图,以40m/s的速度将小球沿与地面成某一角度的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度ℎ(单位:m)与飞行时间(单位:s)之间具有函数关系ℎ=20t−5t2.请解答以下问题:(1) 小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2) 小球的飞行高度能否达到20.5m?为什么?(3) 小球从飞出到落地要用多少时间?1 、【答案】 C;【解析】设BC=xm,矩形ABCD的面积为ym2,易知AB=(16−x)m,根据题意得y=(16−x)x=−x2+16x=−(x−8)2+64,当x=8时,y取得最大值,为64,则所围成矩形ABCD的最大面积是64m2.故选C.2 、【答案】 (1) y=30−2x(6⩽x<15).;(2) 当x=7.5时,S最大值=112.5.;(3) x的取值范围为6⩽x⩽11.;【解析】 (1) y=30−2x(6⩽x<15).(2) 设矩形苗圃园的面积为S,则S=xy=x(30−2x)=−2x2+30x,∴S=−2(x−7.5)2+112.5.由(1)知,6⩽x<15,∴当x=7.5时,S最大值=112.5,即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5.(3) ∵这个苗圃园的面积不小于88平方米,即−2(x−7.5)2+112.5⩾88,∴6⩽x⩽11.由(1)可知6⩽x<15,∴x的取值范围为6⩽x⩽11.3 、【答案】70;【解析】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x−50)[200+(80−x)×20]=−20(x−70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.4 、【答案】 (1) w=−2x2+120x−1600 (20⩽x⩽40);(2) 当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元;【解析】 (1) w=y(x−20)=(x−20)(−2x+80)=−2x2+120x−1600 (20⩽x⩽40).(2) w=−2x2+120x−1600=−2(x−30)2+200则当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元.5 、【答案】 (1) y=−0.5x+80.;(2) 增种果树10棵时,果园可以收获果实6750千克.;(3) 当增种果树40棵时果园的最大产量是7200千克.;【解析】 (1) 设函数的表达式为y =kx +b ,该一次函数过点(12,74),(28,66),根据题意,得:{74=12k +b 66=28k +b ,解得,{k =−0.5b =80, ∴该函数的表达式为y =−0.5x +80.(2) 根据题意,得,(−0.5x +80)(80+x)=6750,解这个方程得,x 1=10,x 2=70,∵投入成本最低.∴x 2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3) 根据题意,得w =(−0.5x +80)(80+x)=−0.5(x −40)2+7200, ∵a =−0.5<0,则抛物线开口向下,函数有最大值,∴当x =40时,w 最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.6 、【答案】 (1) 3.25米.;(2) 2.5米.;【解析】 (1) 以抛物线的对称轴为y 轴,地平线为x 轴,建立如图所示坐标系,∵抛物线的顶点坐标是(0,4),∴可设抛物线的解析式为y =ax 2+4.又∵抛物线过(4,0)点,∴0=a×42+4,∴a=−1.4x2+4(−4⩽x⩽4)∴y=−14当x=1时,y=3.75.∴货车限高为3.75−0.5=3.25(米).(2) 当x=2时,y=3,故货车限高为3−0.5=2.5(米).7 、【答案】 (1) 经过2s足球能到达最大高度,最大高度是20米.;(2) 足球从开始踢至回到地面需要4秒.;(3) 0⩽m<20.;【解析】 (1) ∵ℎ=20t−5t2=−5(t−2)2+20,∴t=2时,ℎ最大,最大值为20m,答:经过2s足球能到达最大高度,最大高度是20米.(2) 令ℎ=0,得:20t−5t2=0,解得:t=0或t=4,∴足球从开始踢至回到地面需要4秒.(3) 由(1)知足球的最大高度为20米,∴0⩽m<20.8 、【答案】 (1) ℎ=−5t2+20t.;(2) 15m.;(3) 小球的飞行高度不能达到22m.;【解析】 (1) ∵t =0时,ℎ=0∴设ℎ与t 的函数关系式为ℎ=at 2+bt(a ≠0),∵t =1时,ℎ=15,t =2时,ℎ=20,∴{a +b =154a +2b =20, 解得{a =−5b =20, ∴ℎ与t 之间的函数关系式为ℎ=−5t 2+20t .(2) 小球飞行3秒时,t =3,此时ℎ=−5×32+20×3=15(m),答:此时小球的高度为15m .(3) 方法一 : 设ts 时,小球的飞行高度达到22m ,则−5t 2+20t =22,即5t 2−20t +22=0,∵Δ=(−20)2−4×5×22<0,∴此方程无实数根,∴小球的飞行高度不能达到22m .(3) 方法二 : ∵ℎ=−5t 2+20t =−5(t −2)2+20,∴小球飞行的最大高度为20m ,∵22>20,∴小球的飞行高度不能达到22m .9 、【答案】 50;【解析】 依题意,关系式化为:y =−15(x −25)2+125.令y =0,解得:x =50秒.10 、【答案】 C;【解析】 在Rt △ABC 中,∠C =90°,AB =10cm ,BC =8cm ,∴AC =√AB 2−BC 2=√102−82=6(cm).设运动时间为t 秒(0⩽t ⩽4),则PC =(6−t)cm ,CQ =2tcm ,∴S 四边形PABQ =S △ABC −S △CPQ=12AC ⋅BC −12PC ⋅CQ=12×6×8−12(6−t)×2t=t 2−6t +24=(t −3)2+15,∴当t =3时,四边形PABQ 的面积有最小值,最小值为15.故选C .11 、【答案】 (1) x =10.;(2) 有,当x =7.5时,y 取得最大值,最大值为2252. 当x =11时,y 取得最小值,最小值为88.;【解析】 (1) 由题意,得:平行于墙的一边长为(30−2x),根据题意,得:x(30−2x)=100,解得:x =5或x =10,∵{30−2x ⩽182x <30, ∴6⩽x <15.∴x =10.(2) ∵矩形的面积y =x(30−2x)=−2(x −152)2+2252,且30−2x ⩾8,即x ⩽11, ∴当x =7.5时,y 取得最大值,最大值为2252. 当x =11时,y 取得最小值,最小值为88.12 、【答案】 (1) S =−3x 2+24x .;(2) 5m .;(3) 能,当长为10m ,宽为143m 时,最大面积为1403m 2. ;【解析】 (1) 根据题意,得S =x (24−3x ),即所求的函数解析式为:S =−3x 2+24x .(2) 根据题意,设AB 长为x ,则BC 长为24−3x ,则−3x 2+24x =45.整理,得x 2−8x +15=0,解得x =3或5,当x =3时,BC =24−9=15>10不成立,当x =5时,BC =24−15=9<10成立,∴AB 长为5m .(3) S =24x −3x 2=−3(x −4)2+48,由于0<24−3x ⩽10,得143⩽x <8. ∵143>4,∴当x =143时,S 取得最大值为1403>45,∴能围成面积比45m 2更大的花圃,当长为10m ,宽为143m 时,最大面积为1403m 2. 13 、【答案】 (1) w =−2x 2+120x −1600.;(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.;(3) 该农户想要每天获得150元的销售利润,销售价应定为每千克25元.;【解析】 (1) 由题意得出:w =(x −20)⋅y=(x −20)(−2x +80)=−2x 2+120x −1600,故w 与x 的函数关系式为:w =−2x 2+120x −1600.(2) w =−2x 2+120x −1600=−2(x −30)2+200,∵−2<0,∴当x =30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3) 当w =150时,可得方程−2(x −30)2+200=150.解得x 1=25,x 2=35.∵35>28,∴x 2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.14 、【答案】 (1) y ={−0.5x +105(10⩽x ⩽50)80(x >50). ;(2) 批发该种服装40件时,服装厂获得利润最大,最大利润是800元.;【解析】 (1) 当10⩽x ⩽50时,设y 与x 的函数关系式为y =kx +b ,{10k +b =10050k +b =80,得{k =−0.5b =105, ∴当10⩽x ⩽50时,y 与x 的函数关系式为y =−0.5x +105,当x >50时,y =80,即y 与x 的函数关系式为:y ={−0.5x +105(10⩽x ⩽50)80(x >50). (2) 由题意可得,w =(−0.5x +105−65)x =−0.5x 2+40x=−0.5(x−40)2+800,∴当x=40时,w取得最大值,此时w=800,y=−0.5×40+105=85,答:批发该种服装40件时,服装厂获得利润最大,最大利润是800元.x2+6.15 、【答案】 (1) (答案不唯一)抛物线的表达式为y=−38;(2) 这辆货车能安全通过这条隧道.;【解析】(1) 以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系xOy,则A(−4,0),B(4,0),C(0,6).设这条抛物线的表达式为y=a(x−4)(x+4).∵抛物线经过点C,∴−16a=6.∴a=−3.8x2+6(−4⩽x⩽4).∴这条抛物线表示的二次函数表达式为y=−38(2) 当x=1时,y=45,8∵4.4+0.5=4.9<45,8∴这辆货车能安全通过这条隧道.16 、【答案】 (1) 当小球的飞行1s和3s时,高度达到15m.;(2) 小球的飞行高度不能达到20.5m.;(3) 小球从飞出到落地要用4s.;【解析】 (1) 令ℎ=15,得方程15=20t−5t2,解这个方程得:t1=1,t2=3,当小球的飞行1s和3s时,高度达到15m.(2) 令ℎ=20.5,得方程20.5=20t−5t2,整理得:t2−4t+4.1=0,因为(−4)2−4×4.1<0,所以方程无实数根,所以小球的飞行高度不能达到20.5m.(3) 小球飞出和落地时的高度都为0,令ℎ=0,得方程0=20t−5t2,解这个方程得:t1=0,t2=4,所以小球从飞出到落地要用4s.。
人教版九年级数学第二十三章第1节图形的旋转解答题 59含解析.docx
第二十三章第1节《图形的旋转》解答题(59)一、解答题1.如图(1),已知四边形ABCD和一点0,求作四边形ABCD,使它与四边形ABCD关于点0对称;如果把。
点移至如图(2)所示位置,又该怎么作图呢?2.如图,AABC是等边三角形,AABP旋转后能与△C3P'重合.P'(1)旋转中心是哪一点?(2)旋转角度是多少度?(3)连结PP后,列/'是什么三角形?简单说明理由.3. 如图1,在菱形/WCD中,AC=2, BD = 2jL AC, BD相交于点0.(1)求边的长;⑵求ABAC的度数;⑶如图2,将一个足够大的直角三角板60。
角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60。
角的两边分别与边BC, CD相交于点E, F,连接EF.判断是哪一种特殊三角形,并说明理由.4. 已知抛物线y=ax2+bx-3a-5经过点A(2, 5)(1)求出a和b之间的数量关系.(2)巳知抛物线的顶点为D点,直线AD与y轴交于(0, -7)①求出此时抛物线的解析式;②点B为y轴上任意一点且在直线y=5和直线y=-13之间,连接BD绕点B逆时针旋转90。
,得到线段BC,连接AB、AC,将AB绕点B顺时针旋转90。
,得到线段BH.截取BC的中点F和DH的中点G.当点D、点H、点C三点共线时,分别求出点F和点G的坐标.5.如图1,在等腰RtZVIBC 中,ZBAC=90°, AB=AC=2,点、M 为BC中点.点P 为AB 边上一动点,点D为BC边上一动点,连接DP,以点P为旋转中心,将线段PD逆时针旋转90。
,得到线段PE,连接EC.A(P)(1) 当点P与点4重合时,如图2.①根据题意在图2中完成作图;②判断EC与BC的位置关系并证明.(2) 连接写出一个BP的值,使得对于任意的点。
总有EM=EC,并证明.6.如图,点D是等边△ABC内一点,将线段AD绕着点A逆时针旋转60。
中考数学 复习 《图形的旋转》练习题(含答案)
中考复习每日一练第三十讲《图形的旋转》一.选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,四边形AOBC绕点O顺时针方向旋转得到四边形DOEF,下列说法正确的是()A.旋转角是∠BODB.AO=EOC.若连接CO,FO,则CO=FOD.四边形AOBC和四边形DOEF可能不全等3.若点M(2,b﹣3)关于原点对称点N的坐标是(﹣3﹣a,2),则a,b的值为()A.a=﹣1,b=1 B.a=1,b=﹣1 C.a=1,b=1 D.a=﹣1,b=﹣14.已知点A(﹣1,),O为坐标原点,连结OA.将线段OA绕点O按逆时针方向旋转30°得到线段OA′,则点A′的坐标为()A.(1,﹣)B.(﹣2,)C.(﹣,2)D.(﹣,1)5.如图,将△ABC绕点A顺时针旋转,得到△ADE,且点D在AC上,下列说法错误的是()A.AC平分∠BAE B.AB=AD C.BC∥AE D.BC=DE6.如图,将△ABC绕点C(0,)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a,﹣b﹣) C.(﹣a,﹣b+) D.(﹣a,﹣b+2)7.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.B.C.D.18.如图,把一个直角三角板△ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD,则∠BD C的度数为()A.15°B.20°C.25°D.30°9.已知点P(x,y)在第二象限,|x|=6,|y|=8,则点P关于原点的对称点的坐标为()A.(6,8)B.(﹣6,8)C.(﹣6,﹣8)D.(6,﹣8)10.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,其中有:①AC=AD;②AB⊥EB;③BC=DE;④∠A=∠EBC,四个结论,则结论一定正确的有()个.A.1个B.2个C.3个D.4个二.填空题11.如图,将Rt△ABC绕着直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠CA'B'=25°,则∠BAA'=度.12.如图,在△ADE中,∠DAE=80°,将△ADE绕点A顺时针旋转α得△ABC,若AC平分∠DAE,则α=;若AC平分∠BAE,则α=.13.如图,A点的坐标为(0,4),B点的坐标为(4,2),C点的坐标为(6,2),D点的坐标为(4,﹣2),小明发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是.14.在△ABC中∠ACB=45°,,BC=12,以AB为直角边、A为直角顶点作等腰直角三角形ABD,则CD=.15.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是度.16.如图,△AOB中,∠AOB=90°,AO=6,BO=8,将△AOB绕顶点O逆时针旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则△OBB1的面积为.17.如图,在直角坐标系中,点A(0,4),B(﹣3,0),C是线段AB的中点,D为x轴上一个动点,以AD 为直角边作等腰直角△ADE(点A,D,E以顺时针方向排列),其中∠DAE=90°,则点E的横坐标等于,连结CE,当CE达到最小值时,DE的长为.18.如图,△ABC中,∠A=90°,AB=AC,顶点B为(﹣4,0),顶点C为(1,0),将△ABC关于y轴轴对称变换得到△A1B1C1,再将△A1B1C1关于直线x=2(即过(2,0)垂直于x轴的直线)轴对称变换得到△A2B2C2,再将△A2B2C2关于直线x=4轴对称变换得到△A3B3C3,再将△A3B3C3关于直线x=6轴对称变换得到△A4B4C4…,按此规律继续变换下去,则点A10的坐标为.三.解答题19.在正方形网格图中,若每个小正方形的边长是1,△A 1B 1C 1与△ABC 关于点O 对称.(1)画出△A 1B 1C 1.(2)A 1B 1与AB 的位置关系是 .(3)点P 在直线CO 上,BP +AP 的最小值是 .20.如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180°得到点D 1第二步:点D 1绕点B 顺时针旋转90°得到点D 2;第三步:点D 2绕点C 顺时针旋转90°回到点D ;(1)请用圆规画出点D →D 1→D 2→D 经过的路径;(2)所画图形是 对称图形;(3)写出所画图形的周长和所画图形围成的面积.(结果保留π)周长:面积:21.如图1,在平面直角坐标系xOy中,直线AB与x轴交于点A、与y轴交于点B,且∠ABO=45°,A(﹣6,0),直线BC与直线AB关于y轴对称.(1)求△ABC的面积;(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;(3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N 是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.22.实验探究:如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,交于BD、CE点P.【问题发现】(1)把△ABC绕点A旋转到图1,BD、CE的关系是(“相等”或“不相等”),请直接写出答案;【类比探究】(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图中作出旋转后的图形,并求出此时PD的长;【拓展延伸】(3)在(2)的条件下,请直接写出旋转过程中线段PD的最小值为.23.【材料阅读】我们曾解决过课本中的这样一道题目:如图1,四边形ABCD是正方形,E为BC边上一点,延长BA至F,使AF=CE,连接DE,DF.……提炼1:△ECD绕点D顺时针旋转90°得到△FAD;提炼2:△ECD≌△FAD;提炼3:旋转、平移、轴对称是图形全等变换的三种方式.【问题解决】(1)如图2,四边形ABCD是正方形,E为BC边上一点,连接DE,将△CDE沿DE折叠,点C落在G处,EG交AB于点F,连接DF.可得:∠EDF=°;AF,FE,EC三者间的数量关系是.(2)如图3,四边形ABCD的面积为8,AB=AD,∠DAB=∠BCD=90°,连接AC.求AC的长度.(3)如图4,在△ABC中,∠ACB=90°,CA=CB,点D,E在边AB上,∠DCE=45°.写出AD,DE,EB 间的数量关系,并证明.24.阅读材料:如图1,△ABC中,点D,F在边AB上,点E在BC上,BD=BE,∠ADC=α,∠BEF=180°﹣2α,延长CA,EF交于点G,GA=GF,求证AD=EF.分析:等腰三角形是一种常见的轴对称图形,几何试题中我们常将一腰所在的三角形沿着等腰三角形的对称轴进行翻折,从而构造轴对称图形.①小明的想法是:将BE放到△BEF中,沿等腰△BDE的对称轴进行翻折,即作∠BDH=∠BEF交BC于H (如图2).②小白的想法是:将BD放到△BDC中,沿等腰△BDE的对称轴进行翻折,即作∠BEH=∠BDC交BD的延长线于H(如图3).请你从上述俩种方法中一种或按照自己的方法解决问题;经验拓展:如图4,等边△ABC中,D是AC上一点,连接BD,E为BD上一点,AE=AD,过点C作CF⊥BD 交BD的延长线于点F,∠ECF=60°,若BE=a,DF=b,求DE的长(用含a,b的式子表示).参考答案一.选择题1.解:A、既是中心对称图形,又是轴对称图形.故本选项正确;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误;故选:A.2.解:∵四边形AOBC绕点O顺时针方向旋转得到四边形DOEF,∴旋转角是∠AOD,OA=OD,四边形AOBC和四边形DOEF全等,故A、B、D选项错误;若连接CO,FO,则CO=FO,故C选项正确,故选:C.3.解:∵点M(2,b﹣3)关于原点对称点N的坐标是(﹣3﹣a,2),∴2=3+a,b﹣3=﹣2,解得:a=﹣1,b=1.故选:A.4.解:如图,作AH⊥x轴于H,作A′E⊥x轴于E.∵A(﹣1,),∴OH=1,AH=,∴tan∠AOH==,∴∠AOH=60°,∠OAH=30°,∴OA=OA′=2OH=2,∵∠AOA′=30°,∴∠A′OE=30°,∴A′E=OA′=1,OE=A′E=,∴A′(﹣,1),故选:D.5.解:将△ABC绕点A顺时针旋转,得到△ADE,∴∠BAC=∠DAE,AB=AD,BC=DE,故A、B、D选项正确;∵∠C=∠E,但∠C不一定等于∠DAE,∴BC不一定平行于AE,故C选项,错误;故选:C.6.解:设A′(m,n),∵CA=CA′,C(0,),A(a,b),∴∴m=﹣a,n=2﹣b,∴A′(﹣a,2﹣b),故选:D.7.解:∵等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,∴现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是:.故选:C.8.解:∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=150°,∴∠BDC=(180°﹣150°)=15°;故选:A.9.解:∵|x|=6,|y|=8,∴x=±6,y=±8,∵x<0,y>0,∴x=﹣6,y=8,即点P的坐标是(﹣6,8),关于原点的对称点的坐标是(6,﹣8),故选:D.10.解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故①、③错误;∴∠ACD=∠BCE,∴∠A=∠ADC=(180°﹣∠ACD),∠CBE=(180°﹣∠BCE),∴∠A=∠EBC,故④正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故②错误;故选:A.二.填空题(共8小题)11.解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=∠BAC=25°,∴∠BAA′=180°﹣65°﹣45°=70°,故答案为:70.12.解:由旋转的性质得:∠BAC=∠DAE=80°,∴∠1=∠2=α,若AC平分∠DAE,则α=∠2=∠DAE=40°;若AC平分∠BAE,则AC与AD重合,α=∠DAE=80°;故答案为:40°;80°.13.解:如图,旋转中心为P(2,0)或(5,5).故答案为(2,0)或(5,5).14.解:将△ACD绕着点A逆时针旋转90°得到△AEB,连接BE,则AE=AC=,∠CAE=∠BAD=90°,BE=CD,∴△ACE是等腰直角三角形,∴∠ACE=45°,EE=AC=5,∵∠ACB=45°,∴∠BCE=90°,∴BE===13,∴BE=CD=13.故答案为:13.15.解:∵三角板是两块大小且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.16.解:∵在△AOB中,∠AOB=90°,AO=6,BO=8,∴AB ==10,∵点D 为AB 的中点,∴OD =AB =2.5cm .∵将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,∴OB 1=OB =8,∴B 1D =OB 1﹣OD =3,过D 作DH ⊥OB 于H ,过B 1A 作B 1G ⊥BC 于G ,∴DH ∥B 1G ,∴△ODH ∽△OB 1G , ∴=, ∵DH ===3, ∴, ∴B 1G =,∴△OBB 1的面积=×8=, 故答案为:.17.解:如图,把线段AC 绕点A 逆时针旋转90°,得到AC ′,连接C ′D ,则C ′为定点(2,),在△ACE 和△AC ′D 中∴△ACE ≌△AC ′D (SAS )∴C ′D =CE .当C′D⊥OD时,C′D最小,CE最小值为,∴OD=2,过E作EG⊥OA于G,EH⊥x轴于H,则四边形EHOG是矩形,∴EG=OH,∵∠AGE=∠AOD=∠EAD=90°,∴∠AEG+∠EAO=∠EAO+∠OAD=90°,∴∠AEG=∠OAD,∵AE=AD,∴△AEG≌△DAO(AAS),∴AG=OD=2,EG=OA=4,∴点E的横坐标等于﹣4,∴EH=OG=2,DH=2+4=6,∴DE==2,故答案为:﹣4,2.18.解:△ABC中,∠A=90°,AB=AC,顶点B为(﹣4,0),顶点C为(1,0),∴BC=5∴A(﹣1.5,2.5)将△ABC关于y轴轴对称变换得到△A1B1C1,∴A1(1.5,2.5)再将△A1B1C1关于直线x=2轴对称变换得到△A2B2C2,∴A2(2.5,2.5)再将△A2B2C2关于直线x=4轴对称变换得到△A3B3C3,∴A3(5.5,2.5)再将△A3B3C3关于直线x=6轴对称变换得到△A4B4C4,∴A4(6.5,2.5)…按此规律继续变换下去,A5(8.5,2.5),A6(9.5,2.5),A7(11.5,2.5)则点A10的坐标为(15.5,2.5),故答案为:(15.5,2.5).三.解答题(共6小题)19.解:(1)如图,△A1B1C1即为所求;(2)观察图形可知:A 1B1∥AB,故答案为:A1B1∥AB;(3)如图,连接A1B,交OC于点P,∵点A与A1关于点O对称,∴PA=PA1∴BP+AP=BP+A1P=BA1==BP+AP的最小值是BA1的长为.故答案为.20.解:(1)点D→D1→D2→D经过的路径如图所示.(2)所画图形是轴对称图形;故答案为:轴.(3)周长=π•4+π•4=8π.面积=4(﹣×4×4)=16π﹣32.故答案为8π,16π﹣32.21.解:(1)∵A(﹣6,0),∴OA=6,∵∠ABO=45°,∠AOB=90°,∴∠OAB=∠OBA=45°,∴OA=OB=6,∵AB,AC关于y轴对称,∴OA=OC=6,∴△ABC的面积=×AC×OB=×12×6.(2)过E作EF⊥x轴于F,延长EA交y轴于H.∵△BDE为等腰直角三角形∴DE=DB,∠BDE=90°∵∠BDE=90°∴∠EDF+∠BDO=90°∵∠BOD=90°∴∠BDO+∠DBO=90°∴∠EDF=∠DBO(同角的余角相等)∵EF⊥X轴∴∠BOF=∠EFD=90°,在△DEF与△BDO中∠EDF=∠DBO∠BOF=∠EFDDE=DB∴△DEF≌△BDO(AAS),∴DF=BO=AO,EF=OD;∴AF=EF,∴∠EAF=45°,∴△AOH为等腰直角三角形.∴OA=OH,∴H(0,﹣6)∴直线EA的解析式为:y=﹣x﹣6;(3)如图3中,作点N关于AF的对称点N′(N′在射线AE上),连接ON′交AF于M.∵OM+MN=OM+MN′=ON′当点N运动时,ON′最短为点O到直线AE的距离,即点O到直线AE的垂线段的长,∵∠OAE=30°,OA=6,∴当ON′⊥AE时,ON′=OA=3,所以OM+NM的值为3.22.解:(1)BD、CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE(SAS)∴BD=CE.故答案为:相等.(2)如图2,3即为旋转后的图形.①如图2,当C在AD上时,由(1)知△ABD≌△ACE,∴∠ADB=∠AEC又∵∠PCD=∠ACE,∴△PCD~△ACE,∴又∵CE===CD=AD﹣AC=5﹣3=2∴,解得;如图3,当C在AD反向延长线上时,同理△PEB~△ABD=∵BD=BE=AE﹣AB=5﹣3=2∴=解得PB=∴PD=DB+PB=+=.答:此时PD的长为或.(3)如图4所示,以点A为圆心,AC长为半径画圆,当CE在圆A下方与圆A相切时,PD的值最小.在Rt△ACE中,CE===4 在Rt△ADE中,DE===5∵四边形ABPC是正方形,∴PC=AB=3∴PE=PC+CE=3+4=7在Rt△DEP中,PD===1 ∴线段PD的最小值为1.故答案为:1.23.【问题解决】解:(1)由折叠的性质可得△CDE≌△GDE,∴CD=DG,∠CDE=∠GDE,∠DCE=∠DGE=90°,在Rt△DAF和Rt△DGF中,,∴Rt△DAF≌Rt△DGF(HL),∴∠ADF=∠GDF,AF=FG.∴∠EDF=∠EDG+∠FDG==45°,EF=FG+EG=AF+EC;故答案为:45°,AF+EC=FE.(2)如图,延长CD到E,使DE=BC,连接AE.∵AB=AD,∠DAB=∠BCD=90°,∴△ADE≌△ABC(SAS),∴AE=AC,∠EAD=∠CAB.∴∠EAC=90°.∵四边形ABCD的面积为8,可得△ACE的面积为8.∴.解得,AC=4.(3)AD2+BE2=DE2.证明如下:如图2:将△ACD绕点C逆时针旋转90°得到△BCH,连接EH.∴DC=HC,∠DCE=∠ECH=45°,∠CAD=∠CBH=45°,∵CE=CE,∴△CEH≌△CED(SAS).∴EH=ED.∴∠ABC+∠CBH=∠EBH=90°.∴HB2+BE2=EH2.∵AD=BH,∴AD2+BE2=DE2.24.阅读材料:证明:①小明的想法:如图2中:将BE放到△BEF中,沿等腰△BDE的对称轴进行翻折,即作∠BDH=∠BEF交BC于H.∵∠BDH=∠BEF,∠B=∠B,BD=BE,∴△BDH≌△BEF(ASA)∴∠BFE=∠BHD,EF=DH,∵∠BEF=180°﹣2α,∴∠BDH=180°﹣2α,且∠BDH+∠CDH+∠ADC=180°,∠ADC=α,∴∠ADC=∠CDH,∵GA=GF,∴∠GAF=∠GFA,且∠GFA=∠BFE=∠BHD,∴∠GAF=∠BHD,∴∠DAC=∠DHC,且∠ADC=∠CDH,DC=DC,∴△ADC≌△HDC(AAS)∴AD=DH,∴AD=EF;②小白的想法:如图3中:将BD放到△BDC中,沿等腰△BDE的对称轴进行翻折,即作∠BEH=∠BDC交BD的延长线于H.∵∠BEH=∠BDC,BE=BD,∠B=∠B,∴△BEH≌△BDC(ASA),∴∠H=∠C,EH=CH,∠BEH=∠BDC,∴∠ADC=∠CEH=α,∵∠BEF=180°﹣2α=180°﹣∠GEC,∴∠FEH=∠HEC=∠ADC=α,∴△ADC≌△FEH(ASA),∴AD=EF.经验拓展:如图4中,延长AE到M,使得AM=AC,连接DM交CE于O,作MN⊥BF于N.连接AO,BM,CM.∵AD=AE,AM=AC,∴EM=CD,∠AMC=∠ACM,∵CM=MC,∴△ECM≌△DMC(SAS),∴∠ECM=∠DMC,∴OM=OC,∵AE=AD,∴AO垂直平分线段EF,∠AEO=∠DAO,∵MN⊥BF,CF⊥BF,∴MN∥CF∥OA,∴∠NME=∠EAO,∠DCF=∠DAO,∴∠NME=∠DCF,∵∠MNE=∠F=90°,∴△MNE≌△CFD(AAS),∴DF=EN=b,MN=CF,∵∠FBC+∠FCB=∠FBC+60°+∠FCD=90°,∴∠FBC+∠FCD=30°,∵AB=AM=AC,∴∠CBM=∠CAM=∠FCD,∴∠FBC+∠CBM=30°,∴MN=BN•tan30°=(a﹣b),∴CF=MN=(a﹣b),∵∠ECF=60°,∴EF=CF•tan60°=a﹣b,∴DE=EF﹣DF=a﹣2b.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学:图形的旋转练习(含答案)
1.图形旋转的性质:图形经过旋转所得的图形与原图形________;对应点到旋转中心的距离________;任何一对对应点与旋转中心连线所成的角度等于____________.2.圆既是一个轴对称图形,又是一个________对称图形.
A组基础训练
1.下列图案中,可以由一个“基本图案”连续旋转45°得到的是( )
2.在图形旋转中,下列说法错误的是( )
A.图形上各点的旋转角度相同
B.对应点到旋转中心的距离相等
C.由旋转得到的图形也一定可以由平移得到
D.旋转不改变图形的大小、形状
3.如图所示的图形由四个相同的正方形组成,通过旋转不可能得到的图形是( )
第3题图
4.如图,把△ABC绕点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC =90°,则∠A的度数为( )
第4题图
A .45°
B .55°
C .65°
D .75° 5.下图中的各种变换分别属于平移、轴对称、旋转中的哪种图形变换(填空)?
第5题图
①________ ②________ ③________
6.如图,△ABC 经过旋转得到△A′B′C′,且∠AOB =25°,∠AOB ′=20°,则线段OB 的对应线段是________;∠OAB 的对应角是________;旋转中心是________;旋转的角度是________.
第6题图
7.如图,下面的图案由三个叶片组成,绕点O 旋转120°后可以和自身重合.若每个..叶片的面积为4cm 2,∠AOB 为120°,则图中阴影部分的面积之和为________cm 2.
第7题图
8.如图,直线y =-4
3x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转
90°后得到△AO′B′,则点B′的坐标为________.
第8题图
9.如图,在△ABC 和△AEF 中,∠B =∠E ,AB =AE ,BC =EF ,∠BAE =25°,∠F =60°.
(1)求证:∠BAE=∠CAF;
(2)△ABC可以经过图形变换得到△AEF,请你描述这个变换;
(3)求∠AMB的度数.
第9题图
10.如图,在正方形ABCD中,E,F分别是边BC,CD上的点,∠EAF=45°.
(1)求证:EF=DF+BE;
(2)若DF=3,BE=2,求正方ABCD的边长.
第10题图
B组自主提高
11.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( )
第11题图
A.(1,1)
B.(1,2)
C.(1,3)
D.(1,4)
12.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为________.
第12题图
13.在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l上,如图1,他连结AD,CF,经测量发现AD=CF.
(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF 的长.
第13题图
C组综合运用
14.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.
第14题图
(1)如图1,直接写出∠ABD的大小(用含α的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连结DE,若∠DEC=45°,求α的值.
3.2 图形的旋转
【课堂笔记】
1.全等相等旋转的角度 2.中心
【课时训练】
1-4.BCCB
5.①旋转②平移③轴对称
6.OB′∠OA′B′点O 45°
7. 4
8.(7,3)
9.(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC-∠PAF =∠EAF-∠PAF,即∠BAE=∠CAF;(2)通过观察可知,△ABC绕点A顺时针旋转25°得到
△AEF; (3)由(1)知,∠C =∠F=60°,∠CAF =∠BAE=25°,∴∠AMB =∠C+∠CAF=60°+25°=85°.
第10题图
10.
(1)将△DAF 绕点A 顺时针旋转90度到△BAF′位置,由题意可得出:
△DAF≌△BAF′,∴DF =BF′,∠DAF =∠BAF′,∴∠EAF ′=45°,在△FAE 和△F′AE 中,
⎩⎨⎧AF =AF′,
∠FAE =∠EAF′AE =AE ,
,∴△FAE ≌△F ′AE(SAS),∴EF =EF′=DF +BE. (2)∵DF=3,BE =2,
∴EF =5,设边长为x ,在△CFE 中,(x -3)2+(x -2)2=52,∴x =6,(x =-1舍去).∴正方
形的边长为6.
11. B 12.
85°
第13题图
13.(1)AD 与CF 还相等,理由:∵四边形ODEF ,四边形ABCO 为正方形,∴∠DOF =∠COA =90°,DO =OF ,CO =OA ,∴∠COF =∠AOD,∴△COF ≌△AOD(SAS),∴AD =CF ; (2)如图,连结DF ,交EO 于G ,则DF⊥EO,DG =OG =12EO =1,∴GA =4,∴CF =AD =DG 2+GA 2=1+42
=
17.
14.(1)30°-1
2α; (2)△ABE 为等边三角形.证明:连结AD ,CD ,∵线段BC 绕点B
逆时针旋转60°得到线段BD ,则BC =BD ,∠DBC =60°,又∵∠ABE=60°,∴∠ABD =60°
-∠DBE=∠EBC=30°-1
2
α;且△BCD为等边三角形,在△ABD与△ACD中,
⎩
⎨
⎧AB=AC,
AD=AD,
BD=CD.
∴△
ABD≌△ACD(SSS).∴∠BAD=∠CAD=1
2
∠BAC=
1
2
α.∵∠BCE=150°,∴∠BEC=180°-(30°
-1
2
α)-150°=
1
2
α.在△ABD与△EBC中,
⎩
⎨
⎧∠BEC=∠BAD,
∠EBC=∠ABD,
BC=BD.
∴△ABD≌△EBC(AAS).∴AB=
BE.又∠ABE=60°.∴△ABE为等边三角形;(3)∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°-60°=90°,∵∠DEC=45°,∴△DCE为等腰直角三角形,∴DC=CE=BC,∵∠BCE
=150°,∴∠EBC=180°-150°
2
=15°,而∠EBC=30°-
1
2
α=15°,∴α=30°.。