2020-2021学年河南省驻马店市确山县七年级(上)期中数学试卷 解析版
河南省驻马店市确山县2024-2025学年七年级上学期11月期中考试数学试题
河南省驻马店市确山县2024-2025学年七年级上学期11月期中考试数学试题一、单选题1.3-的绝对值是()A .3-B .3C .13D .13-2.在数2-,12227中,有理数的个数有()A .4个B .3个C .2个D .1个3.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃183-253-196-268.9-则沸点最高的液体是()A .液态氧B .液态氢C .液态氮D .液态氦4.下列四个叙述,正确的是()A .3x 表示3与x 的和B .35x +表示3个x 与5的和C .2x 表示2个x 的和D .23x 表示3x 与3x 的积5.如图是单位长度为1的数轴,点A ,B 是数轴上的点,若点A 表示的数是3-,则点B 表示的数是()A .2-B .1-C .0D .16.已知234a b +=,则整式461a b --+的值是()A .5B .3C .7-D .10-7.2024年“端午”假期,各地举办非遗展演、市集、赛事、民俗等活动,让游客参与互动体验感受优秀传统文化魅力.全国国内旅游出游合计1.1亿人次,比2023年同期增长6.3%.将数据“1.1亿”用科学记数法表示为()A .91.110⨯B .81.110⨯C .90.1110⨯D .71110⨯8.已知a ,b 都是实数,若()2220++-=a b ,则()2024a b +的值是()A .2024-B .0C .1D .20249.如图,圆形方孔钱是我国古钱币的突出代表,一枚圆形方孔钱的外半径为r ,中间方孔边长为a ,则方孔钱的面积可表示()A .22πr a +B .22πr a +C .22πr a -D .22πr a -10.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将12345678----、、、、、、、分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a b +的值为()A .6-或3-B .8-或1C .1-或4-D .1或1-二、填空题11.我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”意思是:今有两数若其意义相反,则分别叫作正数与负数,若盈利80元记作80+元,则亏损60元记作.12.生活中,成反比例关系的例子是很常见的,例如,在购买某种物品总价一定,购物的数量与商品的单价成反比例关系,请你再举出一个生活实例:.13.数轴上表示整数的点称为整数点,某数轴的单位长度为1cm ,若在这条数轴上任意画一条长2024cm 的线段C ,则线段C 覆盖住的整数点的个数是.14.进位制是人们为了记数和运算方便而约定的记数系统,约定逢十进一就是十进制,逢二进一就是二进制,把69转换为二进制数是.15.有一种密码,将英文26个字母a 、b 、c 、…、z (不论大小写)依次对应1、2、3、…、26,这26个自然数(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 偶数时,密码对应的序号为32x+,按上述规定,将明码“agfo ”译成密码是.字母abcdefghijklm序号12345678910111213字母nopqrstuvwxyz序号14151617181920212223242526三、解答题16.如图,两个圈分别表示正数集和整数集,请你从3-,9,0,10%-,3.14,27,1300这些数中,选择适当的数填入图中相应的位置.17.计算:(1)(21)(9)|8|(12)---+---(2)229125111683⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;18.已知有理数a ,b ,其中数a 在如图的数轴上对应的点M ,b 是负数,且b 在数轴上对应的点与原点的距离为3.5.(1)a =;b =.(2)将−12,0,−2,b 在如图的数轴上表示出来,并用“<”连接这些数.19.1959年的世界乒乓球锦标赛,中国参赛运动员为中国获得了第一个世界冠军,使国人振奋,从此乒乓球运动在中国风靡,成为中国的国球体育项目.如图所示的是某品牌乒乓球拍的产品信息.请问:规格1只装厚度()6.00.2mm ±质量()883g±(1)厚度()6.00.2mm ±表明这种球拍的标准厚度是______mm ,0.2mm +表示的意义是______,0.2mm -表示的意义是______.(2)若购买两只这种球拍,则它们的厚度最多相差______mm .(3)数数从线上购买这种球拍一只,测得其厚度为6.1mm ,质量为84g ,则数数所买球拍是否合格?20.阅读材料:对于任意有理数a b ,,规定一种特别的运算“◎”:222a b a b ab =-+◎.例如,22525225227=-⨯+⨯=◎.(1)求()31-◎的值;(2)试探究这种特别的运算“◎”是否具有交换律?21.同学们在探究“杠杆原理”时,通过实验发现:当左边刻度4上放3个砝码,右边刻度及放砝码数如图所示,两边平衡,想一想在右边其余刻度上放几个砝码才能保证平衡?(1)请你完成表格.右边刻度1234砝码数______6______3乘积________________________(2)从表中你发现刻度数和砝码数成什么比例关系?为什么?22.数学活动课上,李老师列举了以下等式:第1个等式:111122=-⨯;第2个等式:1112323=-⨯;第3个等式:1113434=-⨯;……认真观察上面的序列等式的变化,寻找“将一项拆成两项”的规律,根据等式规律,解决下列问题:(1)写出第5个等式为______,第n 个等式为______(用含n 的式子表示);(2)利用等式规律计算:111111122334452022202320232024++++++⨯⨯⨯⨯⨯⨯ .23.综合与实践近年来,电商多选择在11月11日促销.某年促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a 厘米、b 厘米、c 厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长),回答下列问题:(1)用含a ,b ,c 的代数式表示甲、乙两种打包方式所用的打包带的长度:甲需要______厘米,乙需要______厘米;(2)当50,40,30a b c ===时,求甲、乙两种打包方式所用的打包带的长度.。
人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含两套题)
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题:(本大题共10个小题,每小题2分,共20分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的相反数是( ) A.2B.2-C.21D.21-2. 下列运算正确的是( )A.2523a a a =+B.ab b a 743=+C.325a a a =-D.b a b a b a 2222=- 3. 一种面粉的质量标识为“25.025±”,则下列面粉中合格的是:A.24.70千克B.25.30千克C.24.80千克D.25.51千克4. 在式子31,3,2,9.0,52,12+--+x y x a y x x 中,单项式的个数是( )A.5个B.4个C.3个D.2个5. 如果两个数的和是负数,那么这两个数( )A.至少有一个为正数B.同是正数C.同是负数D.至少有一个为负数6. 多项式7)4(21||+--x m x m 是关于x 的四次三项式,则m 的值是( )A.4B.2-C.4-D.4或4-7. 一个有理数和它的相反数之积一定为( ) A.正数B.非正数C.负数D.非负数8. 一个多项式与122+-x x 的和是23-x ,则这个多项式为: A.352+-x x B.12-+-x x C.352-+-x x D.1352--x x 9. 计算44442222+++的结果是( ) A.162B.48C.82D.62 10. 有理数b a ,在数轴上的位置如下图所示,在下列结论中:①<ab ;②>+b a ;③23b a >;④)(3<-b a ;⑤ab b a -<<-<;⑥b a a b =--||||.正确的结论有( ) A.5个 B.4个 C.3个D.2个二、填空题:(本大题共6个小题,每小题2分,共12分) 11. 地球上海洋面积约为36100万2km ,可表示为科学记数法________________2km .12. 已知:||||y x -=,3-=x ,则y =_______. 13. 在3223)2(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于_________. 14. 如果3251b a 与y x x b a ++-141是同类项,那么xy =________.15. 多项式9126322-+--xy y mxy x 合并后不含xy 项,则=m ________.16. 已知:b a ,互为相反数,c 与d -互为倒数,2||=m ,则3m cd mba +-+=________.题号一 二 三 总分 得分ba密 封 线 内 不 得 答 题三、解答题:(本大题共8个小题,共68分)解答应写出文字说明、证明过程或演算步骤.17.(每小题4分,共16分) (1) )31(|)11(7|)32(|5|322-+--⨯---+- (2) )14()2()3121()61(2-⨯-+--÷- (3) )7()7649(-⨯-(4) ]2)31()4[(|10|22⨯---+- 18.(本小题满分6分)化简求值: y x y x xy xy y x 222222)(5)31(12--+-,其中5,51-==y x .19.(每小题4分,共8分) (1) 1]2)1(32[--+---n m m (2) )74()53(252222xy y x y x +-+-- 20.(本小题满分6分)已知:多项式1222-+my x 与多项式632+-y nx 的差与y x ,的大小无关.求:mn n m ++的值. 21.(本小题满分6分)(1) 各线段长度如图标记,请用含n m ,的式子表示阴影部分的面积;(2) 若(1)中的nm ,满足0)2(|3|2=-+-n m ,请计算阴影部分的面积. 22.(本小题满分6分)设一个两位数的个位数字为a ,十位数字为b (b a ,均为正整数,且b a >),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数,则新的两位数与原两位数的差 一定是9的倍数,试说明理由. 23.(本小题满分10分)某出租车司机国庆节的营运全是在长虹路南北方向上进行的,如果规定向北为正,向南为负,他这天行车里程(单位:千米)如下:12,16,5,15,4.4,4.2,5,10+-+++-+-(1) 最后一名乘客送到目的地时,出租车在出发点的哪个方向?与出发点的距离?(2) 长虹路南北至少有多少千米?(3) 若该出租车耗油量为每千米0.08升,每升油7.5元,出租车按物价部门规定,起步价(不超过3千米)5元,超过3千米的部分,每千米(不足1千米按1千米计算)加价2元,该出租车司机今天的纯收入为多少元?(纯收入=收入-油耗钱)24. (本小题满分10分)如图,在数轴上每相邻两点之间的距离为一个单位长度.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)若点A,B,C,D 对应的数分别是d c b a ,,,, 则可用含a 的整式表示d 为 ,若1423=-a d ,则b= c= (填具体数值)(2)在(1)的条件下, 点A 以4个单位/秒的速度沿着数轴的正方向运动,同时点B 以2个单位/秒的速度沿着数轴的正方向运动,当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求相遇点所对应的数.(3)如果点A 以2个单位/秒的速度沿着数轴的负方向运动,同时点B 以4个单位/秒的速度沿着数轴的正方向运动,是否存在某时刻使得点A 与点B 到点C 的距离相等,若存在请求出时间t,若不存在请说明理由.七年级数学试题参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 A D C C D C B C D B二.填空题11.81061.3⨯ 12.3± 13.7- 14.2 15. 4 16.79-或(第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题 17.31123185931189459)31(|)11(7|)32(|5|3)1(22-=--+-=-⨯-+-=-+--⨯---+-54555651)14(4)56()61()14()2()3121()61)(2(2-=-=-⨯+-⨯-=-⨯-+--÷-3493501)7(50)7(71)7()5071()7()7649)(3(=+-=-⨯--⨯=-⨯-=-⨯- 423210)1616(10]2)91(16[10]2)31()4[(|10|)4(22=+=++=⨯--+=⨯---+- (每小题4分,共计16分,请按步骤给分) 18. 解:22222222222252554122)(5)31(12xy y x y x y x xy xy y x yx y x xy xy y x +=--+-=--+-.............................………...............…4分 当5,51-==y x 时,原式=451)5(51)5()51(522=+-=-⨯+-⨯⨯........…6分19. 解: 431531)53(1)23332(1]2)1(32[)1(+-=-+-=--+--=---+--=--+---n m n m n m n m m n m m xy y x xy y x y x xy y x y x 71015741065)74()53(25)2(2222222222+-=+-+-=+-+-- (每小题4分,共计8分,请按步骤给分) 20. 解:18)3()2(63122)63()122(22222-++-=-+--+=+---+y m x n y nx my x y ny my x ................................................…2分∵上式的值与y x ,的大小无关∴03,02=+=-m n ....................................................................…4分 即3,2-==m n ...........................................................................…5分 ∴7612)3(23-=--=⨯-++-=++mn n m ......................…6分21. 解:(1)mn mn mn n n n m n m S 211216)25.03(32=-=---⋅=阴.................…3分(2)由题意得02,03=-=-n m .....................................................................…4分 所以2,3==n m ..........................................................................................…5分 ∴3323211211=⨯⨯==mn S 阴 .................................................................…6分 22. 解:原数与新数可用含b a ,的式子分别表示为b a a b ++10,10则..................…1分)(9991010)10()10(b a b a ab b a a b b a -=-=--+=+-+.....................................................................................…4分∵b a ,均为正整数,且b a >∴)(9b a -一定是9的倍数.............................................................................…5分 即新的两位数与原两位数的差一定是9的倍数...........................................…6分 23. 解:(1)∵1312165154.44.2510+=+-+++-+-.................................…2分∴最后一名乘客下车时,出租车在出发点的北边13千米处......................3分 (2)八次运营与出发点的距离如下:南10;南5;南7.4;南3;北12;北17;北1;北13…..5分∴长虹路南北至少:10+17=27千米...........................................................…6分 (3)油耗钱:88.415.708.0)12165154.44.2510(=⨯⨯+++++++….........7分 收入:134233192995919=+++++++...............................................…8分 纯收入:12.9288.41134=-…..........................................................................9 答:该出租车司机今天的纯收入为92.12元.…...........................................10分(本题每问分数分配:3分+3分+4分)24. 解: (1) 8+a ;7;12-- (2) ∵8102)10(2=+-=---=AD 10122)12(2=+-=---=BD∴两点的路程之和为 ∴两点的相遇时间为:3)24(18=+÷ ∴相遇点所表示的数为:62312-=⨯+- (3) 存在431或=t 时,点A 与点B 到点C 的距离相等,理由如下 ①当点A 与点B 相遇时:31)24()]12(10[=+÷---②当点A 在点C 右侧时:t 秒时点A 、B 表示的数分别为:t 210--;t 412+-此时点A 到点C 的距离为:32)210(7+=----t t 点B 到点C 的距离为:54)7(412-=--+-t t∴5432-=+t t解得4=t 综上所述:当431或=t 时,点A 与点B 到点C 的距离相等(本题每问分数分配:3分+3分+4分)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分). 1.﹣2的相反数是( ) A .B .2C .﹣D .﹣22.将数据15 000 000用科学记数法表示为( )A .15×106B .1.5×107C .1.5×108D .0.15×1083.在数8,﹣6,0,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14中,负数的个数有( ) A .4B .5C .6D .7 4.下列说法正确的是( )A .一个数前面加上“﹣”号这个数就是负数B .非负数就是正数C .正数和负数统称为有理数D .0既不是正数也不是负数5.下列各图中,数轴表示正确的是( )A .B .C .D .6.如果单项式与2x 4y n+3是同类项,那么m 、n 的值分别是( )A .B .C .D .7.下面运算正确的是( )A .3ab+3ac=6abcB .4a 2b ﹣4b 2a=0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 28.下列式子中去括号错误的是( )A .5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5zB .2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2dC .3x 2﹣3(x+6)=3x 2﹣3x ﹣6D .﹣(x ﹣2y )﹣(﹣x 2+y 2)=﹣x+2y+x 2﹣y 29.若2是关于x 的方程x+a=﹣1的解,则a 的值为( )A .0B .2C .﹣2D .﹣610.如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若|a|+|b|=3,则原点可能是( )A .M 或QB .P 或RC .N 或RD .P 或Q题号一 二 三 四 五 六 总分 得分密 题二、填空题(每小题2分,共16分). 11.比较大小:﹣2 ﹣3.12.单项式﹣的系数是 ,次数是 次.13.将多项式﹣2+4x 2y+6x ﹣x 3y 2按x 的降幂排列: . 14.已知x ﹣3y=3,则6﹣x+3y 的值是 . 15.若(m ﹣2)x|m|﹣1=3是关于x 的一元一次方程,则m 的值是 .16.若关于x 的方程mx+2=2(m ﹣x )的解是,则m= .17.若|a|=2,|b|=4,且|a ﹣b|=b ﹣a ,则a+b= . 18.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第5个图形中共有点的个数是 .三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 四、先化简、再求值:(本题5分)20.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中﹣5.五、解下列方程(每题4分,共8分)21.解方程:(1)2x ﹣(x+10)=6x ; (2)=3+.六、解答题:(本题21分,第1-4题各4分,第5小题题分)22.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为求a ﹣2cd+b+m 的值.23.有理数在数轴上的对应点位置如图所示,化简:﹣2|a ﹣b|.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.已知|2a+1|+(4b ﹣2)2=0,求:(﹣ a+b 2)﹣(a ﹣b 2)﹣(+b )的值.25.用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b=ab+a 2,例如(﹣3)☆2=﹣3×2+(﹣3)2=3(1)求(﹣5)☆3的值;(2)若﹣a ☆(1☆a )=8,求a 的值.26.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0.现将A 、B 之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)|AB|= ;(2)设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.参考答案与试题解析一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分).1.【解答】解:﹣2的相反数是2,故选:B .2.【解答】解:将15 000 000用科学记数法表示为:1.5×107. 故选:B .3.【解答】解:﹣|﹣2|=﹣2,(﹣1)2015=﹣1,﹣14=﹣1,负数有:﹣6,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14,负数的个数共6个, 故选:C .4.【解答】解:A 、不一定,例如0前面加上“﹣”号0还是0;B 、错误,0既不是正数也不是负数; C 、错误,正数和负数和0统称为有理数;D 、正确.故选D .5.【解答】解:A 、没有正方向,不是数轴,故本选项错误;B 、没有原点,不是数轴,故本选项错误;C 、没有单位长度,不是数轴,故本选项错误;D 、符合数轴的定义,故本选项正确.故选D . 6.【解答】解:∵单项式与2x 4y n+3是同类项,∴2m=4,n+3=1,解得:m=2,n=﹣2.故选A .7.【解答】解:A 、3ab+3ac=3a (b+c );B 、4a 2b ﹣4b 2a=4ab (a ﹣b );C 、2x 2+7x 2=9x 2;D 、正确.故选D .8.【解答】解:A 、5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5z ,故本选项不符合题意;得答B、2a2+(﹣3a﹣b)﹣(3c﹣2d)=2a2﹣3a﹣b﹣3c+2d,故本选项不符合题意;C、3x2﹣3(x+6)=3x2﹣3x﹣18,故本选项符合题意;D、﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2,故本选项不符合题意.故选C.9.【解答】解:把x=2代入方程得:1+a=﹣1,解得:a=﹣2,故选C10.【解答】解:∵MN=NP=PQ=QR=1,∴|MN|=|NP|=|PQ|=|QR|=1,∴|MR|=4;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在N或R时且|Na|=|bR|时,|a|+|b|=3;③当原点在M点时,|a|+|b|>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:C.二、填空题(每小题2分,共16分).11.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】解:单项式﹣的系数是﹣,次数是5,故答案为:﹣,5.13.【解答】解:多项式﹣2+4x2y+6x﹣x3y2按字母x列是:﹣x3y2+4x2y+6x﹣2.故答案是:﹣x3y2+4x2y+6x﹣2.14.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:315.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x程,∴,解得m=﹣2.故答案为:﹣2.16.【解答】解:把x=代入方程,得:m+2=2(m﹣),解得:m=2.故答案是:2.17.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴或, ∴a+b=6或2, 故答案为:6或2.18.【解答】解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点,…第n 个图有1+1×3+2×3+3×3+…+3n 个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故答案为:46.三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 【解答】解:①原式=12+18=30. ②原式=﹣3××=﹣2. ③原式=﹣6.5+13﹣3.5=3.④原式=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.⑤原式=4+(﹣6)×9=﹣50. 四、先化简、再求值:(本题5分)20.【解答】解:原式=a 2+5a 2﹣2a ﹣2a 2+6a=4a 2+4a ,当a=﹣5时,原式=100﹣20=80. 五、解下列方程(每题4分,共8分)21.【解答】解:(1)方程去括号得:2x ﹣x ﹣10=6x , 移项合并得:5x=﹣10, 解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x ,去括号得:2x+2=12+2﹣x , 移项合并得:3x=12, 解得:x=4.六、解答题:(本题21分,第1-4题各4分,第5小题题5分)22.【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴原式=(a+b )﹣2cd+m=﹣2±2, ∴a ﹣2cd+b+m 的值为0或﹣4.密 封 内 不 得 23.【解答】解:∵由图可知,a <﹣1<0<b <1, ∴a+b <0,a ﹣b <0,∴原式=﹣a ﹣(a+b )+2(a ﹣b )=﹣a ﹣a ﹣b+2a ﹣2b =﹣3b .24.【解答】解:∵|2a+1|+(4b ﹣2)2=0, ∴a=﹣,b=.(﹣a+b 2)﹣(a ﹣b 2)﹣(+b )=﹣a+b 2﹣a+b 2﹣﹣b =当a=﹣,b=时,原式==.25.【解答】解:(1)(﹣5)☆3=(﹣5)×3+(﹣5)2=﹣15+25=10;(2)∵﹣a ☆(1☆a )=﹣a ☆(a+1)=﹣a (a+1)+(﹣a )2=﹣a 2﹣a+a 2=﹣a=8, ∴a=﹣8.26.【解答】解:(1)∵|a+4|+(b ﹣1)2=0,∴a=﹣4,b=1, ∴|AB|=|a ﹣b|=5;(2)当P 在点A 左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P 在点B 右侧时, |PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,|PA|=|x ﹣(﹣4)|=x+4,|PB|=|x ﹣﹣x ,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x )=2.∴x=﹣,即x 的值为﹣; 故答案为:5.。
河南省驻马店地区七年级上学期数学期中试卷
河南省驻马店地区七年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) -22的绝对值等于()A . -22B . -C .D . 222. (2分) -3的相反数是()A . -3B . 3C .D . -3. (2分)两个数的差是负数,则这两个数一定是()A . 被减数是正数,减数是负数B . 被减数是负数,减数是正数C . 被减数是负数,减数也是负数D . 被减数比减数小4. (2分) (2020七上·临漳期中) 若用A、B、C分别表示有理数,O为原点如图所示.化简的结果为()A .B .C .D .5. (2分) (2019七上·湄潭期中) 下列结论中正确的是()A . 单项式的系数是,次数是4B . 单项式﹣xy2z的系数是﹣1,次数是4C . 单项式m的次数是1,没有系数D . 多项式2x2+xy2+3二次三项式6. (2分) (2019七上·铜仁月考) 已知方程与关于x的方程的解相同,则的值为()A . 18B . 20C . 26D . -267. (2分)(2020·潢川模拟) 郑州已经正式被定为国家中心城市!作为郑州发展的核心,郑州机场2016年全年完成旅客吞吐量2076万次,同比增长20%,强数据2076万用科学记数法表示为()A . 2.076×108B . 2076×106C . 0.2076×108D . 2.076×1078. (2分) (2020七上·昌平期末) 下列等式变形正确的是()A . 如果a=b,那么a+3=b-3B . 如果3a-7=5a,那么3a+5a=7C . 如果3x=-3,那么6x=-6D . 如果2x=3,那么x=9. (2分) (2019七下·越秀期末) 实数a、b在数轴上的位置如图所示,则下列各式表示正确的是()A . b﹣a<0B . 1﹣a>0C . b﹣1>0D . ﹣1﹣b<010. (2分)已知:2+=22×, 3+=32×, 4+=42×, 5+=52×,…,若10+=102×符合前面式子的规律,则a+b的值为()A . 179B . 140C . 109D . 210二、填空题 (共10题;共10分)11. (1分) (2019七下·保山期中) -2019的倒数是________.12. (1分)的系数是________.13. (1分) (2018八上·阜宁期末) 由四舍五入法得到的近似数1.59精确程度为________.14. (1分) (2019七上·昌平期中) 比较大小:-3________-2.1(填“>”,“<”或“=”).15. (1分) (2019七上·龙湖期末) 已知和是同类项,则式子m+n的值是________.16. (1分) (2019七上·武邑月考) 代数式的次数是________,其中项的系数是________.17. (1分) (2019七下·东台期中) 若,则的值为________.18. (1分) (2020七下·中卫月考) 如果,那么 ________.19. (1分)若x2﹣x﹣1=0,则5x2﹣5x+3的值是________20. (1分)(2020·枣阳模拟) 对于非零的两个实数,,规定,若且,则 ________.三、解答题 (共8题;共78分)21. (20分) (2019七上·乐安期中) ;22. (5分) (2018七上·栾城期末) 计算:(1)先化简,再求值:(3x2﹣4)+(2x2+5x﹣6)﹣2(x2﹣5),其中x=﹣2(2)解方程:﹣ =2.23. (10分) (2020七上·鱼台期末) 解方程(1)(2).24. (10分) (2019七上·河源月考) 教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,-4,-8,+10,+3,-6,+7,-11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.70元/升,则小王共花费了多少元钱?25. (6分) (2018七上·松滋期末) 解方程:(1) 5(x-2)-2=2(2+x)+x(2)26. (10分) (2019七上·张家港期末)(1)若关于的方程的解为2,则 =________;(2)若关于的方程和的解的和为4,求的值.27. (6分) (2018七上·兰州期中) 我们规定“※”是一种数学运算符号,两数、通过“※”运算是 ,即※ ,例如:※(1)求:7※9的值;(2)求:(7※9)※(-2)的值.28. (11分) (2019七上·长汀期中) 如图,半径为1的小圆与半径为2的大圆,有一个公共点与数轴上的原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位,(1)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动的时间记为正数,向左滚动时间即为负数,依次滚动的情况录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,+6(1)第________次滚动后,大圆与数轴的公共点到原点的距离最远;(2)当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距9π,求此时两圆与数轴重合的点所表示的数.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共10题;共10分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共8题;共78分)答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:答案:27-1、答案:27-2、考点:解析:答案:28-1、答案:28-2、答案:28-3、考点:解析:。
2020-2021学年度七年级上学期期中联考数学试卷(含解答)
2020-2021学年度七年级上学期期中联考数学试卷一、选择题(共10题,每小题2分,共20分)1.在下列各数:0.51515354…、0、0.333、3π、0.101101101中,无理数的个数是()A. 1B. 2C. 3D. 42.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A. B. C. D.3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A. 0.69×107B. 69×105C. 6.9×105D. 6.9×1064.m表示一个一位数,n表示一个两位数,若把m放在n的左边,组成一个三位数,则这个三位数可表示为()A. mnB. m+nC. 10m+nD. 100m+n5.下列各组数中,互为相反数的是( )A. |+2|与|-2|B. -|+2|与+(-2)C. -(-2)与+(+2)D. |-(-3) |与-|-3|6.在数轴上与-2所在的点的距离等于4的点表示的数是( )A. 2B. -6C. 无数个D. 2或-67.若m2+2m=1,则4m2+8m−3的值是()A. 4B. 3C. 2D. 18.电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多()A. 方案一B. 方案二C. 方案三D. 不能确定9.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A. ﹣74B. ﹣77C. ﹣80D. ﹣8310.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长方形的长为a,则图①与图②的阴影部分周长之差是( )A. B. C. D.二、填空题(共8题,每小题2分,共16分)11.|−a|=|−3|,则a=________.12.已知a是最大的负整数,b是绝对值最小的数,c是最小的正整数,则a+b+c等于________.13.为了帮助一名白血病儿童治疗疾病,某班全体师生积极捐款,捐款金额共2 800元,已知该班共有5名教师,每名教师捐款a元,则该班学生共捐款________元(用含a的代数式表示).14.若3x m y与−5x2y n是同类项,则m+n=________.15.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x的值是________.16.一个数是4,另一个数比4的相反数小3,那么这两个数的积是________.17.某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A同学拿出三张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学,请你确定,最终B同学手中剩余的扑克牌的张数为________.18.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上由左至右第1个数是1,第2个数是13,第3个数是41,…,依此规律,第5个数是________.三、解答题(共8题;共64分)19.计算:(1)4-(-3)×(-1)- 8×(−12)3×|-2-3|;(2)(-5)3×(- 35)-32÷(-2)2×(+ 54).20.化简,求值(1)﹣(a2﹣6b﹣1)﹣(﹣1+3b﹣2a2)(2)先化简,再求其值:已知2(a2b+ab)﹣2(a2b﹣1)﹣2ab2﹣2,其中a=﹣2,b=221.在数轴上表示下列各数,并用“<”号把它们连接起来.−(−2.5),−|−2|,|−4|,1 ,0 ,−(+3)22.如图,将边长为m的正方形纸板,沿虚线剪成两个正方形和两个长方形,拿掉边长为n的小正方形纸板后,将剩下的三个图形拼成一个新的长方形.(1)求拼成的新的长方形的周长(用含m或n的代数式表示);(2)当m=7,n=4时,直接写出拼成的新的长方形的面积.23.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人.行驶路程记录如下(规定向南为正,向北为负,单位: km):________边(填南或北),距离公司________千米.(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油________升.(3)若该出租车的计价标准为:行驶路程不超过3 km收费10元,超过3 km的部分按每千米1.8元收费,在这过程中该驾驶员共收到车费多少元?24.阅读下述材料,尝试解决问题数学是一门充满思维乐趣的学科,现有一个 3×3 的数阵 A ,数阵 A 中每个位置对应的数都是1,2或3.定义 a ∗b 为数阵中第 a 行、第 b 列的数.例如,数阵 A =(111222333) 第3行、第2列所对应的数是3,所以 3∗2=3 .(1)对于数阵 A , 2∗3 的值为________;若 2∗3=2∗x ,则 x 的值为________.(2)若一个 3×3 的数阵对任意的 a,b,c 均满足以下条件:条件一: a ∗a =a ;条件二: (a ∗b)∗c =a ∗c ;则称这个数阵是“有趣的”.已知一个“有趣的”数阵满足 1∗2=2 ,试计算 2∗1 的值.25.为给同学们创造更好的读书条件,学校准备新建一个长度为L 的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格、大小相同的正方形地面砖搭配在一起,按如图所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.6m .(1)按图示规律,第一图案的长度L 1=________m ;第二个图案的长度L 2=________m .(2)请用代数式表示带有花纹的地面砖块数n 与走廊的长度L n 之间的关系.(3)当走廊的长度L 为36.6m 时,请计算出所需带有花纹图案的瓷砖的块数.26.已知如图,在数轴上有A ,B 两点,所表示的数分别为-10,4,点A 以每秒5个单位长度的速度向右运动,同时点B 以每秒3个单位长度的速度也向左运动,如果设运动时间为t 秒,解答下列问题:(1)运动前线段AB 的长为________; 运动1秒后线段AB 的长为________;(2)运动t 秒后,点A ,点B 运动的距离分别为________;用t 表示A ,B 分别为________.(3)求t 为何值时,点A 与点B 恰好重合;(4)在上述运动的过程中,是否存在某一时刻t ,使得线段AB 的长为6,若存在,求t 的值; 若不存在,请说明理由.答案一、选择题1.解:0是整数,属于有理数;0.333,0.101101101是有限小数,属于有理数;无理数有:0.51515354…、3π共2个.故答案为:B .2.∵|+1.2|=1.2,|-2.3|=2.3,|+0.9|=0.9,|-0.8|=0.8,0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件,故答案为:D.3.解:690万=6900000=6.9×106.故答案为:D.4.∵m表示一个一位数,n表示一个两位数,若把m放在n的左边,组成一个三位数,∴这个三位数可表示为:100m+n .故答案为:D.5.解:A、|+2|=2,|-2|=2,故这两个数相等,故此选项错误;B、-|+2|=-2,+(-2)=-2,故这两个数相等,故此选项错误;C、-(-2)=2与+(+2)=2,这两个数相等,故此选项错误;D、|-(-3)|=3,-|-3|=-3,3+(-3)=0,这两个数互为相反数,故此选项正确.故答案为:D.6.解:若这个数在-2的左侧,则这个数是-2-4=-6;若这个数在-2的右侧,则这个数是-2+4=2;故在数轴上与-2所在的点的距离等于4的点表示的数是2或-6;故答案为:D.7.∵m2+2m=1,∴4m2+8m−3= 4(m2+2m)−3=4×1-3=1.故答案为:D.8.解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;方案二降价0.2m+m(1-20%)15%=0.32m;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.9.解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1−3=−2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为−2+6=4;第3次从点A2向左移动9个单位长度至点 A 3 ,则 A 3 表示的数为4−9=−5;第4次从点A3向右移动12个单位长度至点 A 4 ,则 A 4 表示的数为−5+12=7;第5次从点A4向左移动15个单位长度至点 A 5 ,则 A 5 表示的数为7−15=−8;…;则点 A 51 表示:51+12×(−3)+1=26×(−3)+1=−78+1=−77,故答案为:B.10.解:设小长方形的长为x ,宽为y ,有图可知:x=a 2 , y=a 4图①:C 1=2a+a 4×2=2a+a 2 ,图②:C 2=a 2×2+a 4×3×2+a 4×2=3a ,∴图①与图②的阴影部分周长之差为:2a+a 2-3a=-a 2 ,故答案为:C.二、填空题11.解:∵ |−a|=|−3|=3 ,∴ −a =±3 ,即 a =±3 ,故答案为:±3.12.∵a 是最大的负整数∴ a =−1∵b 是绝对值最小的数∴ b =0∵c 是最小的正整数∴ c =1∴ a +b +c =(−1)+0+1=0故答案为:0.13.解:根据题意得:该班学生共捐款:(2800-5a )元,故答案为:(2 800-5a ).14.解:由同类项的定义可知,m=2,n=1,∴m+n=3故答案为3.15.解:∵16+11+12=39,∴由39-(11+15)=13得最中间格子上的数为13,再由39-(12+13)=14得右上角格子的数为14,∴x=39-(16+14)=9.故答案为9.16.∵一个数是4,另一个数比4的相反数小3∴另一个数为 −4−3=−7∴这两个数的积是 4×(−7)=−28故答案为:-28.17.设每个同学的扑克牌的数量都是 x ;第一步,A 同学的扑克牌的数量是 x −3 ,B 同学的扑克牌的数量是 x +3 ;第二步,B 同学的扑克牌的数量是 x +3+3 ,C 同学的扑克牌的数量是 x −3 ;第三步,A 同学的扑克牌的数量是2( x −3 ),B 同学的扑克牌的数量是 x +3+3− ( x −3 ); ∴B 同学手中剩余的扑克牌的数量是: x +3+3− ( x −3 ) =9 .故答案为: 9 .18.解:观察根据排列的规律得到:第一行为数轴上左边的第1个数1,第二行为1右边的第6个数13,第三行为13右边的第14个数41,第四行为41右边的第22个数,为2(1+6+14+22)-1=85,第五行为91右边的第30个数,为2(1+6+14+22+30)-1=145.三、解答题19. (1)解:原式=4−(−3)×(−1)−8×(−18)×|−5| =4−3−(−5)=1+5=6(2)解:原式=−125×(−35)−32÷4×54=−125×(−35)−8×54=75−10=6520. (1)解:原式= −a 2+6b +1+1−3b +2a 2= a 2+3b +2(2)解:原式= 2a 2b +2ab −2a 2b +2−2ab 2−2= 2ab −2ab 2将a=﹣2,b=2代入可得2ab −2ab 2 =8.21. 解: −(−2.5)=2.5 , −|−2|=−2 , −(+3)=−3 .如图所示.用“<”号把它们连接起来如下:−(+3)<−|−2|<0<1<−(−2.5)<|−4| .22. (1)解:矩形的长为:m+n.矩形的宽为:m-n.矩形的周长为:2[(m+n)+(m-n)]=4m(2)解:矩形的面积为:S=(m+n)(m−n)=(7+4)(7−4)=11×3=3323. (1)南;10(2)4.8(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.解:(1)5+2+(-4)+(-3)+10=10(km)故答案为:南边,10;(2)(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升)故答案为:4.8;24. (1)2;1,2,3(2)∵1*2=2,∴2*1=(1*2)*1,∵(a*b)*c=a*c,∴(1*2)*1=1*1,∵a*a=a,∴1*1=1,∴2*1=125. (1)1.8;3(2)解:观察图形可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,…则第n个图案中有花纹的地面砖有n块;第一个图案边长L=3×0.6,第二个图案边长L=5×0.6,则第n个图案边长为L=(2n+1)×0.6;(3)解:把L=36.6代入L=(2n+1)×0.6中得:36.6=(2n+1)×0.6,解得:n=30,答:需带有花纹图案的瓷砖的块数是30.解:(1)第一图案的长度L1=0.6×3=1.8,第二个图案的长度L2=0.6×5=3;故答案为1.8,3;26. (1)14;6(2)5t,3t;5t-10,4-3t(3)解:根据题意得:5t-10=4-3t,解得:t= 74(4)解:存在,当A,B没有相遇时,可得14-8t=6,解得:t=1;当A,B错开时,可得8t-14=6,,解得:t= 52综上,当t=1秒或5秒时,线段AB的长为62。
河南省驻马店市2022-2023学年七年级上学期期中质量监测数学试卷(含答案)
2022-2023学年河南省驻马店市七年级(上)期中数学试卷一、选择题(本大题共10小题,共30分)1.下列各组数中,具有相反意义的量是( )A. 盈利元和运出货物吨B. 向东走千米和向南走千米C. 身高和身高D. 收入元和支出元2.下列单项式书写规范的是( )A. B. C. D.3.如图,直角三角形绕直线旋转一周,得到的立体图形是( )A.B.C.D.4.下列说法正确的是( )A. 的系数是B. 单项式的系数为,次数是C. 的次数是D. 是二次三项式5.下列计算正确的是( )A. B. C. D.6.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共本供学生阅读,其中甲种读本的单价为元本,乙种读本的单价为元本,设购买甲种读本本,则购买乙种读本的费用为( )A. 元B. 元C. 元D. 元7.今年月日,我国自主设计研制的第三代航天远洋测量船远望号圆满完成两次海上测控任务后,已安全顺利返回中国卫星海上测控母港.本次出航,远望号历时天,安全航行余海里,其中,数字用科学记数法表示为( )A. B. C. D.8.与计算结果相同的是( )A. B.C. D.9.几何体的下列性质:侧面是平行四边形;底面形状相同;底面平行;棱长相等.其中棱柱具有的性质有( )A. 个B. 个C. 个D. 个10.如图,将,,,,,,,,分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在,,分别表示其中的一个数,则的值为( )A. B. C. D.二、填空题(本大题共5小题,共15分)11.计算:______.12.若与是同类项,则______.13.郑州冬季供暖后,美美发现室内的温度为,此时冰箱冷冻室的温度为,则冷冻室的温度比室内的温度低______14.如图,是由一些相同的小正方体搭成的几何体从三个方向看到的图形,搭成这个几何体的小正方体的个数是______.15.搭建如图正方体需要根木条,图需要根木条,图需要根木条,,按这样的规律,第个图形需要______根木条.三、解答题(本大题共8小题,共75分)16.计算:;;17.矿井下、、三处的高度分别是,,,处比处高多少米?处比处高多少米?处比处高多少米?18.先化简,再求值:,其中,.19.画数轴,在数轴上表示下列各数,并用“”把这些数连接起来.,,,,,20.乐乐和同学们研究“从三个方向看物体的形状”.图中几何体是由几个相同的小立方块搭成的,请画出从正面看到的该几何体的形状图;图是由几个相同的小立方块组成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,请画出这个几何体从左面看到的形状图.21.某人用元购买了套儿童服装,准备以一定价格出售,如果以每套儿童服装元的价格为标准,超出的记作正数,不足的记作负数,记录如下:,,,,,,,单位:元当他卖完这八套儿童服装后是盈利还是亏损?盈利或亏损了多少钱?22.某公园的门票价格为:成人元,学生元,满人可以购买团体票打折,设一个旅游团共有人,其中学生人.用代数式表示该旅游团应付的门票费;如果旅游团有个成人,个学生,那么他们应付门票费多少元?23.已知一个三角形的第一条边长为,第二条边比第一条边长,第三条边比第二条边短.则第二边的边长为______,第三边的边长为______;用含,的式子表示这个三角形的周长,并化简;若,满足,求出这个三角形的周长.答案和解析1.【答案】解析:解:盈利元和运出货物吨,不是相反意义的量,盈利对应亏损,不符合题意;B.向东走千米和向南走千米,不是相反意义的量,向东对应向西,不符合题意;C.身高和身高,不是相反意义的量,不符合题意;D.收入元和支出元,是相反意义的量,符合题意.故选:.根据相反意义的量依次进行判断即可.本题主要考查了相反意义的量,注意常用的有盈利和亏损,向东和向西,向南和向北,收入和支出,这类相反词.2.【答案】解析:解:应写为;应写为;应写为.符合书写规范要求的是.故选:.直接利用代数式的书写形式,进而分析得出答案.此题考查代数式,掌握列代数式的要求是解本题的关键.解题的关键是掌握代数式的书写要求:系数是带分数时,必须化成假分数;在代数式中出现的乘号,通常简写成“”或者省略不写;数字与字母相乘时,数字要写在字母的前面;在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.【答案】解析:解:如图:将直角三角形绕直线旋转一周,可得到圆锥,故选:.4.【答案】解析:解:的系数是,故此选项不合题意;B.单项式的系数为,次数是,故此选项不合题意;C.的次数是,故此选项不合题意;D.是二次三项式,故此选项符合题意;故选:.直接利用单项式的次数与系数确定方法、多项式的次数与项数确定方法分别判断得出答案.此题主要考查了单项式的次数与系数、多项式的次数与项数,正确掌握单项式与多项式相关定义是解题关键.5.【答案】解析:解:、,故A不符合题意;B、,故B符合题意;C、,故C不符合题意;D、,故D不符合题意.故选:.根据乘方的意义判断即可解得.本题考查了乘方的意义,计算时注意符号是解题的关键.6.【答案】解析:解:设购买甲种读本本,则购买乙种读本的费用为:元.故选:.直接利用乙的单价乙的本书乙的费用,进而得出答案.此题主要考查了列代数式,正确表示出乙的本书是解题关键.7.【答案】解析:解:数字用科学记数法可表示为.故选:.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.此题考查科学记数法的表示方法,表示时关键要正确确定的值以及的值.8.【答案】解析:解:.故选:.将转化为,然后利用有理数的混合运算法则解答.本题主要考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.9.【答案】解析:解:棱柱具有下列性质:侧面是平行四边形;底面形状相同;底面平行.棱柱底面的棱长和侧棱不一定相等.正确,故选C.10.【答案】解析:解:三个数之和均为:,,,,.故选:.先由第二行得三数之和均为,然后利用减法分别求出,,的值,进而求出的值为多少即可.此题主要考查了有理数的加减法的运算方法,要熟练掌握,解答此题的关键是求出、、的值各是多少.11.【答案】解析:解:原式.故答案为:.根据有理数的乘法法则进行计算即可.本题考查的是有理数,熟知有理数的乘法法则是解题的关键.12.【答案】解析:解:由同类项的定义可知,,,,.故答案为:.根据同类项的定义中相同字母的指数也相同,可求得和的值,继续计算即可求解.本题考查了同类项的定义字母相同,并且相同字母的指数也相同的两个式子叫同类项、一元一次方程、代数式的知识;解题的关键是熟练掌握同类项的性质,从而完成求解.13.【答案】解析:解:,故答案为:.根据有理数的减法列式计算即可.本题考查了有理数的减法,掌握减去一个数等于加上这个数的相反数是解题的关键.14.【答案】解析:解:在上面看标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为,故答案为:.在上面看摆小立方体,确定每个位置上摆小立方体的个数,得出答案.考查认识立体图形,关键是确定所在位置的个数.15.【答案】解析:解:观察图形,发现:图正方体需要根木条,图需要根木条,图需要根木条,,按这样的规律,第个图形需要根木条.故答案为:.观察图形,找到规律:没增加一个图形增加根木条,据此确定答案即可.本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.16.【答案】解:;;.解析:利用有理数的加减运算的法则进行运算即可;先算除法,再算乘法,最后算减法即可;先算乘方,绝对值,再算括号里的运算,除法转为乘法,再算乘法,最后算加法即可.本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.17.【答案】解:处比处高:,处比处高:,处比处高:.解析:直接利用有理数的加减运算法则计算得出答案.此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.18.【答案】解:;当,时,原式.解析:原式去括号合并同类项得到最简代数式,把与的值代入计算即可求出值此题考查了整式的加减一化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.19.【答案】解:,,,,在数轴表示各数:.解析:先化简、、,再把各数表示在数轴上,最后用“”连接各数.本题考查了在数轴上表示有理数和有理数大小的比较,掌握绝对值的化简、相反数、乘方及数轴上比较有理数大小的方法是解决本题的关键.20.【答案】解:从正面看到的该几何体的形状图如图所示:这个几何体从左面看到的形状图如图所示:解析:根据主视图的定义画出图形即可;根据左视图的定义画出图形即可;本题考查作图三视图,解题的关键是熟练掌握三视图的定义,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】解:根据题意得:,元,,当他卖完这八套儿童服装后是盈利;元,故盈利元.解析:首先正负数相加,再加上预售的总价,即可得他的收入,与元比较,若大于,则盈利;若小于,则亏损;若盈利,就用卖衣服的总价钱就是盈利的钱,若亏损,就用买衣服的总价钱,就是亏损的钱.此题主要考查了正数和负数的定义以及有理数的混合运算,解题关键是理解“正”和“负”的相对性,明确正数和负数的定义.22.【答案】解:成人门票费为元,学生门票费为元,所以旅游团应付的总费用为元.旅游团有个成人,个学生,所以元.答:他们应付门票费元.解析:直接利用人数票价得出总得票价即可;直接利用中关系式得出答案.此题主要考查了列代数式,正确理解题意得出关系式是解题关键.23.【答案】解:则第二边的边长为,第三边的边长为;故答案为:;;周长为:;,,,即,,周长为:.解析:根据题意表示出第二边与第三边即可;三边之和表示出周长,化简即可;利用非负数的性质求出与的值,代入计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.。
河南省驻马店地区七年级上学期数学期中考试试卷
河南省驻马店地区七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2020九下·碑林月考) 如图所示的几何体的俯视图是()A .B .C .D .2. (2分)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为xcm的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大()A . 7B . 6C . 5D . 43. (2分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体是图中的()A .B .C .D .4. (2分)实数a、b、c大小关系如图所示,则下列式子一定成立的是()A . a+b+c>0B . |a-c|=|a|+cC . c>|a+b|D . |b-c|=|c-a|5. (2分) (2019八上·建邺期末) 的相反数是()A .B . -C .D . -6. (2分)若有理数a、b在数轴上对应的位置如图所示,则下列关系正确的是()A . |a|<|b|B . a>bC . a<bD . a=b7. (2分)如图,数a,b在数轴上对应位置是A、B,则﹣a,﹣b,a,b的大小关系是()A . ﹣a<﹣b<a<bB . a<﹣b<﹣a<bC . ﹣b<a<﹣a<bD . 以上都不对8. (2分) (2018七上·广东期中) 若,则 =()A .B .C . 6D .9. (2分) (2017七上·柯桥期中) 下列叙述正确的是()①数轴上的点与实数一一对应;②单项式-πmn的次数是3次;③若五个数的积为负数,则其中正因数有2个或4个;④近似数3.70是由 a 四舍五入得到的,则 a 的范围为3.695≤a﹤3.705;⑤倒数等于本身的数是1A . ①④B . ①②④C . ②④⑤D . ①②③⑤10. (2分)若|a+3|+(b﹣2)2=0,则ab的值为()A . -9B . 9C . -8D . 811. (2分)如果线段AB=5cm,BC=4cm,且A、B、C、D,在同一条直线上,那么A、C两点的距离是()A . 1cmB . 9cmC . 1cm或9cmD . 以上结果都不对12. (2分) (2018七上·翁牛特旗期末) 下列四个生产生活现象,可以用基本事实“两点之间线段最短”来解释的是()A . 用两个钉子就可以把木条固定在墙上B . 植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C . 从A地到B地架设电线,总是尽可能沿着线段AB来架设D . 打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上13. (2分)下列说法中:①过两点有且只有一条直线,②两点之间线段最短,③到线段两个端点距离相等的点叫做线段的中点,④线段的中点到线段的两个端点的距离相等。
2020-2021学年七年级上学期期中联考数学试题含答案
一、精心选一选(本大题共10小题.每小题3分,共30分。
每小题给出的4个选项只有一个符合题意,请将唯一正确答案的代号填在表格内)1.如果水库的水位高于正常水位lm 时,记作+1m ,那么低于正常水位2m 时,应记作A .+2mB .-2mC .+21mD .21-m 2.-3的绝对值是A .3B .-3C .31-D .31 3.世界文化遗产长城总长约为6700000m ,若将6700000用科学记数法表示为6.7×10n (n 是正整数),则n 的值为A .5B .6C .7D .84.一个三位数,个位数字是a ,十位数字是b ,百位数字是c ,则这个三位数是A .abcB .a +10b +100cC .100a +10b +cD .a +b +c5.在-(-4),1-,0-,(-2)3这四个数中非负数共有( )个A .1B .4C .2D .36.下列说法正确的是A .x +y 是一次单项式B .多项式3πa3+4a 2-8的次数是4C .x 的系数和次数都是1D .单项式4×104x2的系数是47.下列各组中的两项是同类项的是A .6zy2和-2y2zB . -m2n 和mn2C .-x2和3xD .0.5a 和0.5b8.去括号正确的是A .-(2a +b -c )=2a +b -cB .-2(a +b -3c )=-2a -2b +6cC .-(-a -b +c )=-a +b +cD .-(a -b -c )=-a +b -c9..计算3562+-a a 与1252-+a a 的差,结果正确的是( )A.432+-a aB.232+-a aC.272+-a aD.472+-a a10.a ,b 两数在数轴上的位置如下图所示,则下列各式正确的个数为①ab >0②a +b >0 ③a -b >0 ④a2-b2>0 ⑤1b -=1-bA .2B .3C . 4D . 5二、细心填一填(本大题共8小题,每小题2分,共16分)把答案直接写在题中的横线上。
七年级数学上学期期中试卷含解析试题 6(共25页)
2021-2021学年(xuénián)二中七年级〔上〕期中数学试卷一、选择题:〔本大题一一共10小题,每一小题3分,一共30分.请将选择题之答案填在答题纸相对应的位置上〕1.﹣3的相反数是( )A.﹣3 B.﹣C.D.32.以下各式符合代数式书写标准的是( )A.2n B.a×3C.D.3x﹣1个3.月球的半径约为一百七十三万八千米.这一数据用科学记数法表示为( )A.0.1738×106米B.173.8×106米C.1.738×106米D.1.738×107米4.以下说法中,正确的选项是( )A.平方是本身的数是0 B.倒数是本身的数是±1C.绝对值是本身的数是正数D.立方是本身的数是0、15.在式子中,单项式的个数为( )A.2 B.4 C.3 D.56.以下说法正确的选项是( )①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的间隔相等;③当a≤0时,|a|=﹣a成立;④绝对值最小的数为零;⑤〔﹣2〕3和﹣23相等.A.2个B.3个C.4个D.5个7.多项式是关于x的四次三项式,那么m的值是( )A.4 B.﹣2 C.﹣4 D.4或者(huòzhě)﹣48.以下运算中,正确的选项是( )A.3a+2b=5ab B.5y﹣2y=3C.6xy2﹣2xy2=4xy2D.﹣〔a+b〕+〔c﹣d〕=﹣a﹣b﹣c+d9.假如多项式x2﹣7ab+b2+kab﹣1不含ab项,那么k的值是( )A.0 B.7 C.1 D.不能确定10.如图,边长为〔m+3〕的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形〔不重叠无缝隙〕,假设拼成的矩形一边长为3,那么另一边长是( ) A.m+3 B.m+6 C.2m+3 D.2m+6二、填空题:本大题一一共10小题,每一小题3分,一共30分.把答案直接填在答题纸相对应的位置上.11.在﹣,0,﹣0.010010001…,π四个数中,有理数有__________个.12.﹣的次数为__________.13.某服装原价为a元,降价10%后的价格为__________元.14.比拟大小:﹣__________﹣.〔填“<〞、“>〞或者“=〞〕.15.小亮按如下图的程序输入一个数x等于(děngyú)10,最后输出的结果为__________.16.假设3a2﹣a﹣2=0,那么5+2a﹣6a2=__________.17.长方形的长为a cm,宽为b cm,假设长增加了2cm,面积比原来增加了__________ cm2.18.计算规那么=ad﹣bc,那么=__________.19.三个有理数a、b、c,其积是负数,其和是正数,当x=++时,代数式x2021﹣2x+2的值是__________.20.a、b所表示的数如下图,以下结论正确的有__________.〔只填序号〕①a>0;②b<a;③|b|<|a|;④|a+1|=﹣a﹣1;⑤|2+b|>|﹣2﹣a|三、解答题:本大题一一共8大题,一共70分.解答时应写出必要的计算过程、推演21.计算题:〔1〕﹣3﹣〔﹣9〕+5〔2〕〔1﹣+〕×〔﹣48〕〔3〕16÷〔﹣2〕3﹣〔﹣〕×〔﹣4〕〔4〕﹣12﹣〔﹣10〕÷×2+〔﹣4〕2.22.〔16分〕化简及求值〔1〕﹣3x+2y﹣5x﹣7y〔2〕2〔x2﹣+2x〕﹣〔x﹣x2+1〕〔3〕5〔3a2b﹣2ab2〕﹣4〔﹣2ab2+3a2b〕,其中(qízhōng)a=﹣2,b=1.〔4〕假设x2﹣3x+1=0,求代数式3x2﹣[3x2+2〔x2﹣x〕﹣4x﹣5]的值.23.在纸面上有一数轴〔如图〕,折叠纸面.〔1〕假设1表示的点与﹣1表示的点重合,那么﹣7表示的点与数__________表示的点重合;〔2〕假设﹣1表示的点与5表示的点重合,答复以下问题:①13表示的点与数__________表示的点重合;②假设数轴上A、B两点之间的间隔为2021〔A在B的左侧〕,且A、B两点经折叠后重合,求A、B两点表示的数是多少?24.:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1〔1〕求4A﹣〔3A﹣2B〕的值;〔2〕假设A+2B的值与a的取值无关,求b的值.25.有一个多项式,当减去2x2﹣3x+7时,某学生因把“减去〞误认为“加上〞,得到结果为5x2﹣2x+4.那么按照正确的运算要求,最后结果应该是什么?26.某自行车厂方案一周消费自行车1400辆,平均每天消费200辆,但由于种种原因,实际每天消费量与方案量相比有出入.下表是某周的消费情况〔超产(chāochǎn)记为正、减产记为负〕:星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8〔1〕根据记录的数据可知该厂星期四消费自行车__________辆;〔2〕产量最多的一天比产量最少的一天多消费自行车__________辆;〔3〕根据记录的数据可知该厂本周实际消费自行车__________辆;〔4〕该厂实行每周计件工资制,每消费一辆车可得50元,假设超额完成任务,那么超过部分每辆另奖20元;少消费一辆扣25元,那么该厂工人这一周的工资总额是多少元?27.奇奇妈妈买了一块正方形地毯,地毯上有“※〞组成的图案,观察部分有如此规律:奇奇数※个数的方法是用“L〞来划分,从右上角的1个开场,一层一层往外数,第一层1个,第二层3个,第三层5个…,这样她发现了连续奇数求和的方法.1=121+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52过阅读上段材料,请完成以下问题:〔1〕1+3+5+7+9+…+27+29=__________〔2〕13+15+17+…+97+99=__________.〔3〕0到200之间,所有能被3整除的奇数的和为__________.28.:b是最小的正整数,且a、b满足(mǎnzú)〔c﹣5〕2+|a+b|=0.〔1〕恳求出a、b、c的值;〔2〕a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在0到2之间运动时〔即0≤x≤2时〕,请化简式子:|x+1|﹣|x﹣1|+2|x+3|;〔写出化简过程〕〔3〕在〔1〕、〔2〕的条件下,点A、B、C开场在数轴上运动,假设点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,假设点B与点C之间的间隔表示为BC,点A与点B之间的间隔表示为AB.请问:BC﹣AB的值是否随着时间是t的变化而改变?假设变化,请说明理由;假设不变,恳求其值.2021-2021学年二中(èr zhōnɡ)七年级〔上〕期中数学试卷一、选择题:〔本大题一一共10小题,每一小题3分,一共30分.请将选择题之答案填在答题纸相对应的位置上〕1.﹣3的相反数是( )A.﹣3 B.﹣C.D.3【考点】相反数.【专题】常规题型.【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:﹣3的相反数是3.应选:D.【点评】此题考察了相反数的定义,是根底题,熟记概念是解题的关键.2.以下各式符合代数式书写标准的是( )A.2n B.a×3C.D.3x﹣1个【考点】代数式.【分析】此题根据书写规那么,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进展断定,即可求出答案.【解答】解:A、2n的正确书写形式为n,故本选项错误;B、a×3的正确书写形式为3a,故本选项错误;C、的书写形式正确,故本选项正确;D、3x﹣1个的正确书写形式为〔3x﹣1〕个,故本选项错误;应选(yīnɡ xuǎn)C.【点评】此题考察了代数式:用运算符号〔指加、减、乘、除、乘方、开方〕把数或者表示数的字母连接而成的式子叫做代数式.数的一切运算规律也适用于代数式.单独的一个数或者者一个字母也是代数式,注意代数式的书写格式.3.月球的半径约为一百七十三万八千米.这一数据用科学记数法表示为( )A.0.1738×106米B.173.8×106米C.1.738×106米D.1.738×107米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:一百七十三万八千米=1 738 000米=1.738×106米,应选:C.【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.以下说法中,正确的选项是( )A.平方是本身的数是0 B.倒数是本身的数是±1C.绝对值是本身的数是正数D.立方是本身的数是0、1【考点】有理数的乘方;绝对值.【分析】根据平方根的定义、倒数的定义、绝对值的性质以及立方根的定义逐项分析即可.【解答】解:A、平方是本身的数是0和1,应选项错误;B、倒数是本身(běnshēn)的数是1或者﹣1,应选项正确;C、绝对值是本身的数是正数或者0,应选项错误;D、立方是本身的数是0或者1或者﹣1,应选项错误;应选B.【点评】此题考察了平方根、立方根以及倒数的定义和绝对值的性质,属于根底性题目,比拟简单.5.在式子中,单项式的个数为( )A.2 B.4 C.3 D.5【考点】单项式.【分析】根据单项式的定义解答,其定义为:数与字母的积的形式的代数式是单项式,不含加减号的代数式〔数与字母的积的代数式〕,单独的一个数或者一个字母也是单项式,分母中含字母的不是单项式.【解答】解:根据单项式的定义可知在这一组数中只有0,﹣a,﹣3x2y是单项式.应选C.【点评】此题考察了单项式的概念,比拟简单.容易出现的错误是:把误认为是单项式,这是一个分式,既不是单项式也不是多项式.6.以下说法正确的选项是( )①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的间隔相等;③当a≤0时,|a|=﹣a成立;④绝对值最小的数为零;⑤〔﹣2〕3和﹣23相等.A.2个B.3个C.4个D.5个【考点】有理数的乘方;有理数;数轴;绝对值.【专题(zhuāntí)】计算题.【分析】①根据最大的负整数为﹣1,得到结果正确;②利用绝对值的意义判断即可;③利用绝对值的代数意义判断即可;④根据绝对值最小的数为0得到结果正确;⑤利用乘方的意义计算,判断即可得到结果.【解答】解:①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的间隔相等;③当a≤0时,|a|=﹣a成立;④绝对值最小的数为零;⑤〔﹣2〕3和﹣23相等.那么正确的有5个.应选D【点评】此题考察了有理数的乘方,有理数,数轴,以及绝对值,纯熟掌握各自的定义是解此题的关键.7.多项式是关于x的四次三项式,那么m的值是( )A.4 B.﹣2 C.﹣4 D.4或者﹣4【考点】多项式.【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【解答】解:∵多项式是关于x的四次三项式,∴|m|=4,﹣〔m﹣4〕≠0,∴m=﹣4.应选:C.【点评】此题考察了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.8.以下运算(yùn suàn)中,正确的选项是( )A.3a+2b=5ab B.5y﹣2y=3C.6xy2﹣2xy2=4xy2D.﹣〔a+b〕+〔c﹣d〕=﹣a﹣b﹣c+d【考点】合并同类项;去括号与添括号.【专题】计算题.【分析】A、本选项不能合并,错误;B、原式合并同类项得到结果,即可做出判断;C、原式合并同类项得到结果,即可做出判断;D、原式去括号得到结果,即可做出判断.【解答】解:A、3a+2b不能合并,错误;B、5y﹣2y=3y,本选项错误;C、6xy2﹣2xy2=4xy2,本选项正确;D、﹣〔a+b〕+〔c﹣d〕=﹣a﹣b+c﹣d,本选项错误.应选C.【点评】此题考察了合并同类项,以及去括号与添括号,纯熟掌握运算法那么是解此题的关键.9.假如多项式x2﹣7ab+b2+kab﹣1不含ab项,那么k的值是( )A.0 B.7 C.1 D.不能确定【考点】多项式;合并同类项.【分析】根据题意“不含ab项〞故ab项的系数为0,由此可得出k的值.【解答】解:∵不含ab项,∴﹣7+k=0,k=7.应选(yīnɡ xuǎn):B.【点评】此题主要考察了多项式,以及合并同类项,关键是掌握一个多项式中不含哪一项,那么使哪一项的系数=0.10.如图,边长为〔m+3〕的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形〔不重叠无缝隙〕,假设拼成的矩形一边长为3,那么另一边长是( )A.m+3 B.m+6 C.2m+3 D.2m+6【考点】平方差公式的几何背景.【分析】由于边长为〔m+3〕的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形〔不重叠无缝隙〕,那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【解答】解:依题意得剩余部分为〔m+3〕2﹣m2=〔m+3+m〕〔m+3﹣m〕=3〔2m+3〕=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.应选:C.【点评】此题主要考察了多项式除以单项式,解题关键是熟悉除法法那么.二、填空题:本大题一一共10小题,每一小题3分,一共30分.把答案(dá àn)直接填在答题纸相对应的位置上.11.在﹣,0,﹣0.010010001…,π四个数中,有理数有2个.【考点】实数.【分析】根据有理数是有限小数或者无限循环小数,可得答案.【解答】解:﹣,0是有理数,故答案为:2.【点评】此题考察了实数,有理数是有限小数或者无限循环小数,无理数是无限不循环小数.12.﹣的次数为3.【考点】单项式.【分析】根据单项式次数的定义进展解答即可.【解答】解:∵单项式﹣中所有字母指数的和=1+2=3,∴此单项式的次数为3.故答案为:3.【点评】此题考察的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.13.某服装原价为a元,降价10%后的价格为〔1﹣10%〕a元.【考点】列代数式.【专题】推理填空题.【分析】由可知,降价10%后的价格为原价的〔1﹣10%〕,即〔1﹣10%〕a元.【解答】解:降价(jiànɡ jià)10%后的价格为:〔1﹣10%〕a元.故答案为:〔1﹣10%〕a.【点评】此题考察的知识点是列代数式,关键是确定降价后价格与原价格的关系.14.比拟大小:﹣>﹣.〔填“<〞、“>〞或者“=〞〕.【考点】有理数大小比拟.【分析】先把两个分数通分,再根据两个负数比拟大小的法那么进展比拟即可.【解答】解:∵﹣=﹣,﹣=﹣;|﹣|=<|﹣|=;∴﹣>﹣,即:﹣>﹣.【点评】有理数比拟大小与实数比拟大小一样:两个负数比拟大小,绝对值大的反而小.15.小亮按如下图的程序输入一个数x等于10,最后输出的结果为256.【考点】代数式求值.【专题】图表型.【分析】根据图示的计算过程进展计算,代入x的值一步一步计算可得出最终结果.【解答】解:当x=10时,5x+1=51<200,此时输入的数为51,5x+1=256>200,所以输出的结果为256.故答案为:256.【点评】此题考察了代数式求值的知识,属于根底(gēndǐ)题,解答此题关键是理解图标的计算过程,难度一般,注意细心运算.16.假设3a2﹣a﹣2=0,那么5+2a﹣6a2=1.【考点】代数式求值.【专题】整体思想.【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联络后,代入求值.【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2〔3a2﹣a〕=5﹣2×2=1.故答案为:1.【点评】主要考察了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,把所求的代数式变形整理出题设中的形式,利用“整体代入法〞求代数式的值.17.长方形的长为a cm,宽为b cm,假设长增加了2cm,面积比原来增加了2b cm2.【考点】整式的混合运算.【专题】计算题.【分析】用后来的面积减去原来的面积即可.【解答】解:〔a+2〕b﹣ab=ab+2b﹣ab=2b.故答案是2b.【点评】此题考察了整式的混合运算,解题的关键是去括号、合并同类项.18.计算规那么=ad﹣bc,那么=5.【考点(kǎo diǎn)】有理数的混合运算.【专题】新定义.【分析】原式利用的新定义计算即可得到结果.【解答】解:根据题中的新定义得:﹣1+6=5,故答案为:5【点评】此题考察了有理数的混合运算,纯熟掌握运算法那么是解此题的关键.19.三个有理数a、b、c,其积是负数,其和是正数,当x=++时,代数式x2021﹣2x+2的值是1.【考点】代数式求值.【分析】根据有理数的运算法那么可知a、b、c中有一个负数,从而可知x=1,然后可求得代数式的值.【解答】解:∵三个有理数a、b、c,其积是负数,且和是正数,∴a、b、c中有一个负数.∴x=1.∴原式=12021﹣2×1+2=1﹣2+2=1.故答案为:1.【点评】此题主要考察的是求代数式的值,求得x=1是解题的关键.20.a、b所表示的数如下图,以下结论正确的有②④⑤.〔只填序号〕①a>0;②b<a;③|b|<|a|;④|a+1|=﹣a﹣1;⑤|2+b|>|﹣2﹣a|【考点(kǎo diǎn)】有理数大小比拟;数轴.【分析】分别根据绝对值得性质以及利用数轴估计a,b的值,进而分析得出即可.【解答】解:如下图:①a<0,故此选项错误;②b<a,a在b的右侧,故此选项正确;③|b|<|a|,根据负数比拟大小法那么得出,此选项错误;④|a+1|=﹣a﹣1,根据负数去绝对值法那么,此选项正确;⑤|2+b|>|﹣2﹣a|,去绝对值得:﹣2﹣b>2+a,整理得:a+b<﹣4,此选项正确.故答案为:②④⑤.【点评】此题主要考察了有理数的比拟大小,以及数轴和绝对值的性质,正确去掉绝对值是解题关键.三、解答题:本大题一一共8大题,一共70分.解答时应写出必要的计算过程、推演21.计算题:〔1〕﹣3﹣〔﹣9〕+5〔2〕〔1﹣+〕×〔﹣48〕〔3〕16÷〔﹣2〕3﹣〔﹣〕×〔﹣4〕〔4〕﹣12﹣〔﹣10〕÷×2+〔﹣4〕2.【考点】有理数的混合运算.【分析】〔1〕先把减法改为加法,再计算;〔2〕利用乘法分配律简算;〔3〕先算乘方和和乘法,再算除法,最后算减法;〔4〕先算乘方和乘除,再算加减.【解答】解:〔1〕原式=﹣3+9+5=11;〔2〕原式=1×〔﹣48〕﹣×〔﹣48〕+×〔﹣48〕=﹣48+8﹣36=﹣76;〔3〕原式=16÷〔﹣8〕﹣=﹣2﹣=﹣2;〔4〕原式=﹣1﹣〔﹣40〕+16=﹣1+40+16=55.【点评】此题考察有理数的混合运算,掌握运算顺序(shùnxù),正确断定运算符号计算即可.22.〔16分〕化简及求值〔1〕﹣3x+2y﹣5x﹣7y〔2〕2〔x2﹣+2x〕﹣〔x﹣x2+1〕〔3〕5〔3a2b﹣2ab2〕﹣4〔﹣2ab2+3a2b〕,其中a=﹣2,b=1.〔4〕假设x2﹣3x+1=0,求代数式3x2﹣[3x2+2〔x2﹣x〕﹣4x﹣5]的值.【考点】整式的加减—化简求值;整式的加减.【专题】计算题.【分析】〔1〕原式合并同类项即可得到结果;〔2〕原式去括号合并即可得到结果;〔3〕原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;〔4〕原式去括号合并整理后,将等式变形后代入计算即可求出值.【解答(jiědá)】解:〔1〕原式=﹣8x﹣5y;〔2〕原式=2x2﹣1+4x﹣x+x2﹣1=3x2+3x﹣2;〔3〕原式=12a2b﹣10ab2+8ab2﹣12a2b=﹣2ab2,当a=﹣2,b=1时,原式=4;〔4〕原式=3x2﹣3x2﹣2x2+2x+4x+5=﹣2x2+6x+5=﹣2〔x2﹣3x〕+5,由x2﹣3x+1=0,得到x2﹣3x=﹣1,那么原式=2+5=7.【点评】此题考察了整式的加减﹣化简求值,以及整式的加减,纯熟掌握运算法那么是解此题的关键.23.在纸面上有一数轴〔如图〕,折叠纸面.〔1〕假设1表示的点与﹣1表示的点重合,那么﹣7表示的点与数﹣7表示的点重合;〔2〕假设﹣1表示的点与5表示的点重合,答复以下问题:①13表示的点与数﹣9表示的点重合;②假设数轴上A、B两点之间的间隔为2021〔A在B的左侧〕,且A、B两点经折叠后重合,求A、B两点表示的数是多少?【考点】数轴.【分析】〔1〕由表示1与﹣1的两点重合,利用对称性即可得到结果;〔2〕由表示﹣1与5的两点重合,确定出2为对称点,得出两项的结果即可.【解答】解:〔1〕表示﹣7的点与表示7的点重合.故答案为:7;〔2〕由题意得:〔﹣1+5〕÷2=2,即2为对称点.①根据(gēnjù)题意得:2×2﹣13=﹣9.故答案为:﹣9;②∵2为对称点,A、B两点之间的间隔为2021〔A在B的左侧〕,且A、B两点经折叠后重合,∴A表示的数=﹣+2=﹣1005.5,B点表示的数=+2=1009.5.【点评】此题考察的是数轴,熟知数轴上各点与全体实数是一一对应关系是解答此题的关键.24.:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1〔1〕求4A﹣〔3A﹣2B〕的值;〔2〕假设A+2B的值与a的取值无关,求b的值.【考点】整式的加减.【分析】〔1〕先化简,然后把A和B代入求解;〔2〕根据题意可得5ab﹣2a+1与a的取值无关,即化简之后a的系数为0,据此求b值即可.【解答】解:〔1〕4A﹣〔3A﹣2B〕=A+2B∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴原式=A+2B=2a2+3ab﹣2a﹣1+2〔﹣a2+ab﹣1〕=5ab﹣2a﹣3;〔2〕假设A+2B的值与a的取值无关,那么5ab﹣2a+1与a的取值无关,即:〔5b﹣2〕a+1与a的取值无关,∴5b﹣2=0,解得:b=即b的值是.【点评(diǎn pínɡ)】此题考察了整式的加减,解答此题的关键是掌握去括号法那么以及合并同类项法那么.25.有一个多项式,当减去2x2﹣3x+7时,某学生因把“减去〞误认为“加上〞,得到结果为5x2﹣2x+4.那么按照正确的运算要求,最后结果应该是什么?【考点】整式的加减.【专题】计算题.【分析】由结果减去2x2﹣3x+7的2倍列出关系式,去括号合并即可得到正确的结果.【解答】解:由题意得:5x2﹣2x+4﹣2〔2x2﹣3x+7〕=5x2﹣2x+4﹣4x2+6x﹣14=x2+4x﹣10,那么正确的运算结果应是x2+4x﹣10.【点评】此题考察了整式的加减运算,涉及的知识有:去括号法那么,以及合并同类项法那么,纯熟掌握法那么是解此题的关键.26.某自行车厂方案一周消费自行车1400辆,平均每天消费200辆,但由于种种原因,实际每天消费量与方案量相比有出入.下表是某周的消费情况〔超产记为正、减产记为负〕:星期一二三四五六日增减+6 ﹣2 ﹣4 +12 ﹣10 +16 ﹣8〔1〕根据记录的数据可知该厂星期四消费自行车212辆;〔2〕产量最多的一天比产量最少的一天多消费自行车26辆;〔3〕根据记录的数据可知(kě zhī)该厂本周实际消费自行车1410辆;〔4〕该厂实行每周计件工资制,每消费一辆车可得50元,假设超额完成任务,那么超过部分每辆另奖20元;少消费一辆扣25元,那么该厂工人这一周的工资总额是多少元?【考点】有理数的混合运算;正数和负数.【分析】〔1〕该厂星期四消费自行车200+12=212辆;〔2〕产量最多的一天比产量最少的一天多消费自行车16﹣〔﹣10〕=26辆;〔3〕该厂本周实际消费自行车〔6﹣2﹣4+12﹣10+16﹣8〕+200×7=1410辆;〔4〕这一周的工资总额是200×7×50+〔6﹣2﹣4+12﹣10+16﹣8〕×20=70200元.【解答】解:〔1〕超产记为正、减产记为负,所以星期四消费自行车200+12辆,故该厂星期四消费自行车212辆;〔2〕根据图示产量最多的一天是216,产量最少的一天是190,216﹣190=26辆,故产量最多的一天比产量最少的一天多消费自行车26辆;〔3〕根据题意知,6﹣2﹣4+12﹣10+16﹣8=10,200×7+10=1410辆,故该厂本周实际消费自行车1410辆;〔4〕根据图示,本周工人工资总额=200×7×50+10×〔50+20〕=70700元,〔或者:本周工人工资总额=1410×50+10×20=70700元〕故该厂工人这一周的工资总额是70700元.故答案为:〔1〕212;〔2〕26;〔3〕1410;〔4〕70700.【点评】此题主要考察正负数在实际生活中的应用,所以学生在学这一部分时一定要联络实际,不能死学.27.奇奇妈妈买了一块正方形地毯,地毯上有“※〞组成的图案,观察部分有如此规律:奇奇数※个数的方法是用“L〞来划分,从右上角的1个开场,一层一层往外数,第一层1个,第二层3个,第三层5个…,这样(zhèyàng)她发现了连续奇数求和的方法.1=121+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52过阅读上段材料,请完成以下问题:〔1〕1+3+5+7+9+…+27+29=225〔2〕13+15+17+…+97+99=9964.〔3〕0到200之间,所有能被3整除的奇数的和为3267.【考点】规律型:数字的变化类;规律型:图形的变化类.【分析】〔1〕观察图形可知,从1开场的连续奇数的和等于奇数个数的平方,然后计算即可得解;〔2〕用从1开场到199的连续奇数的和减去从1开场到11的连续奇数的和,列式计算即可得解;〔3〕表示出能被3整除(zhěngchú)的奇数的表达式为6n﹣3,然后列出0到200间的连续数的和,再根据求和公式列式计算即可得解.【解答】解:〔1〕1+3+5+7+9+…+27+29=152=225;〔2〕13+15+17+…+197+199=〔1+3+5+7+9+…+197+199〕﹣〔1+3+5+7+9+11〕=1002﹣62=10000﹣36=9964;〔3〕能被3整除的奇数有:3、9、15、21 (195)第n个数为6n﹣3,6n﹣3=195,解得n=33,3+9+15+21+…+195==3267.故答案为:225;9964;3267.【点评】此题考察数字的变化规律,找出数字之间的运算规律,利用规律解决问题.28.:b是最小的正整数,且a、b满足〔c﹣5〕2+|a+b|=0.〔1〕恳求出a、b、c的值;〔2〕a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在0到2之间运动时〔即0≤x≤2时〕,请化简式子:|x+1|﹣|x﹣1|+2|x+3|;〔写出化简过程〕〔3〕在〔1〕、〔2〕的条件下,点A、B、C开场在数轴上运动,假设点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,假设点B与点C之间的间隔表示为BC,点A与点B之间的间隔表示为AB.请问:BC﹣AB的值是否随着时间是t的变化而改变?假设变化,请说明理由;假设不变,恳求其值.【考点(kǎo diǎn)】数轴;绝对值;整式的加减.【分析】〔1〕根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,那么每个数是0,即可求得a,b,c的值;〔2〕根据x的范围,确定x+1,x﹣1,x+5的符号,然后根据绝对值的意义即可化简;〔3〕根据A,B,C的运动情况即可确定AB,BC的变化情况,即可确定AB﹣BC的值.【解答】解:〔1〕根据题意得:c﹣5=0,a+b=0,b=1,∴a=﹣1,b=1,c=5;〔2〕当0≤x≤1时,x+1>0,x﹣1≤0,x+3>0,∴|x+1|﹣|x﹣1|+2|x+3|=x+1﹣〔1﹣x〕+2〔x+3〕=x+1﹣1+x+2x+6=4x+6;当1<x≤2时,x+1>0,x﹣1>0,x+3>0.∴|x+1|﹣|x﹣1|+2|x+3|=x+1﹣〔x﹣1〕+2〔x+3〕=x+1﹣x+1+2x+6=2x+8;〔3〕不变.∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A,B每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B,C每秒钟增加3个单位长度.∴BC﹣AB=2,BC﹣AB的值不随着时间是t的变化而改变.【点评】此题考察了数轴与绝对值,正确理解AB,BC的变化情况是关键.内容总结(1)〔写出化简过程〕〔3〕在〔1〕、〔2〕的条件下,点A、B、C开场在数轴上运动,假设点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,假设点B与点C之间的间隔表示为BC,点A与点B之间的间隔表示为AB.请问:BC﹣AB的值是否随着时间是t的变化而改变。
人教版2020---2021学年度七年级数学(上)期中考试卷及答案
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分 时间: 100分钟)一、选择题:(本大题共10个小题,每小题2分,共20分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的相反数是( ) A.2B.2-C.21D.21-2. 下列运算正确的是( )A.2523a a a =+B.ab b a 743=+C.325a a a =-D.b a b a b a 2222=- 3. 一种面粉的质量标识为“25.025±”,则下列面粉中合格的是:A.24.70千克B.25.30千克C.24.80千克D.25.51千克4. 在式子31,3,2,9.0,52,12+--+x y x a y x x 中,单项式的个数是( )A.5个B.4个C.3个D.2个5. 如果两个数的和是负数,那么这两个数( )A.至少有一个为正数B.同是正数C.同是负数D.至少有一个为负数6. 多项式7)4(21||+--x m x m 是关于x 的四次三项式,则m 的值是( )A.4B.2-C.4-D.4或4-7. 一个有理数和它的相反数之积一定为( ) A.正数B.非正数C.负数D.非负数8. 一个多项式与122+-x x 的和是23-x ,则这个多项式为: A.352+-x x B.12-+-x x C.352-+-x x D.1352--x x 9. 计算44442222+++的结果是( ) A.162B.48C.82D.62 10. 有理数b a ,在数轴上的位置如下图所示,在下列结论中:①<ab ;②>+b a ;③23b a >;④)(3<-b a ;⑤ab b a -<<-<;⑥b a a b =--||||.正确的结论有( ) A.5个 B.4个 C.3个D.2个二、填空题:(本大题共6个小题,每小题2分,共12分) 11. 地球上海洋面积约为36100万2km ,可表示为科学记数法________________2km .12. 已知:||||y x -=,3-=x ,则y =_______. 13. 在3223)2(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于_________. 14. 如果3251b a 与y x x b a ++-141是同类项,那么xy =________.15. 多项式9126322-+--xy y mxy x 合并后不含xy 项,则=m ________.16. 已知:b a ,互为相反数,c 与d -互为倒数,2||=m ,则3m cd mba +-+=________.题号一 二 三 总分 得分ba密 封 线 内 不 得 答 题三、解答题:(本大题共8个小题,共68分)解答应写出文字说明、证明过程或演算步骤.17.(每小题4分,共16分) (1) )31(|)11(7|)32(|5|322-+--⨯---+- (2) )14()2()3121()61(2-⨯-+--÷- (3) )7()7649(-⨯-(4) ]2)31()4[(|10|22⨯---+- 18.(本小题满分6分)化简求值: y x y x xy xy y x 222222)(5)31(12--+-,其中5,51-==y x .19.(每小题4分,共8分) (1) 1]2)1(32[--+---n m m (2) )74()53(252222xy y x y x +-+-- 20.(本小题满分6分)已知:多项式1222-+my x 与多项式632+-y nx 的差与y x ,的大小无关.求:mn n m ++的值. 21.(本小题满分6分)(1) 各线段长度如图标记,请用含n m ,的式子表示阴影部分的面积;(2) 若(1)中的nm ,满足0)2(|3|2=-+-n m ,请计算阴影部分的面积. 22.(本小题满分6分)设一个两位数的个位数字为a ,十位数字为b (b a ,均为正整数,且b a >),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数,则新的两位数与原两位数的差 一定是9的倍数,试说明理由. 23.(本小题满分10分)某出租车司机国庆节的营运全是在长虹路南北方向上进行的,如果规定向北为正,向南为负,他这天行车里程(单位:千米)如下:12,16,5,15,4.4,4.2,5,10+-+++-+-(1) 最后一名乘客送到目的地时,出租车在出发点的哪个方向?与出发点的距离?(2) 长虹路南北至少有多少千米?(3) 若该出租车耗油量为每千米0.08升,每升油7.5元,出租车按物价部门规定,起步价(不超过3千米)5元,超过3千米的部分,每千米(不足1千米按1千米计算)加价2元,该出租车司机今天的纯收入为多少元?(纯收入=收入-油耗钱)24. (本小题满分10分)如图,在数轴上每相邻两点之间的距离为一个单位长度.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题(1)若点A,B,C,D 对应的数分别是d c b a ,,,, 则可用含a 的整式表示d 为 ,若1423=-a d ,则b= c= (填具体数值)(2)在(1)的条件下, 点A 以4个单位/秒的速度沿着数轴的正方向运动,同时点B 以2个单位/秒的速度沿着数轴的正方向运动,当点A 到达D 点处立刻返回,与点B 在数轴的某点处相遇,求相遇点所对应的数.(3)如果点A 以2个单位/秒的速度沿着数轴的负方向运动,同时点B 以4个单位/秒的速度沿着数轴的正方向运动,是否存在某时刻使得点A 与点B 到点C 的距离相等,若存在请求出时间t,若不存在请说明理由.七年级数学试题参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 A D C C D C B C D B二.填空题11.81061.3⨯ 12.3± 13.7- 14.2 15. 4 16.79-或(第16题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题 17.31123185931189459)31(|)11(7|)32(|5|3)1(22-=--+-=-⨯-+-=-+--⨯---+-54555651)14(4)56()61()14()2()3121()61)(2(2-=-=-⨯+-⨯-=-⨯-+--÷-3493501)7(50)7(71)7()5071()7()7649)(3(=+-=-⨯--⨯=-⨯-=-⨯- 423210)1616(10]2)91(16[10]2)31()4[(|10|)4(22=+=++=⨯--+=⨯---+- (每小题4分,共计16分,请按步骤给分) 18. 解:22222222222252554122)(5)31(12xy y x y x y x xy xy y x yx y x xy xy y x +=--+-=--+-.............................………...............…4分 当5,51-==y x 时,原式=451)5(51)5()51(522=+-=-⨯+-⨯⨯........…6分19. 解: 431531)53(1)23332(1]2)1(32[)1(+-=-+-=--+--=---+--=--+---n m n m n m n m m n m m xy y x xy y x y x xy y x y x 71015741065)74()53(25)2(2222222222+-=+-+-=+-+-- (每小题4分,共计8分,请按步骤给分) 20. 解:18)3()2(63122)63()122(22222-++-=-+--+=+---+y m x n y nx my x y ny my x ................................................…2分∵上式的值与y x ,的大小无关∴03,02=+=-m n ....................................................................…4分 即3,2-==m n ...........................................................................…5分 ∴7612)3(23-=--=⨯-++-=++mn n m ......................…6分21. 解:(1)mn mn mn n n n m n m S 211216)25.03(32=-=---⋅=阴.................…3分(2)由题意得02,03=-=-n m .....................................................................…4分 所以2,3==n m ..........................................................................................…5分 ∴3323211211=⨯⨯==mn S 阴 .................................................................…6分 22. 解:原数与新数可用含b a ,的式子分别表示为b a a b ++10,10则..................…1分)(9991010)10()10(b a b a ab b a a b b a -=-=--+=+-+.....................................................................................…4分∵b a ,均为正整数,且b a >∴)(9b a -一定是9的倍数.............................................................................…5分 即新的两位数与原两位数的差一定是9的倍数...........................................…6分 23. 解:(1)∵1312165154.44.2510+=+-+++-+-.................................…2分∴最后一名乘客下车时,出租车在出发点的北边13千米处......................3分 (2)八次运营与出发点的距离如下:南10;南5;南7.4;南3;北12;北17;北1;北13…..5分∴长虹路南北至少:10+17=27千米...........................................................…6分 (3)油耗钱:88.415.708.0)12165154.44.2510(=⨯⨯+++++++….........7分 收入:134233192995919=+++++++...............................................…8分 纯收入:12.9288.41134=-…..........................................................................9 答:该出租车司机今天的纯收入为92.12元.…...........................................10分(本题每问分数分配:3分+3分+4分)24. 解: (1) 8+a ;7;12-- (2) ∵8102)10(2=+-=---=AD 10122)12(2=+-=---=BD∴两点的路程之和为 ∴两点的相遇时间为:3)24(18=+÷ ∴相遇点所表示的数为:62312-=⨯+- (3) 存在431或=t 时,点A 与点B 到点C 的距离相等,理由如下 ①当点A 与点B 相遇时:31)24()]12(10[=+÷---②当点A 在点C 右侧时:t 秒时点A 、B 表示的数分别为:t 210--;t 412+-此时点A 到点C 的距离为:32)210(7+=----t t 点B 到点C 的距离为:54)7(412-=--+-t t∴5432-=+t t解得4=t 综上所述:当431或=t 时,点A 与点B 到点C 的距离相等(本题每问分数分配:3分+3分+4分)。
2020-2021七年级数学上期中试卷(带答案)
∴MN=AM-AN=4-3=1cm. 故选 A.
7.A
解析:A 【解析】 【分析】 根据小单位化大单位除以进率,可化成相同单位的角,根据有理数的大小比较,可得答 案. 【详解】 ∠1=18°18′=18.3°=∠3<∠2, 故选:A. 【点睛】 本题考查了度、分、秒的换算,利用小单位化大单位除以进率化成相同单位的角是解题的 关键.
x
5
y
A.4 个
B.3 个
C.2 个
D.1 个
11.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是 ( )
A.
B.
C.
D.
12.如果| a | a ,下列成立的是( )
A. a 0 二、填空题
B. a 0
C. a 0
D. a 0
13.当 k=_____时,多项式 x2+(k﹣1)xy﹣3y2﹣2xy﹣5 中不含 xy 项. 14.我国明代数学读书《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长 一托,对折索子来量竿,却比竿子短一托.如果 1 托为 5 尺,那么设竿子长为 x 尺,依据题 意,可列出方程得____________.
如果| a | a ,即一个数的绝对值等于它的相反数,则 a 0 .
故选 D. 【点睛】 本题考查绝对值,熟练掌握绝对值的性质是解题关键.
二、填空题
13.3【解析】【分析】不含有 xy 项说明整理后其 xy 项的系数为 0【详解】 解:整理只含 xy 的项得:(k-3)xy∴k-3=0k=3 故答案为 3【点睛】本题考查 多项式的概念不含某项说明整理后的这项的系数之和为 0
所以原式=- 1 . 19
根据阅读材料提供的方法,完成下面的计算:(- 1 )÷[ 1 - 1 + 5 +(- 2 )2×(-6)]. 42 2 3 7 3
2020-2021学年七年级(上)期中考试数学卷部分附答案共3份
期中综合能力检测题(附答案)一.选择题1.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.2.﹣|﹣3|的倒数是()A.﹣3 B.﹣C.D.33.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个4.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人5.下列各式中,次数为5的单项式是()A.5ab B.a5b C.a5+b5D.6a2b36.下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4 D.a3+a2=a57.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c8.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|a﹣1|+|b+2|的结果是()A.1 B.2b+3 C.2a﹣3 D.﹣19.﹣(﹣)的相反数是()A.3 B.﹣3 C.D.﹣10.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10 B.15 C.18 D.21二.填空题11.计算:﹣5+3=.12.已知x=3是关于x方程mx﹣8=10的解,则m=.13.若多项式(k﹣1)x2+3x|k+2|+2为三次三项式,则k的值为.14.若单项式﹣2x3y n与4x m y5合并后的结果还是单项式,则m﹣n=.15.若a、b互为相反数,m、n互为倒数,则(a+b)2015+2016mn=.16.若x2﹣4x=1,则=.三.解答题17.计算﹣32+1÷4×﹣|﹣1|×(﹣0.5)2.18.先化简,再求值:﹣xy,其中x=3,y=﹣.19.解下列方程:(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x);(2)﹣=﹣2.20.如下图所示,边长分别为a,b的两个正方形拼在一起,用代数式表示图中阴影部分的面积,并求a=8,b=5时,阴影部分的面积.21.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9 (1)产量最多的一天比产量最少的一天多生产多少辆?(2)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖20元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?22.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.23.数轴上两个质点A.B所对应的数为﹣8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒.(1)点A.B两点同时出发相向而行,在4秒后相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CA=2CB,若干秒钟后,C停留在﹣10处,求此时B点的位置?参考答案一.选择题1.解:∵|1.2|=1.2,|﹣2.3|=2.3,|+0.9|=0.9,|﹣0.8|=0.8,又∵0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件.故选:D.2.解:﹣|﹣3|=﹣3,﹣|﹣3|的倒数是﹣,故选:B.3.解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.4.解:∵530060是6位数,∴10的指数应是5,故选:B.5.解:A、5ab是次数为2的单项式,故此选项错误;B、a5b是次数为6的单项式,故此选项错误;C、a5+b5是次数为5的多项式,故此选项错误;D、6a2b3是次数为5的单项式,故此选项正确.故选:D.6.解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.7.解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.8.解:由数轴可知﹣2<b﹣1,1<a<2,且|a|>|b|,∴a+b>0,则|a+b|﹣|a﹣1|+|b+2|=a+b﹣(a﹣1)+(b+2)=a+b﹣a+1+b+2=2b+3.故选:B.9.解:﹣(﹣)=的相反数是:﹣.故选:D.10.解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,…∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.二.填空11.解:﹣5+3=﹣(5﹣3)=﹣2.故答案为:﹣2.12.解:将x=3代入mx﹣8=10,∴3m=18,∴m=6,故答案为:613.解:∵多项式(k﹣1)x2+3x|k+2|+2是关于x的三次三项式,∴|k+2|=3,k﹣1≠0,解得:k=﹣5.故答案为:﹣5.14.解:由题意得:m=3,n=5,则m﹣n=3﹣5=﹣2,故答案为:﹣2.15.解:∵a、b互为相反数,∴a+b=0;∵m、n互为倒数,∴mn=1,∴(a+b)2015+2016mn=02015+20161=0+2016=2016故答案为:2016.16.解:∵x2﹣4x=1,x≠0,∴x﹣4=,∴x﹣=4,∴x2﹣2+=16,∴x2+=18,∴===.故答案为:.三.解答17.解:原式=﹣9+﹣=﹣9.18.解:原式=3x2y﹣2xy2+2xy﹣3x2y+3xy2﹣xy=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.19.解:(1)去括号得:2x﹣4﹣12x+3=9﹣9x,移项得:2x﹣12x+9x=9+4﹣3,合并同类项得:﹣x=10,系数化为1得:x=﹣10,(2)去分母得:2(2x﹣1)﹣(5x+2)=3(1﹣2x)﹣12,去括号得:4x﹣2﹣5x﹣2=3﹣6x﹣12,移项得:4x﹣5x+6x=3﹣12+2+2,合并同类项得:5x=﹣5,系数化为1得:x=﹣1.20.解:如图所示,在边长分别为a,b的两个正方形中,阴影部分的面积为S=S△ACD +S△CDF,根据三角形的相似,可得=,又AB=BC=a,BE=EF=b,所以AE=a+b,即=,解得:BD=则CD=BC﹣BD=a﹣=,∴S△ACD=×AB×CD=×a×=,S△CDF=×FG×CD=×b×=,所以阴影部分的面积为S=+=;当a=8,b=5时,阴影部分的面积为S==32.21.解:(1)16﹣(﹣10)=26(辆).答:产量最多的一天比产量最少的一天多生产26辆;(2)5﹣2﹣4+13﹣10+16﹣9=9,(1400+9)×60+9×20=84720(元).答:该厂工人这一周的工资总额是84720元.22.解:由数轴得,c>0,a<b<0,|a|>|c|,则a﹣b<0,a+c<0,b﹣c<0.故原式=b﹣a+a+c+c﹣b=2c.23.解(1)设B点的运动速度为x个单位/秒,A.B两点同时出发相向而行,他们的时间均为4秒,则有:(2+x)×4=12.解得x=1,所以B点的运动速度为1个单位/秒;(2)设经过时间为t.则B在A的前方,B点经过的路程﹣A点经过的路程=6,则2t﹣t=6,解得t=6.A在B的前方,A点经过的路程﹣B点经过的路程=6,则2t﹣t=12+6,解得t=18.(3)设点C的速度为y个单位/秒,运动时间为t,始终有CA=2CB,即:8+(2﹣y)t=2×[4+(y﹣1)t].解得y=.当C停留在﹣10处,所用时间为:秒.B的位置为.七年级期中数学卷(附答案)第I 卷(选择题共32 分)一.选择题(共32 小题)1.﹣5 的倒数是()1 1A.B.﹣C.﹣5 D.55 52.计算1﹣(﹣2)的结果为()A.﹣1 B.1 C.3 D.﹣33.下列计算错误的是()A.7.2﹣(﹣4.8)=2.4 B.(﹣4.7)+3.9=﹣0.8-12C.(﹣6)×(﹣2)=12 D.=-434.计算(﹣1)÷(﹣5)× 的结果是()A.﹣1 B.1 C.D.﹣255.已知∠A=37°17',则∠A 的余角等于()A.37°17' B.52°83' C.52°43' D.142°43'6.下列四组数中,其中每组三个都不是负数的是()①2,|﹣7|,﹣(﹣);②﹣(﹣6),﹣|﹣3|,0;③﹣(﹣5),,﹣(﹣|﹣6|);④﹣[﹣(﹣6)],﹣[+(﹣2)],0.A.①、②B.①、③C.②、④D.③、④7.关于“倒数”,下列说法错误的是()A.互为倒数的两个数符号相同B.互为倒数的两个数的积等于1C.互为倒数的两个数绝对值相等D.0 没有倒数8.如果两个数m、n 互为相反数,那么下列说法不正确的是()A.m+n=0 B.m、n 的绝对值相等C.m、n 的商为1D.数轴上,表示这两个数的点到原点的距离相等9.下列说法正确的个数为()(1)0 是绝对值最小的有理数;(2)﹣1 乘以任何数仍得这个数;(3)0 除以任何数都等于0;(4)数轴上原点两侧的数互为相反数;(5)一个数的平方是正数,则这个数的立方也是正数;(6)一对相反数的平方也互为相反数A.0 个B.1 个C.2 个D.3 个10.23 + 23 + 23 + 23 = 2n ,则n=()A.3 B.4 C.5 D.611.一座山峰,从底端开始每升高100 米气温下降0.6℃.小明从山峰底端出发向上攀登,当他到达300 米高处时,此时的气温相比底端气温下降()A.﹣1.8℃B.1.8℃C.﹣1.2℃D.1.2℃12.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段13.如图,点C,D 在线段A B 上,若A C=DB,则一定成立的是()A.AC=CD B.CD=DB C.AD=2DB D.AD=CB14.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1 个B.2 个C.3 个D.4 个15.给出以下几个判断,其中正确的是()①两个有理数之和大于其中任意一个加数;②减去一个负数,差一定大于被减数;③一个数的绝对值一定是正数;④若m<0<n,则m n<n﹣m.A.①③B.②④C.①②D.②③④16.任意大于1 的正整数m 的三次幂均可“分裂”成m 个连续奇数的和.如:23=3+5,33=7+9+11,43=13+15+17+19.……仿此,若m3 的“分裂数”中有一个是59,则m=()A.6 B.7 C.8 D.9第Ⅱ卷(主观题/非选择题共88 分)二.填空题(每小题3 分,共18 分)17.若∠α的补角为76°29′,则∠α= .18.若 a、b 互为倒数,则(-ab)2017= .19.若a = 3, b = 5 ,且a b < 0 ,则a-b 的值为.20.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.20 题图22 题图21. 1- 2 + 3 - 4 + 5 - - 2014 + 2015 - 2016 + 2017 - 2018 + 2019 =.22. 按如图所示的程序进行计算,如果把第一次输入的数是20,而结果不大于100 时,就把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为.三.解答题23.(10 分)在数轴上画出表示下列各数的点,再用“<”号把各数连接起来.24.计算(每小题5 分,共20 分)(1)27 -54 + 20 +(-46)-(-73)(2)(-16)÷4÷49 9(2)-12-1⨯[(-2)3+(-3)2]6(4)25. (8 分)(1)如图所示,△ABC 的顶点在8×8 的网格中的格点上,画出△ABC 绕点A 逆时针旋转90°得到的△AB1C1;(2)平面上有四个点A、B、C、D,根据下列语句画图:画直线AB、CD 交于 E 点,画线段AD、BC 交于点F,画射线AC.26.(8 分)京港澳高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护过程中,最远处离出发点有千米.(2)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(3)若汽车耗油量为0.5 升/千米,则这次养护共耗油多少升?27.(1)(4 分)数学课上,王老师在黑板上出示了一道问题让大家回答:题目如下在直线l 上顺次取A、B、C 三点,使得AB=5cm,BC=3cm,如果O 是线段AB 的中点,那么线段OC 的长度是.学生小明读完题后,稍微一想就画出了如图所示图形,并进行了解答:因为AB=5cm又因为O 是线段AB 的中点,所以O A=OB=所以OA=OB=2.5.因为O C=+又因为BC=3cm.所请你帮助小明将其解答过程补充完整;(2)(8 分)如图,点A、O、B 在同一直线上,OD 平分∠AOC,OE 平分∠BOC.①图中∠AOD 的补角是,∠BOE 的补角是;②∠COD 与∠EOC 具有的数量关系是;③若∠AOC=62°18′,求∠COD 和∠BOE 的度数.28. (12 分)如图所示,图1中有条线段,图2中有条线段,图3 中有条线段,当直线上有10 个点时共有条线段.知识迁移:如图,在∠AOB (小于平角)内部,画1条射线,可得个角,画2条不同射线,可得个角,画3条不同射线,可得个角:……照此规律,在∠AOB 的内部画10 条不同的射线,可得个角.应用:(1)从A市开往B市的特快列车,途中要停靠3个车站,如果任意2站间的票价都不同,则不同的票价有种,不同的车票有种.(2)学校为迎接国庆节,举行拔河比赛,规定进行单循环赛(每两班之间赛一场),九年级24 个班拔河比赛共进行场.(3)一次聚会中,有n人参加,如果每两个人都握手一次,则共握手次.参考答案一、选择题1 2 3 4 5 6 7 8B C A C C B C C9 10 11 12 13 14 15 16B C B C D B B C二、填空题17. 103°31′18.-1 19.±8 20.两点之间,线段最短21. 1010 22. 320三、解答题武汉市梅苑学校2019~2020学年度上学期期中质量检测七年级数学试卷(附图片答案)考试时间:2019年11月13日13:30~15:30 全卷满分120分★祝考试顺利★考生注意:1、本试卷共4页,满分120分,考试用时120分钟。
七年级上册数学期中检测试卷(有答案和解释)
七年级上册数学期中检测试卷(有答案和解释)阅历了半学期的努力奋战,检验学习效果的时辰就要到了,期中考试考察的不只是同窗们对知识点的掌握还考察先生的灵敏运用才干,我们一同来经过这篇2021年七年级上册数学期中检测试卷提升一下自己的解题速率和才干吧! 一、选择题:(把每题的答案填在下表中,每题3分,共30分)1.﹣3的倒数是()A. 3B. ﹣3C.D.2.以下式子,契合代数式书写格式的是()A. a3B. 2 xC. a3D.3.在12,﹣20,﹣1 ,0,﹣(﹣5),﹣|+3|中,正数有()A. 2个B. 3个C. 4个D. 5个4.以下两个单项式中,是同类项的一组是()A. 3x2y与3y2xB. 2m与2nC. 2xy2与(2xy)2D. 3与﹣5.:2a=﹣a,那么数a等于()A. 不确定B. 1C. ﹣1D. 06.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A. 1B. 3C. 2D. 1或﹣37.用代数式表示m的3倍与n的差的平方,正确的选项是()A. (3m﹣n)2B. 3(m﹣n)2C. 3m﹣n2D. (m﹣3n)28.假定a﹣2b=2,那么4﹣2a+4b的值是()A. 2B. 4C. 0D. 89.附表为服饰店贩卖的服饰与原价对照表.某日服饰店举行大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.假定外套卖出x 件,那么依题意可列出以下哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A. 0.6250x+0.8125(200+x)=24000B. 0.6250x+0.8125(200﹣x)=24000C. 0.8125x+0.6250(200+x)=24000D. 0.8125x+0.6250(200﹣x)=2400010.将下表从左到右在每个小格子中都填入一个整数,使得其中恣意三个相邻格子中所填整数之和都相等,那么第2021个格子中的数位()A. 3B. 2C. 0D. ﹣1二、细心填一填(每题3分,合计24分)11.火星和地球的距离约为34000000千米,这个数用迷信记数法可表示为千米.12.假定(m﹣2)x|m|﹣1=5是一元一次方程,那么m的值为.13.假定|x﹣1|+(y+2)2=0,那么x﹣y=.14.当x=时,代数式2x﹣7的值为3.15.相对值不大于5的一切整数的积是.16.一只蚂蚁从数轴上一点A动身,爬了7个单位长度到了原点,那么点A所表示的数是.17.假定方程2x+ 1=3和1﹣ =0的解相反,那么a的值是.18.观察以下图形及图形所对应的算式,依据你发现的规律计算1+8+16+24++136=.三、解答题:(本大题共11小题,共76 分,解答时应写出必要的计算进程或文字说明)19.计算:(1)﹣3﹣5+12(2)7﹣(﹣3)0+(﹣5)﹣|﹣8|(3)﹣32﹣25(﹣ )2(4)﹣24(﹣ + ﹣ )20.解以下方程:(1)4x+3=5x﹣1(2) =1﹣ .21.把以下各数﹣22,﹣|﹣3|,,﹣(﹣2)在数轴上表示出来,并用把他们衔接起来.22.:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)假定|a+1|+(2﹣b)2=0,求A﹣2B的值.23.有理数a,b,c在数轴上的位置如图(1)判别正负,用或填空:c﹣b0,a+b0,a﹣c0;(2)化简:3|c﹣b|+|a+b|﹣2|a﹣c|.24.某出租车驾驶员从公司动身,在南北向的人民路上延续接送5批主人,行驶路程记载如下(规则向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km 2km ﹣4km ﹣3km 10km(1)接送完第5批主人后,该驾驶员在公司边,距离公司km 的位置?(2)假定该出租车的计价规范为:行驶路程按每千米1.8元收费,在这进程中该驾驶员共收到车费多少元?25.规则新运算符号*的运算进程为a*b= a﹣ b(1)2*(﹣x)+1;(2)解方程:2*x=x*2+5.26.x=3是关于x的方程4x﹣a(a+x)=2(x﹣a)的解,求代数式[3+2(a﹣ )]﹣2(1+ a)的值.27.目前自驾游已成为人们出游的重要方式.五一节,林教员驾轿车从舟山动身,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;前往时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程;(2)两座跨海大桥的长度及过桥费见下表:大桥称号舟山跨海大桥杭州湾跨海大桥大桥长度 48千米 36千米过桥费 100元 80元我省交通部门规则:轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括跨海大桥长),b(元)为跨海大桥过桥费.假定林教员从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a.28.囧(jiong)是近时期网络盛行语,像一团体脸郁闷的神情.如下图,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形失掉一个囧字图案(阴影局部). 设剪去的小长方形长和宽区分为x、y,剪去的两个小直角三角形的两直角边长也区分为x、y.(1)用含有x、y的代数式表示右图中囧的面积;(2)当时,求此时囧的面积.29.如图,A、B两地相距28个单位长度.AO=8个单位长度,PO=4个单位长度,POB=60,如今点P末尾绕着点O以60度/秒的速度逆时针旋转一周中止,同时点Q自点B沿BA向点A 运动,设点P、Q运动的时间为t(秒).①当t=时,AOP=90②假假定点P、Q两点能相遇,求点Q运动的速度.③假设点P绕着点O以a度/秒的速度逆时针旋转一周中止,同时点Q沿直线BA自点B以bcm/秒的速度向点A运动,当点Q抵达点A时,POQ恰恰等于90,求a:b的值.参考答案与试题解析一、选择题:(把每题的答案填在下表中,每题3分,共30分)1.﹣3的倒数是()A. 3B. ﹣3C.D.考点:倒数.专题:惯例题型.剖析:直接依据倒数的定义停止解答即可.解答:解:∵(﹣3)(﹣ )=1,2.以下式子,契合代数式书写格式的是()A. a3B. 2 xC. a3D.考点:代数式.剖析:应用代数式书写格式判定即可解答:解:A、a3应写为,B、2 a应写为 a,3.在12,﹣20,﹣1 ,0,﹣(﹣5),﹣|+3|中,正数有()A. 2个B. 3个C. 4 个D. 5个考点:相对值;正数和正数;相反数.剖析:依据相反数、相对值的概念,将相关数值化简,再依据正数的定义作出判别.解答:解:∵﹣(﹣5)=5,﹣|+3|=﹣3,在这一组数中正数有﹣20,﹣1 ,﹣|+3|,共3个.4.以下两个单项式中,是同类项的一组是()A. 3x2y与3y2xB. 2m与2nC. 2xy2与(2xy)2D. 3与﹣考点:同类项.剖析:依据同类项的概念求解.解答:解:A、3x2y与3y2x所含字母相反,次数不同,不是同类项,故本选项错误;B、2m与2n所含字母不同,不是同类项,故本选项错误;C、2xy2与(2xy)2所含字母相反,相反字母的次数不同,不是同类项,故本选项错误;5.:2a=﹣a,那么数a等于()A. 不确定B. 1C. ﹣1D. 0考点:解一元一次方程.专题:计算题.剖析:方程移项兼并,把a系数化为1,即可求出解.解答:解:方程2a=﹣a,6.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A. 1B. 3C. 2D. 1或﹣3考点:数轴.专题:惯例题型.剖析:此题可借助数轴用数形结合的方法求解.在数轴上,与表示数﹣1的点的距离是2的点有两个,区分位于与表示数﹣1的点的左右两边.解答:解:在数轴上,与表示数﹣1的点的距离是2的点表示的数有两个:﹣1﹣2=﹣3;﹣1+2=1.7.用代数式表示m的3倍与n的差的平方,正确的选项是()A. (3m﹣n)2B. 3(m﹣n)2C. 3m﹣n2D. (m﹣3n)2考点:列代数式.剖析:仔细读题,表示出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平方,于是答案可得.解答:解:∵m的3倍与n的差为3m﹣n,8.假定a﹣2b=2,那么4﹣2a+4b的值是()A. 2B. 4C. 0D. 8考点:代数式求值.剖析:把4﹣2a+4b化成4﹣2(a﹣2b),再全体代入求出即可.解答:解:∵a﹣2b=2,4﹣2a+4b9.附表为服饰店贩卖的服饰与原价对照表.某日服饰店举行大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.假定外套卖出x 件,那么依题意可列出以下哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A. 0.6250x+0.8125(200+x)=24000B. 0.6250x+0.8125(200﹣x)=24000C. 0.8125x+0.6250(200+x)=24000D. 0.8125x+0.6250(200﹣x)=24000考点:由实践效果笼统出一元一次方程.剖析:由于外套卖出x件,那么衬衫和裤子卖出(200﹣x)件,依据题意可得等量关系:外套的单价6折数量+衬衫和裤子的原价8折数量=24000元,由等量关系列出方程即可. 解答:解:假定外套卖出x件,那么衬衫和裤子卖出(200﹣x)件,由题意得:10.将下表从左到右在每个小格子中都填入一个整数,使得其中恣意三个相邻格子中所填整数之和都相等,那么第2021个格子中的数位()A. 3B. 2C. 0D. ﹣1考点:规律型:数字的变化类.剖析:依据三个相邻格子的整数的和相等列式求出a、c的值,再依据第9个数是2可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2021除以3,依据余数的状况确定与第几个数相反即可得解.解答:解:∵恣意三个相邻格子中所填整数之和都相等,3+a+b=a+b+c,解得c=3,a+b+c=b+c+(﹣1),解得a=﹣1,所以,数据从左到右依次为3、﹣1、b、3、﹣1、b,第9个数与第三个数相反,即b=2,所以,每3个数3、﹣1、2为一个循环组依次循环,∵20213=6711,第2021个格子中的整数与第1个格子中的数相反,为3.二、细心填一填(每题3分,合计24分)11.火星和地球的距离约为34000000千米,这个数用迷信记数法可表示为 3.4107 千米.考点:迷信记数法表示较大的数.剖析:迷信记数法的表示方式为a10n的方式,其中110,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的相对值与小数点移动的位数相反.当原数相对值1时,n是正数;当原数的相对值1时,n是正数.12.假定(m﹣2)x|m|﹣1=5是一元一次方程,那么m的值为﹣2 .考点:一元一次方程的定义.剖析:依据一元一次方程的定义失掉|m|﹣1=1,留意m﹣20. 解答:解:∵(m﹣2)x|m|﹣1=5是一元一次方程,|m|﹣1=1,且m﹣20.13.假定|x﹣1|+(y+2)2=0,那么x﹣y= 3 .考点:非正数的性质:偶次方;非正数的性质:相对值.剖析:依据非正数的性质列出方程组求出x、y的值,代入代数式求值即可.解答:解:∵|x﹣1|+(y+2)2=0,x﹣1=0,y+2=0,初中阶段有三种类型的非正数:(1)相对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必需满足其中的每一项都等于0. 14.当x= 5 时,代数式2x﹣7的值为3.考点:解一元一次方程.专题:计算题.剖析:依据题意列出方程,求出方程的解即可失掉x的值. 解答:解:依据题意得:2x﹣7=3,15.相对值不大于5的一切整数的积是 0 .考点:有理数的乘法;相对值.剖析:依据相对值的性质列出算式,再依据任何数同0相乘都等于0解答.解答:解:由题意得,16.一只蚂蚁从数轴上一点A动身,爬了7个单位长度到了原点,那么点A所表示的数是 7 .考点:数轴.剖析:一只蚂蚁从数轴上一点A动身,爬了7个单位长度到了原点,那么这个数的相对值是7,据此即可判别.解答:解:一只蚂蚁从数轴上一点A动身,爬了7个单位长度到了原点,那么这个数的相对值是7,那么A表示的数是:7.17.假定方程2x+1=3和1﹣ =0的解相反,那么a的值是 3 . 考点:同解方程.剖析:先求出方程2x+1=3的解,然后把x的值代入1﹣ =0求出a的值即可.解答:解:解方程2x+1=3,得:x=1,将x=1代入方程1﹣ =0得,18.观察以下图形及图形所对应的算式,依据你发现的规律计算1+8+16+24++136= 1225 .考点:规律型:图形的变化类.剖析:由1+8=32;1+8+82=52,1+8+82+83=72可以发现出第4个是9的平方,进而求出1+8+16+24++136(n是正整数)的结果.解答:解:∵第1个图形是:1+8=32,第2个图形是:1+8+16=52,第3个图形是:1+8+16+24=72三、解答题:(本大题共11小题,共76分,解答时应写出必要的计算进程或文字说明)19.计算:(1)﹣3﹣5+12(2)7﹣(﹣3)0+(﹣5)﹣|﹣8|(3)﹣32﹣25(﹣ )2(4)﹣24(﹣ + ﹣ )考点:有理数的混合运算.专题:计算题.剖析: (1)原式应用加减法那么计算即可失掉结果;(2)原式应用零指数幂,相对值的代数意义化简,计算即可失掉结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可失掉结果;(4)原式应用乘法分配律计算即可失掉结果.解答:解:(1)原式= ﹣8+12=4;(2)原式=7﹣1﹣5﹣8=﹣7;为大家引荐的2021年七年级上册数学期中检测试卷的内容,还满意吗?置信大家都会细心阅读,加油哦!。
河南省驻马店地区2021版七年级上学期数学期中考试试卷(I)卷
河南省驻马店地区2021版七年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2016·郓城模拟) 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A .B .C .D .2. (2分) (2017七上·鄞州月考) 在数轴上把-3的对应点移动4个单位后,所得的对应点表示的数是()A . 1B . -7C . 1或-7D . 不能确定3. (2分) (2018七上·湖州月考) 若|a|=3 ,|b|=2且a<b,则a+b的值等于()A . 1或5B . -1或-5C . 1或-5D . -1或 54. (2分) (2020七上·来宾期末) 若与是同类项,则,的值分别是()A . ,B . ,C . ,D . ,5. (2分)(2018·深圳模拟) 设a是9的平方根,B=() 2 ,则a与B的关系是()A . a=±BB . a=BC . a=﹣BD . 以上结论都不对6. (2分) (-5)6表示()A . 6个-5相乘的积B . -5乘6的积C . 5个-6相乘的积D . 6个-5相加的和7. (2分)已知M(a,3)和N(4,b)关于y轴对称,则(a+b)2010的值为()A . 1B . -1C . 72007D . -720078. (2分)下列各组量中,不是互为相反意义的量的是()A . 收入200元与支出20元B . 上升10米与下降7米C . 超过0.05米与不足0.03米D . 增大2岁与减少2升9. (2分) (2019七上·天台期中) 下列各组中的两项,不是同类项的是()A . ﹣2a和2aB . a3bc和ba3cC . 3x2和3x3D . 2和0.110. (2分) (2017七上·港南期中) 下面说法正确的是()A . 的系数是B . 的系数是C . ﹣5x2的系数是5D . 3x2的系数是3二、填空题 (共8题;共8分)11. (1分) ________没有倒数,4 的倒数是________,________和0.75互为倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年河南省驻马店市确山县七年级(上)期中数学试卷一、选择题(每小题3分,共36分1.2020的倒数是()A.﹣2020B.2020C.﹣D.2.四个实数0,1,﹣3.14,﹣2中,最小的数是()A.0B.1C.﹣3.14D.﹣23.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和,接近值是()A.8×106B.16×106C.1.6×107D.16×10124.如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.35.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)6.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A.(﹣5)+(﹣2)B.(﹣5)+2C.5+(﹣2)D.5+27.多项式a3﹣4a2b2+3ab﹣1的项数与次数分别是()A.3和4B.4和4C.3和3D.4和38.用代数式表示“x的两倍与y的和的平方”,是()A.(2x+y)2B.2x+y2C.2x2+y2D.x(2+y)29.若单项式﹣a m b3与2a2b n的和是单项式,则n的值是()A.3B.6C.8D.910.已知A=3a2+b2﹣c2,B=﹣2a2﹣b2+3c2,且A+B+C=0,则C=()A.a2+2c2B.﹣a2﹣2c2C.5a2+2b﹣4c2D.﹣5a2﹣2b2+4c211.已知多项式x2﹣kxy﹣3(x2﹣12xy+y)不含xy项,则k的值为()A.36B.﹣36C.0D.1212.当x=1时,代数式px3+qx+1的值为2020,则当x=﹣1时,px3+qx+1的值为()A.2020B.﹣2020C.2018D.﹣2018二、填空题(每题3分,共24分)13.写出一个绝对值小于4的有理数.14.下数,正分数有.15.如图,化简代数式|a+b|﹣|a﹣1|+|b﹣2|的结果是.16.a,b互为相反数,c,d互为倒数,|m|=4,求2a﹣(cd)2020+2b﹣3m的值是.17.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.18.按如图的程序计算,如果输入x的值是30的结果为()A.470B.471C.118D.11919.如图是某月份的日历用一个方框圈出任意3×3个数,设最中间一个数是x,则用含x 的代数式表示这9个数的和是.20.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).三、解答题(本大题共六个小题,满分60分)21.(16分)计算题:(1)(﹣35)+(+7)﹣(﹣45)﹣(+27);(2);(3);(4).22.(8分)已知M=2(x2y+3xy2)﹣3(3xy2﹣1)﹣2x2y﹣2.(1)求M的化简结果;(2)若x,y满足|x+2|+(y﹣1)2=0,求M的值.23.(9分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2+3a,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.24.(9分)历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)的形式来表示,把x 等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f(﹣1),则f(﹣1)=﹣7.已知f(x)=ax5+bx3+3x+c,且f(0)=﹣1(1)c=.(2)若f(1)=2,求a+b的值;(3)若f(2)=9,求f(﹣2)的值.25.(9分)随着手机的普及,微信兴起了,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖80斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤):星期一二三四五六日与计划量+4﹣3﹣5+14﹣8+21﹣6的差值(1)根据记录的数据可知前四天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(3)该周实际销售总量达到了计划数量没有?(4)若冬枣每斤按5元出售,每斤冬枣的运费平均为2元,则小明本周一共收入多少元?26.(9分)某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.2020-2021学年河南省驻马店市确山县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分1.2020的倒数是()A.﹣2020B.2020C.﹣D.【分析】乘积为1的两个数互为倒数,求出结果即可.【解答】解:∵2020×=1,∴2020的倒数是,故选:D.2.四个实数0,1,﹣3.14,﹣2中,最小的数是()A.0B.1C.﹣3.14D.﹣2【分析】利用实数比较大小的法则可得答案.【解答】解:四个实数0,1,﹣3.14,﹣2中,最小的数是﹣3.14,故选:C.3.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和,接近值是()A.8×106B.16×106C.1.6×107D.16×1012【分析】直接将铝、锰元素总量相加,再将其用科学记数法表示即可得到答案.【解答】解:∵铝、锰元素总量均约为8×106吨,∴铝、锰元素总量的和,接近值是:8×106+8×106=1.6×107.故选:C.4.如图,数轴上两点M,N所对应的实数分别为m,n,则m﹣n的结果可能是()A.﹣1B.1C.2D.3【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得﹣2<n<﹣1<0<m <1,m﹣n的结果可能是2.【解答】解:∵M,N所对应的实数分别为m,n,∴﹣2<n<﹣1<0<m<1,∴m﹣n的结果可能是2.故选:C.5.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)【分析】A、精确到0.1就是保留小数点后一位,因为小数点后第二位是5,进一得0.1;B、精确到百分位,就是保留小数点后两位,因为小数点后第三位是0,舍,得0.05;C、精确到千分位,就是保留小数点后三位,因为小数点后第四位是1,舍,得0.050;D、精确到0.0001,就是保留小数点后四位,因为小数点后第五位是9,进一,得0.0502;【解答】解:A、0.05019≈0.1(精确到0.1),所以此选项正确;B、0.05019≈0.05(精确到百分位),所以此选项正确;C、0.05019≈0.050(精确到千分位),所以此选项错误;D、0.05019≈0.0502(精确到0.0001),所以此选项正确;本题选择错误的,故选C.6.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A.(﹣5)+(﹣2)B.(﹣5)+2C.5+(﹣2)D.5+2【分析】由图1可以看出白色表示正数,黑色表示负数,观察图2即可列式.【解答】解:由图1知:白色表示正数,黑色表示负数,所以图2表示的过程应是在计算5+(﹣2),故选:C.7.多项式a3﹣4a2b2+3ab﹣1的项数与次数分别是()A.3和4B.4和4C.3和3D.4和3【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【解答】解:a3﹣4a2b2+3ab﹣1是四次四项式,故次数是4,项数是4.故选:B.8.用代数式表示“x的两倍与y的和的平方”,是()A.(2x+y)2B.2x+y2C.2x2+y2D.x(2+y)2【分析】本题考查列代数式,要明确给出文字语言中的运算关系,先求和,再求平方.【解答】解:先求x的两倍为2x,再求x的两倍与y的和为(2x+y),最后求x的两倍与y的和的平方:(2x+y)2.故选A.9.若单项式﹣a m b3与2a2b n的和是单项式,则n的值是()A.3B.6C.8D.9【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得n的值.【解答】解:∵单项式﹣a m b3与2a2b n的和是单项式,∴n=3;故选:A.10.已知A=3a2+b2﹣c2,B=﹣2a2﹣b2+3c2,且A+B+C=0,则C=()A.a2+2c2B.﹣a2﹣2c2C.5a2+2b﹣4c2D.﹣5a2﹣2b2+4c2【分析】由A+B+C=0知,C=﹣(A+B),然后把A,B的值代入即可.【解答】解:∵A+B+C=0,∴C=﹣(A+B)=﹣(3a2+b2﹣c2﹣2a2﹣b2+3c2)=﹣(a2+2c2)=﹣a2﹣2c2,故选:B.11.已知多项式x2﹣kxy﹣3(x2﹣12xy+y)不含xy项,则k的值为()A.36B.﹣36C.0D.12【分析】直接合并同类项,进而得出k的值.【解答】解:原式=x2﹣kxy﹣3x2+36xy﹣3y=﹣2x2+(36﹣k)xy﹣3y,∵多项式x2﹣kxy﹣3(x2﹣12xy+y)不含xy项,∴36﹣k=0,解得:k=36.故选:A.12.当x=1时,代数式px3+qx+1的值为2020,则当x=﹣1时,px3+qx+1的值为()A.2020B.﹣2020C.2018D.﹣2018【分析】先把x=1代入px3+qx+1中可得,p+q=2019,根据等式的性质两边同时乘以﹣1,即可得到﹣(p+q)=﹣2019,即可得出答案.【解答】解:把x=1代入px3+qx+1中得,p+q+1=2020,所以p+q=2019,﹣(p+q)=﹣2019,把x=﹣1代入px3+qx+1中得,﹣p﹣q+1=﹣(p+q)+1=﹣2019+1=﹣2018.故选:D.二、填空题(每题3分,共24分)13.写出一个绝对值小于4的有理数1(答案不唯一).【分析】根据有理数比较大小的法则即可解答.【解答】解:绝对值小于4的有理数可以是3,2,1等,故答案为:1(答案不唯一).14.下数,正分数有 4.8,﹣(﹣).【分析】根据绝对值和相反数计算得出﹣||=﹣,再根据有理数乘方﹣0.42=﹣0.16,再根据相反数﹣(﹣)=,再根据有理数分类即可得出答案.【解答】解:﹣||=﹣,﹣0.42=﹣0.16,﹣(﹣)=,所以正分数有4.8,.故答案为:4.8,﹣(﹣).15.如图,化简代数式|a+b|﹣|a﹣1|+|b﹣2|的结果是3.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,即可得到结果.【解答】解:由数轴可知﹣1<b<0,1<a<2,所以a+b>0,a﹣1>0,b﹣2<0,则|a+b|﹣|a﹣1|+|b﹣2|=a+b﹣(a﹣1)﹣(b﹣2)=a+b﹣a+1﹣b+2=3.故答案为:3.16.a,b互为相反数,c,d互为倒数,|m|=4,求2a﹣(cd)2020+2b﹣3m的值是﹣13或11.【分析】根据题目条件,可得到a与b,c与d间关系及m的值,代入要求值的代数式计算即可.【解答】解:∵a,b互为相反数,c,d互为倒数,|m|=4,∴a+b=0,cd=1,m=±4.∴原式=2(a+b)﹣12020﹣3×m=﹣1﹣3m.当m=4时,原式=﹣1﹣3×4=﹣13;当m=﹣4时,原式=﹣1﹣3×(﹣4)=11.故答案为:﹣13或11.17.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.18.按如图的程序计算,如果输入x的值是30的结果为()A.470B.471C.118D.119【分析】将x=30代入所给的运算程序运算,得到大于149的结果输出即可.【解答】解:当x=30时,4x﹣2=4×30﹣2=118,∵118<149,∴继续代入运算得:4×118﹣2=470.故选:A.19.如图是某月份的日历用一个方框圈出任意3×3个数,设最中间一个数是x,则用含x 的代数式表示这9个数的和是9x.【分析】根据横行相邻的两个数相差1,纵行两个数相差为7,表示出其它数字,求出之和即可.【解答】解:根据题意得:方框圈出的9个数为x﹣8,x﹣7,x﹣6,x﹣1,x,x+1,x+6,x+7,x+8,则这9个数的和是x﹣8+x﹣7+x﹣6+x﹣1+x+x+1+x+6+x+7+x+8=9x.故答案为:9x.20.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有(3n+1)个三角形(用含n的代数式表示).【分析】根据图形的变化发现规律,即可用含n的代数式表示.【解答】解:第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即7=3×2+1第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n个图案有(3n+1)个三角形.故答案为:(3n+1).三、解答题(本大题共六个小题,满分60分)21.(16分)计算题:(1)(﹣35)+(+7)﹣(﹣45)﹣(+27);(2);(3);(4).【分析】(1)把相加为整数的先加,运算简便;(2)把分数化为小数,按运算顺序计算即可;(3)先把除法转化为乘法,再运用乘法的分配律;(4)先乘方,再算乘除,最后加减.【解答】解:(1)原式=﹣35+7+45﹣27=(﹣35+45)+(7﹣27)=10﹣20=﹣10;(2)原式=0.5×[20﹣(4.5﹣0.25)﹣0.25]=0.5×(20﹣4.5+0.25﹣0.25)=0.5×15.5=7.75;(3)原式=(﹣+)×(﹣24)=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣16+18﹣4=﹣2;(4)原式=25××(﹣)+(﹣6)×(﹣1)=﹣12+6=﹣6.22.(8分)已知M=2(x2y+3xy2)﹣3(3xy2﹣1)﹣2x2y﹣2.(1)求M的化简结果;(2)若x,y满足|x+2|+(y﹣1)2=0,求M的值.【分析】(1)原式去括号合并即可求出M;(2)利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:(1)M=2x2y+6xy2﹣9xy2+3﹣2x2y﹣2=﹣3xy2+1;(2)∵|x+2|+(y﹣1)2=0,∴x=﹣2,y=1,则M=6+1=7.23.(9分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2+3a,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.【分析】(1)根据已知运算规律,将25加a2+3a+a2+3a,进而A显示的结果;在﹣16上﹣3a﹣3a即可得出B的显示结果;(2)利用计算规律得出A+B的值,即可得出答案.【解答】解:(1)A区显示的结果为:25+a2+3a+a2+3a=2a2+6a+25;B区显示的结果为:﹣16﹣3a﹣3a=﹣6a﹣16;(2)这个和不能问为负数.理由:从初始状态按4次后,A区显示的结果为:4a2+12a+25,B区显示的结果为:﹣12a﹣16,4a2+12a+25+(﹣12a﹣16)=4a2+9,所以这个和不能为负数.24.(9分)历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)的形式来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f(﹣1),则f(﹣1)=﹣7.已知f(x)=ax5+bx3+3x+c,且f(0)=﹣1(1)c=﹣1.(2)若f(1)=2,求a+b的值;(3)若f(2)=9,求f(﹣2)的值.【分析】(1)把x=0,代入f(x)=ax5+bx3+3x+c,即可解决问题;(2)把x=1,代入f(x)=ax5+bx3+3x+c,即可解决问题;(3)把x=2,代入f(x)=ax5+bx3+3x+c,利用整体代入的思想即可解决问题;【解答】解:(1)∵f(x)=ax5+bx3+3x+c,且f(0)=﹣1,∴c=﹣1,故答案为﹣1.(2)∵f(1)=2,c=﹣1∴a+b+3﹣1=2,∴a+b=0(3)∵f(2)=9,c=﹣1,∴32a+8b+6﹣1=9,∴32a+8b=4,∴f(﹣2)=﹣32a﹣8b﹣6﹣1=﹣4﹣6﹣1=﹣11.25.(9分)随着手机的普及,微信兴起了,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖80斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤):星期一二三四五六日+4﹣3﹣5+14﹣8+21﹣6与计划量的差值(1)根据记录的数据可知前四天共卖出330斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售29斤;(3)该周实际销售总量达到了计划数量没有?(4)若冬枣每斤按5元出售,每斤冬枣的运费平均为2元,则小明本周一共收入多少元?【分析】(1)根据前四天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)先将各数相加求得正负即可求解;(4)将总数量乘以价格差解答即可.【解答】解:(1)4﹣3﹣5+14+80×4=330(斤).答:根据记录的数据可知前四天共卖出330斤;故答案为:330;(2)(+21)﹣(﹣8)=21+8=29(斤).根据记录的数据可知销售量最多的一天比销售量最少的一天多销售29斤.故答案为:29;(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,故本周实际销量达到了计划数量;(4)(17+80×7)×(5﹣2)=577×3=1731(元).答:小明本周一共收入1731元.26.(9分)某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.【分析】(1)当x=100时,分别求出两种方案的钱数,比较即可;(2)当x>100时,分别表示出两种方案的钱数,比较即可;(3)取x=300,分别求出各自的钱数,比较即可.【解答】解:(1)当x=100时,方案一:100×200=20000(元);方案二:100×(200+80)×80%=22400(元),∵20000<22400,∴方案一省钱;(2)当x>100时,方案一:100×200+80(x﹣100)=80x+12000;方案二:(100×200+80x)×80%=64x+16000,答:方案一、方案二的费用为:(80x+12000)、(64x+16000)元;(3)当x=300时,①按方案一购买:100×200+80×200=36000(元);②按方案二购买:(100×200+80×300)×80%=35200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32800(元),36000>35200>32800,则先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省.。