离散课后习题答案5
离散数学(第三版)陈建明-刘国荣课后习题答案
离散数学辅助教材概念分析结构思想与推理证明第一部分集合论刘国荣交大电信学院计算机系离散数学习题解答习题一(第一章集合)1. 列出下述集合的全部元素:1)A={x | x ∈N∧x是偶数∧x<15}2)B={x|x∈N∧4+x=3}3)C={x|x是十进制的数字}[解] 1)A={2,4,6,8,10,12,14}2)B=3)C={0,1,2,3,4,5,6,7,8,9}2. 用谓词法表示下列集合:1){奇整数集合}2){小于7的非负整数集合}3){3,5,7,11,13,17,19,23,29}[解] 1){n n I(m I)(n=2m+1)};2){n n I n0n<7};3){p p N p>2p<30(d N)(d1d p(k N)(p=k d))}。
3. 确定下列各命题的真假性:1)2)∈3){}4)∈{}5){a,b}{a,b,c,{a,b,c}}6){a,b}∈(a,b,c,{a,b,c})7){a,b}{a,b,{{a,b,}}}8){a,b}∈{a,b,{{a,b,}}}[解]1)真。
因为空集是任意集合的子集;2)假。
因为空集不含任何元素;3)真。
因为空集是任意集合的子集;4)真。
因为是集合{}的元素;5)真。
因为{a,b}是集合{a,b,c,{a,b,c}}的子集;6)假。
因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;7)真。
因为{a,b}是集合{a,b,{{a,b}}}的子集;8)假。
因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4. 对任意集合A,B,C,确定下列命题的真假性:1)如果A∈B∧B∈C,则A∈C。
2)如果A∈B∧B∈C,则A∈C。
3)如果A B∧B∈C,则A∈C。
[解] 1)假。
例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。
2)假。
例如A={a},B={a,{a}},C={{a},{{a}}},从而A∈B∧B∈C,但、A∈C。
离散数学课后练习题答案(第三版)_乔维声_汤维版
、命题逻辑1.用形式语言写出下列命题:(1)如果这个数是大于1 的整数,则它的大于1 最小因数一定是素数。
(2)如果王琳是学生党员又能严格要求自己,则她一定会得到大家的尊敬。
(3)小王不富有但很快乐。
(4)说逻辑学枯燥无味或毫无价值都是不对的。
(5)我现在乘公共汽车或者坐飞机。
(6)如果有雾,他就不能搭船而是乘车过江。
解:(1)设P:这个数是大于1 的整数。
Q:这个数的大于1 最小因数是素数。
则原命题可表示为:P→Q。
或:设P1:这个数大于1。
P2:这个数是整数。
Q:这个数的大于1 最小因数是素数。
则原命题可表示为:P1∧ P2→Q。
(2)设P:王琳是学生。
Q:王琳是党员。
R:王琳能严格要求自己。
S:王琳会得到大家的尊敬。
则原命题可表示为:P ∧Q∧R→ S。
(3)设P:小王富有。
Q:小王很快乐。
则原命题可表示为:⌝P ∧Q。
(4)设P:逻辑学枯燥无味。
Q:逻辑学毫无价值。
则原命题可表示为:⌝( P∨Q)。
(5)设P:我现在乘公共汽车。
Q:我现在坐飞机。
则原命题可表示为:P⎺∨Q。
(6)设P:天有雾。
Q:他搭船过江。
R:他乘车过江。
则原命题可表示为:P →⌝ Q∧R。
2.设P:天下雪。
Q:我将进城。
R:我有时间。
将下列命题形式化:(1)天不下雪,我也没有进城。
(2)如果我有时间,我将进城。
(3)如果天不下雪而我又有时间的话,我将进城。
解:原命题可分别表示为:(1)⌝P ∧⌝ Q。
(2)R→Q。
(3)⌝P ∧ R→Q。
3.将P、Q、R所表示的命题与上题相同,试把下列公式翻译成自然语言:(1)R∧Q(2)⌝(R∨Q)(3)Q↔(R∧⌝P)(4)(Q→R)∧(R→Q)解:(1)原公式可翻译为:我有时间而且我将进城。
(2)⌝(R∨Q) ⇔⌝R∧⌝Q。
原公式可翻译为:我没有时间也没有进城。
(3)我将进城当且仅当我有时间而且天不下雪。
(4)(Q→R)∧(R→Q) ) ⇔(Q∧R) ∨ (⌝Q ∧⌝ R) ⇔ Q↔R。
离散数学课后习题答案
1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。
解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。
举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。
由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。
充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。
由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。
(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。
离散数学(第二版)最全课后习题答案详解
(1)
(2)
p
(3)
(4)
(5)
(6)
(7)
.
解:(1)
p
q
r
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
0
1
1
1
此式为重言式
(2)
p
q
0
0
0
1
1
0
1
1
此式为可满足式
(3)
q
r
0
0
0
1
1
0
1
1
此式为矛盾式
(4)
p
q
0
0
0
1
1
0
1
1
此式为重言式
(5)
p
q
r
0
0
0
0
0
1
0
1
0
0
1
1
1
0
0
1 1 1
(10) 圆的面积等于半径的平方乘以 π .
答:此命题是简单命题,其真值为 1. (11) 只有 6 是偶数,3 才能是 2 的倍数. 答:是命题,但不是简单命题,其真值为 0. (12) 8 是偶数的充分必要条件是 8 能被 3 整除. 答:是命题,但不是简单命题,其真值为 0. (13) 2008 年元旦下大雪. 答:此命题是简单命题,其真值还不知道. 2.将上题中是简单命题的命题符号化. 解:(1)p:中国有四大发明.
5.将下列命题符号化,并指出真值. (1)2 或 3 是偶数. (2)2 或 4 是偶数. (3)3 或 5 是偶数. (4)3 不是偶数或 4 不是偶数. (5)3 不是素数或 4 不是偶数.
信号与系统课后习题答案第5章
y(k)=[2(-1)k+(k-2)(-2)k]ε(k)
76
第5章 离散信号与系统的时域分析
5.23 求下列差分方程所描述的离散系统的零输入响应、 零状态响应和全响应。
77
第5章 离散信号与系统的时域分析 78
第5章 离散信号与系统的时域分析
确定系统单位响应: 由H(E)极点r=-2, 写出零输入响应表示式: 将初始条件yzi(0)=0代入上式,确定c1=0, 故有yzi(k)=0。
题解图 5.6-1
16
第5章 离散信号与系统的时域分析
题解图 5.6-2
17
第5章 离散信号与系统的时域分析
因此
18
第5章 离散信号与系统的时域分析
5.7 各序列的图形如题图 5.2 所示,求下列卷积和。
题图 5.2
19
第5章 离散信号与系统的时域分析 20
第5章 离散信号与系统的时域分析 21
第5章 离散信号与系统的时域分析 46
第5章 离散信号与系统的时域分析
5.16 已知离散系统的差分方程(或传输算子)如下,试求各 系统的单位响应。
47
第5章 离散信号与系统的时域分析 48
由于
第5章 离散信号与系统的时域分析
49
第5章 离散信号与系统的时域分析
因此系统单位响应为
50
第5章 离散信号与系统的时域分析 51
5.21 已知LTI离散系统的单位响应为
试求: (1) 输入为
时的零状态响应yzs(k); (2) 描述该系统的传输算子H(E)。
69
第5章 离散信号与系统的时域分析
解 (1) 由题意知: 先计算:
70
第5章 离散信号与系统的时域分析
离散数学第三版-屈婉玲-课后习题答案
离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语p q解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是(9)只有天下大雨,他才乘班车上班q p解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是(11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是(p q)r15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(p q r)((p q)r)(4)解:p=1,q=1,r=0,(p q r)(110)1,((p q)r)((11)0)(00)1 (p q r)((p q)r)111 19、用真值表判断下列公式的类型:(p p)q(2)解:列出公式的真值表,如下所示:p p qq(p p)(p p)q0 0 1 1 1 10 1 1 0 1 01 0 0 1 0 11 1 0 0 0 1由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:(4)(p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:p0(p q) 1q0q0成真赋值有:01,10,11。
所以公式的习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(p q)(q r)解:原式(p q)q r(p p)q rq r,此即公式的主析取范式,m m(p q r)(p q r)37所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值:(2)(p q)(p r)解:原式,此即公式的主合取范式,M(p p r)(p q r)(p q r)4所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p q)r解:原式p q(r r)((p p)(q q)r)(p q r)(p q)r(p q)r(p q)r(p q)r(pq r(p q r)(p q)r(p q)r(p q)r(pq r,此即主析取范式。
信号与系统课后习题答案第5章
yzi(k)=(-2)kε(k)
39
第5章 离散信号与系统的时域分析 40
第5章 离散信号与系统的时域分析 41
第5章 离散信号与系统的时域分析 42
第5章 离散信号与系统的时域分析 43
第5章 离散信号与系统的时域分析
(6) 系统传输算子:
22
第5章 离散信号与系统的时域分析
5.9 已知两序列
试计算f1(k)*f2(k)。
23
解 因为
第5章 离散信号与系统的时域分析
所以
24
第5章 离散信号与系统的时域分析
5.10 已知序列x(k)、y(k)为
试用图解法求g(k)=x(k)*y(k)。
25
第5章 离散信号与系统的时域分析
解 首先画出y(k)和x(k)图形如题解图5.10所示, 然后结合 卷积和的图解机理和常用公式,应用局部范围等效的计算方法 求解。
题解图 5.10
26
第5章 离散信号与系统的时域分析 27
总之有
第5章 离散信号与系统的时域分析
28
第5章 离散信号与系统的时域分析
5.11 下列系统方程中,f(k)和y(k)分别表示系统的输入和输 出,试写出各离散系统的传输算子H(E)。
29
第5章 离散信号与系统的时域分析
解 由系统差分方程写出传输算子H(E)如下:
解 各序列的图形如题解图5.2所示。
题解图 5.2
5
第5章 离散信号与系统的时域分析
5.3 写出题图 5.1 所示各序列的表达式。
题图 5.1
6
第5章 离散信号与系统的时域分析 7
第5章 离散信号与系统的时域分析
离散数学第五版习题答案
离散数学第五版习题答案【篇一:自考2324离散数学第五章课后答案】txt>5.1习题参考答案1、设无向图g有16条边,有3个4度结点,4个3度结点,其余结点的度数均小于3,问:g中至少有几个结点。
阮允准同学提供答案:解:设度数小于3的结点有x个,则有解得:x≥4所以度数小于3的结点至少有4个所以g至少有11个结点2、设无向图g有9个结点,每个结点的度数不是5就是6,证明:g中至少有5个6度结点或至少有6个5度结点。
阮允准同学答案:证明:由题意可知:度数为5的结点数只能是0,2,4,6,8。
若度数为5的结点数为0,2,4个,则度数为6的结点数为9,7,5个结论成立。
若度数为5的结点数为6,8个,结论显然成立。
由上可知,g中至少有5个6度点或至少有6个5度点。
3、证明:简单图的最大度小于结点数。
阮同学认为题中应指定是无向简单图.晓津证明如下:设简单图有n个结点,某结点的度为最大度,因为简单图任一结点没有平行边,而任一结点的的边必连有另一结点,则其最多有n-1条边与其他结点相连,因此其度数最多只有n-1条,小于结点数n.4、设图g有n个结点,n+1条边,证明:g中至少有一个结点度数≥3 。
阮同学给出证明如下:证明:设g中所有结点的度数都小于3,即每个结点度数都小于等于2,则所有结点度数之和小于等于2n,所以g的边数必小于等于n,这和已知g有n+1条边相矛盾。
所以结论成立。
5、试证明下图中两个图不同构。
晓津证明:同构的充要条件是两图的结点和边分别存在一一对应且保持关联关系。
我们可以看出,(a)图和(b)图中都有一个三度结点,(a)图中三度结点的某条边关联着两个一度结点和一个二度结点,而(b)图中三度结点关联着两个二度结点和一个一度结点,因此可断定二图不是同构的。
6、画出所有5个结点3条边,以及5个结点7条边的简单图。
解:如下图所示: (晓津与阮同学答案一致)7、证明:下图中的图是同构的。
证明如下:在两图中我们可以看到有a→e,b→h,c→f,d→g两图中存在结点与边的一一对应关系,并保持关联关系。
大学_《离散数学》课后习题答案
《离散数学》课后习题答案《离散数学》简介1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。
教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。
《离散数学》学科内容随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。
离散数学的应用遍及现代科学技术的诸多领域。
离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。
离散数学刘任任课后答案习题
习 题 三1.下列映射哪些是单射、满射或双射.(1)()⎩⎨⎧=→.0;1,:是偶数是奇数m m m Z Z σσ (2){}()⎩⎨⎧=→.1;0,1,0:是偶数是奇数m m m N σσ (3)()52,:-=→r r R R σσ解:(1) σ既不是单射也不是满射。
(2) 是满射但不是单射.。
(3) 双射。
2.设A 和B 是有限集,试问有多少A 到B 的不同的单射和双射.解:设 |A|=m , |B|=n .(1) 若 B A →:σ是单射, 则必有 |A|<=|B|, 即 m<=n .a) 当m= n 时, 共有m!个单射;b) 当m<n 时, 共有 !m m n C ⋅ 个单射;(2) 若B A →:σ是双射时, 则必有|A|=|B|, 即 m=n 。
于是, 共有n!个双射。
3.设()A B B A ρτσ→→:,:且定义如下:对于()(){}b x A x b B b =∈=∈στ,试证明,若σ是满射,则τ是单射,其逆成立吗?证明:设B A →:σ是满射。
任取2121,,,b b B b b ≠∈,则存在 A A A ⊆⊆∅21,, 使得 }{)(},{)(2211b A b A ==σσ。
于是, 2211)(,)(A b A b ==ττ 。
若)()(21b b ττ=, 即21A A =, 则存在 21A A a I ∈, 使得21)(,)(b a b a ==σσ,从而21b b =。
矛盾。
故21A A ≠。
.即τ是单射。
若τ是单射, 则σ不一定是满射。
例如, 令A={1,2}, B={x , y} ,∅====)(},2,1{)(,)2()1(y x x ττσσ.于是, τ是单射, 但σ不是满射。
4.设σ是A 到B 的映射,τ是B 到C 的映射,试证明:(1)若σ和τ是满射,则στ⋅是满射;(2)若σ和τ是单射,则στ⋅是单射;(3)若σ和τ是双射,则στ⋅是双射;证明:(1) 设τ和σ是满射, 则对任意的z ∈C, 有y ∈B, 使得τ(y)= z 。
离散数学课后答案
离散数学课后答案习题一6.将下列命题符号化。
(1)小丽只能从框里那一个苹果或一个梨.(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:(1)(p Λ¬q )ν(¬pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ¬q )ν(¬pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2)老王是山东人或河北人.(3)因为天气冷, 所以我穿了羽绒服.(4)王欢与李乐组成一个小组.(5)李辛与李末是兄弟.(6)王强与刘威都学过法语.(7)他一面吃饭, 一面听音乐.(8)如果天下大雨, 他就乘班车上班.(9)只有天下大雨, 他才乘班车上班.(10)除非天下大雨, 他才乘班车上班.(11)下雪路滑, 他迟到了.(12)2与4都是素数, 这是不对的.(13)“2或4是素数, 这是不对的”是不对的.答:(1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人.(3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服.(4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5)p, 其中, p: 李辛与李末是兄弟.(6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语.(7)p∧q, 其中, p: 他吃饭, q: 他听音乐.(8)p→q, 其中, p: 天下大雨, q: 他乘班车上班.(9)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(10)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(11)p→q, 其中, p: 下雪路滑, q: 他迟到了.(12) ¬ (p∧q)或¬p∨¬q, 其中, p: 2是素数, q: 4是素数.(13) ¬ ¬ (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数.16.19.用真值表判断下列公式的类型:(1)p→ (p∨q∨r) (2)(p→¬q) →¬q(3) ¬ (q→r) ∧r(4)(p→q) →(¬q→¬p)(5)(p∧r) ↔( ¬p∧¬q)(6)((p→q) ∧ (q→r)) → (p→r)(7)(p→q) ↔ (r↔s)答:(1), (4), (6)为重言式.(3)为矛盾式.(2), (5), (7)为可满足式习题二9.用真值表求下面公式的主析取范式.(1) (pνq)ν(¬pΛr)(2) (p→q) →(¬p↔q)答:(1)(2)p q (p → q) →(¬p ↔ q)0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0从真值表可见成真赋值为01, 10.于是(p → q) →(¬p ↔ q) ⇔ m1 ∨ m211.用真值表求下面公式的主析取范式和主合取范式;(1) (pνq)Λr(2) p→(pνqνr)(3) ¬(q→¬p)Λ¬p15.用主析取范式判断下列公式是否等值:(1) (p→q) →r与q→ (p→r)(2) ¬(pΛq)与(¬pνq)答:(1)(p→q) →r ⇔¬(¬p∨q) ∨ r ⇔¬(¬p∨q) ∨ r ⇔ p¬∧q ∨ r ⇔p¬∧q∧(r¬∨r) ∨(p¬∨p) ∧(q¬∨q)∧r ⇔p¬∧q∧r ∨p¬∧q∧¬r ∨ p ∧q∧r ∨ p∧¬q∧r ∨¬p∧q∧r ∨¬p∧¬q∧r = m101 ∨ m100 ∨ m111 ∨m101 ∨ m011 ∨ m001 ⇔m1 ∨ m3 ∨ m4 ∨ m5 ∨ m7 = ∑(1, 3, 4, 5, 7).而 q→(p→r) ⇔¬q ∨(¬p∨r) ⇔¬q ∨¬p ∨r ⇔(¬p∨p)¬∧q∧(¬r∨r) ∨¬p∧(¬q∨q)∧(¬r∨r) ∨(¬p∨p)∧(¬q∨q)∧r ⇔(¬p¬∧q∧¬r)∨(¬p¬∧q∧r)∨(p¬∧q∧¬r)∨(p¬∧q∧r) ∨(¬p∧¬q∧¬r)∨(¬p∧¬q∧r)∨(¬p ∧q∧¬r)∨(¬p∧q∧r) ∨(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧r) = m0 ∨ m1 ∨ m4 ∨ m5 ∨ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m1 ∨ m3 ∨ m5 ∨m7 ⇔ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m4 ∨ m5 ∨ m7 ⇔∑(0, 1, 2, 3, 4, 5, 7). 两个公式的主吸取范式不同, 所以(p→q) →rk q→ (p→r).16. 用主析取范式判断下列公式是否等值:(1)(p→q) →r与q→ (p→r)(2) ¬ (p∧q)与¬ (p∨q)答:(1)(p→q) →r) ⇔m1∨m3∨m4∨m5∨m7q→ (p→r) ⇔m0∨m1∨m2∨m3∨m4∨m5∨m7所以(p→q) →r) k q→ (p→r)(2)¬ (p∧q) ⇔m0∨m1∨m2¬ (p∨q) ⇔m0所以¬ (p∧q) k ¬ (p∨q)习题三15.在自然推理系统P中用附加前提法证明下面各推理:(1)前提: p→ (q→r), s→p, q 结论: s→r(2)前提: (p∨q) → (r∧s), (s∨t) →u 结论: p→u答:(1)证明: ① s 附加前提引入② s→p 前提引入③ p ①②假言推理④ p→(q→r) 前提引入⑤ q→r ③④假言推理⑥ q 前提引入⑦ r ⑤⑥假言推理(2)证明: ① P 附加前提引入② p∨q ①附加③ (p∨q) → (r∧s) 前提引入④ r∧s ②③假言推理⑤④化简⑥ s∨t ⑤附加⑦ (s∨t) →u 前提引入⑧ u ⑥⑦假言推理16.在自然推理系统P中用归谬法证明下面推理:(1)前提: p→¬q, ¬r∨q, r∧¬s 结论: ¬p(2)前提: p∨q, p→r, q→s 结论: r∨s答:(1)证明: ① P 结论否定引入② p→¬q 前提引入③¬q ①②假言推理④¬r∨q 前提引入⑤¬r ③④析取三段论⑥ r∧¬s 前提引入⑦ r ⑥化简⑧¬r∧r ⑤⑦合取⑧ 为矛盾式, 由归谬法可知, 推理正确.(2)证明: ①¬ (r∨s) 结论否定引入② p∨q 前提引入③ p→r 前提引入④ q→s 前提引入⑤ r∨s ②③④构造性二难⑥¬ (r∨s) ∧ (r∨s) ①⑤合取⑥为矛盾式, 所以推理正确.18.在自然推理系统P中构造下面推理的证明.(1)如果今天是星期六, 我们就要到颐和园或圆明园去玩. 如果颐和园游人太多, 我们就不去颐和园玩. 今天是星期六. 颐和园游人太多. 所以我们去圆明园玩.(2)如果小王是理科学生, 他的数学成绩一定很好. 如果小王不是文科生, 他必是理科生. 小王的数学成绩不好. 所以小王是文科学生.(1)令 p: 今天是星期六;q: 我们要到颐和园玩;r: 我们要到圆明园玩;s:颐和园游人太多.前提: p→ (q∨r), s →¬q, p, s. 结论: r.证明① p 前提引入② p→q∨r前提引入③q∨r①②假言推理④s前提引入⑤ s →¬q前提引入⑥¬q ④⑤假言推理⑦ r ③⑥析取三段论r ¬q s →¬q sq∨r p→q∨r p(2)令p: 小王是理科生,q: 小王是文科生,r: 小王的数学成绩很好.前提: p→r, ¬q→p, ¬r 结论: q证明:① p→r 前提引入②¬r 前提引入③¬p ①②拒取式④¬q→p 前提引入⑤ q ③④拒取式习题四在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数.(2)在北京卖菜的人不全是外地人.(3)乌鸦都是黑色的.(4)有的人天天锻炼身体. 没指定个体域, 因而使用全总个体域.答:(1) ¬∃x(F(x) ∧¬G(x))或∀x(F(x) →G(x)), 其中, F(x): x为有理数, G(x): x能表示成分数.(2) ¬∀x(F(x) →G(x))或∃x(F(x) ∧¬G(x)), 其中, F(x): x在北京卖菜,G(x): x是外地人.(3) ∀x(F(x) →G(x)), 其中, F(x): x是乌鸦, G(x): x是黑色的.(4) ∃x(F(x) ∧G(x)), 其中, F(x): x是人, G(x): x天天锻炼身体.5. 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快.(2)有的火车比有的汽车快.(3)不存在比所有火车都快的汽车.(4)“凡是汽车就比火车慢”是不对的.答:因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y)), 其中, F(x): x是火车, G(y): y是轮船, H(x,y):x比y快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y)), 其中, F(x): x是火车, G(y): y是汽车, H(x,y):x比y快.(3) ¬∃x(F(x) ∧∀y(G(y) →H(x,y))) 或∀x(F(x) →∃y(G(y) ∧¬H(x,y))), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y快.(4) ¬∀x∀y(F(x) ∧G(y) →H(x,y)) 或∃x∃y(F(x) ∧G(y) ∧¬H(x,y) ), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y慢.9.给定解释I如下:(a)个体域DI为实数集合\.(b)DI中特定元素⎯a =0.(c)特定函数⎯f (x,y)=x−y, x,y∈DI.(d)特定谓词⎯F(x,y): x=y,⎯G(x,y): x<y, x,y∈DI.说明下列公式在I下的含义, 并指出各公式的真值:(1) ∀x∀y(G(x,y) →¬F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →¬F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))答:(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x−y=0) →x<y), 真值为0.(3) ∀x∀y((x<y) → (x−y≠0)), 真值为1.(4) ∀x∀y((x−y<0) → (x=y)), 真值为0.习题五5.给定解释I如下:(a) 个体域D={3,4}.(b)⎯f (x)为⎯f (3)=4,⎯f (4)=3.(c)⎯F(x,y)为⎯F(3,3)=⎯F(4,4)=0,⎯F(3,4)=⎯F(4,3)=1.试求下列公式在I下的真值:(1) ∀x∃yF(x,y)(2) ∃x∀yF(x,y)(3) ∀x∀y(F(x,y) →F(f(x),f(y)))答:(1) ∀x∃yF(x,y)⇔(F(3,3)∨F(3,4))∧(F(4,3)∨F(4,4))⇔(0∨1)∧(1∨0) ⇔1(2)∃x∀yF(x,y)⇔(F(3,3)∧F(3,4))∨(F(4,3)∧F(4,4))⇔(0∧1)∨(1∧0)⇔0(3)∀x∀y(F(x,y)→F(f(x),f(y)))⇔(F(3,3)→F(f(3),f(3)))∧(F(4,3)→F(f(4),f(3)))∧(F(3,4)→F(f(3),f(4)))∧(F(4,4)→F(f(4),f(4))) ⇔ (0→0)∧(1→1)∧(1→1)∧(0→0)⇔112.求下列各式的前束范式.(1) ∀xF(x) →∀yG(x, y);(3) ∀xF(x, y) ↔∃xG(x, y);答:前束范式不是唯一的.(1) ∀xF(x) →∀yG(x, y) ⇔∃x(F(x) →∀yG(x, y))⇔∃x∀y(F(x) → G(x, y)).(3) ∀xF(x, y) ↔∃xG(x, y) ⇔ (∀xF(x, y) →∃xG(x, y)) ∧ (∃xG(x, y) →∀xF(x, y)) ⇔ (∀x1F(x1, y) →∃x2G(x2, y)) ∧ (∃x3G(x3, y) →∀x4F(x4, y)) ⇔∃x1∃x2(F(x1, y) → G(x2, y)) ∧∀x3∀x4(G(x3, y) → F(x4, y)) ⇔∃x1∃x2∀x3∀x4((F(x1, y) → G(x2, y)) ∧ (G(x3, y) → F(x4, y))).13.将下列命题符号化, 要求符号化的公式全为前束范式:(1) 有的汽车比有的火车跑得快.(2) 有的火车比所有的汽车跑得快.(3) 说所有的火车比所有的汽车跑得快是不对的.(4) 说有的飞机比有的汽车慢是不对的.答:(1)令F(x):x是汽车,G(y):y是火车,H(x,y):x比y跑得快.∃x(F(x)∧∃y(G(y)∧H(x,y))⇔∃x∃y(F(x)∧G(y)∧H(x, y)).(2)令F(x):x是火车, G( y): y 是汽车,H(x,y):x比y跑得快.∃x(F(x)∧∀y(G(y)→ H(x,y)))⇔∃x∀y(F(x)∧(G y)→H(x,y))).;错误的答案:∃x∀y(F(x)∧G(y)→H(x,y)).(3)令F(x):x是火车,G(y):y是汽车,H(x,y):x比y跑得快.¬∀x(F(x)→∀y(G(y)→H(x,y)))⇔¬∀x∀y(F(x)→(G(y)→H(x,y)))⇔¬∀x∀y(F(x)∧G(y)→H(x,y))(不是前束范式)⇔∃x∃y(F(x)∧G(y)∧H(x,y)).(4)令F(x):x是飞机,G(y):y是汽车,H(x,y):x比y跑得慢.¬∃x(F(x)∧∃y(G(y)∧H(x,y)))⇔¬∃x∃y(F(x)∧G(y)∧H(x,y))(不是前束范式)⇔∀x∀y¬(F(x)∧G(y)∧H(x,y))⇔∀x∀y(F(x)∧G(y)→¬H(x,y)).21.24.在自然推理系统F中, 构造下面推理的证明:每个喜欢步行的人都不喜欢骑自行车. 每个人或者喜欢骑自行车或者喜欢乘汽车. 有的人不喜欢乘汽车, 所以有的人不喜欢步行. (个体域为人类集合) 答:令 F(x): x 喜欢步行, G( x): x喜欢骑自行车, H(x): x 喜欢乘汽车.前提:∀x(F(x)→¬G(x)), ∀x(G(x)∨H(y)),∃x¬H(x).结论:∃x¬F(x).② ∀x(G(x) ∨ H(y)) 前提引入② G(c) ∨ H(c) ①UI③∃x¬H(x) 前提引入④¬H(c) ③UI⑤ G(c) ②④析取三段⑥∀x(F(x) →¬G(x)) 前提引入⑦ F(c) →¬G(c) ⑥UI⑧¬F(c) ⑤⑦拒取⑨∃x¬F(x) ⑧EG习题七12.设A={0, 1, 2, 3}, R是A上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2,1〉, 〈2, 3〉, 〈3, 2〉} 给出R的关系矩阵和关系图.16.设A={a,b,c,d}, R1,R2为A上的关系, 其中R1={〈a,a〉,〈a,b〉,〈b,d〉}R2={〈a,d〉,〈b,c〉,〈b,d〉,〈c,b〉} 求R1·R2, R2·R1,R1²,R2³. R1·R2={〈a,a〉,〈a,c〉,〈a,d〉},R2·R1={〈c,d〉}, R1²={〈a,a〉,〈a,b〉,〈a,d〉},R2³={〈b,c〉,〈b,d〉,〈c,b〉}20.设R1和R2为A上的关系,证明: (1)(R1∪R2) −1=R1−1∪R2−1(2)(R1∩R2) −1=R1−1∩R2−1答:(1)(R1∪R2)−1=R1−1∪R2−1任取〈x,y〉〈x,y〉(∈R1∪R2)−1⇔〈y,x〉(∈R1∪R2)⇔〈y,x〉∈R1∨ (y,x)∈R2)⇔〈x,y〉∈R1−1∨〈x,y〉∈R2−1⇔〈x,y〉∈R1−1∨R2−1所以(R1∪R2) −1=R1−1∪R2−1(2)(R1∩R2) −1=R1−1∩R2−1 任取〈x,y〉〈x,y〉(∈R1∩R2) −1⇔〈y,x〉(∈R1∩R2)⇔〈y,x〉∈R1∧ (y,x)∈R2)⇔〈x,y〉∈R1−1∧〈x,y〉∈R2−1⇔〈x,y〉∈R1−1∧R2−1所以(R1∪R2) −1=R1−1∩R2−126.33.43.16.47.。
离散数学(第二版)课后习题答案详解(完整版)
习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为 1.(2)5 是无理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p: 是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008 年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是无理数. p:5 是有理数.q:5 是无理数.其否定式q 的真值为1.(2)25 不是无理数.答:否定式:25 是有理数. p:25 不是无理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是自然数.答:否定式:2.5 不是自然数. p:2.5 是自然数. q:2.5 不是自然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧ ,其真值为 1.(2)不但π是无理数,而且自然对数的底e 也是无理数.答:p:π 是无理数,q:自然对数的底e 是无理数,符号化为p q∧ ,其真值为1.(3)虽然2 是最小的素数,但2 不是最小的自然数.答:p:2 是最小的素数,q:2 是最小的自然数,符号化为p q∧¬ ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧ ,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为¬ ∧¬p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨ ,其真值为1.(2)符号化:p r∨ ,其真值为1.(3)符号化:r t∨ ,其真值为0.(4)符号化:¬ ∨¬q s,其真值为1.(5)符号化:¬ ∨¬r s,其真值为0.6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p:小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨,符号化为: p q∨ .(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p:刘晓月选学英语,q:刘晓月选学日语,符号化为: (¬ ∧ ∨ ∧¬p q)(p q) .7.设p:王冬生于1971 年,q:王冬生于1972 年,说明命题“王冬生于1971 年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 0 00 1 1 11 0 1 11 1 0 1根据真值表,可以判断出,只有当p 与q 同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;(2)如果, 才有;(3)只有, 才有;(4)除非, 否则;(5)除非(6)仅当.答:设p: , 则: ; 设q: , 则: .符号化真值(1) 1(2) 1(3)0(4)0(5)0(6) 1 :俄罗斯位于南半球,q:亚洲人口最多,将下面命题用自然语言表述(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.自然语言真值(1)只要俄罗斯位于南半球,亚洲人口就最多 1 (2)只要亚洲人口最多,俄罗斯就位于南半球0 (3)只要俄罗斯不位于南半球,亚洲人口就最多 1 (4)只要俄罗斯位于南半球,亚洲人口就不是最多 1 (5)只要亚洲人口不是最多,俄罗斯就位于南半球 1 (6)只要俄罗斯不位于南半球,亚洲人口就不是最多0 (7)只要亚洲人口不是最多,俄罗斯就不位于南半球 1(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.自然语言真值(1)9 是 3 的倍数当且仅当英语与土耳其相邻0 (2)9 是 3 的倍数当且仅当英语与土耳其不相邻 1 (3)9 不是3 的倍数当且仅当英语与土耳其相邻 1(4) 9 不是 3 的倍数当且仅当英语与土耳其不相邻11. 将下列命题符号化,并给出各命题的真值: (1) 若 2+2=4,则地球是静止不动的; (2) 若 2+2=4,则地球是运动不止的; (3) 若地球上没有树木,则人类不能生存;(4) 若地球上没有水,则 是无理数.12. (1)2+2=4 当且仅当 3+3=6;(2)2+2=4 的充要条件是 3+3 6;(3)2+2 4 与 3+3=6 互为充要条件;(4)若 2+2 4,则 3+3 6,反之亦然.答:设 p:2+2=4,q:3+3=6.符号化真值 (1)1(2)(3)(4)113. 将下列命题符号化,并讨论各命题的真值: (1) 若今天是星期一,则明天是星期二; (2) 只有今天是星期一,明天才是星期二;命题 1命题 2 符号化 真值 (1) p:2+2=4 q:地球是静止不动的(2) p:2+2=4 q:地球是静止不动的1 (3) p:地球上有树木 q:人类能生存1(4)p:地球上有树木q:人类能生存1(3)今天是星期一当且仅当明天是星期二;(4)若今天是星期一,则明天是星期三.答:设p:今天是星期一,q:明天是星期二,r:明天是星期三.将下列命题符号化:(1)刘晓月跑得快,跳得高;(2)老王是山东人或者河北人;(3)因为天气冷,所以我穿了羽绒服;(4)王欢与李乐组成一个小组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他一面吃饭,一面听音乐;(8)如果天下大雨,他就乘班车上班;(9)只有天下大雨,他才乘班车上班;(10)除非天下大雨,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:(6) p:王强学过法语q:刘威学过法语-(7) p:他吃饭q:他听音乐-(8) p:天下大雨q:他乘车上班-(9) p:天下大雨q:他乘车上班-(10) p:天下大雨q:他乘车上班-(11) p:下雪q:路滑r:他迟到了(12) p:2 是素数q:4 是素数-(13) p:2 是素数q:4 是素数-15.设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下面一段论述是否为真:“ 是无理数.并且,如果3 是无理数,则也是无理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是无理数q: 3 是无理数r:是无理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重言式,所以论述为真。
离散数学课后习题答案_(左孝凌版)
习题 1-5(1)证明:a)(P∧(P→Q))→Q⇔ (P∧(┐P∨Q))→Q⇔(P∧┐P)∨(P∧Q)→Q⇔(P∧Q)→Q⇔┐(P∧Q)∨Q⇔┐P∨┐Q∨Q⇔┐P∨T⇔Tb)┐P→(P→Q)⇔P∨(┐P∨Q)⇔ (P∨┐P)∨Q⇔T∨Q⇔Tc)((P→Q)∧(Q→R))→(P→R)因为(P→Q)∧(Q→R)⇒(P→R)所以 (P→Q)∧(Q→R)为重言式。
d)((a∧b)∨(b∧c) ∨(c∧a))↔(a∨b)∧(b∨c)∧(c∨a)因为((a∧b)∨(b∧c)∨(c∧a))⇔((a∨c)∧b)∨(c∧a)⇔((a∨c)∨(c∧a))∧(b∨(c∧a))⇔(a∨c)∧(b∨c)∧(b∨a)所以((a∧b)∨(b∧c) ∨(c∧a))↔(a∨b)∧(b∨c)∧(c∨a)为重言式。
(2)证明:a)(P→Q)⇒P→(P∧Q)解法1:设P→Q为T(1)若P为T,则Q为T,所以P∧Q为T,故P→(P∧Q)为T(2)若P为F,则Q为F,所以P∧Q为F,P→(P∧Q)为T命题得证解法2:设P→(P∧Q)为F ,则P为T,(P∧Q)为F ,故必有P为T,Q为F ,所以P→Q为F。
解法3:(P→Q) →(P→(P∧Q))⇔┐(┐P∨Q)∨(┐P∨(P∧Q))⇔┐(┐P∨Q)∨((┐P∨P)∧(┐P∨Q))⇔T所以(P→Q)⇒P→(P∧Q)b)(P→Q)→Q⇒P∨Q设P∨Q为F,则P为F,且Q为F,故P→Q为T,(P→Q)→Q为F,所以(P→Q)→Q⇒P∨Q。
c)(Q→(P∧┐P))→(R→(R→(P∧┐P)))⇒R→Q设R→Q为F,则R为T,且Q为F,又P∧┐P为F所以Q→(P∧┐P)为T,R→(P∧┐P)为F所以R→(R→(P∧┐P))为F,所以(Q→(P∧┐P))→(R→(R→(P∧┐P)))为F 即(Q→(P∧┐P))→(R→(R→(P∧┐P)))⇒R→Q成立。
(3)解:a) P→Q表示命题“如果8是偶数,那么糖果是甜的”。
自考 离散数学教材课后题第五章答案
5.1习题参考答案1、设无向图G有16条边,有3个4度结点,4个3度结点,其余结点的度数均小于3,问:G中至少有几个结点。
阮允准同学提供答案:解:设度数小于3的结点有x个,则有3×4+4×3+2x≥2×16解得:x≥4所以度数小于3的结点至少有4个所以G至少有11个结点2、设无向图G有9个结点,每个结点的度数不是5就是6,证明:G中至少有5个6度结点或至少有6个5度结点。
阮允准同学答案:证明:由题意可知:度数为5的结点数只能是0,2,4,6,8。
若度数为5的结点数为0,2,4个,则度数为6的结点数为9,7,5个结论成立。
若度数为5的结点数为6,8个,结论显然成立。
由上可知,G中至少有5个6度点或至少有6个5度点。
3、证明:简单图的最大度小于结点数。
阮同学认为题中应指定是无向简单图.晓津证明如下:设简单图有n个结点,某结点的度为最大度,因为简单图任一结点没有平行边,而任一结点的的边必连有另一结点,则其最多有n-1条边与其他结点相连,因此其度数最多只有n-1条,小于结点数n.4、设图G有n个结点,n+1条边,证明:G中至少有一个结点度数≥3 。
阮同学给出证明如下:证明:设G中所有结点的度数都小于3,即每个结点度数都小于等于2,则所有结点度数之和小于等于2n,所以G的边数必小于等于n,这和已知G有n+1条边相矛盾。
所以结论成立。
5、试证明下图中两个图不同构。
晓津证明:同构的充要条件是两图的结点和边分别存在一一对应且保持关联关系。
我们可以看出,(a)图和(b)图中都有一个三度结点,(a)图中三度结点的某条边关联着两个一度结点和一个二度结点,而(b)图中三度结点关联着两个二度结点和一个一度结点,因此可断定二图不是同构的。
6、画出所有5个结点3条边,以及5个结点7条边的简单图。
解:如下图所示: (晓津与阮同学答案一致)7、证明:下图中的图是同构的。
证明如下:在两图中我们可以看到有a→e,b→h,c→f,d→g两图中存在结点与边的一一对应关系,并保持关联关系。
离散数学课后习题答案
第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。
离散数学答案屈婉玲版第二版高等教育出版社课后答案.docx
离散数学答案屈婉玲版第⼆版⾼等教育出版社课后答案.docx离散数学答案屈婉玲版第⼆版⾼等教育出版社课后答案第⼀章部分课后习题参考答案16设p 、q 的真值为0; r 、S 的真值为1,求下列各命题公式的真值。
(1) p ∨ (q ∧ r)⼆ O V (0 ∧ 1) U 0(2) ( p? r )∧ (「q ∨ S)⼆ (0? 1)∧ (1 ∨ 1)⼆ 0∧ 1= 0. (3)( ⼀ p ∧⼀ q ∧ r ) ? (P ∧ q ∧, r)⼆(1∧ 1∧ 1)(0 ∧ 0∧ 0)=0(4) (⼀ r ∧ S )→(P ∧⼀ q) U (0∧ 1)→ (1 ∧ 0) = 0→O= 1 17 .判断下⾯⼀段论述是否为真:“⼆是⽆理数。
并且,如果3是⽆理数,则' 2也是⽆理数。
另外6能被2整除,6才能被4整除。
”答:p:⼆是⽆理数 1q: 3是⽆理数 0 r:2是⽆理数 1s: 6能被2整除1 t: 6能被4整除 0命题符号化为:p ∧ (q →r) ∧ (t →S)的真值为1,所以这⼀段的论述为真19.⽤真值表判断下列公式的类型: (4) (P → q) → (_q —_ P) (5) (P ∧ r)' (—p ∧⼀q) (6) ((P →q) ∧ (q → r)) →(p →r)(5) 公式类型为可满⾜式(⽅法如上例) (6) 公式类型为永真式(⽅法如上例)答:(4)_ p → q^q 1 1 1POOIOOI 1 1 1 0 所以公式类型为永真式P 1 1 0 0q —_p 1 1 0 1(p → q)→ (—q →-P) 1 1 1 1第⼆章部分课后习题参考答案3. ⽤等值演算法判断下列公式的类型,对不是重⾔式的可满⾜式,再⽤真值表法求出成真赋值?⑴⼀(p∧q→q)(2) (p→(P ∨q))∨(p→r)(3) (P∨q)→(P∧r)答:(2) (p→(p∨q))∨(p→r):= (⼀p∨(p∨q))∨(⼀p∨r):= ^ p∨p∨q∨r= 1 所以公式类型为永真式⑶P q r p∨q P ∧r (P∨q)→ (P∧0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满⾜式4. ⽤等值演算法证明下⾯等值式:⑵(P → q) ∧(P → r)⼆(P → (q ∧r))⑷(P ∧- q) ∨ (—p∧q)= (p ∨q) ∧⼀(P ∧q)证明(2)(P →q) ∧(P →r)(^p∨q) ∧( ⼀p∨r)=^p∨(q ∧r)):=p→ (q ∧ r)(4) (P ∧— q) ∨ (—p∧q) = (p ∨ (—p∧q)) ∧(~ q∨ ( —p∧q)⼆(P∨— P) ∧(P∨q)∧(⼀q∨-P) ∧Cq∨q)U 1 ∧(P ∨q) ∧^ (P ∧q) ∧1U (P ∨q) ∧^ (P ∧q)5. 求下列公式的主析取范式与主合取范式,并求成真赋值(1) ( ^P→q)→(⼀q∨P)(2) _(P→q) ∧q∧r(3) (P ∨(q ∧r)) →(P ∨q∨r)解:(1) 主析取范式(-p→ q) → (-q P)--(P q) (⼀q P)=(—P ^q) ( ⼀q P)=(-P ^q) (⼀q P) (⼀q -P) (P q) (P ^q)-(-P ^q) (P ^q) (P q)U m0m2m3U ∑ (0,2,3)主合取范式:(^P→q)→(⼀q P)--(P q) (⼀q P)U ( -p -q) (⼀q P)=(-p ( -q P)) ( -q (-q P))=1 (p — q)-(P _q) - M iU ∏ (1)(2) 主合取范式为:—(P → q) q r = ⼀(⼀p q) q r=(P _ q) q r = 0所以该式为⽭盾式?主合取范式为∏(0,1,2,3,4,5,6,7)⽭盾式的主析取范式为0(3) 主合取范式为:(P (q r)) → (P q r)u ⼀(P (q r)) → (P q r)=(⼀p ( ⼀q _ r)) (P q r)U ( ⼀p (P q r)) (( ⼀q ^ r)) (P q r)) =1 1所以该式为永真式?永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在⾃然推理系统P中构造下⾯推理的证明⑵前提:p—;q, —(q r),r结论:_ P(4)前提:q“ p,q s,s I t,t r结论:P q证明:(2)①—(q r) 前提引⼊②—q ⼀r ①置换③ q ? ⼀r ②蕴含等值式④r 前提引⼊⑤⼀q ③④拒取式⑥p— q 前提引⼊⑦」P (3)⑤⑥拒取式证明(4):①t r 前提引⼊②t ①化简律③qι S前提引⼊④SI t 前提引⼊⑤q t ③④等价三段论(q~ t)(t > q) ⑤置换⑦(q T )⑥化简⑧q ②⑥假⾔推理⑨ q—;P 前提引⼊⑩P ⑧⑨假⾔推理(11)p q ⑧⑩合取15在⾃然推理系统P中⽤附加前提法证明下⾯各推理(1)前提:p— (q > r),S > p,q结论:S-;r证明①S 附加前提引⼊②Sr P 前提引⼊③P ①②假⾔推理④P- (q - r) 前提引⼊⑤ q—;r ③④假⾔推理⑥q 前提引⼊⑦r ⑤⑥假⾔推理16在⾃然推理系统P中⽤归谬法证明下⾯各推理:(1)前提:p ■ —q, —r q,r - S结论:- P证明:①P 结论的否定引⼊② p—;「q 前提引⼊③⼚q ①②假⾔推理r q 前提引⼊⑤「r ④化简律⑥r 「S 前提引⼊⑦r ⑥化简律⑧r 「r ⑤⑦合取由于最后⼀步r 「r是⽭盾式,所以推理正确.第四章部分课后习题参考答案3.在⼀阶逻辑中将下⾯将下⾯命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意X,均有声-2=(x+ )(x T Q.(2) 存在x,使得x+5=9.其中(a)个体域为⾃然数集合.(b) 个体域为实数集合.解:F(x): F=2=(x+遢)(x :區).G(x): x+5=9.(1)在两个个体域中都解释为-XF(X),在(a)中为假命题,在(b)中为真命题。
《离散数学》(左孝凌李为鉴刘永才编著)课后习题集标准答案上海科学技术文献出版社
1-1,1-2(1)解:a)是命题,真值为T。
b)不是命题。
c)是命题,真值要根据具体情况确定。
d)不是命题。
e)是命题,真值为T。
f)是命题,真值为T。
g)是命题,真值为F。
h)不是命题。
i)不是命题。
(2)解:原子命题:我爱北京天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q↔ (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a)设P:王强身体很好。
Q:王强成绩很好。
P∧Qb)设P:小李看书。
Q:小李听音乐。
P∧Qc)设P:气候很好。
Q:气候很热。
P∨Qd)设P: a和b是偶数。
Q:a+b是偶数。
P→Qe)设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
P↔Qf)设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a)P:天气炎热。
Q:正在下雨。
P∧Qb)P:天气炎热。
R:湿度较低。
P∧Rc)R:天正在下雨。
S:湿度很高。
R∨Sd)A:刘英上山。
B:李进上山。
A∧Be)M:老王是革新者。
N:小李是革新者。
M∨Nf)L:你看电影。
M:我看电影。
┓L→┓Mg)P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh)P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。
(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G +第十四章部分课后习题参考答案5、设无向图 G 有 10 条边,3 度与 4 度顶点各 2 个,其余顶点的度数均小于 3,问 G 至∆ 、少有多少个顶点?在最少顶点的情况下,写出度数列、 解:由握手定理图 G 的度数之和为: 21020( )(G ) 。
3 度与4 度顶点各 2 个,这 4 个顶点的度数之和为 14 度。
其余顶点的度数共有 6 度。
其余顶点的度数均小于 3,欲使 G 的顶点最少,其余顶点的度数应都取 2,所以,G 至少有 7 个顶点, 出度数列为 3,3,4,4,2,2,2, ∆( )4 ,( )2 .G G7、设有向图 D 的度数列为 2,3,2,3,出度列为 1,2,1,1,求 D 的入度列,并求∆(D ),(D ) ,∆(D ), ( ) , ∆− D ( D ), (D ) .解:D 的度数列为 2,3,2,3,出度列为 1,2,1,1,D 的入度列为 1,1,1,2.∆( ) 3, ( ) 2 , ∆ D D (D ) 2,( ) 1, ∆−D ( D ) 2,( D ) 18、设无向图中有 6 条边,3 度与 5 度顶点各 1 个,其余顶点都是 2 度点,问该图有多少 个顶点?解:由握手定理图 G 的度数之和为: 2 6 12 设 2 度点 x 个,则 31512x12 , x2 ,该图有 4 个顶点.14、下面给出的两个正整数数列中哪个是可图化的?对可图化的数列,试给出 3 种非同 构的无向图,其中至少有两个时简单图。
(1) 2,2,3,3,4,4,5(2) 2,2,2,2,3,3,4,4解:(1) 2+2+3+3+4+4+5=23 是奇数,不可图化; (2) 2+2+2+2+3+3+4+4=16, 是偶数,可图化;18、设有 3 个 4 阶 4 条边的无向简单图 G 1、G 2、G 3,证明它们至少有两个是同构的。
证明:4 阶4条边的无向简单图的顶点的最大度数为3,度数之和为8,因而度数列1k⎣kk G♦ 3为2,2,2,2;3,2,2,1;3,3,1,1。
但3,3,1,1 对应的图不是简单图。
所以从同构的观点看,4 阶4条边的无向简单图只有两个:所以,G1、G2、G3至少有两个是同构的。
20、已知n阶无向简单图G有m条边,试求G的补图G的边数m′。
解:′n(n −1)m2m21、无向图G如下图(1)求G 的全部点割集与边割集,指出其中的割点和桥;(2) 求G的点连通度k (G) 与边连通度(G ) 。
a e1e2deb e5解:点割集: {a,b},(d)e3e4边割集{e2,e3},{e3,e4},{e1,e2},{e1,e4}{e1,e3},{e2,e4},{e5}( ) =(G G) =123、求G的点连通度(G) 、边连通度(G) 与最小度数( ) 。
G解:(G) 2 、(G) 3、( ) 428、设n阶无向简单图为3-正则图,且边数m与n满足2n-3=m 问这样的无向图有几种非同构的情况?解:⎧ n2m得n=6,m=9.⎧2n− 3 m2A = 0 0 00 2 1 0 1 3 0 2 0 1 0 1 0 00 0 0 0 2 0 2 0 2 01 0 1 0 0 0 0 0 02 0 2 0 2 00 0 4 0 42 331、设图 G 和它的部图 G 的边数分别为 m 和 m ,试确定 G 的阶数。
解: mmn (n 1) 2−1 得 n1 8(m m )245、有向图 D 如图(1)求 v 2 到 v 5 长度为 1,2,3,4 的通路数; (2)求 v 5 到 v 5 长度为 1,2,3,4 的回路数; (3)求 D 中长度为 4 的通路数;(4)求 D 中长度小于或等于 4 的回路数; (5)写出 D 的可达矩阵。
v1v4v5v2v3解:有向图 D 的邻接矩阵为:⎧0 0 00 ⎧⎧01 01 1 ⎧⎧1 ⎧, A⎧⎧ ⎧0 1 ⎧⎧0⎧⎧ 2 0 0 1 0 ⎧⎧⎧A⎧ 2 0 ⎧⎧ 20 2 0 0 ⎧⎧⎧ ⎧2 0 ⎧⎧ ⎧ ⎧0 0 00 ⎧⎧0 0 0 0 4 ⎧ ⎧ ⎧⎧ 4 0 4 0 0 ⎧4 ⎧0 0 00 4 ⎧A ⎧ ⎧⎧ 4 0 4 0 0 ⎧ ⎧ ⎧ ⎧0 4 0 4 ⎧ A AAA⎧01 ⎧ ⎧52 4 ⎧21 ⎧ ⎧42 ⎧ ⎧252 1 5 ⎧⎧ 5 2 2 ⎧ 2 1 5 ⎧ ⎧ 5 2 2 ⎧ ⎧ 2 5⎧(1) v 2 到 v 5 长度为 1,2,3,4 的通路数为 0,2,0,0;(2) v 5 到 v 5 长度为 1,2,3,4 的回路数为 0,0,4,0;(3)D 中长度为 4 的通路数为 32; (4)D 中长度小于或等于 4 的回路数 10;31 ⎧1 ⎧⎧1 (4)出 D 的可达矩阵 ⎧1 P⎧ ⎧1 ⎧⎧1 1 1 1 1⎧⎧ 1 1 1 1⎧ 1 1 1 1⎧ ⎧1 1 1 1⎧1 1 1 ⎧第十六章部分课后习题参考答案1、画出所有 5 阶和 7 阶非同构的无向树.2、一棵无向树 T 有 5 片树叶,3 2 度分支点,其余的分支点都是 3 度顶点,问 T 有 几个顶点?解:设 3 度分支点 x 个,则51323x2(53x −1) ,解得x3T 有 11 个顶点3、无向树 T 有 8 个树叶,2 个 3 度分支点,其余的分支点都是 4 度顶点,问 T 有几个 4 度分支点?根据 T 的度数列,请至少画出 4 棵非同构的无向树。
解:设 4 度分支点 x 个,则81 2 3 4x 2 (8 2 x −1) ,解得 x2度数列 1111111133444至 i n 4、棵无向树 T 有 i 几片树叶?(i=2,3,…,k )个 i 度分支点,其余顶点都是树叶,问 T 应该有 解:设树叶 片,则xn ii x 1 2(n ix −1) ,解得 x(−2)n i2评论:2,3,4 题都是用了两个结论,一是握手定理,二是 mn −15、n(n ≥3)阶无向树 T的最大度少为几?最多为几?解:2,n-16、若 n (n ≥3)阶无向树 T的最大度=2,问 T 中最长的路径长度为几?解:n-17、证明:n(n ≥2) 阶无向树不是欧拉图. 证明:无向树没有回路,因而不是欧拉图。
8、证明:n(n ≥2) 阶无向树不是哈密顿图. 证明:无向树没有回路,因而不是哈密顿图。
9、证明:任何无向树 T 都是二部图.证明:无向树没有回路,因而不存在技术长度的圈,是二部图。
10、什么样的无向树 T 既是欧拉图,又是哈密顿图?解:一阶无向树14、设 e 为无向连通图 G 中的一条边, e 在 G 的任何生成树中,问 e 应有什么性质?解:e 是桥15、设 e 为无向连通图 G 中的一条边, e 不在 G 的任何生成树中, 问 e 应有什么性质?解:e 是环23、已知 n 阶 m 条的无向图 G 是 k (k ≥2)棵树组成的森林,证明:m = n-k.;证明:数学归纳法。
k=1 时, m = n-1,结论成立;设 k =t-1(t-1 ≥ 1 )时,结论成立,当 k =t 时, 无向图 G 是 t 棵树组成的森林,任取两棵树,每棵树任取一个顶点,这两个顶点连线。
则所得新图有 t -1 棵树,所以 m = n -(k-1).所以原图中 m = n-k 得证。
24、在图 16.6 所示 2 图中,实边所示的生成子图 T 是该图的生成树.(1)指出 T 的弦,及每条弦对应的基本回路和对应 T 的基本回路系统.5(2) 指出 T 的所有树枝, 及每条树枝对应的基本割集和对应 T 的基本割集系统.(a)(b)图 16.16解:(a)T 的弦:c,d,g,hT 的基本回路系统: S={{a,c,b},{a,b,f,d},{e,a,b,h},{e,a,b,f,g}} T 的所有树枝: e,a,b,fT 的基本割集系统: S={{e,g,h},{a,c,d,g,h},{b,c,d,g,h},{f,d,g}} (b)有关问题仿照给出25、求图 16.17 所示带权图中的最小生成树.(a)(b)图 16.17解:注:答案不唯一。
37、画一棵权为 3,4,5,6,7,8,9 的最优 2 叉树,并计算出它的权.6.38.下面给出的各符号串集合哪些是前缀码?A1={0,10,110,1111} 是前缀码A2={1,01,001,000} 是前缀码A3={1,11,101,001,0011} 不是前缀码A4={b,c,aa,ac,aba,abb,abc} 是前缀码A5={ b,c,a,aa,ac,abc,abb,aba} 不是前缀码41.设7个字母在通信中出现的频率如下:a: 35% b: 20%c: 15% d: 10%e: 10% f: 5%g: 5%用H uffman 算法求传输它们的前缀码.要求画出最优树,指出每个字母对应的编码.并指出传输10n(n≥2)个按上述频率出现的字母,需要多少个二进制数字.解:a:01 b:10 c:000 d:110 e:001 f:1111 g:1110W(T)=5*4+5*4+10*3+10*3+15*3+20*2+35*2=255传输10n(n≥2)个按上述频率出现的字母,需要255*10n-2个二进制数字.7精选文档。