详解大功率可调稳压电源电路图

合集下载

0到60v可调电源电路(稳压电源LM723稳压器可调电源电路详解)

0到60v可调电源电路(稳压电源LM723稳压器可调电源电路详解)

0到60v可调电源电路(稳压电源LM723稳压器可调电源电路详解)0到60v可调电源电路图(一)简单易制的0-30V(10A)可调稳压电源本电源在保证功能适用、性能稳定的前提下对电路尽量简化,这样既可以降低制作工作量和难度,又可以提高制作的成功率。

电路如图(1),主要由Q1、Q2、IC1组成的调整稳压电路和IC2组成的-1.25V生成电路,以及IC4组成的输入电压自动切换控制电路和以Q3、M1、M2为主组成的输出显示、指示电路等4部分电路完成整机功能。

由电路图可以清楚的发现本机稳压部分采用了常见的工频变压器整流、滤波、线性稳压的工作原理,之所以没有采用高效率、轻便的开关电源电路模式,主要是因为考虑到作为实验用供电电源,对其主要的要求是输出宽可调电压范围、大输出电流供应、低输出纹波电压、电源纯净度高,对于电源效率要求并不高,而开关电源虽然效率高,但其输出波形干扰纹波大、可调范围窄,因此采用传统的线性稳压电路。

下面介绍一下整机电路的工作原理。

从J1、J2输入的交流电网220V电压经K1、F1输入电源变压器B1的初级,从其次级分别输出9V、12V、24V的交流电压。

输出的9V交流电压经D2整流、C7、C8滤波后加在IC2/LM337的输入端,在其输出端产生-1.25V的电压,R6作为IC2的负载,C9使IC2输出端的电压更为稳定、纯净。

设置此部分电路的目的是为了用其产生的-1.25V电压抵消IC1/LM317输出端最低只能到达+1.25V的电压,从而使整机输出电压可以从0V起输出,而并非是从+1.25V开始输出,这样可以满足部分需要低于1.25V的低电压的试验场合的需要。

B1输出的12V、24V交流电压经输入电压控制继电器J1得触电选择后输入到由D1、C1、C2组成的主整流滤波电路,对应于两个绕组输入交流电压,在C1、C2上分别获得16V、33V左右的直流电压,此直流电压供给由IC1、Q1、Q2组成的调整稳压电路。

10A可调稳压电源电路图

10A可调稳压电源电路图

10A可调稳压电源电路图10A可调稳压电源电路图与通常串联型稳压电源底子一样,所纷歧样的是运用了具有温度抵偿特性的,高精度的标准电压源集成电路TL431,所以电路简略,易于制造,且稳压功用很高。

图中电阻R4,稳压集成电路TL431和可调电位器R*构成一个接连可调的恒压源,为BG2基极供应基准电压,稳压集成电路TL431的稳压值接连可调,这个稳压值抉择了稳压电源的最大输出电压,假定想把可调电压方案拓宽,能够改动R4和可调电位器的电阻值。

变压器功率挑选在200W摆布,次级电压15V。

整流桥四支二极管选用2CZ58C(10A/100V)。

稳压调整管BG1应选用金属封装的大功率三极管,因为它的发热量很大,应尽量加大散热片面积。

1。

3-2000V可调直流稳压电源电路图

3-2000V可调直流稳压电源电路图
电路中的X1和X2两端输出作被测器件的接口端。IC为为LM324,IC2为NE555。VD1反向工作电压大于2000V,VD2为任一型号的硅整流管。脉冲变压器T的铁心选用铁氧体材料,尺寸为E-7,绕制时先用0.17mm漆包线在L1上绕30匝,后用0.09漆包线在L2上绕满为止(大约1200匝)。L1、L2均用排绕,层间加聚乙烯薄膜。L2的两根引线应分开一些。电容器C3耐压应大于2000V,可选用C404M型高压瓷介电容器。VT的B>100、Icm>700mA,可选用3DG130、8050等。调试时若输出电压只有40--50V,只需把L2两端对调即可。其余元件如图标注。
IC1a和有关元件组成电压比较器,由VD2提供其同相端③脚的基准电压0.7V。比较电压取自VE点,再通过分压器R1和R2的A点经电压跟随器IC将分压的A点电压送到IC1a的反相端。工作时,若Va<Vb,则IC1a输出高电位,此时IC2方波振荡器振荡,C3被充电,电压VE上升,当VE上升到使VA>VB时,VF出现低电位,IC2停振,若C3上电压再次下降时,即VA<VB,这时方波振荡器再次振荡,又给C3充电,如此循环,达到输出电压VE在3-2000V之间连续可调稳压的目的。
本电路适用于二极管、三极管极限电压、氖泡、日光灯起辉电压及电容器工作电压、电流等测定的可调直流稳压电源。
可调直流稳压电源电路如图所示。 由IC2(NE555)及其外围元件组成方波发生器,方波频率为20KHz。方波信号由IC2的③脚输出经功放管VT放大后输出到脉冲变压器T的初级L1,再由变压器耦合到次级L2经二极管VD2整流,给C3充电,C3两端的直流电压峰值最高可达2kV。

利用TL431作大功率可调稳压电源

利用TL431作大功率可调稳压电源

精密电压基准IC TL431是T0—92封装如图1所示。

其性能是输出压连续可调达36V,工作电流范围宽达0.1。

100mA,动态电阻典型值为0.22欧,输出杂波低。

图2是TL431的典型应用,其中③、②脚两端输出电压V=2.5(R2十R3)V/R3。

如果改变R2的阻值大小,就可以改变输出基准电压大小。

图3是利用它作电压基准和驱动外加场效应管K790作调整管构成的输出电流大(约6A)、电路简单、安全的稳压电源。

工作原理如图3所示,220v电压经变压器B降压、D1-D4整流、C1滤波。

此外D5、D6、C2、C3组成倍压电路(使得Vdc=60V),Rw、R3组成分压电路,T1431、R1组成取样放大电路,9 013、R2组成限流保护电路,场效应管K790作调整管(可直接并联使用)以及C5是输出滤波器电路等。

稳压过程是:当输出电压降低时,f点电位降低,经T1431内部放大使e点电压增高,经K790调整后,b点电位升高;反之,当输出电压增高时,f点电位升高,e点电位降低,经K790调整后,b点电位降低。

从而使输出电压稳定。

当输出电流大于6A时,三极管9013处于截止,使输出电流被限制在6A以内,从而达到限流的目的。

本电路除电阻R1选用2W、R2选用5W外,其它元件无特殊要求,其元件参数如图3所示。

意法半导体日前推出一个低压并联电压参考管TS3431,该器件可以对输出进行控制,目标应用包括计算机主板和机顶盒、仪器仪表、充电器、开关电源和电池供电设备。

在需要高性能特别是低压应用中, TS3431可以取代齐纳二极管。

在一个开关电源的反馈环路上使用这个电压参考电路,可以产生3.3 或 3V电压。

TS3431的其它典型应用包括串联或并联稳压器、电压****器和错误信号放大器。

TS3431可以通过一个外部电阻电桥编程,输出从1.24V到24V的任何数量级的电压,可以 2%、 1% 或 0.5%的精度维持设定的输出电压,具体精度由用户所选的型号而定。

用TL431制作大功率可调稳压电源

用TL431制作大功率可调稳压电源

精密电压基准IC TL431是T0—92封装如图1所示。

其性能是输出压连续可调达36V,工作电流范围宽达0.1。

100mA,动态电阻典型值为0.22欧,输出杂波低。

图2是TL431的典型应用,其中③、②脚两端输出电压V=2.5(R2十R3)V/R3。

如果改变R2的阻值大小,就可以改变输出基准电压大小。

图3是利用它作电压基准和驱动外加场效应管K790作调整管构成的输出电流大(约6A)、电路简单、安全的稳压电源。

工作原理
如图3所示,220v电压经变压器B降压、D1-D4整流、C1滤波。

此外D5、D6、C2、C3组成倍压电路(使得Vdc=60V),Rw、R3组成分压电路,T1431、R1组成取样放大电路,9013、R2组成限流保护电路,场效应管K790作调整管(可直接并联使用)以及C5是输出滤波器电路等。

稳压过程是:当输出电压降低时,f点电位降低,经T1431内部放大使e点电压增高,经K790调整后,b点电位升高;反之,当输出电压增高时,f点电位升高,e点电位降低,经K790调整后,b点电位降低。

从而使输出电压稳定。

当输出电流大于6A时,三极管9013处于截止,使输出电流被限制在6A以内,从而达到限流的目的。

本电路除电阻R1选用2W、R2选用5W外,其它元件无特殊要求,其元件参数如图3所示。

可调稳压电源电路图

可调稳压电源电路图

连续可调稳压电源电路图连续可调稳压电源电路图,一般的双电源(正负对称电源)都没有连续可调的功能,给使用带来不便。

本文介绍用一块7815和一块7915三端稳压器对称连接,即可获得一组正负对称的稳压电源,而且输出电压值可各自单独调节,也可同步调节。

电路如附图所示,由变压器输出的交流双18V电压经D1~D4整流,C1、C2滤波得到一直流电压,其中变压器双电源的中心抽头作为公共接地端,然后分别把该直流电压正负极接入7815的①脚和7915的③脚。

7815的③脚接到电位器W2的滑动触片“d”上,7915的①脚接到电位器W1的滑动触片“C”上。

当将触片“C”滑到“0”端接地时,调节W2,即可从“a”端得到“+6~+15V”的正向可变电压;若将触片“d”滑到“0”端接地,调节W1,在“b”端就可得到“-6~-15V”的负向可变电压,将W1、W2换成同轴电位器,将获得正负对称的可调电源,输出电压值在±6V~±15V之间连续可调,可达到同步调节的目的。

本电路的7815、7915三端稳压块上应加装散热片.5.1-40V连续可调开关电源的电路图下图是由CW4960组成的开关电源,电路简单,外围元件极少。

最高输入电压为50V,输出电压汇范围为5.1-40V连续可调,额定电流为2.5A,变换效率为90%,脉冲占空比可以在0-100%内调整。

同时CW4960内部还有软启动、过热、过流保护功能。

过流保护电流为3-4.5A,工作频率高达100KHz。

CW4960内部基准源为5.1V,采样由2脚输入,其输出电压为Uo=5.1×(R2+R4/R2)。

其中C1滤波用来减小输入电压的纹波,R1和C2决定开关电源的工作频率,f=1/RC,上图工作频率为106KHz,R3和C4为频率补偿网络,用以防止产生寄生振荡。

D1为续流二极管,可选用肖特基或快恢复二极管,C3为软启动电容,一般取1-4.7uF。

中国开关电源行业门户网 大电流可调稳压电源电路图电路图及工作原理:稳压电源电路如下图所示,经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。

详解大功率可调稳压电源电路图

详解大功率可调稳压电源电路图

详解大功率可调稳压电源电路图无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。

如图1所示大功率可调稳压电源电路图大功率可调稳压电源电路图图1 大功率可调稳压电源电路图其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路。

第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。

第一路的电路非常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不用作任何调整就可在输出端产生固定的5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。

第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,所以使电路简化,成本降低,而稳压性能却很高。

图中电阻R4,稳压管TL431,电位器R3组成一个连续可调得恒压源,为BG2基极提供基准电压,稳压管TL431的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变R4和R3的电阻值,当然变压器的次级电压也要提高。

变压器的功率可根据输出电流灵活掌握,次级电压15V左右。

桥式整流用的整流管QL用15-20A硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。

调整管用的是大电流NPN型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。

滤波用50V4700uF电解电容C5和C7分别用三只并联,使大电流输出更稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注50V4700uF尽量不用,当遇到电压波动频繁,或长时间不用,容易失效。

利用TL431的大功率可调稳压电源要点

利用TL431的大功率可调稳压电源要点

1.只有根据需要自己设计才能得到满意的电路 2.对实际的元件型号以及具体参数要熟悉,在选购
变压器和确定调整管型号的时候才好下手。
3.在不了解元件的引脚数据的情况下盲目连接,容 易导致调整管烧毁。
4. 测试中一定要做好过流保护,以免不慎烧毁元件。 5.操作要熟练,焊板要快 6.对于模拟电路,尤其是电源电路,一定要提前算
稳压过程:当输出电压降低时,b点电位降低, 经T1431内部放大使a点电压增高,经D882调整 后,c点电位升高;反之,当输出电压增高时,b 点电位升高,a点电位降低,经D882调整后,c 点电位降低。从而使输出电压稳定。
过流保护:当输出电流大于600mA时,三极管9013处于截止,使 输出电流被限制在600mA以内,从而达到限流的目的。
好功耗,做好保护措施才能通电
大功率可调稳压电源
设计:陈硕

TL431是常用的精密电压基准IC 。其性能是
输出压连续可调达36V,工作电流范围宽达
0.1--100mA,动态电阻典型值为0.22欧,输
ห้องสมุดไป่ตู้
出杂波低。两端输出电压V=2.5(R2十R3)V/R3。
如果改变R2的阻值大小,就可以改变输出基准电
压大小。这是利用它作电压基准和驱动外加 D882作调整管构成的输出电流大、电路简单、
安全的稳压电源。
TL431 中功率三极管:D882 变压器:220V-15V 12W 整流桥 电阻 可变电阻器:5K 滤波电容
(除电阻R2选用2W外,其它元件无特殊要求)

220v电压经变压器降压、整流桥整流、C2滤 波。Rw、R3组成分压电路;T1431、R1组成取样 放大电路;9013、R2组成限流保护电路;中功率 三极管D882作调整管(可直接并联使用)以及C1 、 C4是输出滤波器电路等。

可调稳压电源电路图大全(八款可调稳压电源电路设计原理图详解)

可调稳压电源电路图大全(八款可调稳压电源电路设计原理图详解)

可调稳压电源电路图设计(一)简易可调稳压电源采用三端可调稳压集成电路LM317,使电压可调范围在1.5~25V,最大负载电流1.5A。

其电路如图所示。

电路工作原理:220V交流电经变压器T降压后,得到24V交流电;再经VD1~VD4组成的全桥整流、C1滤波,得到33V左右的直流电压。

该电压经集成电路LM317后获得稳压输出。

调节电位器RP,即可连续调节输出电压。

图中C2用以消除寄生振荡,C3的作用是抑制波纹,C4用以改善稳压电源的暂态响应。

VD5、VD6在当输出端电容漏电或调整端短路时起保护作用。

LED为稳压电源的工作指示灯,电阻R1是限流电阻。

输出端安装微型电压表PV,可以直观地指示输出电压值。

元器件的选择与制作:元器件无特殊要求,按图所示选用即可。

制作要点:①C2应尽量靠近LM317的输出端,以免自激,造成输出电压不稳定;②R2应靠近LM317的输出端和调整端,以避免大电流输出状态下,输出端至R2间的引线电压降造成基准电压变化;③稳压块LM317的调整端切勿悬空,接调整电位器RP时尤其要注意,以免滑动臂接触不良造成LM317调整端悬空;④不要任意加大C4的容量;⑤集成块LM317应加散热片,以确保其长时间稳定工作。

可调稳压电源电路图设计(二)大电流可调稳压电源电路此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。

工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。

调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。

元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。

FU1选用1A,FU2选用3A~5A。

VD1、VD2选用6A02。

400W大功率稳压逆变器电路图,原理图

400W大功率稳压逆变器电路图,原理图

400W大功率稳压逆变器电路图,原理图利用TL494组成的400W大功率稳压逆变器电路。

它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。

如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。

TL 494在该逆变器中的应用方法如下:第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R 2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。

反相输入端2脚输入5V基准电压(由14脚输出)。

当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PW M电路使输出电压升高。

正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。

此时输出AC电压为235V(方波电压)。

第4脚外接R6、R4、C2设定死区时间。

正常电压值为0.01V。

第5、6脚外接CT、RT设定振荡器三角波频率为1 00Hz。

正常时5脚电压值为1.75V,6脚电压值为3.73V。

第7脚为共地。

第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。

当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。

S1接通时,此三脚电压值为蓄电池的正极电压。

第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。

正常时电压值为1.8V。

第13、14、15脚其中14脚输出5V基准电压,使13脚有5 V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。

第15脚外接5V电压,构成误差放大器反相输入基准电压,以使同相输入端16脚构成高电平保护输入端。

此接法中,当第16脚输入大于5V的高电平时,可通过稳压作用降低输出电压,或关断驱动脉冲而实现保护。

在它激逆变器中输出超压的可能性几乎没有,故该电路中第16脚未用,由电阻R8接地。

可调稳压电源电路图

可调稳压电源电路图

可调稳压电源电路图
下图是采用LM317三端稳压芯片的输出电压连续可调的稳压电源电路,输出电压在1.25-37V之间连续可调,输出最大电流可达1.5A。

电路简单,很适宜电子爱好者自制。

工作原理
电路原理图见图1。

LM317输出电流为1.5A,输出电压可在1.25-37V之间连续调节,其输出电压由两只外接电阻R1、RP1决定,输出端和调整端之间的电压差为1.25V,这个电压将产生几毫安的电流,经R1、RP1到地,在RP1上分得的电压加到调整端,通过改变RP1就能改变输出电压。

注意,为了得到稳定的输出电压,流经R1的电流小于3.5mA。

LM317在不加散热器时最大功耗为2W,加上200×200×4mm3散热板时其最大功耗可达15W。

VD1为保护二极管,防止稳压器输出端短路而损坏IC,VD2用于防止输入短路而损坏集成电路。

元器件选择与制作
本机焊接完成检查无误即可正常使用,无需调试。

但焊接时要注意,电容C2应靠近IC的输入端,C3应靠近IC的输出端,这样能更好地抑制纹波。

电流、电压可调直流稳压电源电路图及原理

电流、电压可调直流稳压电源电路图及原理

这一款可调稳压电源最大输出电压约为20V,最大输出电流可达2A,设有200mA、300mA、600mA三个限流档位和一个直通档位,具有输出指示和过流限制指示,使用方便,能满足一般检修的需要。

该电源由三端可调稳压集成电路LM317为核心构成,电路如图1所示(点此下载原理图)。

由于LM317最大输出电流为1.5A,且当输入与输出端压差过大时功耗,故采用Q1大功率三极管来扩展输出电流。

RP为线绕电位器,可精确调整输出电压的大小,Q2是为避免RP触点接触不良时,导致输出电压高于设定电压而设置,一般情况下Q2截止,一旦RP触点开路,则Q2通过RP提供的偏置电压而导通,使调整端电压下降,从而使输出电压变低。

R1、R2、R3、Q3及K2组成电流范围检测电路,当负载电流在电阻R1或R2或R3上产生的压降达到0.3V时,Q3导通,使Q4触发导通,JK吸合,输出被切断,LED2熄灭,LED1变亮,指示此时为过流限制状态。

按动K1即可恢复正常输出状态,可控硅G极的C6起抗干挠作用,可减少可控硅的误触发。

LED2除作工作状态指示外,还是该电源空载时的负载,使输出电压在有负载与空载时相差不大。

电路中的电压表可用万用表代替。

该电源的元件型号及数值已在图中标出,组装后无须调试即可使用。

需注意的是Q1应选大功率三极管并加装散热片。

整流桥D1应大于3A。

LED1和LED2用不同颜色的发光二极管。

R1、R2、R3的阻值可根据自己需要确定,转换开关K2应接触良好,否则会影响使用。

200W自动调压式交流稳压电源电路图

200W自动调压式交流稳压电源电路图

200W自动调压式交流稳压电源电路图
如图为200W自动调压式交流稳压电源电路图。

图中用虚线框出的部分,它们的工作是紧密联系的。

当调压变压器输出偏离220V时,其变压器次级一个绕组取得这个误差信号,送到VD1~VD4桥式整流,再经Cl滤波后,变成直流电压,再由R1、RP、R2组成的取样电路取样,调整RP,若A点电压高于B点电压(B点为VD5稳压的基准电压),则放大部分的VT1导通(因为VT1为NPN管,集电极电压为正),并放大,迫使电动机M转动。

电动机的转动就带动了调压器的滑动臂移动。

移动的方向是使输出电压降低。

相反,若调整RP,A点电压低于B点电压时,则是放大部分的VT2导通(VT2为PNP管,集电极电压为负),并放大,迫使电动机M向相反方向转动,从而使调压器的滑动臂向电压升高的方向滑动。

这就保证了调压器输出的稳定。

当然,当输出电压无误差时,A点与B点等电位,两只三极管都处于截止状态,电动机不动。

LM317可调稳压电源电路图

LM317可调稳压电源电路图

这里介绍的可调稳压电源可以实现从1.25V~30V连续可调,输出电流可到4A左右。

采用最常见的可调稳压集成电路LM317组成电路的核心,关于LM317的详细指标参数可参阅用LM317制作简易电源电路。

下面简单介绍一下该电路的特点。

本电路中,由T2、D5、VW1、R5、R6、C10及继电器K构成自适应切换动作电路。

当输出电路低于14V 时,VW1因击穿电压不够而截止,无电流通过,T2截止,K不吸合,其触点K在常态位置,电路输入电流14V交流电。

反之当输出电压高于14V时,VW1击穿导通,T2亦导通,继电器K吸合,28V交流电接入电路。

这样可以保证输入电压与输出电压差不会大于15V,此时,LM317输出电流典型值为2.2A。

图中采用了两块LM317供电,整个电路输出电流可在4A以上。

由于两块LM317参数不可能一样,电路中在LM317输出端串接了小阻值电阻R3、R4,用以均分电流。

输出电压调整由RP1、RP2完成。

附加晶体管T1的目的在于避免电位器RP1滑动端接触不良,使W317调整公共端对地开路,造成输出电压突然变化,损坏电源及负载。

双色发光二极管作为保险丝熔断指示器(红光)兼电源只是器(橙色光)。

当电源正常时,两只发光二极管均加有正向电压,红、绿发光二极管均发光,形成橙色光。

当保险丝FU2断开时,仅红色发光管加有正向电压,故此时只发红光。

为保证稳压准确,设计电路板时主电流回路应足够宽,并焊上1mm以上的铜导线或涂锡,以减少纹波电压。

C6、C8尽量靠近LM317的输入、输出端,并优先采用无感电容。

C5如无合适容量,可用几只电容并联。

R3、R4可用锰丝自制。

调试时,调整RP1、RP2应使继电器在电源输出14V左右时吸合,否则可调换稳压二极管再试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

详解大功率可调稳压电源电路图
无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从
3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。

如图1所示大功率可调稳压电源电路图
大功率可调稳压电源电路图
图1 大功率可调稳压电源电路图
其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路。

第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。

第一路的电路非常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不用作任何调整就可在输出端产生固定的
5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。

第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,所以使电路简化,成本降低,而稳压性能却很高。

图中电阻R4,稳压管TL431,电位器R3组成一个连续可调得恒压源,为BG2基极提供基准电压,稳压管TL431的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变R4和R3的电阻值,当然变压器的次级电压也要提高。

变压器的功率可根据输出电流灵活掌握,次级电压15V左右。

桥式整流用的整流管QL用15-20A硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。

调整管用的是大电流
NPN型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。

滤波用50V4700uF电解电容C5和C7分别用三只并联,使大电流输出更稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注50V4700uF尽量不用,当遇到电压波动频繁,或长时间不用,容易失效。

最后再说一下电源变压器,如果没有能力自己绕制,有买不到现成的,可以买一块现成的200W以上的开关电源代替变压器,这样稳压性能还可进一步提高,制作成本却差不太多,其它电子元件无特殊要求,安装完成后不用太大调整就可正常工作。

相关文档
最新文档