深圳实验学校新初一分班考 试数学试题
深圳智民实验学校初中部新初一分班数学试卷
深圳智民实验学校初中部新初一分班数学试卷一、选择题1.一幢教学楼长40米,在平面图上用8厘米的线段表示,这幅图的比例尺是( )。
A .1∶50B .1∶500C .50∶1D .500∶12.一个正方体木块,各个面上分别写上A 、B 、C 、D 、E 、F 这六个字母,A 的对面是F ,B 的对面是E ,C 的对面是D 。
这个木块如图放置后按剪头所示方向滚动,滚动到最后一格时,木块上方是( )。
A .字母AB .字母BC .字母CD .字母F3.计算下图阴影部分的面积.正确的算式是( ).A .3.14×6-3.14×4B .3.14×(3-2)C .3.14×(32-22)4.一个三角形三个内角度数的比是2∶3∶5,这个三角形是( )三角形。
A .锐角B .直角C .钝角D .无法确定5.合唱团有男生47人,比女生人数的3倍多2人,合唱团的女生有多少人?设合唱团的女生有x 人,则下面方程中,正确的是( )。
A .()4732x -⨯= B .3472x -=C .3247x x ++=D .3247x +=6.立体图形,从( )看到的形状是。
A .正面B .上面C .左面D .右面 7.下面说法错误的是( )。
A .经过一点可以画无数个圆 B .周长相等的两个圆,面积也一定相等 C .圆的周长与它直径的比值是π D .直径就是两端都在圆上的线段8.下列说法中正确的是( )。
A .差一定时,被减数和减数成正比例 B .总价一定时,单价和数量成正比例 C .圆柱体积一定时,它的底面积和高成反比例D .房间面积一定时,方砖的边长和所需的方砖数量成反比例9.一件衣服,因销售旺季,提价10%,一段时间后,因样式陈旧,不得不又降价10%,现价是99元,原价是( ). A .110元B .101元C .100元D .99元10.把一个圆形纸片对折两次后,得到下图,然后沿虚线剪开,得到两部分,其中较大一部分展开后是()。
实验中学新初一分班考试数学试题(含答案)
西城实验分班考试试题一、填空题(每题5分)1、计算:1/3+3/4+2/5+5/7+7/8+9/20+10/21+11/24+19/35=───────2、小鹏同学在一个正方体盒子的每一个面上都写上一个字,分别是:我、喜、欢、数、学、课,正方体的平面展开图如右图所示,那么在该正方体盒子中,和“我”相对的面所写的字是───────我喜欢数学课3、1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有_______个。
4、一项机械加工作业,用4台A型机床,5天可以完成;用4台A型机床和2台B型机床3天可以完成;用3台B型机床和9台C型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A、C型机床继续工作,还需要______天可以完成作业。
二、填空题(每题6分)5、2008年1月,我国南方普降大雪,受灾严重。
李先生拿出积蓄捐给两个受灾严重的地区,随着事态的发展,李先生决定追加捐赠资金。
如果两地捐赠资金分别增加10%和5%,则总捐资额增加8%;如果两地捐赠资金分别增加15%和10%,则总捐资额增加13万元。
李先生第一次捐赠了_______万元.6、有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为_____.7、从1,2,3,……,n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______.8、如图边长为10cm的正方形,则阴影表示的四边形面积为______平方厘米。
(图片丢失,此题跳过)9、新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出。
如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有________人。
深圳实验学校国际部数学新初一分班试卷含答案
深圳实验学校国际部数学新初一分班试卷含答案一、选择题1.一种精密零件长2.5毫米,画在图纸上长25厘米。
这幅零件图的比例尺是()。
A.10∶1 B.2.5∶25 C.1∶100 D.100∶12.12时15分,分针与时针的夹角是()。
A.锐角 B.平角 C.直角 D.钝角3.光明村今年每百户拥有电脑96台,比去年增加了32台,今年比去年增加了百分之多少?正确的算式是().A.32÷96×100%B.32÷(96-32)×100%C.96÷32×100%4.一个三角形三个内角度数的比是1∶2∶1,这个三角形是()。
A.等边三角形B.等腰直角三角形C.钝角三角形5.用6千克棉花的17和1千克铁的67相比较,结果是()。
A.6千克棉花的17重B.1千克铁的67C.一样重D.无法比较6.下图是一个正方体的展开图,在这个正方体中,和“美”相对的面是()。
A.建B.晋C.丽D.城7.下面说法错误的是()。
A.39515=可以看做一个比例。
B.比例就是由比值相等的两个比组成的等式。
C.两个量的倍数关系无法转换成两个量相比的关系。
D.根据24389⨯=⨯,至少可以写出4个不同的比例。
8.下列说法正确的有()。
①一条射线长5厘米。
②假分数的倒数不一定是真分数。
③圆柱有无数条高,圆锥只有一条高。
④5的倍数一定是合数。
A.①③B.②④C.②③D.②③④9.六年级的小明和爸爸妈妈去太阳岛游玩,太阳岛收费为门票80元/张,学生半价(小明打五折)三人共花费()元。
A.160 B.200 C.240 D.12010.我有黑、蓝两种颜色,大小相同的袜子,其中,黑袜子有a只,蓝袜子有b只(a>b),最少取()只袜子就一定能凑成一双.(同颜色的两只袜子为一双)A.2 B.3 C.a+1 D.b+1二、填空题11.14时=(________)分 5.04立方米=(________)立方分米1500毫升=(________)升=(________)立方分米十12.38=12∶()=()÷16=()40=()(填百分数)。
深圳实验学校初中部新初一分班数学试卷
深圳实验学校初中部新初一分班数学试卷一、选择题1.房屋每平方米物业管理费一定,房屋面积和所缴的物业管理费( )。
A .成正比例B .成反比例C .不成比例D .不确定成什么比例2.下图是用小方块拼搭而成的几何模型,如果把这个模型的表面全部涂上红色(包括底面),则四个面涂上红色的有( )块。
A .2B .3C .4D .53.做一份手工作业,晓妮每天完成它的415,3天可以完成这份手工作业的几分之几?正确的算式是( )。
A .4115-B .4315⨯ C .4315+ D .41315-⨯ 4.一个三角形三个内角度数的比是5∶3∶2,这个三角形是( )。
A .锐角三角形B .直角三角形C .钝角三角形5.下列关于圆周率π,说法正确的是( )。
①π是个无限不循环小数。
②π>3.14。
③周长大的圆,π就大,周长小的圆,π就小。
④π是圆的周长除以它直径的商。
A .①②③B .①②④C .②③④D .①③④6.一个立体图形,从右面看到的形状是,从正面看到的形状是。
搭这样的立体图形,最多可以有( )个小立方体。
A .5B .6C .7D .87.下列说法错误的是( )。
A .长方体、正方体都是棱柱B .六棱柱有18条棱、6个侧面、12个顶点C .三棱柱的侧面是三角形D .圆柱由两个平面和一个曲面围成 8.下面图形中,圆柱展开图的是( )。
A.B.C.D.9.一件毛衣原价200元,提价110后又降价110销售,现在这件毛衣的价格是( )元.A.200 B.220 C.198 D.180 10.将一张正方形纸连续对折4次后展开,其中一份占这张正方形纸的( ) .A.12B.14C.18D.116二、填空题11.4吨60千克=______吨,1.5时=______时______分。
十12.12÷()=()56=()∶()=0.375=()%。
十13.16是40的(________)%,80比50多(________)%。
深圳新安实验学校数学新初一分班试卷
深圳新安实验学校数学新初一分班试卷一、选择题1.学校的操场长120米,宽90米,把它画在长30厘米,宽25厘米的长方形纸上,选用()的比例尺比较适当.A.1:400 B.1:500 C.1:1000 D.1:1002.小郑有两个正方形骰子,每个面上点数符合如下规则:骰子相对两个面上的点数之和为7.下面是四个骰子的展开图.其中哪两个可能是小郑的骰子?A.Ⅰ和ⅡB.Ⅱ和ⅢC.Ⅲ和ⅣD.Ⅰ和Ⅳ3.一种服装提价10%后是220元,求这种衣服的原价.正确的算式是().A.220×(1+10%)B.220×(1-10%)C.220÷(1+10%)D.220÷(1-10%)4.一个三角形三个内角度数的比是5∶3∶2,这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形5.用5千克棉花的和1千克铁的相比较,结果是().A.5千克棉花的重B.1千克铁的重C.一样重D.无法比较6.从右面观察,看到的形状是相同图形的是()A.①和②B.①和③C.②和④7.下面语句中错误的是()。
A.要找到一张圆形纸片的圆心至少要对折2次B.1吨煤,用去37吨后,还剩全部的47C.产品增长率可能大于100%D.圆形、三角形、正方形、长方形都是轴对称图形8.如下图,一个长方形长为a,宽为b。
分别以长为轴、宽为轴旋转,产生了两个圆柱甲、乙。
判断甲、乙两个圆柱侧面积的大小关系()。
A .甲>乙B .甲<乙C .甲=乙D .无法比较9.某城市限定每户每月用水量不超过6吨时,每吨价格为2元;当用水量超过6吨时,超过部分每吨水价为3元,每户每月水费y (元)与用水量x (吨)的关系是图中的( )。
A .B .C .D .10.一个底面是正方形的长方体,把它的侧面展开后,正好是一个边长为12分米的正方形,原来这个长方体的体积( )立方分米。
A .144B .108C .27D .54二、填空题11.3.05立方米=(________)立方分米 2小时15分=(________)小时5200立方厘米=(________)升 34吨=(________)千克十12.( )∶20=()8 =0.8=4÷( )=( )%。
年级数学考试之深圳市实验中学入校分班试卷 F卷
年级数学考试之深圳市实验中学入校分班试卷 F卷题目一:选择题(共10题,每题2分,共20分)1. 已知正整数a和b满足a+b=24,ab=123,求a和b各自的值分别是多少?A. a=3,b=21B. a=8,b=15C. a=13,b=11D. a=16,b=82. 下列哪个数是有理数?A. √2B. 1.C. -5D. π3. 直线y=2x-5与x轴、y轴的交点分别是什么?A. (0, -5),(2.5, 0)B. (-5, 0),(0, -2.5)C. (0, -5),(-2.5, 0)D. (5, 0),(0, 2.5)4. 已知ΔABC与ΔDEF为相似三角形,且∠B=∠E,∠C=∠F,那么BC与EF之间的关系是:A. BC=EFB. BC<EFC. BC>EFD. 无法确定5. 若正整数a、b满足a-b=3,a^2-b^2=15,则a和b的值分别为多少?A. a=9,b=6B. a=6,b=3C. a=4,b=1D. a=3,b=06. 已知集合A={x∈ℚ | x<0},B={x∈ℚ | x≥1},则集合A∪B的结果是:A. A∪B=ℚB. A∪B=ℚ⁺C. A∪B=ℝD. A∪B=ℝ⁺7. 已知一辆汽车以每小时60km的速度行驶,行驶了3小时后的总路程是多少?A. 120kmB. 160kmC. 180kmD. 240km8. 若正整数n满足n的个位数字为3,十位数字是个位数字的2倍,百位数字是十位数字的3倍,那么n的值是多少?A. 612B. 723C. 834D. 9459. 直角三角形的两直角边长分别为5cm和12cm,求斜边的长度是多少?A. 5cmB. 7cmC. 11cmD. 13cm10. 若正整数a满足a^2-10a=24,那么a的值是多少?A. a=2B. a=6C. a=8D. a=12题目二:计算题(共5题,每题10分,共50分)1. 小明从家里出发去学校,一共走了800米。
初一分班数学试题及答案
初一分班数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -0.5答案:C2. 一个数的相反数是-2,那么这个数是:A. 2B. -2C. 0D. 4答案:A3. 计算2x+3=7,x的值是:A. 2B. 1C. 3D. 4答案:B4. 如果a=3,b=-2,那么a+b的值是:A. 1B. -5C. 5D. -15. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C6. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 0答案:C7. 一个数的立方是-8,这个数是:A. 2B. -2C. 8D. -8答案:B8. 计算(-3)×(-2)的结果是:A. -6B. 6C. 0D. 1答案:B9. 计算(-3)÷(-2)的结果是:B. 1.5C. 0D. 3答案:B10. 计算(-3)²的结果是:A. -9B. 9C. 0D. 1答案:B二、填空题(每题4分,共20分)11. 一个数的倒数是2,那么这个数是______。
答案:0.512. 如果一个数的绝对值是4,那么这个数可能是______或______。
答案:4或-413. 一个数的平方是16,那么这个数可能是______或______。
答案:4或-414. 计算(-4)×(-3)÷(-2)的结果是______。
答案:615. 计算(-2)³的结果是______。
答案:-8三、解答题(每题10分,共50分)16. 解方程:3x-7=8首先,将方程两边同时加7,得到3x=15。
然后,将方程两边同时除以3,得到x=5。
所以,x的值是5。
17. 计算:(-3)×(-4)+(-5)×(-2)-6首先,计算乘法部分,得到12和10。
然后,将结果相加,得到22。
最后,减去6,得到16。
深圳实验学校新初一分班考试数学试题
深圳实验学校新初一分班考试数学试题一、代数部分填空:1、一个数由 8个百万, 9个万, 5个千和 3个十构成,写作_____,读作___________改写成万作单位为_____。
2、小麦出粉率是 85%,3400千克小麦可磨____千克面粉,要磨3400千克面粉要小麦___千克。
3、一个工程队昨年修了 5040米沟渠,从 2月26日动工到 3月4日竣工,均匀每日修____米。
4、小明绕小区跑步,本来要8分钟,此刻要 5分钟,速度提升了____%。
5、有 28位同学排一行,从左到右数小明第10,从右往左数他是第____。
6、有几十个苹果,三个一组,余2个,四个一组,余 2个, 5个一组余 2个,共____个。
7、圆柱体积 1.2立方米,削成最大圆锥,起码去掉____立方米。
68、把7化成小数,小数点后第 2013位是数字______。
二、几何部分填空:1、用长 7cm,宽 6cm的长方形纸片剪成 2×3的长方形纸片,最多能够剪____个。
2、一个正方体棱长减少一半,则体积减少_____。
3、用一条直线把长方体分红体积相等的两半,共_____种分法。
4、假如一个三角形,各个边上的高所在的直线都是他的对称轴,这个三角形是___三角形。
5、一个大圆的半径恰巧等于一个小圆的直径,则小圆的面积是大圆面积的______。
6、一个分数的分子除以三,分母乘以三,分数值将_____。
三、判断题:1、六⑴ 班出勤 50人,少勤 1人,少勤率为 2%。
2、比率尺 8∶1表示把实物放大 8倍后画在图上。
3、甲比乙长 0.2cm,那么乙比甲短 0.2cm。
4、 a是质数, b是合数,则 a、b互质。
(((())))5、长方形周长必定,则长和宽是正比率。
()四、计算:1、求未知数x 。
⑴x + x=95 4x∶4= 7∶2⑵ 5 6 32、脱式计算。
(能简算的要简算)⑴7+97+ 997+9997+12⑵ 1.8 ×8.6+ 1.8 ×1.3+18%五、正方形中有一个最大的圆,正方形面积为12平方厘米,求圆的面积。
实验中学初一新生分班摸底数学试卷 (1)
实验中学初一新生分班摸底数学试卷一、填空(每格2分,共20分)1、六亿六千零六万写成以亿为单位的数是()2、3在百位上比在百分位上大()3、40.5的小数点向左移动一位,所得新数的计数单位是()4、已知A、B、C都大于0,A×B=252,B×C=96,C×A=168,那么A 是()5、在3/10,0.15,1/4,0.36和3/5五个数中,选出四个数组成比例()6、在1<0.45×______<2的_____填上两位小数,最小可填(),最大可填()7、有个四位数,给它加上小数点后,再与原来的数相加,和是3016.87,原来的四位数是()8、没有倍数关系的两个两位数,它们的最大公约数是16,最小公倍数是96,这两个数的和是()9、用三个长3厘米、宽2厘米、高1厘米的长方体,拼成一个表面积最小的长方体,这个长方体的表面积是()二、选择正确答案的编号,填在()里。
(共6分)1、甲数的3/7正好等于乙数的45%,那么()A、甲数=乙数B、甲数>乙数C、甲数< 乙数2、一个长方形的活动架,拉它的对角成为一个平行四边形,那么原长方形的面积()平行四边形。
A、大于B、等于C、小于D、无法确定3、已知A是一个纯小数,B大于1,下列算式中,()的结果定大于1。
A、A/BB、A*BC、B/AD、B-A4、王师傅加工一个零件的时间由原来的8分钟减少到5分钟,他的工作效率提高了()A、62.5%B、60%C、37.5%5、x与y是两种相关联的量,并且x=12y,那么x与y()A、成正比例B、成反比例C、不成比例6、一个圆柱体和一个圆锥体,底面积和体积都相等,圆锥体的高是12分米,圆柱体的高是()A、4分米B、36分米C、12分米D、6分米三、计算1、直接写出得数(共8分)①1/4+1/5= ②8.5÷0.01= ③0.1×99-0.1= ④(0.27+9/10)÷9=⑤27.25×4÷27.25×4= ⑥777×9÷111×37= ⑦1÷0.625=⑧512/9÷8=2、用递等式计算(每题3分,共18分)①1627+270÷18×25 ②3.8×1.25-1.25+7.2×125% ③4.68-4.68÷(4.68÷0.5)④(1/2-1/5÷5/12)×60 ⑤1.5×[8+1/3-(4+1/6-2.5)÷0.2]⑥[0.3+(2+2/3-1.25)÷(2+5/6)]÷(1+3/4)一、填空题。
2021年深圳实验学校初中部七年级入学分班考试数学试卷及答案解析
2021年深圳实验学校初中部七年级入学分班考试数学试卷一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.下列两个数互为相反数的是()A.(−89)和﹣(−98)B.﹣0.5和12C.π和﹣3.14D.+20和﹣(﹣20)2.如图所示的几何体的左视图是()A.B.C.D.3.我国脱贫攻坚战取得了全面胜利,现行标准下9899万农村贫困人口全部脱贫,832个贫困县全部摘帽,128000个贫困村全部出列,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹,将数字128000用科学记数法表示为()A.12.8×105B.1.28×106C.1.28×105D.128×1034.在下列代数式中,次数为3的单项式是()A.xy2B.x3+y3C.x3y D.3xy5.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最低的液体是()A.液态氧B.液态氢C.液态氮D.液态氦6.下列运算,结果正确的是()A.2x3+3x3=5x6B.3xy﹣4xy=﹣1C.2a2+3a2=6a2D.2ab﹣2ba=07.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A .a >﹣3B .a >bC .ab >0D .﹣a >c8.下列判断错误的是( ) A .若a =b ,则ac =bc B .若a =b ,则a c 2+1=b c 2+1C .若x =2,则x 2=2xD .若ax =bx ,则a =b9.如果关于x 的方程2x +k ﹣4=0的解x =﹣3,那么k 的值是( ) A .﹣10B .10C .2D .﹣210.当x =1时,多项式ax 3+bx ﹣2的值为2,则当x =﹣1时,该多项式的值是( ) A .﹣6B .﹣2C .0D .211.某校利用二维码进行学生学号统一编排,黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式a ×23+b ×22+c ×21+d 计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为( )A .071429B .081429C .081519D .09151812.瑞士中学教师巴尔末成功地从光谱数据95,43,2521,98,4945⋯⋯中得到巴尔末公式,从而打开了光谱奥妙的大门,按此规律第10个数据是( ) A .2524B .2625C .3635D .3736二、填空题(共6小题,每小题4分,满分24分) 13.比较大小:−18 −17(选填“>”、“=”、“<”). 14.若﹣5x m +5y 与2x 4y n 是同类项,则m +n = .15.某校七年级有师生参加爱心捐款活动,其中有a 名教师,b 名学生,若平均每名教师捐x 元,每名学生捐10元,则他们一共捐款 元.16.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a +b +c 的值为 .17.如图,已知正五角星的面积为14,正方形的边长为3,图中对应阴影部分的面积分别是S 1、S 2,则S 1﹣S 2的值为 .18.如图,将一条长为7cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺被分成了三段,若这三段长度由短到长之比为1:2:4,其中没完全盖住的部分最长,则折痕对应的刻度可能是 cm三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.) 19.(8分)计算: (1)(34+49−518)×(﹣36);(2)﹣22+3×(﹣1)4﹣9÷(﹣3)2.20.(10分)计算:(1)化简:3a+2b﹣5a﹣b;(2)先化简,再求值:5x2+(4y2﹣x2)﹣3(y2﹣7x2),其中x=﹣1,y=4.21.(8分)解方程:(1)﹣2x+3=4x﹣9;(2)3(x+2)﹣2(x+2)=2x+4.22.(8分)如图是由一些棱长都为1cm的小正方体组合成的简单几何体.画出该几何体的主视图、左视图和俯视图,并用阴影标上.23.(8分)“十•一”黄金周期间,北京故宫游园人数大幅度增加,在7天假期中每天旅游的人数较之前一天的变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日+3.2+0.6+0.3+0.7﹣1.3+0.2﹣2.4人数变化单位:万人(1)若9月30日故宫的游园人数为2.1万人,请你计算这7天中每天的游园人数.(2)“十•一”黄金周期间,北京故宫游园人数最多和最少分别是哪一天?游园人数为多少?(3)故宫门票是60元一张,请计算出“十•一”黄金周期间,北京故宫的门票总收入(万元).(4)9月30日的游园人数为2.1万人,用折线统计图表示黄金周期间游园人数情况.24.(8分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下表(注:水费按月结算,m3表示立方米):价目表每月用水量单价不超过6m32元/m3超过6m3不超过10m3的部分4元/m3超出10m3的部分8元/m3请你根据表的内容解答下列问题:(1)若某户居民4月份用水4m3,应收水费元,该户居民5月份用水7m3,应收水费元.该户居民6月份用水12m3,应收水费元.(2)请写出若该用户居民某月份用水am3时,应收水费的代数式(用含a的式子表示),并进行化简.25.(9分)阅读材料:求1+2+22+23+24+…+22021的值.解:设S=1+2+22+23+24+ (22021)将等式两边同时乘以2,得:2S=2+22+23+24+…+22021+22022;将下式减去上式得:2S﹣S=22022﹣1,即S=22022﹣1,即1+2+22+23+24+…+22021=22022﹣1;请你仿照此法计算:(1)1+12+(12)2+(12)3+(12)4+⋯(12)n.(2)1+3+32+33+34+…+3n.26.(9分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为3,4,第3个正方形的边长=;第5个正方形的边长=;(2)如果标注1、2的正方形边长分别为x,y,求第10个正方形的边长,并写出简单过程.(用含x、y的代数式表示)27.(10分)已知有理数a,b,c在数轴上对应的点分别为A,B,C,其中b是最小的正整数,a,c满足|a+2|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)点A,B,C分别以每秒4个单位长度,1个单位长度,1个单位长度的速度在数轴上同时向右运动,设运动时间为t秒.①当AC长为4时,求t的值;②当点A在点C左侧时(不考虑点A与B,C重合),是否存在一个常数m使得2AC+m•AB的值在某段运动过程中不随t的改变而改变?若存在,求出m的值;若不存在,请说明理由.2021年深圳实验学校初中部七年级入学分班考试数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.下列两个数互为相反数的是()A.(−89)和﹣(−98)B.﹣0.5和12C.π和﹣3.14D.+20和﹣(﹣20)解:A、﹣(−98)=98,因为−89+98≠0,所以−89与﹣(−98)不是互为相反数,故此选项不符合题意;B、因为﹣0.5+12=0,所以﹣0.5与12是互为相反数,故此选项符合题意;C、因为π+(﹣3.14)=0.0015926……,故此选项不符合题意;D、﹣(﹣20)=20,因为+20+20=40,因此+20和﹣(﹣20)不是互为相反数,故此选项不符合题意;故选:B.2.如图所示的几何体的左视图是()A.B.C.D.解:从左面看,能看到上下两个小正方形.故选:D.3.我国脱贫攻坚战取得了全面胜利,现行标准下9899万农村贫困人口全部脱贫,832个贫困县全部摘帽,128000个贫困村全部出列,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹,将数字128000用科学记数法表示为()A.12.8×105B.1.28×106C.1.28×105D.128×103解:128000=1.28×105,故选:C.4.在下列代数式中,次数为3的单项式是()A.xy2B.x3+y3C.x3y D.3xy解:根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意.故选:A.5.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最低的液体是()A.液态氧B.液态氢C.液态氮D.液态氦解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最低的液体是液态氦.故选:D.6.下列运算,结果正确的是()A.2x3+3x3=5x6B.3xy﹣4xy=﹣1C.2a2+3a2=6a2D.2ab﹣2ba=0解:A.2x3+3x3=5x3,故本选项不合题意;B.3xy﹣4xy=﹣xy,故本选项不合题意;C.2a2+3a2=5a2,故本选项不合题意;D.2ab﹣2ba=0,故本选项符合题意;故选:D.7.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c 解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.8.下列判断错误的是()A.若a=b,则ac=bc B.若a=b,则ac2+1=b c2+1C.若x=2,则x2=2x D.若ax=bx,则a=b解:A、根据等式性质2,a=b两边都乘以c,即可得到ac=bc,故本选项不合题意;B、根据等式性质2,a=b两边都除以c2+1,即可得到ac2+1=bc2+1,故本选项不合题意;C、根据等式性质2,x=2两边都乘以x,即可x2=2x,故本选项不合题意;D、根据等式性质2,若ax=bx,需增加条件x≠0,才可得到a=b,故本选项符合题意;故选:D.9.如果关于x的方程2x+k﹣4=0的解x=﹣3,那么k的值是()A.﹣10B.10C.2D.﹣2解:把x=﹣3代入方程2x+k﹣4=0,得:﹣6+k﹣4=0解得:k=10.故选:B.10.当x=1时,多项式ax3+bx﹣2的值为2,则当x=﹣1时,该多项式的值是()A.﹣6B.﹣2C.0D.2解:∵当x=1时,多项式ax3+bx﹣2的值为2,∴a+b﹣2=2,∴a+b=4,∴当x=﹣1时,ax3+bx﹣2=﹣a﹣b﹣2=﹣(a+b)﹣2=﹣4﹣2=﹣6,故选:A .11.某校利用二维码进行学生学号统一编排,黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式a ×23+b ×22+c ×21+d 计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为( )A .071429B .081429C .081519D .091518解:根据题意得,第一行数字从左往右依次是1,0,0,0,则表示的数据为1×23+0×22+0×21+0=8,计作08,第二行数字从左往右依次是1,1,1,1,则表示的数据为1×23+1×22+1×21+1=15,计作15,第三行数字从左往右依次是0,0,0,1,则表示的数据为0×23+0×22+0×21+1=1,计作1,第四行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作9.则他的统一学号为081519. 故选:C .12.瑞士中学教师巴尔末成功地从光谱数据95,43,2521,98,4945⋯⋯中得到巴尔末公式,从而打开了光谱奥妙的大门,按此规律第10个数据是( ) A .2524B .2625C .3635D .3736解:光谱数据第一个数为95,第二个数为43=1612,第三个数为2521,第四个数为98=3632,第五个数为4945,观察上述5个数字,发现分子依次是32,42,52,62,72,故第n 项数字的分子为(n +2)2,第n 项数字的分母为(n +2)2﹣4,故第n 项数字为:(n+2)2(n+2)2−4, 即第10项数字为:(10+2)2(10+2)2−4=144140=3635,故选:C .二、填空题(共6小题,每小题4分,满分24分) 13.比较大小:−18 > −17(选填“>”、“=”、“<”). 解:∵|−18|<|−17|, ∴−18>−17. 故答案为:>.14.若﹣5x m +5y 与2x 4y n 是同类项,则m +n = 0 . 解:由同类项的定义可知:m +5=4,n =1, 解得:m =﹣1, 则m +n =﹣1+1=0. 故答案为:0.15.某校七年级有师生参加爱心捐款活动,其中有a 名教师,b 名学生,若平均每名教师捐x 元,每名学生捐10元,则他们一共捐款 (ax +10b ) 元. 解:根据题意得,一共捐款为:ax +10b ; 故答案为:(ax +10b ).16.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a +b +c 的值为 12 .解:正方体的表面展开图,相对的面之间一定相隔一个正方形, ∴a 与b 相对,c 与﹣2相对,3与2相对,∵相对面上两个数之和相等, ∴a +b =c ﹣2=3+2, ∴a +b =5,c =7, ∴a +b +c =12, 故答案为:12.17.如图,已知正五角星的面积为14,正方形的边长为3,图中对应阴影部分的面积分别是S 1、S 2,则S 1﹣S 2的值为 5 .解:设空白部分的面积为S ,则S 1=14﹣S ,S 2=32﹣S , ∴S 1﹣S 2=14﹣S ﹣(9﹣S )=14﹣S ﹣9+S =5. 故答案为:5.18.如图,将一条长为7cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺被分成了三段,若这三段长度由短到长之比为1:2:4,其中没完全盖住的部分最长,则折痕对应的刻度可能是 2或2.5 cm解:设折痕对应的刻度为xcm ,依题意有 2(x ﹣1)=2或2(x ﹣2)=1 解得x =2或x =2.5 故答案为:2或2.5三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.) 19.(8分)计算: (1)(34+49−518)×(﹣36);(2)﹣22+3×(﹣1)4﹣9÷(﹣3)2.解:(1)原式=34×(﹣36)+49×(﹣36)−518×(﹣36)=﹣27﹣16+10=﹣33;(2)原式=﹣4+3×1﹣9÷9=﹣4+3﹣1=﹣2.20.(10分)计算:(1)化简:3a+2b﹣5a﹣b;(2)先化简,再求值:5x2+(4y2﹣x2)﹣3(y2﹣7x2),其中x=﹣1,y=4.解:(1)原式=﹣2a+b.(2)原式=5x2+4y2﹣x2﹣3y2+21x2=25x2+y2,∵x=﹣1,y=4,∴原式=25×(﹣1)2+42=25+16=41.21.(8分)解方程:(1)﹣2x+3=4x﹣9;(2)3(x+2)﹣2(x+2)=2x+4.解:(1)﹣2x+3=4x﹣9,移项,得﹣2x﹣4x=﹣3﹣9,合并同类项,得﹣6x=﹣12,系数化为1,得x=2;(2)3(x+2)﹣2(x+2)=2x+4,去括号,得3x+6﹣2x﹣4=2x+4,移项,得3x﹣2x﹣2x=4+4﹣6,合并同类项,得﹣x=2,系数化为1,得x=﹣2.22.(8分)如图是由一些棱长都为1cm的小正方体组合成的简单几何体.画出该几何体的主视图、左视图和俯视图,并用阴影标上.解:如图所示:23.(8分)“十•一”黄金周期间,北京故宫游园人数大幅度增加,在7天假期中每天旅游的人数较之前一天的变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数): 日期 1日 2日 3日 4日 5日 6日 7日 人数变化 单位:万人+3.2+0.6+0.3+0.7﹣1.3+0.2﹣2.4(1)若9月30日故宫的游园人数为2.1万人,请你计算这7天中每天的游园人数. (2)“十•一”黄金周期间,北京故宫游园人数最多和最少分别是哪一天?游园人数为多少?(3)故宫门票是60元一张,请计算出“十•一”黄金周期间,北京故宫的门票总收入(万元).(4)9月30日的游园人数为2.1万人,用折线统计图表示黄金周期间游园人数情况.解:(1)10月1日 2.1+3.2=5.3万人,10月2日5.3+0.6=5.9万人,10月3日 5.9+0.3=6.2万人,10月4日 6.2+0.7=6.9万人,10月5日 6.9﹣1.3=5.6万人,10月6日 5.6+0.2=5.8万人,10月7日 5.8﹣2.4=3.4万人,(2)游园人数最多的是10月4日,达到6.9万人,最少的是10月7日,3.4万人,(3)60×(5.3+5.9+6.2+6.9+5.6+5.8+3.4)=2346万元,答:北京故宫的门票总收入2346万元.(4)用折线统计图表示黄金周期间游园人数情况如图所示:24.(8分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下表(注:水费按月结算,m3表示立方米):价目表每月用水量单价不超过6m32元/m3超过6m3不超过10m3的部分4元/m3超出10m3的部分8元/m3请你根据表的内容解答下列问题:(1)若某户居民4月份用水4m3,应收水费8元,该户居民5月份用水7m3,应收水费16元.该户居民6月份用水12m3,应收水费44元.(2)请写出若该用户居民某月份用水am3时,应收水费的代数式(用含a的式子表示),并进行化简.解:(1)由题意得:4月份用水4m3,应收水费:2×4=8(元);5月份用水7m3,应收水费:2×6+4×(7﹣6)=12+4×1=12+4=16(元),6月份用水12m3,应收水费:2×6+4×(10﹣6)+8×(12﹣10)=12+4×4+8×2=12+16+16=44(元),故答案为:8,16,44.(2)①当0<a≤6时,应收水费:2a(元);②当6<a≤10时,应收水费:2×6+4×(a﹣6)=12+4a﹣24=(4a﹣12)(元);③当a>10时,应收水费:2×6+4×(10﹣6)+8×(a﹣10)=12+4×4+8a﹣80=12+16+8a﹣80=(8a﹣52)(元),∴当0<a≤6时,应收水费:2a(元);当6<a≤10时,应收水费(4a﹣12)(元);当a>10时,应收水费(8a﹣52)(元).25.(9分)阅读材料:求1+2+22+23+24+…+22021的值.解:设S=1+2+22+23+24+ (22021)将等式两边同时乘以2,得:2S =2+22+23+24+…+22021+22022; 将下式减去上式得:2S ﹣S =22022﹣1,即S =22022﹣1,即1+2+22+23+24+…+22021=22022﹣1; 请你仿照此法计算:(1)1+12+(12)2+(12)3+(12)4+⋯(12)n . (2)1+3+32+33+34+…+3n .解:(1)设S =1+12+(12)2+(12)3+(12)4+•+(12)n , 将等式两边同时乘以12得:12S =12+(12)2+(12)3+(12)4+•+(12)n +(12)n+1. 将上式减去下式得:12S =1−(12)n+1.∴S =2﹣2×(12)n+1=2−(12)n .∴1+12+(12)2+(12)3+(12)4+•+(12)n =2−(12)n . (2)设S =1+3+32+33+34+•+3n , 将等式两边同时乘以3,得: 3S =3+32+33+34+•+3n +3n +1. 将下式减去上式得: 2S =3n +1﹣1. ∴S ==3n+1−12.∴1+3+32+33+34+•+3n=3n+1−12.26.(9分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为3,4,第3个正方形的边长= 7 ;第5个正方形的边长= 15 ;(2)如果标注1、2的正方形边长分别为x ,y ,求第10个正方形的边长,并写出简单过程.(用含x 、y 的代数式表示)解:(1)观察图象可知第3个正方形的边长=3+4=7;第5个正方形的边长=4+7+4=15;故答案为7,15;(2)∵标注1、2的正方形边长分别为x,y,∴第3个正方形的边长是:x+y,第4个正方形的边长是:x+2y;第5个正方形的边长是:x+2y+y=x+3y;第6个正方形的边长是:(x+3y)+(y﹣x)=4y;第7个正方形的边长是:4y﹣x;第10个正方形的边长是:(4y﹣x)﹣x﹣(x+y)=3y﹣3x.27.(10分)已知有理数a,b,c在数轴上对应的点分别为A,B,C,其中b是最小的正整数,a,c满足|a+2|+(c﹣5)2=0.(1)填空:a=﹣2,b=1,c=5;(2)点A,B,C分别以每秒4个单位长度,1个单位长度,1个单位长度的速度在数轴上同时向右运动,设运动时间为t秒.①当AC长为4时,求t的值;②当点A在点C左侧时(不考虑点A与B,C重合),是否存在一个常数m使得2AC+m•AB的值在某段运动过程中不随t的改变而改变?若存在,求出m的值;若不存在,请说明理由.解:(1)∵|a+2|+(c﹣5)2=0,∴a+2=0,c﹣5=0,∴a=﹣2,c=5.∵b是最小的正整数,∴b=1.故答案为:﹣2;1;5.(2)当运动时间为t秒时,点A表示的数为4t﹣2,点B表示的数为t+1,点C表示的数为t+5.①∵AC=4,∴|4t﹣2﹣(t+5)|=4,即3t﹣7=﹣4或3t﹣7=4,∴t=1或t=11 3.②当4t﹣2=t+1时,t=1;当4t﹣2=t+5时,t=7 3.当0<t<1时,2AC+m•AB=2[t+5﹣(4t﹣2)]+m•[t+1﹣(4t﹣2)]=﹣(6+3m)t+14+3m,∵2AC+m•AB的值不随t的变化而变化,∴6+3m=0,∴m=﹣2;当1<t<73时,2AC+m•AB=2[t+5﹣(4t﹣2)]+m•[4t﹣2﹣(t+1)]=(3m﹣6)t+14﹣3m,∵2AC+m•AB的值不随t的变化而变化,∴3m﹣6=0,∴m=2.∴存在一个常数m使得2AC+m•AB的值在某段运动过程中不随t的改变而改变,m的值为﹣2或2.。
实验中学初一新生分班考试数学试卷附答案
实验中学初一新生分班考试数学试卷附答案2018年实验中学初一新生分班考试数学试卷一、填空(26分,每题2分)1、一件工作,甲单独做8天完成,乙单独做10天完成,甲每天比乙多做这件工作的1/8,现在两队合作完成这件工作需要(。
5.)天。
2、某市居民生活用电基本价格为每千瓦时0.40元,若每月超过60千瓦时,超过部分按基本电价的120%收费,若XXX家三月份共用电84千瓦时,他家三月份应交电费(。
33.6.)元。
3、一张正方形纸先上下折,再左右折,得到的图形是矩形形,它的面积是原正方形的1/2,它的周长是原正方形周长的2倍。
4、把一个圆按半径剪开平均分成若干份小扇形,再拼成近似的长方形,长方形的长是6.28分米,这个圆的周长是(。
12.56.)分米,面积是(。
1.)平方分米。
5、15个连续偶数的和是4770,那么最大的数和最小的数相差(。
28.)。
6、算式x÷y=15……3,当y为最大一位数时,x=(。
999.),当y为最小时,x=(。
10.)。
7、在含盐为5%的100克盐水中,再分别加入10克盐和40克水后,这里盐与水的比是(。
7:33.)。
8、XXX设计的一台计算器,只有一个功能键,按第一次完成减19,按第二次是加17,按第三次又减19,第四次又加17……,现在输入一个数是2003,请你连续地按功能键,至少按到第(。
119.)次后,计算器显示为-51.9、一个长方体棱长的总和是60厘米,它正好能被切成三个同样的正方体,原来长方体的表面积是(。
900.)平方厘米。
10、一个分数,如果分子加上8,化简后等于25/27;如果分母加上5,化简后等于31/25,那么原来的分数是(。
17/22.)。
11、两个数的比是5:1,它们的最大公约数与最小公倍数的和是906,这两个数的最大公约数是(。
87.)。
12、两数相除,被除数、除数、商、余数之和等于75,如果把被除数和除数都扩大5倍,再相除得2余10,那么原来这两个数是(。
2024年七年级新生分班考试数学试卷(附答案)
2024年七年级新生分班考试数学试卷(全卷满分100分,考试时间90分钟)一、选择题(每小题2分,共10分)1.比较等底等高的圆柱、正方体、长方体的体积的大小,结果是()A.长方体体积大B.正方体体积大C.圆柱体积大D.一样大2.下面每组中的四个数不能组成比例的是()A.4:8和5:20B.6:9和12:18C.和D.9:12和0.9:1.23.时针围绕钟面中心顺时针方向旋转()才能从1:00走到4:00。
A.30°B.60°C.90°D.120°4.如图中,表示正比例图象的是()5.用下面的图表示各图形之间的关系,不正确的是()二、填空题(每空1分,共20分)1.学校组织开展植树活动。
同学们种了松树和柏树两种树,两种树的总棵数在170棵至180棵之间,松树的棵数是柏树的3/4。
那么种了棵松树和棵柏树。
2.去年冬至这一天,本市城区中午12时的气温是5℃,到晚上12时下降了7℃,那么这天晚上12时的气温是℃。
3.把2:0.25化成最简单的整数比是,它的比值是。
4.5米2分米=厘米 4.9L=mL3小时15分=小时860平方分米=平方米5.一只七星瓢虫的实际长度是5mm,画在图上后,量的长度是3cm,这幅图的比例尺是。
6.把如下图中的长方形以AD为轴旋转一周,得到一个圆柱体。
这个圆柱体的体积是cm3。
7.一个三角形的三个内角的度数比是2:5:2,这个三角形按角分是三角形;按边分是三角形。
8.一杯盐水重50克,它的含盐率为20%。
小青往这杯盐水中再倒入30克水,现在这一杯盐水的含盐率是。
9.根据算式的规律填空。
10.把一块长方体木料沿它的高锯掉2dm后,表面积减少72dm2,刚好成为一个正方体。
这个正方体的表面积是dm2,它的体积是dm3。
11.张爷爷家有121只鸽子,要保证至少有7只鸽子要飞进同一个鸽笼里,那么最多有个鸽笼。
12.劳动农场将一块长方形菜地分割成4个小长方形地对外出租(如图),其中小长方形地A、B、C 的面积分别是20m2、12m2、21m2,那么小长方形地D的面积是平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013深圳实验学校新初一分班考试数学试题
姓名:________
_ 分数:________
一、代数部分填空:
1、一个数由8个百万,9个万,5个千和3个十组成,写作_____,读作___________
改写成万作单位为_____。
2、小麦出粉率是85%,3400千克小麦可磨____千克面粉,要磨3400千克面粉要小麦___千克。
3、一个工程队去年修了5040米水渠,从2月26日开工到3月4日完工,平均每天修____米。
4、小明绕小区跑步,原来要8分钟,现在要5分钟,速度提高了____%。
5、有28位同学排一行,从左到右数小明第10,从右往左数他是第____。
6、有几十个苹果,三个一组,余2个,四个一组,余2个,5个一组余2个,共____个。
7、圆柱体积1.2立方米,削成最大圆锥,至少去掉____立方米。
8、把化成小数,小数点后第2013位是数字______。
二、几何部分填空:
1、用长7cm,宽6cm的长方形纸片剪成2×3的长方形纸片,最多可以剪____个。
2、一个正方体棱长减少一半,则体积减少_____。
3、用一条直线把长方体分成体积相等的两半,共_____种分法。
4、如果一个三角形,各个边上的高所在的直线都是他的对称轴,这个三角形是_____三角形。
5、一个大圆的半径恰好等于一个小圆的直径,则小圆的面积是大圆面积的______。
6、一个分数的分子除以三,分母乘以三,分数值将_____。
三、判断题:
1、六⑴班出勤50人,缺勤1人,缺勤率为2%。
( )
2、比例尺8∶1表示把实物放大8倍后画在图上。
( )
3、甲比乙长0.2cm,那么乙比甲短0.2cm。
( )
4、a是质数,b是合数,则a、b互质。
( )
5、长方形周长一定,则长和宽是正比例。
( )
四、计算:
1、求未知数x。
⑴ ⑵
2、脱式计算。
(能简算的要简算)
⑴ 7+97+997+9997+12 ⑵ 1.8×8.6+1.8×1.3+18%
⑶ ⑷
五、正方形中有一个最大的圆,正方形面积为12平方厘米,求圆的面积。
六、按要求画图
请你设计:根据下面的描述,画出比例尺,标出商店、广场的位置。
商店在学校北偏东30°方向,离学校500米;广场在学校南偏西20°方向,离学校300米。
七、解答题:
1、某学生几次数学测试中,前三次平均分为88分,要求第四次测试后平均分为90分,则第四次要考多少分。
2、原计划20天完成960米道路,实际12天完成75%,若保持实际速度,则提前多少天完成道路
3、小明从家到学校,走路要35分钟,骑车要10分钟,若某次骑车8分钟时,车故障改为步行,求小明当天用时多少到学校。
4、学校要求买60个球,甲、乙、丙三个商店都有出售。
原价都为25元,为促销:
甲店:买10送2,不满不送;
乙店:86折
丙店:满200元返还现金30元,不满不送。
求到那家店最省钱?。