八年级数学上册_分式混合运算专题练习

合集下载

分式混合运算专题练习[经典集合]

分式混合运算专题练习[经典集合]

分式的运算例1、下列分式abc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4例2.计算:3234)1(x y y x • a a a a 2122)2(2+⋅-+ x y xy 2263)3(÷41441)4(222--÷+--a a a a a 例3、 若432z y x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(c b a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(cb a bc a -÷- (4)232222)()()(x y xy xy x y y x -⋅+÷-例5计算:1814121111842+-+-+-+--x x x x x练习:1.计算:8874432284211x a x x a x x a x x a x a --+-+-+--例6.计算:2018119171531421311⨯+⨯++⨯+⨯+⨯练习1、()()()()()()()()1011001431321211++++++++++++x x x x x x x x例7、已知21)2)(1(12++-=+-+x Bx A x x x ,求A. B 的值。

计算下列各题:(1)2222223223xy yx y x y x y x y x ----+--+ (2)1111322+-+--+a a a a .(3)29631a a --+ (4) 21x x --x -1 (5)3a a --263a a a +-+3a,(6)x y y y x x y x xy --++-222 ⑺b a b b a ++-22 ⑻293261623x x x -+--+⑼xy y x y x y x 2211-⋅⎪⎪⎭⎫ ⎝⎛+-- ⑽ 222x x x +--2144x x x --+(11)a a a a a a 4)22(2-⋅+--.2.已知x 为整数,且918232322-++-++x x x x 为整数,求所有的符合条件的x 的值的和.3、混合运算:⑴2239(1)x x x x ---÷ ⑵232224xx x x x x ⎛⎫-÷ ⎪+--⎝⎭ ⑶ a a a a a a 112112÷+---+⑷ 444)1225(222++-÷+++-a a a a a a ⑸)1x 3x 1(1x 1x 2x 22+-+÷-+- ⑹)252(23--+÷--x x x x ⑺221111121x x x x x +-÷+--+⑻2224421142x x x x x x x -+-÷-+-+ ⑼2211xy x y x y x y ⎛⎫÷- ⎪--+⎝⎭⑽ (ab b a 22++2)÷b a b a --22 ⑾22321113x x x x x x x +++-⨯--+⑿ xx x x x x x x x 416)44122(2222+-÷+----+ (13)、22234()()()x y y y x x -⋅-÷-(14)、)252(423--+÷--m m m m (15)、x x x x x x x --+⋅+÷+--36)3(446222(16)、 ()3212221221------⎪⎭⎫ ⎝⎛b a c b b a (17)、⎪⎭⎫ ⎝⎛---÷⎪⎪⎭⎫ ⎝⎛+--x x x x x 23441823224.计算:x xx x x x x x -÷+----+4)44122(22,并求当3-=x 时原式的值.5、先化简,x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--再取一个你喜欢的数代入求值:6、有这样一道题:“计算22211x x x -+-÷21x x x-+-x 的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?7、计算、)1(1+a a +)2)(1(1++a a +)3)(2(1++a a +…+)2006)(2005(1++a a 。

八年级数学上册_分式混合运算专题练习[1]

八年级数学上册_分式混合运算专题练习[1]

八年级数学上册_分式混合运算专题练习(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册_分式混合运算专题练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册_分式混合运算专题练习(word版可编辑修改)的全部内容。

分式的混合专题练习(1)2222223223xy yx y x y x y x y x ----+--+ (2)1111322+-+--+a a a a 。

(3) 21x x --x -1 (4) 3a a -—263a a a +-+3a ,(5)xy yy x x y x xy --++-222 (6)293261623x x x -+--+(7)xy y x y x y x 2211-⋅⎪⎪⎭⎫ ⎝⎛+-- (8)a a a a a a 4)22(2-⋅+--.(9)232224xx x x x x ⎛⎫-÷ ⎪+--⎝⎭ (10))1x 3x 1(1x 1x 2x 22+-+÷-+-(11) )252(23--+÷--x x x x (12) (ab b a 22++2)÷b a b a --22(13)22321113x x x x x x x +++-⨯--+ (14)xx x x x x x x x 416)44122(2222+-÷+----+(15)计算:x xx x x x x x -÷+----+4)44122(22,并求当3-=x 时原式的值.。

人教版八年级数学上册分式的混合运算同步练习题

人教版八年级数学上册分式的混合运算同步练习题

第2课时 分式的混合运算一、选择题 1.已知x x 1-=3,则x x 232142+-的值为( ) A . 1 B . C . D . 2.化简)121(1212-+÷+-+a a a a 的结果是( ) A .11-a B .11+a C .112-a D . 112+a3.化简xyx x y y x -÷-)(的结果是( ) A .y 1 B .y y x + C .yy x - D .y 4.化简)11()12(xx x x -÷--的结果是( ) A .x 1 B .1-x C .x x 1- D .1-x x 5.计算ab ba b a b a b a b a 2)(2222-⨯+---+的结果是( ) A .b a -1 B .b a +1C .b a -D .b a + 6.计算)111()111(2-+÷-+x x 的结果为( ) A . 1 B .1+x C .x x 1+ D .11-x7.已知:1a =x +1(x ≠0且x ≠﹣1),2a =1÷(1﹣1a ),3a =1÷(1﹣2a ),…,n a =1÷(1﹣1-n a ),则2014a 等于( )A . xB . x +1C .x 1-D .1+x x 8.某商品因季节原因提价25%销售,为庆祝元旦,特让利销售,使销售价为原价的85%,则现应降价 ( )A . 20%B . 28%C . 32%D . 36% 二.填空题 9.化简:4)222(2-÷--+m mm m m m=___________. 10.若222222M xy y x y x y x y x y--=+--+ ,则M =___________.11.若代数式1324x x x x ++÷++有意义,则x 的取值范围是___________. 12.计算:8241681622+-÷++-a a a a a =___________.13.化简x x x x x x x 21121222++-•+--的结果是___________. 14.已知032≠=b a ,则代数式)2(42522b a ba b a -•--=___________. 15.化简:)14()22441(22-÷-+-+--a aa a a a a =___________. 16.化简:22229631y xy x y x y x y x +--÷-+- =___________. 17.若,5321=++z y x ,7123=++z y x 则z y x 111++=___________. 18.已知0=++z y x ,则=-++-++-+222222222111z y x y x z x z y ___________.三、解答题 19.计算:(1)2112222+++--+÷+x x x x x x x x ;(2))11112()1(2+--+÷-+x x x x x .20.已知实数a 、b 满足式子|a ﹣2|+(b ﹣)2=0,求)2(2ab ab a a b a --÷-的值.21.先化简,再求值:444)212(2+--÷---+x x x x x x x ,其中x 是不等式3x +7>1的负整数解.22.先化简121)1(12222+--++÷-+a a a a a a ,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.23.A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为(a ﹣1)米的正方形,两块试验田的玉米都收获了500千克. (1)哪种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?第3课时 分式的混合运算一.选择题1.D2.A3.B4.B5.B6.C7.B8.C 二、填空题9.6-m 10.2x 11.432-≠-≠-≠x x x 且且 12.-2 13.x 314.21 15.2)2(1-a 16.y x y -2 17.3 18.0. 三、解答题19.解:(1)原式=21)1)(2()1)(1()1(+++-+-+⨯+x x x x x x x x x=12121=++++x x x . (2)原式=)11112()1(2+--+÷-+x x x x x=)1)(1(11)1(21223-++-++-÷-+-x x x x x x x x x=232)1)(1()1)(1(xx x x x x -+•-+ =2x . 20.解:原式=,ab ab a a b a 222+-÷- =2)(b a a a b a -•-, =ba -1, ∵|a ﹣2|+(b ﹣)2=0, ∴a ﹣2=0,b ﹣=0, 解得a =2,b =,所以,原式==2+.21.原式=[)2()1()2()2)(2(-----+x x x x x x x x ]×4)2(2--x x ,=4)2()2(4222--⨯-+--x x x x x x x ,=4)2()2(42--⨯--x x x x x , =xx 2-, 73+x >1, x 3>﹣6, x >﹣2,∵x 是不等式73+x >1的负整数解, ∴x =﹣1把x =﹣1代入xx 2-中得:=3.22.解:原式=11111)1(2-+++⨯-+a a a a a =131112-+=-++-a a a a a , 当a =2时,原式==5.23.解:(1)A 玉米试验田面积是)1(2-a 米2,单位面积产量是15002-a 千克/米2; B 玉米试验田面积是2)1(-a 米2,单位面积产量是21500)(-a 千克/米2; ∵)1(2-a ﹣2)1(-a =2(a ﹣1)且a ﹣1>0, ∴0<2)1(-a <)1(2-a∴15002-a <21500)(-a ∴B 玉米的单位面积产量高;(2)21500)(-a ÷15002-a =21500)(-a ×50012-a =21)1)(1()(--+a a a=11-+a a . ∴高的单位面积产量是低的单位面积产量的11-+a a 倍.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..这个几何体的主视图和俯视图分别为( )。

人教版八年级数学上册 分式的混合运算练习题

人教版八年级数学上册 分式的混合运算练习题

第11讲 分式的混合运算一、【复习巩固】分式的混合运算(1)221423----÷--x x x x x (2)()()313252-----x x x x (3)22()5525x x x x x x -÷---,(4) 421628a a b b -+ (5)(b 1-a 1)·22b a ab - (6) b a b - +b a a +-222a b ab-(7)(x -1-18+x )÷13++x x (8)112223+----x x x x x x (9)22444222-+÷-++m m m m m m(10)242211x x xx x x x --÷--+- (11)xx x x x x x x 4)44122(22-÷+----+(12)2144122++÷++-a a a a a(13) 44321112+++÷⎪⎭⎫⎝⎛++-+-x x x x x x x (14)()()22442122-÷⎥⎦⎤⎢⎣⎡--+-++a a a a a a a a a二、【专题讲解】分式的化简求值(师傅领进门,修行靠个人,一字记之曰:“悟”)分式求值题既突出代数式的运算、变换的基础知识和基本技能,又注意数学思想方法的渗透,是历年考试热点,因此熟悉它们的题型和常用方法很有必要,现归纳分析如下,供同学们参考: 类型一、常规代入求值(这种类型是比较简单的)例1、先化简(1)1122-÷+-+a aa a a ,选一个你喜欢的数作为a 的值代入求值.类型二、化简代入法 ,考验悟性了 已知x =215+,求531xx x ++的值类型三、整体代入法 例 (1)已知,ab=-1,a -b=2,则式子baa b +=__________ (2)已知511=+y x ,求yxy x y xy x +++-2232=__________ (3)已知210x x +-=,求222(1)(1)(1)121x x x x x x x --÷+---+的值类型四、主元法 例:已知2x -3y -z=0,x -6y +z=0求2222223z yz x yzy x -++-的值类型五、倒数法 例:若0132=+-x x ,求分式的值1242++x x x类型六、配方法 例:设0a b >>,2260a b ab +-=,则a bb a+-的值等于 .类型七、裂项法 观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;……解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论;(3)求和:211⨯+321⨯+431⨯+…+201020091⨯类型八、特殊值法: 例 已知abc ≠0,a +b +c=0,求)11()11()11(ba c a cbc b a +++++=类型九、参数法:例: 已知0432≠==z y x ,求z y x zy x +--+3232的值类型十、常值代入法 例: 若abc=1求cac cbc b b ab a a ++++++++111的值类型十一、恒等变形法 例: 若ba b a +=+111,求分式b a a b +的值当堂练习1、先化简,再求值:12212122++-÷⎪⎭⎫⎝⎛+---x x x x x x xx , 其中x 满足012=--x x .2、已知22006a b +=,求ba b ab a 421212322+++的值. 3、已知311=-y x ,求y xy x yxy x ---+2232的值.4、若1=ab ,求221111ba +++的值 5.已知x x 12=+,求代数式34121311222+++-•-+-+x x x x x x x 的值5、432z y x ==,求222z y x zx yz xy ++++的值 6. 已知23=-+b a b a ,求分式ab b a 22-的值7、已知41=+xx ,求1242++x x x 的值. 8. 已知51,41,31=+=+=+c a ac c b bc b a ab ,求bcac ab abc++的值.9、.103225),0(072,0634222222的值求代数式若z y x z y x xyz z y x z y x ---+≠=-+=-- 10、已知()()212132++-+=+-+x Cx B x A x x x x (C B A 、、为常数),求C B A 、、的值.11、xx x x x x x x 2)12(1)3)(2(1)2)(1(1)1(1⋅-+++++++++。

分式混合运算练习题(50题)

分式混合运算练习题(50题)

分式混合运算练习题(50题) 分式混合运算练50题(5月25、26、27日完成)1.计算:$\frac{3}{4}+\frac{1}{6}-\frac{1}{8}$。

2.计算:$\frac{5}{6}-\frac{1}{4}+\frac{1}{3}$。

3.化简:$\frac{6x+2}{2x}$。

4.化简:$\frac{5x^2-15}{10}$。

5.计算:$\frac{2}{3}+\frac{1}{4}-\frac{1}{6}$。

6.化简:$\frac{3}{4}+\frac{2}{5}-\frac{1}{10}$。

7.计算:$\frac{2}{3}+\frac{3}{4}-\frac{5}{6}$。

8.计算:$\frac{3}{4}+\frac{1}{2}\div\frac{2}{5}$。

9.计算:$\frac{1}{2}+\frac{1}{3}\times\frac{3}{4}$。

10.化简:$\frac{3x^2-12}{6x}$。

11.计算:$\frac{1}{2}+\frac{2}{3}\times\frac{3}{4}-\frac{3}{5}$。

12.计算:$-\frac{1}{a+1}$。

13.计算:$\frac{2a-1}{a^2-1}$。

14.计算:$\frac{1}{a^2}+\frac{1}{a^3}$。

15.计算:$\frac{1}{2}+\frac{2}{3}\times\frac{3}{5}$。

16.化简:$\frac{x^2-2x+1}{x^2-1}$,$x\neq-1,1$。

17.已知$ab=1$,试求$\frac{a^2+b^2}{a^2-b^2}$的值。

18.计算:$-\frac{a}{a^2-1}$。

19.计算:$\frac{1}{a}+\frac{1}{b}-\frac{a+b}{ab}$。

20.化简:$\frac{2x^2-8}{4x}$。

21.计算:$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$。

人教八年级数学上册-分式的混合运算(附习题)

人教八年级数学上册-分式的混合运算(附习题)

课堂小结 对于不带括号的分式混合运算: (1)运算顺序:先乘方,再乘除,然后加减; (2)计算结果要化为最简分式. 对于带括号的分式混合运算: (1)将各分式的分子、分母分解因式后,再
进行计算; (2)注意处理好每一步运算中遇到的符号; (3)计算结果要化为最简分式.
课后作业
2y 3x
x2 2y
x 2y2
3x3 8y
x3 4 y3
3x3y2 8y3
2x3
2.先化简,再求值: m2
m2
3m 4m
4
m m
3 2
m
2
2

其中m=2.
解:原式
m m 3 m 22
m2 m3
2 m
2
m 2 m 2. m2 m2 m2
当m=2代入其中,得原式 2 2 0 . 22
问题 分数的混合运算的顺序是什么?你能将 它们推广,得出分式的混合运算顺序吗?
分式的混合运算顺序: “从高到低、从左到右、括号从小到大”.
例1 计算:
2a 2 b
1 a-b
-
a b
b 4
.
这道题的运算顺序是怎样的?
解:
2a 2
b
1 a-b
-
a b
b 4
=
4a2 b2
1 a-b
-
a b
例2 计算:
(1) m+2+
5
2-m
2m-4 ; 3-m
(2) xx2 -+22x -
x-1 x2 -4x+4
x-4 . x
这两道题的运算顺序又是怎样的?
解:(1)
m+2+

初二分式的乘法混合运算练习题

初二分式的乘法混合运算练习题

初二分式的乘法混合运算练习题在初中数学学习中,学生们经常会遇到分式的乘法混合运算题目。

这些题目不仅考察了学生对分式乘法的理解,还涉及到了混合运算的技巧。

本文将提供一些初二分式的乘法混合运算练习题,帮助学生们巩固知识,并提供解析。

练习题一:计算下列混合运算的结果。

1. $\frac{3}{4} \times \left( \frac{5}{8} + \frac{1}{3} \right)$2. $\left( \frac{2}{5} + \frac{1}{3} \right) \times \frac{4}{9}$3. $\frac{1}{2} \times \frac{5}{6} \times \frac{2}{7}$练习题二:根据已知条件,求解下列问题。

1. 一辆汽车每小时可以行驶$\frac{11}{12}$英里,若行驶8小时,总共行驶了多少英里?2. 甲、乙、丙三个人合作做一件工作,甲一小时能完成$\frac{1}{5}$,乙一小时能完成$\frac{1}{6}$,丙一小时能完成$\frac{1}{8}$,他们一起工作8小时,工作完成了多少?解析:练习题一:1. 先计算括号内的加法:$\frac{5}{8} + \frac{1}{3} = \frac{15}{24} + \frac{8}{24} = \frac{23}{24}$然后将结果乘以$\frac{3}{4}$:$\frac{23}{24} \times \frac{3}{4} = \frac{23 \times 3}{24 \times 4} = \frac{69}{96}$简化分数:$\frac{69}{96} = \frac{23}{32}$所以答案为$\frac{23}{32}$2. 先计算括号内的加法:$\frac{2}{5} + \frac{1}{3} = \frac{6}{15} + \frac{5}{15} = \frac{11}{15}$然后将结果乘以$\frac{4}{9}$:$\frac{11}{15} \times \frac{4}{9} = \frac{11 \times 4}{15 \times 9} = \frac{44}{135}$所以答案为$\frac{44}{135}$3. 将三个分数相乘:$\frac{1}{2} \times \frac{5}{6} \times \frac{2}{7} = \frac{1 \times 5 \times 2}{2 \times 6 \times 7} = \frac{10}{84}$简化分数:$\frac{10}{84} = \frac{5}{42}$所以答案为$\frac{5}{42}$练习题二:1. 使用乘法将小时与每小时行驶的英里数相乘:$8 \times\frac{11}{12} = \frac{88}{12}$简化分数:$\frac{88}{12} = \frac{22}{3}$所以答案为$\frac{22}{3}$或7$\frac{1}{3}$英里2. 使用乘法将小时与每小时的工作量相乘:$8 \times\left( \frac{1}{5} + \frac{1}{6} + \frac{1}{8} \right) = \frac{8}{5} +\frac{8}{6} + \frac{8}{8} = \frac{48}{15} + \frac{40}{15} + \frac{60}{15} = \frac{148}{15}$简化分数:$\frac{148}{15} = 9\frac{13}{15}$所以答案为9$\frac{13}{15}$通过对以上习题的解析,希望能够对初二分式的乘法混合运算有更好的理解。

人教版八年级数学上册 分式混合运算(习题及答案)

人教版八年级数学上册 分式混合运算(习题及答案)

÷ x + 2 - ⎪ . 解:原式 = - ÷例 2:先化简 ⎢⎡ x ( x + 1) + x ⎥ ÷ 解:原式 = ⋅例题示范例 1:混合运算: 分式混合运算(习题)4 - x ⎛ 12 ⎫x - 2 ⎝ x - 2 ⎭【过程书写】x - 4 x 2 - 4 - 12x - 2 x - 2 x - 4 x 2 - 16 =- ÷x - 2 x - 2 x - 4 x - 2 =- ⋅x - 2 ( x + 4)( x - 4)=-1x + 4⎤ 2 x⎣ x - 1 ⎦ 1 - x,然后在 -2 ≤ x ≤ 2 的范围内选取一个你认为合适的整数 x 代入求值.【过程书写】x 2 + x + x 2 - x 1 - x x - 1 2 x2 x 2 1 - x = ⋅x - 1 2 x = - x∵ -2 ≤ x ≤ 2 ,且 x 为整数∴使原式有意义的 x 的值为-2,-1 或 2 当 x =2 时,原式=-2(2) - 1⎪ ÷ (3)⎪(4) y - 1 - y - 1 ⎭ y 2 + y巩固练习1. 计算:(1)1 - x - y x 2 - y 2÷x + 2 y x 2 + 4 x y + 4 y 2;⎛ a ⎫ ⎝ a - 1 ⎭ a 1 2 - 2a + 1;⎛ 2 ⎝ a 2 - b 2 - 1 ⎫ a ÷ a 2 - ab ⎭ a + b;⎛ 8 ⎫ y 2 - 6 y + 9 ⎪ ÷ ⎝;(5) ÷ - ⎪ ; (6) ÷ -1⎪ ;x ⎪ ⎪ ; 3 - x ⎛ 5 ⎫ x - 2 ⎛ -5 ⎫ ÷ - x - 3 ⎪ ; ÷ x + 2 -(10) ( x 2 - 1) - - 1⎪ ; 1a 2 - 2ab + b 2 ⎛ 1 1 ⎫ x 2 - 4x + 4 ⎛ 2 ⎫ 2a - 2b ⎝ b a ⎭ ⎝ x ⎭(7) ⎛ ⎝ 3x + 4 2 ⎫ x + 2 - ÷ x 2 - 1 x - 1 ⎭ x 2- 2 x + 1;(8) (9) 2 x - 4 ⎝ x - 2 ⎭ 2 x - 6 ⎝ x - 3 ⎭⎛ 1 ⎫ ⎝ x - 1 x + 1 ⎭(11) - ÷ - - ⎪ . ⎝ x + y x - y ⎭ x 2- 3xy ⎝x y ⎭ (1)先化简,再求值: 1 - ⎪÷(2)先化简,再求值: + ÷ x 2 - y 2 y 2 - x 2 ⎭ x 2 y - xy 2⎛ 2 1 ⎫ x 2 - y 2 ⎛ 1 1 ⎫ ⎪ ⋅2. 化简求值:⎛ ⎝ 1 ⎫ x 2 + 2x + 1 x + 2 ⎭ x + 2,其中 x = 3 -1.⎛ 5x + 3 y 2 x ⎫ 1 ⎪ ⎝x = 3 + 2 , y = 3 - 2 .,其中(3)先化简 ⎛ + 1⎪ ÷ (4)已知 A = .x + 1 ⎫ x 2 + x 2 - 2 x +⎝ x - 1 ⎭ x 2 - 2 x + 1 x 2 - 1,然后在 -2 ≤ x ≤ 2的范围内选取一个合适的整数 x 代入求值.x 2 + 2 x + 1 x -x 2 - 1 x - 1①化简 A ; ⎧ x -1≥ 0②当 x 满足不等式组 ⎨ ,且 x 为整数时,求 A 的值.⎩ x - 3 < 0x 2 + 3 B . x 2 + 1 D. 2ab 中的分子、分母的值同时扩大为原来的 2 倍,则分式的值(ab 中 a ,b 的值都扩大为原来的 2 倍,则分式的值(x 2 + y 2 中 x ,y 的值都扩大为原来的 2 倍,则分式的值(( x - 2)( x + 3) = x + 3,则 A =_______,B =_______.3. 不改变分式13x - y2 的值,把分子、分母中各项系数化为整数,结果是( )1 3 x2 + 1A . 6 x - yC . 3x - 3 y 18 x - 3 y2 x 2 + 6 18 x -3 y2 x 2 + 34. 把分式 a - 3bA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 12)5. 把分式 3a - 4bA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 126. 把分式 2 xyA .不变B .扩大为原来的 2 倍C .扩大为原来的 4 倍D .缩小为原来的 12))7. 已知 4 x + 7A x - 2 + B2.(1)原式=1,当x=3-1时,原式=【参考答案】巩固练习1.(1)-yx+y (2)a-1(3)1 a2(4)y(y+1)(y2-2y-7) (y-1)(y-3)2(5)ab 2(6)-x+2(7)x-1 x+1(8)-(9)-1 2x+6 1 2x+4(10)-x2+3(11)-yx+y3x+13(2)原式=3xy,当x=3+2,y=3-2时,原式=3(3)原式=2x-4x+1,当x=2时,原式=0(4)①1x-1;②13. 4. 5. 6. 7.BADA 3,1。

人教版初中八年级数学上册专题分式混合运算习题及答案

人教版初中八年级数学上册专题分式混合运算习题及答案

分式混合运算(习题)例题示范例1:混合运算:412222x x x x -⎛⎫÷+- ⎪--⎝⎭. 【过程书写】2244122241622422(4)(4)14x x x x x x x x x x x x x x ---=-÷----=-÷----=-⋅-+-=-+解:原式例2:先化简(1)211x x xx x x+⎡⎤+÷⎢⎥--⎣⎦,然后在22x -≤≤的范围内选取一个你认为合适的整数x 代入求值. 【过程书写】2221122112x x x x xx x x x x x x++--=⋅--=⋅-=-解:原式 ∵22x -≤≤,且x 为整数∴使原式有意义的x 的值为-2,-1或2 当x =2时,原式=-2巩固练习1. 计算:(1)22221244x y x y x y x xy y---÷+++;(2)211121a a a a ⎛⎫-÷ ⎪--+⎝⎭;(3)22221a a b a ab a b⎛⎫-÷ ⎪--+⎝⎭;(4)2286911y y y y y y ⎛⎫-+--÷ ⎪-+⎝⎭;(5)2221122a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭; (6)24421x x x x -+⎛⎫÷- ⎪⎝⎭;(7)2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭;(8)352242x x x x -⎛⎫÷+- ⎪--⎝⎭; (9)253263x x x x --⎛⎫÷-- ⎪--⎝⎭;(10)211(1)111x x x ⎛⎫---⎪-+⎝⎭;(11)22221113x y x y x y x xy x y ⎛⎫⎛⎫--⋅÷-- ⎪ ⎪+--⎝⎭⎝⎭.2. 化简求值:(1)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x =.(2)先化简,再求值:2222225321x y x x y y x x y xy ⎛⎫++÷ ⎪---⎝⎭,其中x =y =(3)先化简22212211211x x x x x x x x ++-⎛⎫+÷+ ⎪--+-⎝⎭,然后在22x -≤≤ 的范围内选取一个合适的整数x 代入求值.(4)已知222111x x xA x x ++=---.①化简A ;②当x 满足不等式组1030x x -⎧⎨-<⎩≥,且x 为整数时,求A 的值.3. 不改变分式2132113x yx -+的值,把分子、分母中各项系数化为整数,结果是() A .263x y x -+ B .218326x y x -+C .2331x yx -+ D .218323x yx -+4. 把分式32a bab-中的分子、分母的值同时扩大为原来的2倍,则分式的值() A .不变 B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的125. 把分式34a bab-中a ,b 的值都扩大为原来的2倍,则分式的值()A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的126. 把分式222xyx y +中x ,y 的值都扩大为原来的2倍,则分式的值() A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的127. 已知47(2)(3)23x A Bx x x x +=+-+-+,则A =_______,B =_______.【参考答案】巩固练习 1. (1)y x y-+ (2)1a - (3)21a(4)22(1)(27)(1)(3)y y y y y y +----(5)2ab (6)2x -+(7)11x x -+(8)126x -+(9)124x -+(10)23x -+ (11)y x y-+2. (1)原式11x =+,当1x =时,原式=(2)原式=3xy ,当x =y =时,原式=3 (3)原式241x x -=+,当x =2时,原式=0 (4)①11x -;②1 3. B 4. A 5. D 6. A 7.3,1。

八年级数学上册分式的乘除混合运算及乘方练习题

八年级数学上册分式的乘除混合运算及乘方练习题

八年级数学上册分式的乘除混合运算及乘方练习题(含答案解析)学校:___________姓名:___________班级:___________一、单选题1.计算1a a a÷⨯的结果是( )A .aB .2aC .1aD .3a2.化简2()b ba a a -÷-的结果是( )A .-a -1B .a -1C .-a +1D .-ab +b3.下列分式运算或化简错误的是( )A .133122x x x x --=--+ B .322242x y x x y y-=-C .()22()x yx xy x y x--÷=- D .42122x x x++=--- 4.计算32n m ⎛⎫⎪⎝⎭的结果是( )A .32n mB .36n mC .35n mD .5n m 5.小马虎在下面的计算中只做对了一道题,他做对的题目是( )A .22a a b b ⎛⎫= ⎪⎝⎭B .1x yx y--=-- C .112a b a b+=+ D .341a a a÷= 6.265ab c ·103cb的计算结果是( ) A .245a c B .4a C .4a c D .1c7.计算222421a a a a --+-的结果是( )A .24a -B .24a -+C .24a --D .24a +8.试卷上一个正确的式子(11a b a b++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( ) A .a a b- B .a ba- C .a a b+ D .224a a b -二、解答题 9.化简下列分式(1)3265224a y ab a b y by⎛⎫⎛⎫--⋅÷ ⎪⎪⎝⎭⎝⎭; (2)2211122x x x -⎛⎫-÷⎪++⎝⎭. 10.阅读下面的解题过程: 已知2212374y y =++,求代数式21461y y +-的值.解:∵2212374y y =++,∵223742y y ++=,∵2231y y +=. ∵()2246122312111y y y y +-=+-=⨯-=,∵211461y y =+-.这种解题方法叫做“倒数法”,请你利用“倒数法”解下面的题目: 已知332x x +=+,求352242x x x x -⎛⎫÷-- ⎪--⎝⎭的值. 11.给定下面一列分式:3x y ,−52x y ,73x y,−94x y ,…,(其中x ≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第2013个分式.12.先化简,再求值:242a a a a ⎛⎫--÷ ⎪⎝⎭,请从不等式组104513a a +>⎧⎪-⎨≤⎪⎩ 的整数解中选择一个合适的数求值. 13.一艘船顺流航行km n 用了h m ,如果逆流航速是顺流航速的pq,那么这艘船逆流航行h t 走了多少路程? 14.化简:(1)⨯ (2)(a +2)2-(a +1)(a -1) 15.先化简,再求值:22x x +÷(1﹣211x x --),其中x 是不等式组()211532x x x x ⎧-<+⎨+≥⎩的整数解. 16.先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =. 17.先化简,再求值:222a ab a b b ⎛⎫--÷ ⎪⎝⎭.其中2,0a b b =≠. 18.某花卉生产基地举行花卉展览,如图所示是用这两种花卉摆成的图案,白色圆点为盆景,灰色圆点为盆花.图1中盆景数量为2,盆花数量为2;图2中盆景数量为4,盆花数量为6;图3中盆景数量为6,盆花数量为12……按照以上规律,解决下列问题:(1)图6中盆景数量为________,盆花数量为___________;(2)已知该生产基地展出以上两种花卉在某种图案中的数量之和为130盆,分别求出该图案中盆景和盆花的数量;(3)若有n (n 为偶数,且2n ≥)盆盆景需要展出(只摆一种图案),照此组合图案,需要盆花的数量为________.(用含n 的代数式表示) 三、填空题19.已知a ≠0,12S a =,212S S =,322S S =,…,201020092S S =,则2012S =_______(用含a 的代数式表示). 20.(2a bc -)3•(2c ab-)2÷(bc a )4=________.21.已知7x y +=且12xy =,则当x y <时,11x y的值等于________.22.若分式21x x -□1x x -运算结果为x ,则在“□”中添加的运算符号为_____.(请从“+、﹣、×、÷”中选择填写)参考答案:1.D【分析】根据分式的乘除运算法则即可计算. 【详解】解:31a a a a a a a÷⨯=⨯⨯=故选D【点睛】本题考查了分式的运算,加减乘除混合运算时,先算乘除再算加减,同名运算按从左往右依次计算,熟练掌握分式的乘除运算是解题的关键.【分析】将除法转换为乘法,然后约分即可.【详解】原式=(1)(1)1(1)b b b a a a a a a a a b -⎛⎫⎛⎫-÷=-⨯=--=- ⎪ ⎪-⎝⎭⎝⎭, 故选B .【点睛】本题考查分式的化简,熟练掌握分式的运算法则是解题关键. 3.C【分析】根据分式的性质,分式的约分,分式的加减以及除法运算进行化简,逐项分析即可 【详解】A .原式(31)31(2)2x x x x ---==-++,正确,不符合题意;B .原式=2xy-,正确,不符合题意; C .原式2()xx x y x x y=-⋅=-,错误,符合题意; D .原式4242(2)12222x x x x x x x +----=-===-----,正确,不符合题意. 故选:C .【点睛】本题考查了分式的计算,掌握分式的性质以及分式的约分,分式的加减是解题的关键. 4.B【分析】根据分式的乘方运算法则解答即可. 【详解】解:()3333262n n n m m m ⎛⎫== ⎪⎝⎭.故选:B .【点睛】本题考查了分式的运算,属于基本题型,熟练掌握分式的乘方运算法则是解答的关键. 5.D【分析】根据分式的运算法则逐一计算即可得答案. 【详解】A.222()a a b b=,故该选项计算错误,不符合题意,B.()1x y x y x y x y---+=≠---,故该选项计算错误,不符合题意, C.11a b a b ab++=,故该选项计算错误,不符合题意, D.3341a a a a a÷=⋅=,故该选项计算正确,符合题意, 故选:D .【点睛】本题考查分式的运算,熟练掌握运算法则是解题关键.【分析】分式乘分式,用分子的积作积的分子,分母的积作积的分母,能约分的要约分. 【详解】265ab c ·103c b=226106045315ab c abc ac b bc c ⨯==⨯.故选C.【点睛】本题主要考查了分式的乘除法,做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序. 7.A【分析】两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母,然后将各分式的分子、分母因式分解,进而可通过约分、化简得出结果.【详解】222421a a a a --+-=()()()()2122222421a a a a a a a -+-=-=-+-故选A .【点睛】本题考查了分式的乘法运算.如果分子、分母是多项式,那么就应该先分解因式,然后找出它们的公因式,最后进行约分. 8.A【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可. 【详解】解:11a b a b ⎛⎫+÷ ⎪+-⎝⎭∵=2a b + ()()a b a ba b a b -++÷+-∵=2a b+∵=()()22a ab a b a b ÷+-+=aa b-, 故选A .【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键. 9.(1)2a b;(2)21x +.【分析】(1)先算乘方,再算乘除; (2)先算括号里的,再算括号外的除法. 【详解】解:(1)3265224a y ab a b y by ⎛⎫⎛⎫--⋅÷ ⎪⎪⎝⎭⎝⎭63235648a y ab by b y a =⋅⋅2a b=. (2)2211122x x x -⎛⎫-÷⎪++⎝⎭()()()211111x x x x x +-=⋅+-+ 21x =+. 【点睛】本题考查了分式的混合运算,解题的关键是掌握有关运算法则,以及注意分子、分母的因式分解,通分、约分.10.13-【分析】先把括号内通分,再把除法运算化为乘法运算,接着把分子分母因式分解后约分得到原式12(3)x -+利用倒数法由已知条件得到332x x +=+然后把左边化为真分式后利用整体代入的方法计算. 【详解】解:原式35(2)(2)3212(2)22(2)(3)(3)2(3)x x x x x x x x x x x --+---=÷=⋅=-----+-+,∵332x x +=+, ∵2311113333x x x x x ++-==-=+++, 12,33x ∴=+ ∵原式1111212(3)23233x x =-=-⋅=-⨯=-++ 【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.11.(1)任意一个分式除以前面那个分式等于2x y -;(2)40272013x y.【分析】(1)利用分式的化简即可发现规律; (2)根据所发现的规律,求需要求的分式.【详解】解:(1)53773225942322;;;;x x x x x x yy x x y y y y y x y y ⎛⎫÷== ⎪⎛⎫-⎝⎭÷=---÷-⎪- ⎝⎭,规律是任意一个分式除以前面那个分式等于2x y-;(2)根据规律:后面一个分式除以前面那个分式等于2x y-,第一个分式是3x y ,所以第2013个分式应该是:20123240272013x x x y y y⎛⎫⨯-= ⎪⎝⎭. 【点睛】本题考查了分式的化简,解题的关键是:利用分式化简的法则计算找规律,然后运用规律求指定项的分式. 12.22a a +,3【分析】根据分式的加减运算以及乘除运算法则进行化简,然后根据不等式组求出a 的值并代入原式即可求出答案.【详解】解:242a a a a ⎛⎫--÷ ⎪⎝⎭2242a a a a -=⋅- ()()2222a a a a a +-=⋅- 22a a =+,104513a a +>⎧⎪⎨-≤⎪⎩①②, 解不等式∵得:1a >- 解不等式∵得:2a ≤, ∵12a -<≤, ∵a 为整数, ∵a 取0,1,2, ∵0,20a a ≠-≠, ∵a =1,当a =1时,原式21213=+⨯=.【点睛】本题考查分式的化简求值,解一元一次不等式组,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型. 13.nptmqkm 【分析】根据题意表示出顺流速度,进而表示出逆流速度,即可得到这艘船逆流航行t h 走的路程. 【详解】解:根据题意得:顺流速度为nmkm/h ,逆流速度为pn qm km/h ,则这艘船逆流航行t h 走了nptmqkm .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式. 14.(1)2 (2)45a +【分析】(1)利用平方差公式和完全平方公式即可求解;(2)利用平方差公式和完全平方公式进行展开后,进行合并同类项即可. (1)解:原式=22-=75- =2; (2)解:原式=()()22441a a a ++--=22441a a a ++-+ =45a +.【点睛】本题主要考查利用平方差公式进行二次根式的运算以及利用平方差公式和完全平方公式进行整式的运算,掌握乘法公式是解题的关键. 15.22x,当x =2时,原分式的值为12 【分析】由题意先把分式进行化简,求出不等式组的整数解,根据分式有意义的条件选出合适的x 值,进而代入求解即可.【详解】解:原式=()()()()()22211211221111x x x x x x x x x x x x +-⎛⎫--+÷=⨯= ⎪+-+-⎝⎭; 由()211532x x x x ⎧-<+⎨+≥⎩可得该不等式组的解集为:13x -≤<,∵该不等式组的整数解为:-1、0、1、2, 当x =-1,0,1时,分式无意义, ∵x =2,∵把x =2代入得:原式=22122=. 【点睛】本题主要考查分式的运算及一元一次不等式组的解法,要注意分式的分母不能为0.16.11a -,1 【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a 值代入求解即可.【详解】解:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭ ()()()2331113121a a a a a a a ⎡⎤+--=⋅-⋅⎢⎥--+-⎢⎥⎣⎦311112a a a a +⎛⎫=-⋅⎪--+⎝⎭ 2112a a a +=⋅-+ 11a =-, ∵2a =, ∵原式111121a ===--. 【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则是解题的关键. 17.a ab +,23【分析】根据分式的减法和除法可以化简题目中的式子,然后将2a b =代入化简后的式子即可解答本题.【详解】222a ab a b b ⎛⎫--÷ ⎪⎝⎭=222a ab a b bb b ⎛⎫--÷ ⎪⎝⎭=222a ab a b b b--÷ =()()()a ab bba b a b -+-=a a b+ 当2,0a b b =≠时,原式=222233b b b b b ==+. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式减法和除法的运算法则和计算方法. 18.(1)12;42(2)该图案中盆景和盆花的数量分别为20和110 (3)122n n ⎛⎫+ ⎪⎝⎭【分析】(1)由图可知,依次写出图1到图5的盆景的数量,盆花的数量;推导出一般性规律:图n 中盆景的数量为:2n ;盆花的数量为:()1n n +,将6n =代入求解即可;(2)由题意知,()21130n n n ++=,求出满足要求的n 值,进而可得盆景,盆花的数量; (3)根据推导出的一般性规律作答即可. (1)解:由图可知,盆景的数量依次为:12⨯、22⨯、32⨯、42⨯、52⨯······ 盆花的数量依次为:12⨯、23⨯、34⨯、45⨯、56⨯······ ∵可推导出一般性规律:图n 中盆景的数量为:2n ;盆花的数量为:()1n n + ∵图6中盆景的数量为:2612⨯=;盆花的数量为:()66142⨯+= 故答案为:12;42. (2)解:由题意知,()21130n n n ++= 整理得+-=231300n n()()10130n n -+=解得10n =,13n =-(不合题意,舍去)当10n =时,盆景数量为221020n =⨯=,盆花数量为13020110-= ∵该图案中盆景和盆花的数量分别为20和110. (3)解:由一般性规律可知,当有n 盆盆景需要展出时,需要盆花的数量为122n n ⎛⎫+ ⎪⎝⎭故答案为:122n n ⎛⎫+ ⎪⎝⎭.【点睛】本题考查了图形类规律探究,列代数式,解一元二次方程.解题的关键在于推导出一般性规律. 19.1a【分析】先把1S 的值代入2S 的表达式中,求出2S ,以此类推求出3S 、4S ,从而可发现规律:所有的奇次项都等于2a ,所有的偶次项都等于1a. 【详解】∵12S a =,∵212212S S a a ===, 312221S a S a===,∵每2个式子为一个周期循环, ∵20121S a= 故答案为:1a .【点睛】本题主要考查了分式乘除的混合运算与数字的变化规律,解题的关键是根据题意得出序数为奇数时为2a ,序数为偶数时为1a.20.833a b c- 【详解】解:原式=634483224433a b c a a c a b b c b c -⋅⋅=-.故答案为833a b c-. 21.112【分析】利用分式的加减运算法则与完全平方公式把原式化为:222()4x y xy x y +-,再整体代入求值,再利用平方根的含义可得答案.【详解】解:因为7x y +=,12xy =, 所以2222211()y x x y x y xy x y ⎛⎫⎛⎫---== ⎪ ⎪⎝⎭⎝⎭ 22222()47412112144x y xy x y +--⨯===, 又因为x y <,所以110x y->, 所以11112x y -=, 故答案为:112. 【点睛】本题考查的是由条件式求解分式的值,掌握变形的方法是解题的关键.22.﹣或÷.【分析】分别用计+、﹣、×、÷计算出结果进行验证即可解答.【详解】解:211x x x x +--=21x x x +-, 211x x x x ---=21x x x --=(1)1x x x --=x , 211x x x x --=32(1)x x -, 211x x x x ÷--=211x x x x-⨯-=x , 故答案为﹣或÷.【点睛】本题考查了分式方程的加、减、乘、除运算法则,掌握并灵活运用运算法则是解答本题的关键.。

分式的混合运算练习题及答案

分式的混合运算练习题及答案

分式的混合运算练习题及答案分式的混合运算练习题及答案分式是数学中常见的一种数形式,它由分子和分母组成,分子表示被分割的部分,分母表示总共的部分。

在实际生活中,我们经常会遇到需要进行分式的混合运算的情况,比如在购物时计算折扣、在烹饪中调整食材的比例等等。

下面我将给大家提供一些分式的混合运算练习题及答案,希望对大家的数学学习有所帮助。

1. 小明有1/4千克的苹果,他打算分给5个朋友,每人分多少千克?解答:将1/4千克除以5,即1/4 ÷ 5 = 1/4 × 1/5 = 1/20千克。

所以每人分到的苹果重量为1/20千克。

2. 一桶果汁有3/5升,小红喝了1/4升后,还剩下多少升?解答:将3/5升减去1/4升,即3/5 - 1/4 = 12/20 - 5/20 = 7/20升。

所以还剩下7/20升果汁。

3. 小明用1/2小时走完了全程,他一共用了多少分钟?解答:将1/2小时转换成分钟,即1/2 × 60 = 30分钟。

所以小明一共用了30分钟。

4. 一辆汽车以每小时80公里的速度行驶,行驶了1/4小时后停下来休息,此时汽车行驶了多少公里?解答:将每小时80公里的速度乘以1/4小时,即80 × 1/4 = 20公里。

所以汽车行驶了20公里。

5. 一张长方形的纸片的长是2/3米,宽是1/4米,求纸片的面积。

解答:将长和宽相乘,即2/3 × 1/4 = 2/12 = 1/6平方米。

所以纸片的面积为1/6平方米。

通过以上的练习题,我们可以看到分式的混合运算并不复杂,只需要将题目中的分式进行相应的运算即可得到答案。

在进行分式的混合运算时,我们需要注意分式的基本运算规则,比如分数的加减乘除运算规则,以及分数的化简等等。

熟练掌握这些规则,我们就能够轻松地解决分式的混合运算问题。

当然,在实际生活中,我们还会遇到更加复杂的分式混合运算问题,比如多个分式的加减乘除运算,或者分式与整数的混合运算等等。

(完整版)分式混合运算练习题(30题)(最新整理)

(完整版)分式混合运算练习题(30题)(最新整理)

D. 2 1 , 去分母得,2 (x 1) x 3 ; x 3 x 1
6. .赵强同学借了一本书,共 280 页,要在两周借期内读完.当他读了一半书时,发现平均每天要多
读 21 页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读 x
页,则下面所列方程中,正确的是( )
3
用去 18.40 元钱,买的瓶数比第一次买的瓶数多 倍,问她第一次在供销大厦买了几瓶酸奶?
5
2
B. m 5 时,方程的解是正数
C. m 5 时,方程的解为负数
D.无法确定
3.方程
1
5
3
的根是(

1 x2 x 1 1 x
A. x =1 B. x =-1
C. x = 3 8
D. x =2
4.1 4 4 0, 那么 2 的值是(
x x2
x
) A.2
B.1 C.-2 D.-1
5.下列分式方程去分母后所得结果正确的是( )
① 1 x 2 2 x 4 0 ②. x 4
23
a
③. a 4; ④. x 2 9 1; ⑤ 1 6;
x
x3
x2
⑥ x 1 x 1 2 . A.2 个 aa
B.3 个
C.4 个
D.5 个
2. 关于 x 的分式方程 m 1,下列说法正确的是( ) x5
A.方程的解是 x m 5
的值. 18.计算:

19.计算: 21.计算:
20.化简
22.化简: 23.计算:(1)
24.化简:
; (2)

25.化简: 27.计算: 29.化简
. 26 化简:

八年级数学分式的混合运算(跳步的危险)(人教版)(综合)(含答案)

八年级数学分式的混合运算(跳步的危险)(人教版)(综合)(含答案)

分式的混合运算(跳步的危险)(人教版)(综合)一、单选题(共8道,每道11分)1.化简的结果为( )A.1B.C. D.-1答案:B解题思路:故选B.试题难度:三颗星知识点:略2.化简的结果为( )A. B.1C. D.-1答案:A解题思路:故选A.试题难度:三颗星知识点:略3.下列运算正确的是( )A. B.C. D.答案:C解题思路:A:,错误.B:不能约分,错误.C:正确.D:错误故选C试题难度:三颗星知识点:略4.计算的结果为( )A. B.C. D.答案:C解题思路:故选C.试题难度:三颗星知识点:略5.化简的结果为( )A. B.C. D.答案:B解题思路:故选B.试题难度:三颗星知识点:略6.化简的结果为( )A. B.C. D.答案:B解题思路:故选B试题难度:三颗星知识点:略7.化简分式的结果为( )A. B.C. D.答案:A解题思路:故选A.试题难度:三颗星知识点:略8.计算的结果是( )A.-2m-6B.2m+6C.-m-3D.m+3答案:A解题思路:故选A试题难度:三颗星知识点:略二、填空题(共1道,每道12分)9.当x=2时,计算的结果为____.答案:0解题思路:当x=2时,=-2×4+4=0故应填0试题难度:知识点:略。

八年级数学上册第十五章分式专项训练题(带答案)

八年级数学上册第十五章分式专项训练题(带答案)

八年级数学上册第十五章分式专项训练题单选题1、对于任意的实数x ,总有意义的分式是( )A .x−5x 2−1B .x−3x 2+1C .x 2+18x D .2x−1答案:B分析:根据分式有意义的条件进行判断即可.A 项当x=±1时,分母为0,分式无意义;B 项分母x 2+1恒大于0,故分式总有意义;C 项当x=0时,分母为0,分式无意义;D 项当x=1时,分母为0,分式无意义;故选:B .小提示:本题考查了分式有意义的条件,掌握知识点是解题关键.2、若关于x 的分式方程m+4x−3=3x x−3+2有增根,则m 的值为( )A .2B .3C .4D .5答案:D分析:根据分式方程有增根可求出x =3,方程去分母后将x =3代入求解即可.解:∵分式方程m+4x−3=3x x−3+2有增根, ∴x =3,去分母,得m +4=3x +2(x −3),将x =3代入,得m +4=9,解得m =5.故选:D .小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、已知a =1−1b ,b =1−1c ,用a 表示c 的代数式为( )A .c =11−bB .a =11−cC .c =1−a aD .c =a−1a答案:D分析:将b =1−1c 代入a =1−1b 消去b ,进行化简即可得到结果.解:把b =1−1c 代入a =1−1b ,得 a =1−11−1c , 1−a =11−1c , 1−1c=11−a , 1c=1−11−a , 1c =−a 1−a ,c =a−1a. 故选D .小提示:本题考查了分式的混合运算,列代数式.熟练掌握运算法则是解题的关键.4、已知一个三角形三边的长分别为6,8,a ,且关于y 的分式方程y+3a y−3+4a 3−y =2的解是非负数,则符合条件的所有整数a 的和为( )A .20B .18C .17D .15答案:D分析:根据三边关系,即可求出a 的取值范围,再求出分式方程的解,利用分式方程的解为非负数建立不等式,即可求出a 的范围,注意分母不能为0.最后综合比较即可求解.解:∵一个三角形三边的长分别为6,8,a ,∴8−6<a <8+6.即:2<a <14,∵y+3a y−3+4a 3−y =2,∴y =6−a ,∵解是非负数,且y ≠3,∴6−a ≥0,且6−a ≠3,∴a ≤6且a ≠3,∴2<a≤6且a≠3,∴符合条件的所有整数a为:4或5或6.∴符合条件的所有整数a的和为:4+5+6=15.故选:D.小提示:本题考查了三角形三边关系、求解分式方程、一元一次不等式等知识,关键在于利用分式方程的解为非负数,建立不等式,同时一定要注意分母不为0的条件.属于中考填空或者选择的常考题.5、计算4ac3b ⋅9b22ac3的结果是()A.36ab2c6abc3B.6ab2cabc3C.6abcac3D.6bc2答案:D分析:先求出两个分式的乘积,然后根据分式的性质:分子和分母同时乘以或除以一个不为0的数,分式的值不变,进行求解即可.解:4ac3b ·9b22ac3=36ab2c6abc3=6bc2,故选D.小提示:本题主要考查了分式的乘法和分式的化简,解题的关键在于能够熟练掌握相关知识进行求解.6、将公式1R =1R1+1R2(R,R1,R2均不为零,且R≠R2)变形成求R1的式子,正确的是()A.R1=RR2R2−R B.R1=RR2R2+RC.R1=RR1+RR2R2D.R1=RR2R−R2答案:A分析:根据等式的性质即可求出答案.1 R1=1R−1R2=R2−RRR2,所以R1=RR2R2−R.故选:A.小提示:本题考查等式的性质,解题的关键是熟练运用等式的性质,属于基础题型.7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、分式方程3x−2=2x+6x(x−2)的解是()A.0B.2C.0或2D.无解答案:D分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.去分母得,3x=2(x−2)+6,解得x=2,经检验x=2是增根,则分式方程无解.故选:D.小提示:本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9、下列运算中,错误的是( )A.ab =acbc(c≠0)B.−a−ba+b=−1C.0.5a+b0.2a−0.3b=5a+10b2a−3bD.x−yx+y=y−xy+x答案:D分析:分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.据此作答.解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、x−yx+y =−(y−x)y+x,故D错误.故选D.小提示:本题考查了分式的基本性质.无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.10、(−b2a)2n(n为正整数)的值是()A.b2+2na2n B.b4na2nC.−b2n+1a2nD.−b4na2n答案:B分析:根据分式的乘方计算法则解答.(−b2a )2n=b4na2n.故选:B.小提示:此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.填空题11、观察下列各等式:1x ,-2x2,4x3,-8x4,16x5......,猜想第八个分式__.答案:−128x8分析:通过观察找出规律即可,第n个分式可表示为(−1)n+12n-1x n.解:当n=8时,求得分式为:−128x8所以答案为:−128x8.小提示:本题考查了规律型:数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是得出规律(−1)n+12n-1x n.12、化简1÷(3a2b ÷9a4b⋅2b3a)得________.答案:9a4b分析:在分式乘除混合计算中,一般情况下是按照从左到右的顺序进行运算,如果有括号,那么应先算括号内的,再算括号外的.1÷(3a 2b ÷9a 4b ⋅2b 3a )=1÷(3a 2b ×4b 9a ×2b 3a )=9a 4b .所以答案是:9a 4b .小提示:此题考查了分式的乘除混合运算,分式乘分式,用分子的积作为积的分子,分母的积作为积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.13、化简b 23a−b +9a 2b−3a 的结果是______.答案:−b −3a分析:根据同分母分式的加减法法则计算即可.解:原式=b 23a−b −9a 23a−b=b 2−9a 23a −b=(b +3a)(b −3a)3a −b=−b −3a所以答案是:−b −3a .小提示:本题考查同分母分式的加减,解题关键是正确地运用运算法则.14、当x________时,分式x+12x−1有意义.答案:≠12.分析:分母不为零时,分式有意义.当2x ﹣1≠0,即x ≠12时,分式x+12x−1有意义.故答案为≠12. 小提示:本题考点:分式有意义.15、若关于x 的分式方程k 1−x =2−x x−1的解为正数,则满足条件的非负整数k 的值为____.答案:0.分析:首先解分式方程k1−x =2−xx−1,然后根据方程的解为正数,可得x>0,据此求出满足条件的非负整数K的值为多少即可.∵k1−x =2−xx−1,∴x=2−k.∵x>0,∴2−k>0,∴k<2,∴满足条件的非负整数k的值为0、1,k=0时,解得:x=2,符合题意;k=1时,解得:x=1,不符合题意;∴满足条件的非负整数k的值为0.所以答案是:0.小提示:此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.解答题16、阅读材料:对于非零实数a,b,若关于x的分式(x−a)(x−b)x的值为零,则解得x1=a,x2=b.又因为(x−a)(x−b)x =x2−(a+b)x+abx=x+abx﹣(a+b),所以关于x的方程x+abx=a+b的解为x1=a,x2=b.(1)理解应用:方程x2+2x =3+23的解为:x1=,x2=;(2)知识迁移:若关于x的方程x+3x=5的解为x1=a,x2=b,求a2+b2的值;(3)拓展提升:若关于x的方程4x−1=k﹣x的解为x1=t+1,x2=t2+2,求k2﹣4k+2t3的值.答案:(1)3,23;(2)19;(3)12.分析:(1)根据题意可得x=3或x=23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5, ∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t +t 2+2)(t +t 2-2)+2t 3=t 4+4t 3+t 2-4=t (t 3+t )+4t 3-4=4t +4t 3-4=4(t 3+t )-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.17、解分式方程:3x−1+2=x x−1答案:x =−1分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解:3x−1+2=x x−1去分母得,3+2(x −1)=x ,解得,x =−1,经检验,x =−1是原方程的解.所以,原方程的解为:x =−1.小提示:本题主要考查了分式方程的解法.解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18、先化简,再求值:x 2−4x+4x+1÷(3x+1﹣x +1),请从不等式组{5−2x ≥1x +3>0 的整数解中选择一个合适的值代入求值.答案:2−x 2+x ,1.分析:根据分式运算的步骤先将分式进行化简,然后求出不等式组的解集,根据分式的意义在不等式组的解集中找到整数解,代入求值即可.x 2−4x+4x+1÷(3x+1﹣x +1)=(x−2)2x+1÷3−(x−1)(x+1)x+1=(x−2)2x+1⋅x+13−x 2+1=(x−2)2(2+x)(2−x)=2−x 2+x ,由不等式组{5−2x ⩾1x +3>0得,﹣3<x ≤2, ∵x +1≠0,(2+x )(2﹣x )≠0,∴x ≠﹣1,x ≠±2,∴当x =0时,原式=2−02+0=1.小提示:本题考查了分式的化简求值及分式有意义的条件,不等式组的解法,解决本题的关键是熟练掌握分式运算的步骤过程,能够详尽掌握不等式组的解法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档