(含答案)机器学习第一阶段练习题
(含答案)机器学习第一阶段测试题
机器学习第一阶段测试题一、选择题1.以下带佩亚诺余项的泰勒展开式错误的一项是(D)A.)x (o x !x !x e x 33231211++++= B.)x (o x *x x arcsin 33321++=C.)x (o x !x !x x sin 5535131++-= D.)x (o x !x !x cos 44241211+-+=分析:)x (o x !x !x cos 44241211++-=2.以下关于凸优化的说法错误的一项是(C )A.集合C 任意两点间线段均在集合C 内,则C 为凸集B.集合C 的凸包是能够包含C 的最小凸集C.多面体不一定是凸集D.线性变换能保持原集合的凸性分析:多面体是指有限半空间和超平面的交集,多面体一定是凸集3.以下说法错误的一项是(C )A.当目标函数是凸函数时,梯度下降法的解是全局最优解B.进行PCA 降维时需要计算协方差矩阵C.沿负梯度下降的方向一定是最优的方向D.利用拉格朗日函数能解带约束的优化问题分析:沿负梯度方向是函数值下降最快的方向但不一定是最优方向4.K-means 无法聚以下哪种形状样本?()A.圆形分布B.螺旋分布C.带状分布D.凸多边形分布分析:基于距离的聚类算法不能聚非凸形状的样本,因此选B5.若X 1,X 2,...X n 独立同分布于(2σ,μ),以下说法错误的是(C )A.若前n 个随机变量的均值,对于任意整数ε,有:B.随机变量的收敛到标准正态分布C.随机变量收敛到正态分布D.样本方差其中样本均值分析:A:大数定理概念;B、C:中心极限定理概念;C 错,应该收敛到正态分布D:样本的统计量公式二、公式推理题1.请写出标准正态分布的概率密度函数、期望、以及方差分析:概率密度函数:2221x e π)x (f -=;期望:0=)x (E ;方差:1=)x (D 2.请根据表中的分类结果混淆矩阵给出查准率(准确率)P 和查全率(召回率)R 的计算公式真实情况预测结果正例反例正例TP(真正例)FN(假反例)反例FP(假正例)TN(真反例)分析:FP TP TP P +=,NF TP TP R +=三、简答题1.求函数y ln x )y ,x (f 32+=的梯度向量分析:)y)y ,x (f ,x )y ,x (f ()y ,x (f ∂∂∂∂=∇,所以答案为(2x,3/y)∑==n i i n X n Y 111=<-∞→}ε|μY {|P lim n n σn μn X Y n i i n -=∑=1∑==n i i n X Y 1)σ,μ(N 2∑=--=n i i )X X (n S 1211)σn ,μn (N 2∑==n i i X n X 112.列举你知道的无约束最优化方法(至少三个),并选一种方法进行详细介绍分析:梯度下降法,牛顿法,拟牛顿法,共轭梯度法...(介绍略)3.请简要叙述正则化项中的L1和L2方法分析:1正则化和L2正则化可以看做是损失函数的惩罚项。
机器学习考试题目及答案
机器学习考试题目答案1.简描述机器学习概念?TomMitCheI1:"对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E学习J 我们遇到的大部分事情一般包括分类问题与回归问题。
如房价的预测,股价的预测等属于分类问题。
一般的处理过程是:首先,1)获取数据;2)提取最能体现数据的特征;3)利用算法建模;4)将建立的模型用于预测。
如人脸识别系统,首先我们获取到一堆人脸照片,首先,对数据进行预处理,然后提取人脸特征,最后用算法如SVM或者NN等。
这样,我们就建立了一个人脸识别系统,当输入一张人脸,我们就知道这张面孔是否在系统中。
这就是机器学习的整个流程,其次还包括寻找最优参数等。
机器学习主要分为:监督学习:数据集是有标签的,大部分机器学习模型都属于这一类别,包括线性分类器、支持向量机等等;无监督学习:跟监督学习相反,数据集是完全没有标签的,主要的依据是相似的样本在数据空间中一般距离是相近的,这样就能通过距离的计算把样本分类,这样就完全不需要IabeI,比如著名的kmeans算法就是无监督学习应用最广泛的算法;半监督学习:半监督学习一般针对的问题是数据量超级大但是有标签数据很少或者说标签数据的获取很难很贵的情况,训练的时候有一部分是有标签的而有一部分是没有的;强化学习:一直激励学习的方式,通过激励函数来让模型不断根据遇到的情况做出调整;2.循环神经网络的基本原理?RNNS的目的是用来处理序列数据。
在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。
但是这种普通的神经网络对于很多问题却无能无力。
例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
RNNS之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。
具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
机器学习知到章节答案智慧树2023年三亚学院
机器学习知到章节测试答案智慧树2023年最新三亚学院第一章测试1.下面哪句话是正确的()参考答案:增加模型的复杂度,总能减小训练样本误差2.评估模型之后,得出模型存在偏差,下列哪种方法可能解决这一问题()参考答案:向模型中增加更多的特征3.以垃圾微信识别为例,Tom Mitchell的机器学习的定义中,任务T是什么?()参考答案:T是识别4.如何在监督式学习中使用聚类算法()?参考答案:在应用监督式学习算法之前,可以将其类别ID作为特征空间中的一个额外的特征;首先,可以创建聚类,然后分别在不同的集群上应用监督式学习算法5.想要训练一个ML模型,样本数量有100万个,特征维度是5000,面对如此大数据,如何有效地训练模型()?参考答案:对训练集随机采样,在随机采样的数据上建立模型;使用PCA算法减少特征维度;尝试使用在线机器学习算法6.机器学习兴起于()。
参考答案:1990年;1980年7.监督学习包括是()。
参考答案:分类;回归8.机器学习可以对电子商务产品评价进行好评与差评分类。
()参考答案:对9.机器学习必备知识包括数学基础、心理学基础、算法设计基础、商业模式基础。
()参考答案:错10.机器学习是一门多学科交叉专业,涵盖____、____、近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。
参考答案:null第二章测试1.关于k-NN算法,以下哪个选项是正确的?参考答案:可用于分类和回归2.k-NN算法在测试时间而不是训练时间上进行了更多的计算。
参考答案:对3.假设算法是k最近邻算法,在下面的图像中,____将是k的最佳值。
参考答案:104.一个kNN分类器,该分类器在训练数据上获得100%的准确性。
而在客户端上部署此模型时,发现该模型根本不准确。
以下哪项可能出错了?注意:模型已成功部署,除了模型性能外,在客户端没有发现任何技术问题参考答案:可能是模型过拟合5.以下是针对k-NN算法给出的两条陈述,其中哪一条是真的?1、我们可以借助交叉验证来选择k的最优值2、欧氏距离对每个特征一视同仁参考答案:1和26.你给出了以下2条语句,发现在k-NN情况下哪个选项是正确的?1、如果k的值非常大,我们可以将其他类别的点包括到邻域中。
机器学习原理及应用习题答案
第一章的题目填空题1、常见的机器学习算法有_________、___________、___________(随意列举三个)答:逻辑回归、最大熵模型、k-近邻模型、决策树、朴素贝叶斯分类器、支持向量机、高斯混合模型、隐马尔可夫模型、降维、聚类、深度学习2、sklearn.model_selection中的train_test_split函数的常见用法为______,______,______,______ = train_test_split(data,target)(填写测试集和训练集名称,配套填写,例如x_train,x_test)答:x_train x_test y_train y_test3、根据机器学习模型是否可用于生成新数据,可以将机器学习模型分为_________和_________。
答:生成模型判别模型4、训练一个机器学习模型往往需要对大量的参数进行反复调试或者搜索,这一过程称为______。
其中在训练之前调整设置的参数,称为_________。
答:调参超参数5、根据样本集合中是否包含标签以及半包含标签的多少,可以将机器学习分为____________、____________和______________。
答:监督学习半监督学习无监督学习判断题1、根据模型预测输出的连续性,可以将机器学习算法适配的问题划分为分类问题和线性问题。
(F)(回归问题)2、决策树属于典型的生成模型。
(F)(判别模型)3、降维、聚类是无监督学习算法(T)4、当我们说模型训练结果过拟合的时候,意思是模型的泛化能力很强(F)(很差)5、训练误差和泛化误差之间的差异越小,说明模型的泛化性能越好。
(T)选择题1、以下属于典型的生成模型的是(D)A、逻辑回归B、支持向量机C、k-近邻算法D、朴素贝叶斯分类器2、以下属于解决模型欠拟合的方法的是(C)A、增加训练数据量B、对模型进行裁剪C、增加训练过程的迭代次数D、正则化3、构建一个完整的机器学习算法需要三个方面的要素,分别是数据、模型、(A)。
机器学习课后习题答案
第二章 模型评估与选择1.数据集包含1000个样本,其中500个正例,500个反例,将其划分为包含70%样本的训练集和30%样本的测试集用于留出法评估,试估算共有多少种划分方式。
一个组合问题,从500500正反例中分别选出150150正反例用于留出法评估,所以可能取法应该是(C 500150)2。
2.数据集包含100个样本,其中正反例各一半,假定学习算法所产生的模型是将新样本预测为训练样本数较多的类别(训练样本数相同时进行随机猜测),试给出用10折交叉验证法和留一法分别对错误率进行评估所得的结果。
10折交叉检验:由于每次训练样本中正反例数目一样,所以讲结果判断为正反例的概率也是一样的,所以错误率的期望是5050%。
留一法:如果留下的是正例,训练样本中反例的数目比正例多一个,所以留出的样本会被判断是反例;同理,留出的是反例,则会被判断成正例,所以错误率是100%。
3.若学习器A 的F1值比学习器B 高,试析A 的BEP 值是否也比B 高。
4.试述真正例率(TPR )、假正例率(FPR )与查准率(P )、查全率(R )之间的联系。
查全率: 真实正例被预测为正例的比例真正例率: 真实正例被预测为正例的比例显然查全率与真正例率是相等的。
查准率:预测为正例的实例中真实正例的比例假正例率: 真实反例被预测为正例的比例两者并没有直接的数值关系。
第一章 绪论(略)机器学习(周志华)参考答案9.试述卡方检验过程。
第三章线性模型2.试证明,对于参数w,对率回归(logistics回归)的目标函数(式1)是非凸的,但其对数似然函数(式2)是凸的。
如果一个多元函数是凸的,那么它的Hessian矩阵是半正定的。
3.编程实现对率回归,并给出西瓜数据集3.0α上的结果/icefire_tyh/article/details/520688444.选择两个UCI数据集,比较10折交叉验证法和留一法所估计出的对率回归的错误率。
/icefire_tyh/article/details/520689005.编程实现线性判别分析,并给出西瓜数据集3.0α上的结果。
机器学习原理与实战课后习题答案
机器学习原理与实战课后习题答案第1章填空题答案(1)前期(2)无(3)无关相关不强(4)验证集(5)分布漂移(Distribution Drift)第1章选择题答案(1)D(2)C(3)A(4)C(5)B(6)A(7)B(8)C(9)A(10)D第2章填空题答案(1)决定分点、列出频率分布表、绘制频率分布直方图(2)concat、merge、join(3)散点图、热力图、Pearson相关系数、判定系数(4)集中趋势度量离散程度度量(5)数据分布与趋势探查、数据清洗、和、数据合并第2章选择题答案(1)D(2)D(3)B(4)B(5)D(6)D(7)D(8)A(9)B(10)C第3章填空题答案(1)特征变换(2)标准化、函数转换离散化(3)L1正则化、L2正则化(4)过滤式选择、包裹式选择、嵌入式选择、或、字典学习(5)离差标准化、标准差标准化、和、小数定标标准化第3章选择题答案(1)D(2)C(3)A(4)A(5)C(6)D(7)D(8)C(9)D(10)D第3章操作题# 第(1)题from sklearn.datasets import load_irisiris_data = load_iris()import numpy as npimport pandas as pdcol_names = iris_data['feature_names'] + ['target']data = pd.DataFrame(data= np.c_[iris_data['data'],iris_data['target']], columns=col_names)data.head()# 标准差标准化def StandarScale(data):x = np.array(data)[:,:-1]y = np.array(data)[:,-1:]x_scale = (x-x.mean(axis = 0))/(x.std(axis = 0))return pd.DataFrame(np.concatenate((x_scale,y),axis = 1),columns = data.columns)data_s_scale = StandarScale(data)print('标准差标准化之前的前5行数据为:')data.head()print('标准差标准化之后的前5行数据为:')data_s_scale.head()data_s_scale.to_csv('../tmp/data_s_scale.csv')# 第(2)题from sklearn.datasets import load_bostonboston_data = load_boston()import pandas as pdimport numpy as npcol_names = list(boston_data['feature_names'])+['target']data =pd.DataFrame(np.c_[boston_data['data'],boston_data['target']],columns = col_names)x = boston_data['data']y = boston_data['target']# 过滤式选择,选择5个变量 SelectKBest,既可以用于分类变量,也可以用于连续性变量。
人工智能机器学习技术练习(习题卷9)
人工智能机器学习技术练习(习题卷9)第1部分:单项选择题,共62题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]下面哪个/些超参数的增加可能会造成随机森林数据过拟合?A)树的数量B)树的深度C)学习速率答案:B解析:通常情况下,我们增加树的深度有可能会造成模型过拟合。
学习速率并不是随机森林的超参数。
增加树的数量可能会造成欠拟合。
2.[单选题]属于常见问题解答模块的主要技术的是( )。
[] *A问句相似度计算A)语料库的构建B)查询扩展C)模式匹配答案:A解析:3.[单选题]采样分析的精确性随着采样随机性的增加而(),但与样本数量的增加关系不大。
A)降低B)不变C)提高D)无关答案:C解析:采样分析的精确性随着采样随机性的增加而提高,但与样本数量的增加关系不大。
当样本数量达到某个值后,我们从新个体上得到的信息会越来越少。
4.[单选题]以下表达式书写错误的是A)year('2015-12-31 12:21')B)month(2015-10-31)C)day('2015-12-11')D)date_sub('2015-12-01',3)答案:B解析:5.[单选题]下列分类方法中不会用到梯度下降法的是( )A)感知机B)最小二乘分类器C)最小距离分类器D)Logistic回归答案:C解析:C)松弛变量可用来解决线性不可分问题D)支持向量机可用来进行数据的分类答案:B解析:7.[单选题]关于Logistic回归和SVM,以下说法错误的是?A)Logistic回归可用于预测事件发生概率的大小B)Logistic回归的目标函数是最小化后验概率C)SVM的目标的结构风险最小化D)SVM可以有效避免模型过拟合答案:B解析:Logit回归本质上是一种根据样本对权值进行极大似然估计的方法,而后验概率正比于先验概率和似然函数的乘积。
logit仅仅是最大化似然函数,并没有最大化后验概率,更谈不上最小化后验概率。
人工智能工程师(机器学习)试题及答案
人工智能工程师(机器学习)试题及答案1. 请解释机器研究是什么以及它在人工智能领域中的作用。
机器研究是一种人工智能分支,旨在使计算机系统能够通过从数据中研究和自动推断来改善性能。
它通过训练模型来识别和理解模式,并基于这些模式做出预测或做出决策。
在人工智能领域中,机器研究为解决复杂的问题提供了一种有效的方式,例如图像和语音识别、自然语言处理、推荐系统等。
2. 请简述监督研究和无监督研究的区别。
3. 请列举几个常用的机器研究算法,并简要描述它们的应用领域。
- 线性回归:应用于预测数值型结果的问题,如房价预测。
- 逻辑回归:常用于分类问题,如垃圾邮件过滤。
- 决策树:用于处理分类和回归问题,如客户信用评级。
- 支持向量机:适用于二元分类问题,例如图像分类和文本分类。
- 随机森林:可用于分类和回归问题,如医学诊断和股票市场预测。
- 集成研究:通过结合多个研究器来提高性能,如AdaBoost、Bagging等。
- 深度研究:用于复杂的模式识别和自然语言处理问题,如图像和语音识别。
4. 请解释过拟合和欠拟合,并提供避免过拟合的方法。
避免过拟合的方法包括:- 使用正则化技术,如L1或L2正则化,以减小模型复杂度。
- 使用交叉验证来选择合适的超参数和模型结构。
5. 请解释ROC曲线和AUC的含义,并说明它们在评估分类模型性能时的作用。
ROC曲线是一种用于评估二元分类模型的性能的可视化工具。
它以真阳性率(True Positive Rate,TPR)为纵轴,假阳性率(False Positive Rate,FPR)为横轴,绘制了分类模型在不同阈值下的表现。
ROC曲线越接近左上角,模型的性能越好。
AUC(Area Under the Curve)是ROC曲线下的面积,用于衡量二元分类模型的整体性能。
AUC值越接近1,模型的性能越好;而AUC值越接近0.5,模型的性能越差。
6. 请解释交叉验证是什么,以及其在机器研究中的作用。
机器学习原理及应用练习题答案
第一章机器学习概述1.机器学习研究什么问题,构建一个完整的机器学习算法需要哪些要素?机器学习主要研究如何选择统计学习模型,从大量已有数据中学习特定经验。
构建一个完整的机器学习算法需要三个方面的要素,分别是数据,模型,性能度量准则。
2.可以生成新数据的模型是什么,请举出几个例子可以生成新数据的模型是生成模型,典型的生成模型有朴素贝叶斯分类器、高斯混合模型、隐马尔可夫模型、生成对抗网络等。
3.监督学习、半监督学习和无监督学习是什么,降维和聚类属于哪一种?监督学习是指样本集合中包含标签的机器学习,无监督学习是无标签的机器学习,而半监督学习介于二者之间。
降维和聚类是无监督学习。
4.过拟合和欠拟合会导致什么后果,应该怎样避免?过拟合导致模型泛化能力弱,发生明显的预测错误,往往是由于数据量太少或模型太复杂导致,通过增加训练数据量,对模型进行裁剪,正则化的方式来缓解。
而欠拟合则会导致模型不能对数据进行很好地拟合,通常是由于模型本身不能对训练集进行拟合或者训练迭代次数太少,解决方法是对模型进行改进,设计新的模型重新训练,增加训练过程的迭代次数。
5.什么是正则化,L1正则化与L2正则化有什么区别?正则化是一种抑制模型复杂度的方法。
L1正则化能够以较大概率获得稀疏解,起到特征选择的作用,并且可能得到不止一个最优解。
L2正则化相比前者获得稀疏解的概率小的多,但得到的解更加平滑。
第二章逻辑回归与最大熵模型1.逻辑回归模型解决(B )A.回归问题B.分类问题C.聚类问题D.推理问题2.逻辑回归属于(B )回归A.概率性线性B.概率性非线性C.非概率性线性D.非概率性非线性3.逻辑回归不能实现(D )A.二分类B.多分类C.分类预测D.非线性回归4.下列关于最大熵模型的表述错误的是(B )A.最大熵模型是基于熵值越大模型越稳定的假设B.最大熵模型使用最大熵原理中一般意义上的熵建模以此缩小模型假设空间C.通过定义最大熵模型的参数可以实现与多分类逻辑回归相同的作用D.最大熵模型是一种分类算法5.下列关于模型评价指标的表述错误的是(C )A.准确率、精确率、召回率以及AUC均是建立在混淆矩阵的基础上B.在样本不平衡的条件下准确率并不能作为很好的指标来衡量结果C.准确率表示所有被预测为正的样本中实际为正的样本的概率D.一般来说,置信度阈值越高,召回率越低,而精确率越高6.简述逻辑回归的原理。
人工智能机器学习技术练习(习题卷19)
人工智能机器学习技术练习(习题卷19)第1部分:单项选择题,共58题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]最佳分类是曲线下区域面积最大者,而黄线在曲线下面积最大.2、假设你在测试逻辑回归分类器,设函数H为style="width: 211px;" class="fr-fic fr-fil fr-dib cursor-hover">下图中的哪一个代表上述分类器给出的决策边界?A)style="width: auto;" class="fr-fic fr-fil fr-dib">B)style="width: auto;" class="fr-fic fr-fil fr-dib">C)style="width: auto;" class="fr-fic fr-fil fr-dib">答案:B解析:选项B正确。
虽然我们的式子由选项A和选项B所示的y = g(-6 + x2)表示,但是选项B才是正确的答案,因为当将x2 = 6的值放在等式中时,要使y = g(0)就意味着y = 0.5将在线上,如果你将x2的值增加到大于6,你会得到负值,所以输出将是区域y = 0。
B)tanhC)relu答案:A解析:3.[单选题](__)是指对已有数据在尽量少的先验假设条件下进行探索,并通过作图,制表等手段探索数据结构和规律的一种方法。
A)统计分析B)验证性分析C)数据洞见D)探索性数据分析答案:D解析:4.[单选题]以下哪项关于决策树的说法是错误的()。
A)冗余属性不会对决策树的准确率造成不利的影响B)子树可能在决策树中重复多次C)决策树算法对于噪声的干扰非常敏感D)寻找最佳决策树是 NP完全问题答案:C解析:决策树算法对于噪声的干扰具有相当好的鲁棒性。
人工智能机器学习技术练习(习题卷8)
人工智能机器学习技术练习(习题卷8)第1部分:单项选择题,共62题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]基于二次准则函数的H-K算法较之于感知器算法的优点是()?A)计算量小B)可以判别问题是否线性可分C)其解完全适用于非线性可分的情况答案:B解析:2.[单选题]构建回归树的时间复杂度最重要的因素是()A)特征中类别的个数B)label列值域C)样本总量答案:A解析:3.[单选题]()是指为最小化总体风险,只需在每个样本上选择能使特定条件风险最小的类别标记。
A)支持向量机B)间隔最大化C)线性分类器D)贝叶斯判定准则答案:D解析:4.[单选题]下列选择 Logistic回归中的 One-Vs-All方法中,()是真实的。
A)我们需要在n类分类问题中适合n个模型B)我们需要适合n-1个模型来分类为n个类C)我们需要只适合1个模型来分类为n个类D)以上答案都不正确答案:A解析:如果存在n个类,那么n个单独的逻辑回归必须与之相适应,其中每个类的概率由剩余类的概率之和确定。
5.[单选题](__)不属于相关分析。
A)正相关B)负相关C)线性相关D)误差相关答案:D解析:6.[单选题]移动运营商对客户进行细分,设计套餐和营销活动可以使用下面哪种机器学习方法( )。
A)贝叶斯分类器B)关联方法C)聚类算法D)多层前馈网络7.[单选题]下面是三个散点图(A,B,C,从左到右)和和手绘的逻辑回归决策边界。
alt="" >上图中哪一个显示了决策边界过度拟合训练数据?A)AB)BC)CD)这些都没有答案:C解析:由于在图3中,决策边界不平滑,表明其过度拟合数据。
8.[单选题]半监督学习包括。
A)主动学习B)回归学习C)聚类学习D)直推学习答案:D解析:9.[单选题]在统计语言模型中,通常以概率的形式描述任意语句的可能性,利用最大相似度估计进行度量,对于一些低频词,无论如何扩大训练数据,出现的频度仍然很低,下列哪种方法可以解决这一问题()A)一元切分B)一元文法C)数据平滑D)N元文法答案:C解析:10.[单选题]将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?A)频繁模式挖掘B)分类和预测C)数据预处理D)数据流挖掘答案:C11.[单选题]图像数据分析的常用方法不包括( )A)图像变换B)图像编码和压缩C)图像增强和复原D)图像数据采集答案:D解析:12.[单选题]下列关于数据的说法,不正确的是()A)数据的类别有多种多样B)数据库中的一列代表一个特征C)一组数据平均值不会受异常值影响D)数据点之间的距离满足d_ij+d_jk≥d_ik答案:C解析:13.[单选题]关于ZooKeeper的说法不正确是()A)采用层次化的数据结构B)采用类似于LINUX命令进行数据访问C)具备临时节点和永久节点D)永久节点会随客户端会话的结束而结束其生命周期答案:D解析:14.[单选题]下面数据结构能够支持随机的插入和删除操作、并具有较好的性能的是A)链表和哈希表B)数组和链表C)哈希表和队列D)堆栈和双向队列答案:A解析:15.[单选题]下面关于数据科学与统计学的关系描述不正确的有(__)。
(完整word版)机器学习练习题与答案
(完整word版)机器学习练习题与答案《机器学习》练习题与解答1.⼩刚去应聘某互联⽹公司的算法⼯程师,⾯试官问他“回归和分类有什么相同点和不同点”,他说了以下⾔论,请逐条判断是否准确。
1)回归和分类都是有监督学习问题[单选题] [必答题]○对○错参考答案:对。
解析:这道题只有⼀个同学做错。
本题考察有监督学习的概念。
有监督学习是从标签化训练数据集中推断出函数的机器学习任务。
有监督学习和⽆监督学习的区别是:机器学习算法的图谱如下:在回归问题中,标签是连续值;在分类问题中,标签是离散值。
具体差别请看周志华《机器学习》书中的例⼦,⼀看便懂:2.背景同上题。
请判断2)回归问题和分类问题都有可能发⽣过拟合 [单选题] [必答题]○对○错答案:对解析:这题有两个同学做错。
过拟合的英⽂名称是 Over-fitting(过拟合)。
为了说清楚“过”拟合,⾸先说⼀下“拟合”【拟合的⼏何意义】:从⼏何意义上讲,拟合是给定了空间中的⼀些点,找到⼀个已知形式未知参数的连续曲线或曲⾯来最⼤限度地逼近这些点。
⼀个直观的例⼦,是下⾯的电阻和温度的例⼦。
我们知道在物理学中,电阻和温度是线性的关系,也就是R=at+b。
现在我们有⼀系列关于“温度”和“电阻”的测量值。
⼀个最简单的思路,取两组测量值,解⼀个线性⽅程组,就可以求出系数a、b了!但是理想是丰满的,现实是残酷的!由于测量误差等的存在,我们每次测量得到的温度值和电阻值都是有误差的!因此,为了提⾼测量精度,我们会测量多次,得到多组的值,这样就相当于得到⼆维平⾯上的多个点,我们的⽬标是寻找⼀条直线,让这条直线尽可能地接近各个测量得到的点。
拟合的数学意义:在数学的意义上,所谓拟合(fit)是指已知某函数的若⼲离散函数值{f1,f2,…,fn}(未必都是准确值,有个别可能是近似甚⾄错误值),通过调整该函数中若⼲待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最⼩⼆乘意义)最⼩。
人工智能机器学习技术练习(习题卷6)
人工智能机器学习技术练习(习题卷6)第1部分:单项选择题,共62题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]如果一个 SVM 模型出现欠拟合,那么下列哪种方法能解决这一问题?A)增大惩罚参数 C 的值B)减小惩罚参数 C 的值C)减小核系数(gamma参数)答案:A解析:2.[单选题]决策树每个非叶结点表示()A)某一个特征或者特征组合上的测试B)某个特征满足的条件C)某个类别标签答案:A解析:3.[单选题]以下不是开源工具特点的是A)免费B)可以直接获取源代码C)用户可以修改源代码并不加说明用于自己的软件中D)开源工具一样具有版权答案:C解析:4.[单选题]下列核函数特性描述错误的是A)只要一个对称函数所对应的核矩阵半正定,就能称为核函数;B)核函数选择作为支持向量机的最大变数;C)核函数将影响支持向量机的性能;D)核函数是一种降维模型;答案:D解析:5.[单选题]关于 Python 变量的使用,说法错误的是( )。
A)变量不必事先声明B)变量无需先创建和赋值即可直接使用C)变量无须指定类型D)可以使用del释放资源答案:B解析:6.[单选题]马尔可夫随机场是典型的马尔可夫网,这是一种著名的(__)模型。
A)无向图B)有向图C)树形图解析:7.[单选题]当k=3时,使用k近邻算法判断下图中的绿色方框属于()A)圆形B)三角形C)长方形D)以上都不是答案:B解析:8.[单选题](__)是具有适应性的简单单元组成的广泛并行互联的网络。
A)神经系统B)神经网络C)神经元D)感知机答案:B解析:9.[单选题]所有预测模型在广义上都可称为一个或一组(__)。
A)公式B)逻辑C)命题D)规则答案:D解析:10.[单选题]6. AGNES是一种()聚合策略的层次聚类算法A)A自顶向下B)自底向上C)由最近样本决定D)D最远样本决定答案:B解析:11.[单选题]互为对偶的两个线性规划问题的解存在关系()A)原问题无可行解,对偶问题也无可行解B)对偶问题有可行解,原问题可能无可行解C)若最优解存在,则最优解相同D)一个问题无可行解,则另一个问题具有无界解答案:B解析:12.[单选题]过滤式特征选择与学习器(),包裹式特征选择与学习器()。
人工智能机器学习技术练习(习题卷2)
人工智能机器学习技术练习(习题卷2)第1部分:单项选择题,共62题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]我们常用 ( ) 版。
A)apache 版B)cdh 版C)Hortonworks版本答案:B解析:2.[单选题]现在有一份数据,你随机的将数据分成了n份,然后同时训练n个子模型,再将模型最后相结合得到一个强学习器,这属于boosting方法吗A)是B)不是C)不确定答案:B解析:3.[单选题]对于非概率模型而言,可按照判别函数线性与否分成线性模型与非线性模型。
下面哪个模型不属于线性模型A)感知机B)AdaBoostC)K-meansD)k近邻答案:B解析:4.[单选题]下列选项中,()是基于Web的交互式计算环境,可以编辑易于人们阅读的文档,用于展示数据分析的过程。
A)Jupyter NotebookB)Anconda NavigatorC)Anconda PromptD)Spyder答案:A解析:5.[单选题]为了观察测试 Y 与 X 之间的线性关系,X 是连续变量,使用下列哪种图形比较适合?A)散点图B)柱形图C)直方图D)以上都不对答案:A解析:散点图反映了两个变量之间的相互关系,在测试 Y 与 X 之间的线性关系时,使用散点图最为直观。
6.[单选题]()是指数据减去一个总括统计量或模型拟合值时的残余部分A)极值C)平均值D)残值答案:D解析:残值在数理统计中是指实际观察值与估计值(拟合值)之间的差。
7.[单选题]在抽样方法中,当合适的样本容量很难确定时,可以使用的抽样方法是:A)有放回的简单随机抽样B)无放回的简单随机抽样C)分层抽样D)渐进抽样答案:D解析:8.[单选题]在留出法、交叉验证法和自助法三种评估方法中,()更适用于数据集较小、难以划分训练集和测试集的情况。
A)留出法B)交叉验证法C)自助法D)留一法答案:C解析:9.[单选题](__)先将数据集中的每个样本看做一个初始聚类簇,然后在算法运行的每一步找到距离最近的两个聚类簇进行合并,该过程不端重复,直至达到预设的聚类簇个数。
机器学习(慕课版)习题答案全集
机器学习(慕课版)习题答案目录第一章机器学习概述 (2)第二章机器学习基本方法 (5)第三章决策树与分类算法 (9)第四章聚类分析 (13)第五章文本分析 (17)第六章神经网络 (22)第七章贝叶斯网络 (26)第八章支持向量机 (31)第九章进化计算 (32)第十章分布式机器学习 (34)第十一章深度学习 (35)第十二章高级深度学习 (37)第十三章推荐系统 (39)第一章机器学习概述1.机器学习的发展历史上有哪些主要事件?机器学习发展分为知识推理期、知识工程期、浅层知识期和深度学习几个阶段,可从几个阶段选择主要历史事件作答。
2.机器学习有哪些主要的流派?它们分别有什么贡献?符号主义:专家系统、知识工程贝叶斯派:情感分类、自动驾驶、垃圾邮件过滤联结主义:神经网络进化主义:遗传算法行为类推主义3.讨论机器学习与人工智能的关系机器学习是人工智能的一个分支,作为人工智能核心技术和实现手段,通过机器学习的方法解决人工智能面对的问题4.讨论机器学习与数据挖掘的关系数据挖掘是从大量的业务数据中挖掘隐藏、有用的、正确的知识促进决策的执行。
数据挖掘的很多算法都来自于机器学习,并在实际应用中进行优化。
机器学习最近几年也逐渐跳出实验室,解决从实际的数据中学习模式,解决实际问题。
数据挖掘和机器学习的交集越来越大,机器学习成为数据挖掘的重要支撑技术5.讨论机器学习与数据科学、大数据分析等概念的关系数据科学主要包括两个方面:用数据的方法研究科学和用科学的方法研究数据。
前者包括生物信息学、天体信息学、数字地球等领域;后者包括统计学、机器学习、数据挖掘、数据库等领域。
大数据分析即是后者的一个部分。
一般使用机器学习这个工具做大数据的分析工作,也就是说机器学习是我们做大数据分析的一个比较好用的工具,但是大数据分析的工具并不止机器学习,机器学习也并不只能做大数据分析6.机器学习有哪些常用的应用领域?请举例说明其应用艺术创作、金融领域、医疗领域、自然语言处理、网络安全、工业领域、娱乐行业。
Python 机器学习练习题及答案
Python 机器学习练习题及答案Python 机器学习是近年来备受关注的领域,它结合了Python语言的灵活性和机器学习算法的强大功能,为实现各种智能应用提供了广阔的可能性。
为了帮助大家更好地掌握Python机器学习,下面将提供一些练习题及其答案,希望能对你的学习有所帮助。
1. 练习题:线性回归假设有一个数据集,其中包含了房屋的面积和价格的数据,如何通过线性回归模型预测给定面积的房屋的价格呢?请使用Python代码实现。
解答:```pythonimport numpy as npfrom sklearn.linear_model import LinearRegression# 定义训练数据集X_train = np.array([[100], [200], [300], [400], [500]]) # 房屋的面积y_train = np.array([[150], [250], [350], [450], [550]]) # 房屋的价格# 创建线性回归模型model = LinearRegression()# 训练模型model.fit(X_train, y_train)# 预测房屋价格X_test = np.array([[250]])predicted_price = model.predict(X_test)print(predicted_price)```2. 练习题:朴素贝叶斯分类器假设有一个数据集,其中包含了若干电子邮件和它们对应的标签(垃圾邮件或非垃圾邮件),如何通过朴素贝叶斯分类器对新的电子邮件进行分类呢?请使用Python代码实现。
解答:```pythonfrom sklearn.feature_extraction.text import CountVectorizerfrom sklearn.naive_bayes import MultinomialNB# 定义训练数据集X_train = ['This is a spam email','This is not a spam email','I am the prince of Nigeria','You have won a lottery prize','This is a test email']y_train = ['spam', 'not spam', 'spam', 'spam', 'not spam']# 创建词袋模型count_vectorizer = CountVectorizer()# 将文本数据转换为特征向量X_train_transformed = count_vectorizer.fit_transform(X_train) # 创建朴素贝叶斯分类器model = MultinomialNB()# 训练模型model.fit(X_train_transformed, y_train)# 对新的文本进行分类X_test = ['You have won a prize']X_test_transformed = count_vectorizer.transform(X_test) predicted_label = model.predict(X_test_transformed)print(predicted_label)```3. 练习题:支持向量机假设有一个数据集,其中包含了若干个样本和它们的标签,如何使用支持向量机模型对新的样本进行分类呢?请使用Python代码实现。
机器学习课后习题答案
机器学习课后习题答案一、回归问题1. 什么是回归问题?回归问题是指预测一个或多个连续值的问题。
在机器学习中,回归算法通过对已有的输入数据进行学习,建立一个数学模型,用于预测连续型输出变量的取值。
2. 回归问题有哪些常用的评价指标?常用的回归问题评价指标包括:•均方误差(Mean Squared Error,MSE):计算预测值与真实值之间的差异的均方值。
公式如下:MSE = (1/n) * Σ(y_pred - y_true)^2其中,y_pred是预测值,y_true是真实值,n是样本数量。
MSE越小,表示预测值与真实值的拟合程度越好。
•均方根误差(Root Mean Squared Error,RMSE):MSE的平方根。
公式如下:RMSE = √MSERMSE与MSE类似,用于评估预测值与真实值之间的差异,但RMSE更为直观。
•平均绝对误差(Mean Absolute Error,MAE):计算预测值与真实值之间的绝对差异的均值。
公式如下:MAE = (1/n) * Σ|y_pred - y_true|MAE越小,表示预测值与真实值的差异越小。
3. 请简要介绍线性回归算法的原理。
线性回归是一种基本的回归算法,它通过建立一个线性模型来描述自变量与因变量之间的关系。
线性回归的目标是找到最佳拟合直线来最小化预测值与真实值之间的误差。
线性回归算法的原理可以概括如下:1.假设自变量与因变量之间存在线性关系:y = β0 + β1*x1 + β2*x2 + ... + βn*xn + ε其中,y是因变量,x1, x2, …, xn是自变量,β0, β1, β2, …,βn是模型的参数,ε是误差项。
2.最小化误差:通过最小二乘法来确定最优的参数值,使预测值与真实值之间的误差最小化。
3.模型训练和预测:使用已知的训练数据集来训练模型,得到最优的参数值。
然后,可以使用该模型对新的输入数据进行预测。
4. 请简要介绍逻辑回归算法的原理。
机器学习模拟试题含答案
机器学习模拟试题含答案一、单选题(共50题,每题1分,共50分)1、同质集成中的个体学习器亦称()A、组件学习器B、基学习器C、异质学习器D、同质学习器正确答案:B2、假设我们使用原始的非线性可分版本的 Soft-SVM 优化目标函数。
我们需要做什么来保证得到的模型是线性可分离的?A、C = 0B、C = 1C、C 正无穷大D、C 负无穷大正确答案:C3、关于logistic回归和SVM不正确的是()A、Logistic 回归目标函数是最小化后验概率B、Logistic回归可以用于预测事件发生概率的大小C、SVM可以有效避免模型过拟合D、SVM目标是结构风险最小化正确答案:A4、构建一个最简单的线性回归模型需要几个系数(只有一个特征)?A、1 个B、2 个C、4 个D、3 个正确答案:B5、假如我们使用 Lasso 回归来拟合数据集,该数据集输入特征有 100 个(X1,X2,…,X100)。
现在,我们把其中一个特征值扩大 10 倍(例如是特征 X1),然后用相同的正则化参数对 Lasso 回归进行修正。
那么,下列说法正确的是?A、特征 X1 很可能被排除在模型之外B、特征 X1 很可能还包含在模型之中C、无法确定特征 X1 是否被舍弃D、以上说法都不对正确答案:B6、下面关于SVM算法叙述不正确的是()A、SVM是一种基于经验风险最小化准则的算法B、SVM求得的解为全局唯一最优解C、SVM在解决小样本、非线性及高维模式识别问题中具有优势D、SVM最终分类结果只与少数支持向量有关正确答案:A7、KNN算法属于一种典型的()算法A、无监督学习B、半监督学习C、弱监督学习D、监督学习正确答案:D8、关于BP算法特点描述错误的是 ( )A、输入信号顺着输入层、隐层、输出层依次传播B、计算之前不需要对训练数据进行归一化C、预测误差需逆向传播,顺序是输出层、隐层、输入层D、各个神经元根据预测误差对权值进行调整正确答案:B9、关于维数灾难说法错误的是?A、高维度数据可使得算法泛华能力变得越来越弱B、高维度数据增加了运算难度C、降低高维度数据会对数据有所损伤D、高维度数据难以可视化正确答案:A10、做一个二分类预测问题,先设定阈值为0.5,概率大于等于0.5的样本归入正例类(即1),小于0.5的样本归入反例类(即0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器学习第一阶段练习题
一、选择题
1. 以下三阶泰勒展开式错误的一项是(B )
A. 3231211x !x !x e x
+++= B. 323
1211x x x )x ln(++=+ C. 331x !x x sin -= D. 321x x x x
-11+++= 分析:3231211x x -x )x ln(+=+ 2. 以下不属于凸函数一项的是(D )
A. y=-log x
B. y=x log x
C. y=||x||p
D. y=e ax
分析:a 应该限定取值范围:a ≥1或a ≤0
3. 以下说法错误的一项是(C )
A. 负梯度方向是使函数值下降最快的方向
B. 当目标函数是凸函数时,梯度下降法的解是全局最优解
C. 梯度下降法比牛顿法收敛速度快
D. 拟牛顿法不需要计算Hesse 矩阵
分析:牛顿法需要二阶求导,梯度下降法只需一阶,因此牛顿法比梯度下降法更快收敛
4. 一般,k-NN 最近邻方法在(B )的情况下效果较好
A. 样本较多但典型性不好
B. 样本较少但典型性好
C. 样本呈团状分布
D. 样本呈链状分布
分析:k 近邻算法对较多且典型不好的,团状,链状的样本不具有太大的优势
5. 机器学习中L1正则化和L2正则化的区别是?(A )
A. 使用L1可以得到稀疏的权值,使用L2可以得到平滑的权值
B. 使用L1可以得到平滑的权值,使用L2可以得到平滑的权值
C 使用L1可以得到平滑的权值,使用L2可以得到稀疏的权值
D.使用L1可以得到稀疏的权值,使用L2可以得到稀疏的权值
分析:L1正则化偏向于稀疏,它会自动进行特征选择,去掉一些没用的特征,也就是将这些特征对应的权重置为0。
L2主要功能是为了防止过拟合,当要求参数越小时,说明模型越简单,而模型越简单则,越趋向于平滑,从而防止过拟合。
二、公式推理题
1. 请写出通过条件概率公式和全概率公式推出贝叶斯公式的过程 分析:条件概率:)A (P )AB (P )A |B (P )B (P )AB (P )B |A (P ==
, 全概率:∑=i
i i
)B (P )B |A (P )A (P 贝叶斯公式:∑=j
j
j i i i )B (P )B |A (P )B (P )B |A (P )A |B (P 2. 请写出正态分布的概率密度函数、期望、以及方差
分析:概率密度函数:021222>=--σ,e σπ)x (f σ)μx (;期望:μ)x (E =;方差:2σ)x (D =
三、简答题
1. 求函数R x ,x )x (f x
∈=的最小值 分析:令,x t x =两边取对数:,x ln x lnt =两边对t 求导:,x *
x x ln 't *t 11+= 令t ’=0:10-==+e x ,1 lnx 那么:,则e e t 1
-=即为f(x)最小值。
2. 欠拟合和过拟合的原因分别有哪些?如何避免?
分析:
欠拟合的原因:模型复杂度过低,不能很好的拟合所有的数据,训练误差大;
避免欠拟合:增加模型复杂度,如采用高阶模型(预测)或者引入更多特征(分类)等。
过拟合的原因:模型复杂度过高,训练数据过少,训练误差小,测试误差大;
避免过拟合:降低模型复杂度,如加上正则惩罚项,如L1,L2,增加训练数据等。
3. 列举聚类算法有哪些相似性度量准则及公式(至少四个)
分析:曼哈顿距离:∑=-=n i i i |y x |)y ,x (d 1;欧氏距离:p
n i p i i )|y x |()y ,x (d 11
∑=-=; Jaccard 系数:|
B A ||B A |)B ,A (J ⋃⋂=;余弦相似度:|b ||a |b a θcos T ⋅=; 皮尔森系数:Y X XY σσ)Y ,X (COV ρ⋅=;相对熵(K-L 距离):)
x (q )x (p log E )q ||p (D )x (p = 4. 若要对以下图案进行聚类分析需要采用哪种聚类方法,简述理由和该方法步骤
分析:该图案为非凸状的,因此不能使用基于距离的聚类算法(k-means 、k-medoids 等),可选择密度聚类(DBSCAN 等)、网格聚类(STING )等非距离的方法。
5. 简述UserCF 和ItemCF 算法的相同点与不同点
分析:。