六年级相遇问题

合集下载

六年级数学相遇问题解题技巧

六年级数学相遇问题解题技巧

六年级数学相遇问题解题技巧一、相遇问题基本概念与公式1. 基本概念相遇问题是行程问题中的一种,它研究的是两个运动物体作相向运动的情况。

例如甲、乙两人分别从A、B两地同时出发,相向而行,经过一段时间后在途中相遇。

2. 基本公式路程和 = 速度和×相遇时间速度和 = 路程和÷相遇时间相遇时间 = 路程和÷速度和二、解题技巧与题目解析1. 直接利用公式求解例1:甲、乙两车分别从相距360千米的A、B两地同时出发,相向而行。

甲车每小时行50千米,乙车每小时行40千米。

问几小时后两车相遇?解析:已知路程和是360千米(A、B两地的距离),速度和为甲车速度 + 乙车速度,即50+40 = 90(千米/小时)。

根据相遇时间 = 路程和÷速度和,可得相遇时间为360÷90 = 4(小时)。

2. 先求出路程和或速度和再求解例2:小明和小红同时从自己家出发,相向而行。

小明每分钟走60米,小红每分钟走50米。

经过5分钟两人相遇。

两家相距多远?解析:这里已知速度和为60 + 50=110(米/分钟),相遇时间是5分钟。

根据路程和 = 速度和×相遇时间,可得两家相距110×5 = 550(米)。

例3:A、B两地相距480千米,甲、乙两车同时从A、B两地相向而行,甲车速度是每小时45千米,经过6小时两车相遇,求乙车速度。

解析:首先根据路程和与相遇时间求出速度和,速度和 = 路程和÷相遇时间 = 480÷6 = 80(千米/小时)。

然后用速度和减去甲车速度得到乙车速度,即80 45 = 35(千米/小时)。

3. 复杂情况的相遇问题(含中途停留等情况)例4:甲、乙两人从相距200米的A、B两地同时出发,相向而行。

甲每分钟走30米,乙每分钟走20米。

甲中途休息了2分钟,问两人出发后多久相遇?解析:设两人出发后t分钟相遇。

甲实际走的时间是(t 2)分钟。

六年级奥数--相遇问题

六年级奥数--相遇问题

相遇问题概念:速度=路程÷时间路程=速度×时间时间=路程÷速度1、甲、乙两人分别从两地同时相向而行,8小时可以相遇,如果两人每小时都少行1.5千米。

那么10小时后相遇,问两地相距多少千米?2、小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,骑自行车每小时行11千米,两人同时出发,然后在离甲、乙两地中点9千米处相遇。

求甲乙两地间的距离是多少千米?3、A、B两地相距21千米,上午6时甲、乙分别从A、B两地出发,相向而行。

甲到达B 地后立即返回,乙到达A地后也立即返回,上午9时他们第二次相遇,此时甲行的路程比乙行的路程多9千米,甲每小时行多少千米?4、某城市的环城公路全长180千米,甲、乙两辆汽车同时从同地背向出发绕这条环城公路行驶了2.5小时相遇。

如果甲车先行36千米,那么在乙车出发几小时后两车相遇?5、兄弟两人同时从家里出发步行去车站,16分钟哥哥到达车站,弟弟离车站还有240米,哥哥的速度是每分钟82米,弟弟每分钟走多少米?6、甲、乙两人同时以相距4800米的两地相向而行,甲骑自行车,乙步行。

6分钟两人相遇。

已知甲的速度是乙的速度的3倍,求甲乙两人的速度各是多少?7、小明步行45分钟从A地到B地,小华乘车15分钟可以B地到A地,当小明和小华在路上相遇时,小明已经走了30分钟,小华接小明乘车返回B地,还需要多少分钟?8、一辆客车和一辆货车同时从相距225千米的两地相向而行,客车每小时行50千米,货车每小时行40千米,行了几小时后两车相距45千米?再行几小时后两车又相距45千米?9、甲、乙两辆车从相距240千米的两地同时相向而行,因遇雾天,甲车每小时比原来少行15千米,乙车每小时比原来少行10千米,出发后,经过3小时两车相遇。

已知甲车原来每小时比乙车快15千米,甲、乙两车原来的速度各是多少?10、甲、乙两车相距516千米,两车同时从两地出发相向行,乙车行驶6小时后停下修车,这时两车相距72千米,甲车保持原速继续前进,经过2小时与乙车相遇,求乙车的速度?11、两辆汽车上午8点整分别从相距210千米的甲、乙两度相向而行,第一辆汽车在途中修车停了45分钟,第二辆车因加油停了半小时。

小学奥数六年级相遇问题

小学奥数六年级相遇问题

小学奥数相遇问题一.甲乙两人同时从A、B两地相向而行,第一次在距A地300米处相遇,相遇后两人继续以原速前进,各自到达对方出发点立即返回,第二次又在距B地100米相遇。

求A、B两地相距多少米?参考答案:第一次相遇,甲乙共行了1个全程,甲行了1个300米第二次相遇,甲乙共行了3个全程,甲行了3个300米同时甲行的还是1个全程多100米A、B两地相距300×3-100=800米300*3-100=800回复:300*3-100=800米二.甲、乙两辆汽车同时从A、B两地相对开出,第一次在离A地75千米处相遇。

相遇后两辆汽车继续前进,到达目的地后又立刻返回,第二次相遇在离B地55千米处。

求A、B两地的距离。

不列方程怎么算啊两车两次相遇是共行驶了3个全程,第一次相遇(共走一个全程)时,甲车走了75千米,那么在两车行驶了3个全程时,甲车应该走了75*3=225(千米),那么AB两地的距离为:225-55=170(千米)。

由“第一次在离A地75千米处相遇”可知:两车每行完一个A、B间距离,甲车行驶75千米;从出发到第二次相遇,两车共行驶了3个A、B间距离,所以甲车共行驶了3个75千米:75*3=225千米;由“第二次在离B地55千米处相遇”可知:甲车到达B地后又返回行驶了55千米,也就是比一个A、B间距离多55千米。

所以A、B两地的距离是:225-55=170千米。

三.五星级题解:两车两次相遇问题题目:A、B两城同时对开客车,两车第一次在距A城60千米处相遇,到站后各停了30分钟,让乘客上下后再返回,返回是在距B城45千米处相遇。

求A、B两城相距多少千米?本题经检验,A城开出的客车每小时行60千米,B城开出的客车每小时行75千米,A、B两城相距135千米。

第一次相遇时两车各用的时间是1小时,第二次相遇时两车各用的时间是3小时,加上停车时间30分钟,一共是3小时30分。

两次相遇问题的解法作者:-两次相遇行程问题的解法郑桂元在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。

六年级相遇问题解题技巧

六年级相遇问题解题技巧

六年级相遇问题解题技巧一、相遇问题基本概念1. 定义两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

2. 基本公式路程和 = 速度和×相遇时间速度和 = 路程和÷相遇时间相遇时间 = 路程和÷速度和二、解题技巧1. 认真审题,确定已知量和未知量例如:甲、乙两车分别从A、B两地同时出发,相向而行。

甲车的速度是每小时60千米,乙车的速度是每小时40千米,经过3小时两车相遇。

求A、B两地的距离。

解析:在这个题目中,已知量是甲、乙两车的速度(甲车速度公式千米/小时,乙车速度公式千米/小时)和相遇时间公式小时,未知量是A、B两地的距离(也就是路程和公式)。

根据公式公式,可得公式千米。

2. 画线段图辅助理解例如:小明和小红分别从相距500米的两地同时出发,相向而行。

小明的速度是每分钟60米,小红的速度是每分钟40米,他们多久能相遇?解析:先画一条线段表示两地的距离500米,然后在两端分别标记小明和小红的出发地。

从各自的出发地分别画出表示他们行走方向的箭头。

根据线段图可以更直观地看出路程和为500米,速度和为公式米/分钟。

再根据相遇时间公式,可得公式分钟。

3. 灵活运用公式变形例如:A、B两地相距480千米,甲、乙两车同时从两地相向而行,4小时后相遇。

已知甲车的速度是乙车速度的2倍,求甲、乙两车的速度各是多少?解析:首先根据公式公式,这里公式千米,公式小时,所以速度和公式千米/小时。

设乙车速度为公式千米/小时,因为甲车速度是乙车速度的2倍,则甲车速度为公式千米/小时。

根据速度和可列方程公式,即公式,解得公式千米/小时。

那么甲车速度公式千米/小时。

4. 注意单位换算例如:一辆客车和一辆货车分别从相距360千米的两地同时出发,相向而行。

客车的速度是50米/秒,货车的速度是30米/秒,求相遇时间。

解析:首先要统一单位,因为客车速度公式米/秒,货车速度公式米/秒,路程公式千米公式米。

六年级:相遇问题

六年级:相遇问题

1、一艘船从相距420千米的A 地到B 地去,每小时行40千米,几小时到达?2、甲、乙两船从相距420千米的两地同时出发相向而行,甲船每小时行28千米,乙船每小时行32千米,几小时后两船相遇?3、甲、乙两船从相距420千米的AB 两地同时相向而行,7小时相遇,甲船每小时行28千米,相遇时乙船行了多少千米?4、两辆汽车从同一地点向相反方向开出。

甲车每小时行50千米,是乙车速度的191倍。

两车同时开出几小时后,相距285千米?5、甲乙两车同时从相距299千米的两地相向而行,甲车每小时行52千米,乙车每小时行40千米。

几小时后两车第一次相距69千米?再经过几小时两车第二次相距69千米?6、AB 两地相距800千米,甲乙两车同时从两地相对开出,甲车每小时行45千米,乙车每小时行55千米。

一只燕子以每小时80千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去,遇到甲车又折回向乙车飞去,这样一直飞下去。

燕子飞行了多少千米两车才相遇?7、甲乙两车同时从AB 两地相向而行,途中相遇,相遇时距离A 地90千米。

相遇后两车继续以原速前进,到达目的地后立即返回,在途中第二次相遇。

这时,相遇地点距A 地50千米。

已知从第一次相遇到第二次相遇的时间是4小时,求甲乙两车的速度?8、甲船从东港到西港要行6小时,乙船从西港到东港要行4小时。

现在两船同时从东、西两港出发,相向而行,结果在离中点18千米的地方相遇。

相遇时甲船行了多少千米?9、两列火车相向而行,甲车每小时行72千米,乙车每小时行90千米,两车错车时,甲车上一乘客发现:从一车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了10秒,求乙车的车长。

10、在周长为400米的圆形场地的一条直径的两端,甲乙二人分别以每秒12米、每秒10米地速度同时同向骑车出发,沿圆周行驶。

问16分钟内甲追上乙多少次?11、两个港口相距90千米,每天定时有甲乙两只速度相同的船从两港同时出发相向而行。

六年级相遇追及问题--基础版

六年级相遇追及问题--基础版

相遇、追及问题一、相遇问题甲从A地到B地, 乙从B地到A地, 然后两人在途中相遇, 实质上是甲和乙一起走了A,B之间这段路程, 如果两人同时出发, 那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地, 相遇问题的关系式为: 速度和×相遇时间=路程和, 即二、追及问题有两个人同时行走, 一个走得快, 一个走得慢, 当走得慢的在前, 走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上, 要算走得快的人在某一段时间内, 比走得慢的人多走的路程, 也就是要计算两人走的路程之差(追及路程).如果设甲走得快, 乙走得慢, 在相同的时间(追及时间)内: 追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地, 追击问题有这样的数量关系: 追及路程=速度差×追及时间, 即在研究追及和相遇问题时, 一般都隐含以下两种条件:(1)在整个被研究的运动过程中, 2个物体所运行的时间相同(2)在整个运行过程中, 2个物体所走的是同一路径。

相遇问题: 总路程=速度和×相遇时间相遇时间=总路程÷速度和相遇时间=路程差÷速度差速度和=总路程÷相遇时间追及问题: 追及路程=速度差×追及时间追及时间=追及路程÷速度差速度差=追及路程÷追及时间一、相遇问题——基础题两列火车从两个车站同时出发相对开出, 甲车每小时行44千米, 乙车每小时行52千米, 经过2.5小时两车相遇。

两个车站之间的铁路长多少千米?两列火车从两个车站同时相对开出。

甲车每小时行44千米, 乙车每小时行52千米, 经过2.5小时后两车还相距85千米。

六年级复习相遇问题

六年级复习相遇问题

1、上海到南京的水路长392千米,甲、乙两船从两港同时开出,相向而行,从上海开出的船每小时行21千米,从南京开出的船每小时行28千米。

求经过几小时两船在途中相遇?2、甲乙两车从东西两城相向而行,甲车每小时行45千米,乙车每小时行40千米,经过5小时两车在途中相遇。

求东西两城相距多少千米?3、甲乙两人同时从两地骑车相向而行,甲的速度是每小时20千米,乙每小时行18千米,两人在距中点3千米处相遇。

问两地相距多少千米?4、一列火车于上午7:30从甲站开出,每小时行60千米,过了一小时,另一列火车以同样的速度从乙站开出,中午12:30两车相遇。

求甲乙两站相距多少千米?5、甲乙两人同时从相距90千米的两地相向而行。

甲每小时行8千米,乙每小时比甲多行2千米。

几小时后他们在途中相遇?6、甲乙两人从相距99千米的两地相对开出,3小时后相遇,甲每小时行15千米,乙每小时行多少千米?7、两列火车同时从甲乙两城相对开出,甲车每小时行76千米,乙车每小时行82千米,两车开出3小时后,还相距156千米。

甲乙两城相距多少千米?8、甲乙两地相距384千米,两辆汽车从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。

甲车先开出64千米后,乙车才出发。

再经过几小时两车相遇?9、快车和慢车同时从相距180千米的两地相对开出,3小时后在离中点18千米处相遇。

问快车比慢车每小时多行多少千米?10、甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在它们出发后的5小时.6小时,8小时先后与甲、乙、丙三辆车相遇,求丙车的速度。

11、A、B两地之间相距1800千米,甲、乙两辆卡车从两地同时相对开出,甲车每小时行50千米,乙车每小时行40千米,经过几小时两车相遇?12、A、B两地相距1200千米,甲、乙两辆汽车从A、B两地相对开出。

甲车每小时行52千米,乙车每小时行48千米,几小时后两车相遇?相遇时甲、乙两车各行了多少千米?13、甲、乙两辆汽车分别从东、西两城相对而行,甲每小时行48千米,乙每小时行52千米,经过3小时与乙相遇。

小学六年级奥数相遇问题(三篇)

小学六年级奥数相遇问题(三篇)

【导语】学习奥数要有⼀个计划,每个年级都有不同的内容,所以,我们⼀定要制定好计划,不要滞后,也不要超前,按照⼤纲进度学习适合⾃⼰的内容。

以下是⽆忧考整理的《⼩学六年级奥数相遇问题(三篇)》,希望帮助到您。

【篇⼀】 1、甲⼄两辆汽车从相距600千⽶的两地相对开出,甲车每⼩时⾏45千⽶,⼄车每⼩时⾏40千⽶,甲车先开出2⼩时后,⼄车才开出。

⼄车⾏⼏⼩时后与甲车相遇? 2、⼀列⽕车于下午4时30分从甲站开出,每⼩时⾏120千⽶,经过1⼩时后,另⼀列⽕车以同样的速度从⼄站开出,晚上9时30分两车相遇。

甲⼄两站铁路长多少千⽶? 3、快车和慢车同时从甲、⼄两地相对开出,已知快车每⼩时⾏60千⽶,慢车每⼩时⾏52千⽶,经过⼏⼩时后快车经过中点32千⽶处与慢车相遇。

甲、⼄两地的路程是多少千⽶? 4、甲、⼄两车从A、B两地同时相向⽽⾏,甲车每⼩时⾏40千⽶,⼄车每⼩时⾏35千⽶,两车在距中点15千⽶处相遇。

A、B两地相距多少千⽶? 5、甲⼄相距640千⽶,两辆汽车同时从甲地开往⼄地,第⼀辆汽车每⼩时⾏46千⽶,第⼆辆汽车每⼩时⾏34千⽶,第⼀辆汽车到达⼄地后⽴即返回,两辆汽车从开出到相遇共与偶⽤了⼏⼩时? 6、哥哥和妹妹同时从甲到相距540⽶远的学校上学,哥哥每分钟⾛60⽶,妹妹每分钟⾛48⽶,哥哥到达学校后发现忘了拿铅笔,⽴即返回家去取,在途中遇到妹妹。

从开始上学到两⼈再相遇共有多少分钟? 7、甲⼄两队学⽣从相距2700⽶的两地同时出发,相向⽽⾏,⼀个同学骑⾃⾏车以每分钟150的速度在两队之间不停地往返联络,甲队每分钟⾏25⽶,⼄队每分钟⾏20⽶,两队相遇时,骑⾃⾏车的同学共⾏了多少⽶? 8、AB两⼈同时从相距3000⽶的家⾥相向⽽⾏,A每分钟⾏70⽶,B每分钟⾏80⽶,⼀只⼤狗与他同时出发,每分钟⾏100⽶,狗与B相遇后⽴即掉头向A跑去,遇到A后⼜向B跑去,直到AB两⼈相遇。

这只狗⼀共跑了多少⽶? 9、两辆汽车同时分别从相距500千⽶的两地出发,相向⽽⾏,速度分别为每⼩时40千⽶和每⼩时60千⽶,⼏⼩时后两车相遇? 10、A、B两地相距480千⽶,甲⼄两车同时从两站相对出发,甲车每⼩时⾏35千⽶,⼄车每⼩时⾏45千⽶,⼀只燕⼦以每⼩时⾏50千⽶的速度和甲车同时出发向⼄车飞去,遇到⼄车⼜折回向甲车返飞去,遇到甲车⼜返飞向⼄车,这样⼀直飞下去,燕⼦飞了多少千⽶两车才能相遇?【篇⼆】 1、AB两地相距119千⽶,甲⼄两车同时从A、B两地出发,相向⽽⾏,并连续往返于A、B两地。

相遇问题--2024年六年级下册小升初数学思维拓展

相遇问题--2024年六年级下册小升初数学思维拓展

相遇问题【知识点归纳】两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题.它的特点是两个运动物体共同走完整个路程. 小学数学教材中的行程问题,一般是指相遇问题.相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度.它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和﹣已知的一个速度.1.A 、B 两地间有一座桥,甲、乙两人分别从A 、B 两地同时出发,3小时后在桥上相遇.如果甲加快速度,每小时多行2千米,而乙提前0.50.5小时出发,乙每小时少走2千米,还会在桥上相遇,则A 、B 两地相距多少千米?2.刘凯和王明两家相距1200米,两人同时从家出发,相向而行,走了6分钟后,两人还相距342米。

刘凯的速度是王明的1.2倍,刘凯每分钟走多少米?(用方程解答)3.A、B两地相距378千米,甲、乙两车同时从两地出发,相向而行。

甲车的速度是乙车的1.1倍,3小时后两车相遇。

甲车平均每小时行多少千米?4.甲乙两地相距325.5千米,两车从两地相向而行,甲车每小时行45千米,乙车每小时行48千米,甲车开出2小时后,乙车才出发,再经过几小时两车相遇?5.一辆大客车和一辆小汽车分别从甲地和乙地出发,相向而行,大客车平均每小时行56.5千米,小汽车平均每小时行61.5千米,1.5小时两车相遇。

甲乙两地之间的路程是多少千米?6.甲乙两地相距810千米,一辆客车和一辆货车分别从甲乙两地同时出发,相向而行,经过6小时相遇。

客车每小时行75千米,货车每小时行多少千米?(用方程解答)7.甲、乙两地相距480千米,-列客车与-列货车从甲、乙两地同时相向而行,4小时相遇。

已知客车与货车的速度比是3∶2,客车每小时行多少千米?8.甲、乙两车同时从A地出发,甲车向南开,每时行驶55km,乙车向北开,3时后两车相距345km,乙车每时行驶多少千米?9.甲、乙两车同时从两地相对开出,3小时后相遇,甲、乙两车速度之比是5∶4,两地相距540km,求两车各自的速度。

六年级行程应用题相遇问题

六年级行程应用题相遇问题

行程问题应用题1、汽车以每小时50千米的速度行驶2小时后离中点1/4,求全长。

2、两车相向而行,在距离中点20千米处相遇,它们的路程比是3:2,则两地相距多少千米?3、甲车从A到B,乙车从B到A,当甲行了全程的4/5时,乙已行与剩下的比是3:2,这时两车相距10千米,求两地的距离。

4、一条路,已修的和未修的比是2:7,接着又修了63米,这时已修的和未修的比是4:5,求全长?5、两车同时从A到B,当甲车行了全程的4/5时,离终点还有50千米,这时乙车行到全程的3/4,问乙车离终点多少千米?6、2辆汽车相向而行5小时相遇,甲比乙快1/3,如果甲的速度是每小时40千米,那么两地的距离是多少?7、两辆汽车相向而行,如果单独行完全程甲要3小时,乙要5小时,相遇时,距离中点60千米,两地距离是多少呢?8、汽车已经行了120千米,正好是全程的3/8,再过多少千米正好是全程的1/2?9、一辆汽车行了全程的1/3后,再行1/3就超过中点20千米,这时离终点多远?10、汽车去时用了3小时,每小时行20千米,回来后速度提高了20%,那么回来时要多少小时?11、两辆汽车同时从甲开往乙地,当一辆车行到全程的4/5时,另一辆车才行全程的2/3,这时两车相距20千米,求全长?12、两辆汽车同时从甲乙两地相向而行,当一辆车行到全程的4/5时,另一辆车才行全程的2/3,这时两车相距20千米,求全长?13、一辆车从甲到乙要8小时,另一辆车从乙到甲要6小时,现在两车相对开出,4小时后相距全程的几分之几?14、火车从A到B,先行了全程的1/3,后来又用了18小时行完全程,求火车行完全程要多长时间?15、两车相向而行,在离中点10千米处相遇,如果甲的速度是乙的80%,则两地距离多少?16、甲车从A到B,乙车从B到A,当甲车行了1/3时,乙车已行和剩下的比为1:3,甲比乙多行了30千米,求全长。

17、一辆汽车从甲地开往乙地,行了全程的3/5,离中点20千米。

六年级相遇问题应用题

六年级相遇问题应用题

六年级相遇问题应用题1、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?2、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?3、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?4、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?5、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?6、两辆车从甲乙两地同时相对开出,4时相遇。

慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?7、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米。

A、B两地的最短距离多少米?最长距离多少米?8、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?9、甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行了12小时,AB两地相距多少千米?10、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的1.5倍,车开出几时相遇?1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米?12、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?13、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

六年级奥数相遇问题

六年级奥数相遇问题

例题1:甲乙两地相距800千米,一辆客车以每小时40千米的速度从甲地开出3小时后,一辆摩托车以每小时60千米的速度从乙地开出,开出后几小时与客车相遇?
例题2:甲乙两人分别从相距750米的A、B两地同时相向而行,甲每小时行4千米,乙每小时行5千米,2分钟后他们都掉头反方向而行,依次按照2分钟,4分钟,8分钟……,掉头行走。

他们何时能相遇?
例题3:甲和乙两人在相距120米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒4米。

如果他们同时分别在直线两端出发,10分钟内他们共相遇几次?
练习
1.甲乙两地相距1160米,小明以每分钟30米的速度从甲地出发,6分钟后小华以每分钟40米的速度从乙地出发,几分钟后与小明相遇?
2 甲乙两人骑自行车分别从A.B两地同时出发相向而行,相遇点距中点320米,已知甲的速度是乙的5/6,甲每分钟行800米,求AB两地的距离。

3.甲乙两车同时从AB两地相对开出,甲每小时行驶50千米,乙的速度是甲的4/5,相遇后甲车继续行2.4小时到达B地,AB两地相距多少千米?
4.甲乙两车同时从AB两地相对开出,在距中点40千米处相遇,已知甲车行完全程要8小时,乙车行完全程要10小时,求AB两地相距多少千米?
5.甲乙两车分别从AB两地同时出发相向而行,出发时,甲乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样当甲到达B地时,乙离A地还有10千米,那么AB两地相距多少千米?
6.甲乙两车分别从AB两地同时相向而行,乙车比甲车每小时多行全程的1/20,两车每小时共行全程的9/.20.他们在途中第一次相遇后继续前进,甲车到达B地,乙车到达A地后都立即返回,他们在途中又一次相遇,如果两次相遇的地点相隔40千米,求AB两地的距离有多少千米?。

六年级数学中的相遇问题

六年级数学中的相遇问题

相遇问题练习5例题:1.客货两车同时从甲乙两地出发,客车每小时行驶50千米,货车每小时行驶40千米,经过4小时两车相遇,求甲乙两地的路程练习:1.甲乙两人骑自行车分别从两城同时出发,甲每小时行16千米,乙每小时比加快4千米,经过小时相遇,求甲乙两城相距多少千米2.甲乙两列火车上午8时分别从甲乙两地出发,下午4时在一个车站相遇,甲车速度是50千米,乙车3小时行驶120千米,求甲乙两地的铁路长多少千米3.一列客车和一列货车同时从两地相对而行,5小时后两车相遇,相遇时货车行驶了225千米,客车速度比货车快10千米,两地相距多少千米4.两辆汽车同时从一个地方反向而行,甲车速度是45千米,乙车速度是38千米,小时后两车相距多少千米5.两列火车同事从甲乙两城相对出发,甲每小时行57千米,乙每小时行驶68千米,24小时后,两列火车还相距20千米未相遇,求甲乙两地相距多少千米6.两辆汽车同时从两成相对出发,车每小时行32千米,乙车每小时行的速度是乙车的倍,小时后两车又相距千米,两个城市相距多少千米7.一辆慢车和一辆快车同时从甲乙两地相对而行,慢车5小时行驶240千米,正好与快车相遇,相遇后快车继续行驶了4小时到达乙地,甲乙两地相距多少千米8.一辆慢车和一辆快车同时从甲乙两地相对而行,4小时后相遇,相遇后快车继续行驶了3小时到达乙地,已知慢车速度为45千米,甲乙两地相距多少千米引2;从北京到沈阳铁路长738千米,两列火车从两地同时出发,北京出发的火车每小时行59千米,沈阳出发的火车每小时64千米,两列火车几小时可以相遇1.甲乙两人同时从一地相背而行,价每小时行4千米,乙每小时行3千米,几小时后两人相距72千米2.两座城市相距500千米,一列客车和一列货车同时从两地相对出发,货车平均每小时行45千米,比客车速度少10千米,两车几小时相遇3.两地相距360千米,甲车行完全程要9小时,乙车每小时比甲车快10千米,两车同时从两地相对出发,几小时可以相遇4.甲乙两船同时从相距225千米的两港出发,甲船每半小时行千米,乙船3小时行150千米,经过几小时两船相遇5.两车站间距628千米,两列火车同时从两车站相对出发,甲火车每小时行72千米,乙火车每小时行60千米,两车行几小时还相距100千米行几小时又相距164千米6.甲乙两人同时从相距81千米的东西两城出发,甲从东城出发每小时行15千米,乙从西城出发每小时行12千米,距西城多少千米时两人相遇7.摩托车每小时行54千米,比卡车快16千米,两车从相距5千米的两地相背而行,几小时后两车相距25千米8.两地相距650千米,甲乙两辆车从两地同时相对出发,小时后,两车相距400千米;两车再行驶几小时方能相遇引3两地相距342千米,甲乙两车同时从两地出发,4小时后相遇,甲车每小时行驶千米,乙车每小时行驶多少千米1.两辆汽车同时从相距150千米的两地相对而行,经过小时相遇,已知甲车的速度是45千米,乙车每小时比甲车快多少千米2.两地相距240千米,甲乙两车同时出发,甲车速度是40千米,当乙车行驶了160千米时与甲车相遇,乙车每小时行多少千米3.两地相距100千米,甲乙两人同时出发,经过4小时相遇,乙的速度是甲的速度的倍,两人的速度各是多少4.两地相距613千米,货车和客车同时出发,客车每小时行驶48千米,6小时后两车仍相距25千米,求货车速度1.甲乙两人从两地相向而行,甲每小时行4千米,甲出发11/2小时后乙以每小时5千米的速度出发,乙出发2小时后两人相遇,甲乙两地相距多少千米2.一货船上午10时从甲港开往乙港,一客船下午2时由乙港开往甲港,客船开出12小时后于货船相遇,货船每小时行驶15千米,客船每小时比货船多行驶5千米,求两港相距多少千米3.一列快车和一列慢车从两地相对出发,快车速度为72千米,慢车速度为66千米,慢车从乙地出发2小时后,快车出发行驶12小时,两车还相距143千米,甲乙两地相距多少千米4.两地相距410千米,卡车以每小时50千米的速度从甲地开往乙地小时后,客车以每小时45千米的速度从乙地开往甲地,客车出发几小时后与卡车相遇5.甲乙两车分别从相距219千米的东西两城相对出发,甲车以每小时36千米的速度先开出,11/2小时后乙车才以每小时30千米的速度开出,甲车经过几小时后才能与乙车相遇6.两人从同一地点相背而行,甲每小时行12千米;乙每小时行13千米,如果甲先行2小时,那么两人同时行驶几小时后相距99千米7.两地相距123千米,上午9时,小李骑车从甲地去乙地,下午1时,小张骑车从乙地去甲地,小张出发3小时后与小李相遇,小李每小时行12千米,小张每小时行多少千米8.两地相距690千米,客车以每小时60千米的速度从甲城开出,1小时后,快车以每小时80千米的速度从乙城开出,两车相遇时,快车行了多少千米。

小学数学六年级相遇问题

小学数学六年级相遇问题
第5页/共21页
(65 + 70)×4 = 135 ×4 = 540 (米)
第6页/共21页
速度和 × 相遇时间 = 路程
第7页/共21页
65×4+ =702×604+280 =540(米)
答:他们两家相距540米.
(65+70)×4
=135×4 =540(米)
第8页/共21页
1.志明和小龙同时从两地对面走来,经过5分钟两人相遇,两地相距多 少米?(用两种方法解答)
第17页/共21页
方法一:75×1+ 75×2 +69×2
方法二:75×﹙1+2﹚+69×2 方法三:75×1+﹙75+69﹚×2 方法四:﹙75+69﹚×﹙2+1﹚
第18页/共21页
猜一猜: 相遇问题还可能有哪些变化?
第19页/共21页
第20页/共21页
感谢您的观看!
第21页/共21页
第13页/共21页
3、只列式,不计算
A、 两只轮船同时从上海和武汉相对开出.从武汉开出的船每小时行26千米,从上 海开出的船每小时行17千米,经过25小时两船相遇.上海到武汉的航路长多少千米?
26×25+17×25
(26+17)×25
第14页/共21页
3、只列式,不计算 B、两辆汽车同时从一个地方向相反的方向开出.甲车平均每小时行千米,乙车平 均每小时行千米.经过3小时,两车相距多少千米?
(54+52) =×5 = 106×5
530(米)
第10页/共21页
2.两列火车从两个车站同时相向开出.甲车每小时行44千 米,乙车每小时行52千米,经过小时两车相遇.两个车站之 间的铁路长多少千米?

小学六年级相遇问题练习题

小学六年级相遇问题练习题

小学六年级相遇问题练习题题目一:小明从家出发去学校,小红从学校出发去家,他们在路上相遇了。

请问,他们谁离学校更近?解析:相遇问题是一个经典的运动问题,在解答该问题之前,我们需要理解一些基本的概念和原理。

首先,我们需要了解速度的概念。

速度是指单位时间内运动的距离。

可以用公式来表示:速度 = 路程 / 时间。

其次,我们需要知道时间的概念。

时间是指运动的持续时间,通常以小时、分钟等单位表示。

在解决这个问题之前,我们需要提醒注意:小明和小红的速度是不同的。

假设小明的速度为V1,小红的速度为V2。

小明离学校的距离为D1,小红离学校的距离为D2。

根据题目中给出的信息,我们可以得到以下两个方程:D1 = V1 * t1 (1)D2 = V2 * t2 (2)其中,t1代表小明走了多长时间,t2代表小红走了多长时间。

又因为小明和小红在路上相遇了,所以他们走的总时间是相同的,即t1 = t2。

将t1 = t2代入方程(1)和(2)中,可以得到:D1 = V1 * t (3)D2 = V2 * t (4)由于小红离学校更近,则有D2 < D1。

因此,根据给定的条件以及推导出的公式,我们可以得出结论:小红离学校更近。

题目二:小明和小红同时从家出发,小明向北走,小红向东走。

两人相遇后交换方向继续走,小明向东走,小红向北走,再次相遇后就回家。

请问,小明和小红各自走过的总路程一样吗?解析:本题中,涉及到的是两个人在平面上移动的问题,并且两人的速度是相同的。

假设小明和小红的速度均为V,他们相遇时的时间为t。

首先,我们需要明确相遇后的情况。

小明向东走,小红向北走,经过时间t后,他们相遇。

此时,小明向东已经走过的距离为D1,小红向北已经走过的距离为D2。

根据题目的要求,相遇后他们交换方向继续走。

小明向北走,小红向东走,再次相遇时他们回家。

此时,小明向北已经走过的距离为D3,小红向东已经走过的距离为D4。

根据给定的信息,我们可以得到以下两个方程:D1 + D4 = D2 + D3 (5)D1 + D2 = D3 + D4 (6)将方程(6)左右两边的D1 + D2代入方程(5)中,可以得到:D1 + D4 = (D1 + D2) + D3化简后可得:D4 = D2 + D3 (7)将方程(6)左右两边的D3 + D4代入方程(5)中,可以得到:D1 + D4 = D2 + (D3 + D4)化简后可得:D1 = D2 (8)由方程(7)可得,D4 = D2 + D3,结合方程(8)可得,D4 = D2 + D1。

六年级下册数学相遇问题

六年级下册数学相遇问题

六年级下册数学相遇问题1.甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?2.东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。

乙车每小时行多少千米?3.AB两地间有一条公路长2800米,甲车从A地出发5分钟后,乙车从B地出发,又经过10分钟两车相遇。

已知乙车每分钟行100米,甲车每分钟行多少米?4.妹妹从家出发到学校去,每分钟走80米,家与学校相距1400米。

5分钟后,哥哥骑自行车从家出发去学校,每分钟行200米。

哥哥刚到学校就立即沿原路返回,在途中与妹妹相遇。

从妹妹从家出发到与哥哥相遇,妹妹共走了几分钟?5.两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。

甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?6.甲乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地。

两小时后另一辆汽车以每小时50千米的速度从乙地开往甲地。

几点两车在途中相遇?7.快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?8.小明和小华两人同时从A、B两地相向而行,第一次在离A地75米处相遇,相遇后继续前进到达对方目的地后又立刻返回,第二次相遇在离B地55米处,求A、B两地相距多远?9.小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又立刻返回,行走过程中,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处。

问:甲、乙两地的距离是多少?10.小智、小霖两人分别从A、B两地同时出发,相向而行,往返于A、B之间,第一次相遇在距A地20千米处,之后两车继续以原速前进,各自到达对方出发点后立刻返回,第二次相遇在距A地40千米处,求A、B的距离。

六年级数学行程问题应用题:相遇问题专项练习

六年级数学行程问题应用题:相遇问题专项练习

六年级数学行程问题应用题:相遇问题专项练习一、相遇问题常见公式:1、两者相遇路程=两者速度和×相遇时间2、相遇时间=两者相遇路程÷两者速度和3、两者速度和=两者相遇路程÷相遇时间4、两者速度和=甲的速度+乙的速度5、两者相遇路程=甲走的路程+乙走的路程6、甲的速度=两者相遇路程÷相遇时间-乙的速度7、甲走的路程=两者相遇路程-乙走的路程二、解决实际问题的技巧1、解答相遇此类问题,首先要弄清题目的题意,按照题意画出路程、时间或速度的相关线段图;然后分析各数量之间的关系;最后选择最适合的解答方法。

2、相遇问题除了要弄清路程、速度与两者相遇时间之外,还要注意一些其他重要的细节:(1)两者是否是同一起点、同时出发。

如果有谁先出发了,先行走了路程,要考虑先出发者所走的路程值对题目的影响,该加还是该减掉。

(2)两者所行走的方向是否一致:梳理清楚两者是相向、同向,还是背向的。

方向不一样,处理问题就会不一样。

(3)所行走的路线是环形的,还是直线型的。

如果是环形的,要考虑再次相遇的可能。

三、培优练习1、小客车从长泾镇到杨梅镇要行驶3小时,大货车从杨梅镇到长泾镇要行驶6小时。

两车分别从长泾镇和杨梅镇同时出发,多久后两车会相遇?2、两列高铁同时从两地相对开出,经过图片个小时后,两列高铁在途中相遇。

已知甲车每小时行驶240千米,乙车每小时行驶256千米,那么两地原来相距多少千米?3、吴玲和杨嘉两人同时从相距18.6千米的两地骑车相向而行。

吴玲每小时骑行6.4千米,吴玲每小时比杨嘉少骑行2.7千米。

那么,几小时后她们两人在途中能相遇?4、刘磊和武英两人同时步行出发相向而行,经过图片小时后两人相遇。

已知两地相距3千米的;刘磊每小时走2.5千米,问武英每小时走多少千米?5、两辆小轿车同时从甲、乙两地相向开出,2.4小时后相遇。

已知甲、乙两地相距420千米,且两辆小轿车的速度比是2∶3,求出每辆小轿车的速度?6、有两辆客车同时从客运中心相背而行出发,已知甲客车每小时行驶84千米,乙客车每小时行驶76千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型一、相遇问题与追及问题相遇问题当中:相遇路程=速度和⨯相遇时间追及问题当中:追及路程=速度差⨯追及时间航船问题中顺水时:速度=船速+水速逆水时:速度=船速-水速*************画路程图时必须注意每一段路程对应的问题是相遇问题还是追及问题【例题1】甲、乙两人从A地到B地,丙从B地到A地。

他们同时出发,甲骑车每小时行8千米,丙骑车每小时行10千米,甲丙两人经过5小时相遇,再过1小时,乙、丙两人相遇。

求乙的速度?【例题2】甲、乙两人同时从A、B两地相向而行,第一次在离A地40米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离B地30米处,求A、B两地相距多远?分析:两次相遇问题,其实两车一起走了3段两地距离,当然也用了3倍的一次相遇时间。

变式1、甲、乙两人同时从东西两地相向而行,第一次在离东地60米处相遇,相遇之后继续前进到达目的地后又立刻返回,第二次相遇在离中点西侧20米处,求东西两地相距多远?【例题3】快车从甲站开往乙站需要6小时,慢车从乙站开往甲站需要9小时。

两车分别从两站同时开出,相向而行,在离中点18千米处相遇。

甲乙两站相距多少千米?分析:中点相遇问题,实际上是相遇问题和追及问题的综合。

变式1、快车每小时行48千米,慢车每小时行42千米。

两车分别从两站同时开出,相向而行,在离中点18千米处相遇。

甲乙两站相距多少千米?变式2、快慢两车分别从两站同时开出,相向而行,4小时后在离中点18千米处相遇。

快车每小时行70千米,求慢车每小时行多少千米?【例题4】甲、乙两人从相距1100米的两地相向而行,甲每分钟走65米,乙每分钟走75米,甲出发4分钟后,乙才开始出发。

乙带了一只狗和乙同时出发,狗以每分钟150米的速度向甲奔去,遇到甲后立即回头向乙奔去,遇到乙后又回头向甲奔去,直到甲、乙两人相遇时狗才停止。

这只狗共奔跑了多少路程?分析:相遇问题。

关键是求相遇时间。

【例题5】甲、乙两人同时从A地到B地,乙出发3小时后甲才出发,甲走了5小时后,已超过乙2千米。

已知甲每小时比乙多行4千米。

甲、乙两人每小时各行多少千米?分析:追及问题。

要透彻理解追及距离与速度差、追及时间之间的关系。

【例题6】甲、乙、丙三人每分钟的速度分别是30米、40米、50米,甲、乙在A地同时同向出发,丙从B地同时出发去追赶甲、乙,丙追上甲以后又经过10分钟才追上乙。

求A、B两地的距离?分析:两次追及问题。

【例题7】上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米。

问这时是几时几分?题型二、航船问题【例题1】甲、乙两港相距360千米,一艘轮船从甲港到乙港,顺水航行15小时到达,从乙港返回甲港,逆水航行20小时到达。

现在有一艘机帆船,船速是每小时12千米,它往返两港需要多少小时?分析:顺流逆流的航船问题。

关键是求出水流速度。

题型三、火车过桥问题1、列车行驶的总路程是“桥长加上车长”,这是解决过桥问题的关键。

2、过桥问题一般的数量关系:路程=桥长+车长通过时间=(桥长+车长)÷车速桥长=车速⨯通过时间-车长车长=车速⨯通过时间-桥长3、错车或者超车:看哪辆车经过,路程和或路程差就是哪辆车的车长【例题1】一列火车经过长6700米的大桥,火车长140米,每分钟行400米,这列火车通过这座桥需要多少分钟?【例题2】某列车通过250米长的隧道用25秒,通过210米的铁桥用23秒,该列车与另一列长320米,速度为每小时64.8千米的火车错车需要多少秒?课堂练习(请做完题后在每道题空白的地方标明属于哪一类行程问题)1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过6小时相遇,相遇后快车继续行驶3小时后到达乙站。

已知慢车每小时行45小时,甲、乙两站相距多少千米?2、两辆卡车为农场送化肥,第一辆车以每小时30千米的速度由县城开往农场,第二辆车晚开了2小时,结果两车同时到达。

已知县城到农场的距离是180千米,第二辆车每小时行多少千米?3、一支队伍长450米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队伍的最前面,然后再返回队尾,一共用了多少分钟?4、一列火车长150米,每秒行19米。

全车通过420米的大桥,需要多少分钟?5、船在河中航行时,顺水速度是每小时12千米,逆水速度是每小时6千米。

船速每小时多少千米?水速每小时多少千米?6、一列快车从甲城开往乙城,每小时行65千米,一列客车同时从乙城开往甲城,每小时行60千米,两列火车在距中点20千米处相遇,相遇时两车各行了多少千米?7、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?8、如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发,相向行走,他们在距A点80米处的C点第一次相遇,接着又在距B点60米处的D点第二次相遇。

求这个圆的周长?9、一列火车通过一座1000米的大桥要65秒,如果用同样的速度通过一座730米的隧道则要50秒。

求这列火车前进的速度和火车的长度?10、一只轮船在静水中的速度是每小时21千米,船从甲城开出逆水航行了8小时,到达相距144千米的乙城。

这只轮船从乙城返回甲城需多少小时?11、相邻两根电线杆之间的距离是45米,从少年宫起到育英小学门口有36根电线杆,再往前585米是书店,求从少年宫到书店一共有多少根电线杆?12、解放军某部出动80辆汽车参加工地劳动,在途中要经过一个长120米的隧道。

如果每辆汽车的长为10米,相邻两辆汽车相隔20米,那么,车队以每分钟500米的速度通过隧道,需要多少分钟?7、A、B两地相距38千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行8千米,乙每小时行11千米,甲到达B地后立即返回A地,乙到达A地后立即返回B地,几小时后两人在途中相遇?相遇时距A地多远?8、如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发,相向行走,他们在距A点80米处的C点第一次相遇,接着又在距B点60米处的D点第二次相遇。

求这个圆的周长?9、一列火车通过一座1000米的大桥要65秒,如果用同样的速度通过一座730米的隧道则要50秒。

求这列火车前进的速度和火车的长度?10、一只轮船在静水中的速度是每小时21千米,船从甲城开出逆水航行了8小时,到达相距144千米的乙城。

这只轮船从乙城返回甲城需多少小时?11、相邻两根电线杆之间的距离是45米,从少年宫起到育英小学门口有36根电线杆,再往前585米是书店,求从少年宫到书店一共有多少根电线杆?12、解放军某部出动80辆汽车参加工地劳动,在途中要经过一个长120米的隧道。

如果每辆汽车的长为10米,相邻两辆汽车相隔20米,那么,车队以每分钟500米的速度通过隧道,需要多少分钟?1、一辆电车从起点到终点一共要行36千米,如果每隔3千米停靠站一次,那么从起点到终点,一共要停靠多少次?2、兄弟两人同时从家里出发到学校,路程是1400米,哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。

从出发到相遇,弟弟走了多少米?相遇处距离学校有多少米?3、小明坐在行驶的列车上,从窗外看到迎面开来的货车经过用了6秒,已知货车长168米;后来又从窗外看到列车通过一座180米长的桥用了12秒。

货车每小时行多少千米?4、有两只蜗牛同时从一个等腰三角形的顶点A出发,分别沿着两腰爬行。

一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,BP的长度是多少米?5、甲、乙两人同时从A、B两地相向而行,相遇时距A地120米,相遇后,他们继续前进,到达目的地后立即返回,在距A地150米处再次相遇,AB两地的距离是多少米?6、一支部队排成1200米长的队伍行军,在队尾的通讯员要与最前面的营长联系,他用6分钟时间跑步追上了营长,为了回到队尾,在追上营长的地方等待了24分钟。

如果他从最前头跑步回到队尾,那么只需要多少分钟?7、一只船在静水中每小时航行20千米,在水流速度为每小时4千米的江中,往返甲、乙两码头共用了12.5小时,求甲、乙两码头间的距离。

1、一辆电车从起点到终点一共要行36千米,如果每隔3千米停靠站一次,那么从起点到终点,一共要停靠多少次?2、兄弟两人同时从家里出发到学校,路程是1400米,哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。

从出发到相遇,弟弟走了多少米?相遇处距离学校有多少米?3、小明坐在行驶的列车上,从窗外看到迎面开来的货车经过用了6秒,已知货车长168米;后来又从窗外看到列车通过一座180米长的桥用了12秒。

货车每小时行多少千米?4、有两只蜗牛同时从一个等腰三角形的顶点A出发,分别沿着两腰爬行。

一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,BP的长度是多少米?5、甲、乙两人同时从A、B两地相向而行,相遇时距A地120米,相遇后,他们继续前进,到达目的地后立即返回,在距A地150米处再次相遇,AB两地的距离是多少米?6、一支部队排成1200米长的队伍行军,在队尾的通讯员要与最前面的营长联系,他用6分钟时间跑步追上了营长,为了回到队尾,在追上营长的地方等待了24分钟。

如果他从最前头跑步回到队尾,那么只需要多少分钟?7、一只船在静水中每小时航行20千米,在水流速度为每小时4千米的江中,往返甲、乙两码头共用了12.5小时,求甲、乙两码头间的距离。

相关文档
最新文档