第13次课--二叉树的定义及存储结构
数据结构+二叉树及遍历+PPT
课程13 课程
数据结构和算法
定义二叉树( 定义二叉树(续) 完整二叉树:
指有 n 个节点且深度为 d ,且其节点对应深度为k 的完整二叉 树中序号从0到n − 1 的节点。
0
A
0
A
0
A
1
B
4 5
2
C
6 3
1
B
4 5
2
C
3
1
B
4
2
C
5
3
D
E
F
G
D
E
F
D
E
G
满二叉树
完整二叉树
不完整二叉树
Ver. 1.0
root A
B
C
D
E
F
G
H
D
Ver. 1.0
H
B
E
A
F
C
I
I
课程13 课程
数据结构和算法
中序遍历( 中序遍历(续)
I的右子树为空。 因此,移动到节点G。
root A
B
C
D
E
F
G
H
D
Ver. 1.0
H
B
E
A
F
C
I
I
课程13 课程
数据结构和算法
中序遍历( 中序遍历(续) 访问节点 G。
root A
B
B
C
D
E
F
G
H
D
Ver. 1.0
H
课程13 课程
I
数据结构和算法
中序遍历( 中序遍历(续)
H的右子树为空。 因此,移动到节点 B。
root A
二叉树知识点总结
二叉树知识点总结1. 二叉树的性质1.1 二叉树的性质一:二叉树的深度二叉树的深度是指从根节点到叶子节点的最长路径长度。
对于一个空树而言,它的深度为0;对于只有一个根节点的树而言,它的深度为1。
根据定义可知,深度为k的二叉树中,叶子节点的深度值为k。
由此可知,二叉树的深度为所有叶子节点深度的最大值。
1.2 二叉树的性质二:二叉树的高度二叉树的高度是指从根节点到叶子节点的最短路径长度。
对于一个空树而言,它的高度为0;对于只有一个根节点的树而言,它的高度为1。
由此可知,二叉树的高度总是比深度大一。
1.3 二叉树的性质三:二叉树的节点数量对于一个深度为k的二叉树而言,它最多包含2^k - 1个节点。
而对于一个拥有n个节点的二叉树而言,它的深度最多为log2(n+1)。
1.4 二叉树的性质四:满二叉树满二叉树是一种特殊类型的二叉树,它的每个节点要么是叶子节点,要么拥有两个子节点。
满二叉树的性质是:对于深度为k的满二叉树而言,它的节点数量一定是2^k - 1。
1.5 二叉树的性质五:完全二叉树完全二叉树是一种特殊类型的二叉树,它的所有叶子节点都集中在树的最低两层,并且最后一层的叶子节点从左到右依次排列。
对于一个深度为k的完全二叉树而言,它的节点数量一定在2^(k-1)和2^k之间。
2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树的所有节点。
二叉树的遍历主要包括前序遍历、中序遍历和后序遍历三种。
2.1 前序遍历(Pre-order traversal)前序遍历的顺序是:根节点 -> 左子树 -> 右子树。
对于一个二叉树而言,前序遍历的结果就是按照“根-左-右”的顺序访问所有节点。
2.2 中序遍历(In-order traversal)中序遍历的顺序是:左子树 -> 根节点 -> 右子树。
对于一个二叉树而言,中序遍历的结果就是按照“左-根-右”的顺序访问所有节点。
2.3 后序遍历(Post-order traversal)后序遍历的顺序是:左子树 -> 右子树 -> 根节点。
二叉树的存储结构及基本操作
二叉树的存储结构及基本操作二叉树是一种常见的数据结构,广泛应用于计算机科学领域。
二叉树具有其独特的存储结构和基本操作,下面将详细介绍。
一、二叉树的存储结构二叉树的存储结构通常有两种形式:顺序存储和链式存储。
1. 顺序存储顺序存储是将二叉树中的所有元素按照一定的顺序存储在一段连续的内存单元中,通常采用数组来表示。
对于任意一个节点i,其左孩子节点的位置为2*i+1,右孩子节点的位置为2*i+2。
这种存储方式的优点是访问速度快,但需要预先确定节点总数,且不易于插入和删除操作。
2. 链式存储链式存储是采用指针的方式将二叉树的节点链接起来。
每个节点包含数据元素以及指向左孩子节点和右孩子节点的指针。
链式存储方式的优点是易于插入和删除操作,但访问速度较慢。
二、二叉树的基本操作1. 创建二叉树创建二叉树的过程就是将数据元素按照一定的顺序插入到二叉树中。
对于顺序存储的二叉树,需要预先分配内存空间;对于链式存储的二叉树,可以直接创建节点对象并链接起来。
2. 遍历二叉树遍历二叉树是指按照某种规律访问二叉树中的所有节点,通常有前序遍历、中序遍历和后序遍历三种方式。
前序遍历的顺序是根节点-左孩子节点-右孩子节点;中序遍历的顺序是左孩子节点-根节点-右孩子节点;后序遍历的顺序是左孩子节点-右孩子节点-根节点。
对于顺序存储的二叉树,可以采用循环结构实现遍历;对于链式存储的二叉树,需要使用指针逐个访问节点。
3. 查找元素在二叉树中查找元素,需要根据一定的规则搜索所有节点,直到找到目标元素或搜索范围为空。
对于顺序存储的二叉树,可以采用线性查找算法;对于链式存储的二叉树,可以采用深度优先搜索或广度优先搜索算法。
4. 插入元素在二叉树中插入元素需要遵循一定的规则,保证二叉树的性质。
对于顺序存储的二叉树,插入操作需要移动大量元素;对于链式存储的二叉树,插入操作相对简单,只需修改指针即可。
5. 删除元素在二叉树中删除元素同样需要遵循一定的规则,保证二叉树的性质。
二叉树的储存结构的实现及应用
二叉树的储存结构的实现及应用二叉树是一种常见的数据结构,它在计算机科学和算法设计中广泛应用。
二叉树的储存结构有多种实现方式,包括顺序储存结构和链式储存结构。
本文将从这两种储存结构的实现和应用角度进行详细介绍,以便读者更好地理解二叉树的储存结构及其在实际应用中的作用。
一、顺序储存结构的实现及应用顺序储存结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一维数组中。
通常采用数组来实现顺序储存结构,数组的下标和节点的位置之间存在一定的对应关系,通过数学计算可以快速找到节点的父节点、左孩子和右孩子。
顺序储存结构的实现相对简单,利用数组的特性可以迅速随机访问节点,适用于完全二叉树。
1.1 实现过程在采用顺序储存结构的实现中,需要首先确定二叉树的深度,然后根据深度确定数组的长度。
通过数学计算可以得到节点间的位置关系,初始化数组并按照规定的顺序将二叉树节点逐一填入数组中。
在访问二叉树节点时,可以通过计算得到节点的父节点和子节点的位置,从而实现随机访问。
1.2 应用场景顺序储存结构适用于完全二叉树的储存和遍历,常见的应用场景包括二叉堆和哈夫曼树。
二叉堆是一种特殊的二叉树,顺序储存结构可以方便地实现它的插入、删除和调整操作,因此在堆排序、优先队列等算法中得到广泛应用。
哈夫曼树则是数据压缩领域的重要应用,通过顺序储存结构可以有效地构建和处理哈夫曼树,实现压缩编码和解码操作。
二、链式储存结构的实现及应用链式储存结构是通过指针将二叉树的节点连接起来,形成一个类似链表的结构。
每个节点包含数据域和指针域,指针域指向节点的左右孩子节点。
链式储存结构的实现相对灵活,适用于任意形态的二叉树,但需要额外的指针空间来存储节点的地址信息。
2.1 实现过程在链式储存结构的实现中,每个节点需要定义为一个包含数据域和指针域的结构体或类。
通过指针来连接各个节点,形成一个二叉树的结构。
在树的遍历和操作中,可以通过指针的操作来实现节点的访问和处理,具有较高的灵活性和可扩展性。
二叉树的顺序存储及基本操作
二叉树的顺序存储及基本操作二叉树的顺序存储是将树中的节点按照完全二叉树从上到下、从左到右的顺序依次存储到一个一维数组中,采用这种方式存储的二叉树也被称为完全二叉树。
一、在使用顺序存储方式时,可以使用以下公式来计算一个节点的左右子节点和父节点:
1. 左子节点:2i+1(i为父节点的在数组中的下标)
2. 右子节点:2i+2
3. 父节点:(i-1)/2(i为子节点在数组中的下标)
二、基本操作:
1. 创建二叉树:按照上述公式将节点存储到数组中。
2. 遍历二叉树:可采用递归或非递归方式,进行前序、中序、后序、层次遍历。
3. 插入节点:先将节点插入到数组末尾,然后通过比较节点和其父节点的大小,进行上浮操作直到满足二叉树的性质。
4. 删除节点:先将待删除节点和最后一个节点交换位置,然后通过比较交换后的节点和其父节点的大小,进行下沉操作直到满足二
叉树的性质。
5. 查找节点:根据节点值进行查找,可采用递归或非递归方式。
6. 修改节点:根据节点值进行查找,然后进行修改操作。
基本二叉树知识讲解
基本二叉树知识讲解一、有关二叉树的学习性质1:二叉树上叶子结点数等于度为2的结点数加1。
性质2:二叉树的第i层上至多有2的i次方减1个结点(i>=1)。
性质3:深度为h的二叉树至多有2的h次方减1个结点。
满二叉树:在一棵二叉树中,当第i层的结点树为2的i次方减1个时,称此层的结点数是满的。
当一棵二叉树中的每一层都满时,称此树为满二叉树。
特性:除叶子结点以外的其他的结点的度皆为2,且叶子结点在同一层上。
深度为h的满二叉树中的结点数为2的h次方减1。
性质4:设含有n个结点的完全二叉树的深度为k,则k=(int)(log2n)+1,即深度k等于log2n的整数部分再加1。
二叉树的存储结构1:顺序存储结构二叉树的顺序存储结构类型定义如下:#define TREEMINSIZE 10typedef struct{BTreeDT(数据类型) *base;int spacesize;BTreeDT nullvalue;}SeqTree;2:链式存储结构(一般的二叉树主要采用链式存储结构通常有二叉链表和三叉链表两种形式)1>二叉链表存储结构二叉链表中的每个结点由data,lchild和rchild三个域组成,定义如下:typedef struct bkbtnode{BTreeDT data;struct bkbtnode *lchild;struct bkbtnode *rchild;}BTNode,*BKBTree;在二叉链表中,查找某结点的孩子很容易实现,但查找某结点的双亲不方便。
一棵喊有n个结点的二叉树采用二叉链表存储时,将有2n-(n-1)=n+1个指针域是空的。
2>三叉链表存储结构typedef struct tkbtnode{BTreeDT data;struct tkbtnode *lchild;struct tkbtnode *rchild;struct tkbtnode *parent;}TKBTNode,*TKBTree;其中,parent域存放该结点双亲的指针。
《二叉树的概念》课件
05
二叉树的应用
Chapter
在数据结构中的应用
二叉搜索树
二叉搜索树是一种特殊的二叉树,它的每个节点的左子树上的所有元素都小于 该节点,右子树上的所有元素都大于该节点。这种数据结构可以用于快速查找 、插入和删除操作。
AVL树和红黑树
这两种二叉树都是自平衡二叉搜索树,它们通过调整节点的左右子树的高度来 保持树的平衡,从而在插入、删除等操作时具有较好的性能。
VS
详细描述
平衡二叉树的特点是,它的左右子树的高 度差不会超过1,且左右子树都是平衡二 叉树。平衡二叉树的性质还包括,它的所 有叶节点的层数相等,且所有非叶节点的 左右子树的高度差不超过1。平衡二叉树 的查找、插入和删除操作的时间复杂度为 O(log n),其中n为节点数。
04
二叉树的遍历
Chapter
决策树
在机器学习和人工智能领域,决策树 是一种重要的分类和回归方法。其基 础结构就是二叉树,通过构建决策树 ,可以解决分类和回归问题。
THANKS
感谢观看
代码表示法
总结词:严谨规范
详细描述:使用编程语言的语法结构来表示二叉树,每个节点用对象或结构体表示,节点间的关系通 过指针或引用表示,严谨规范,易于编写和调试。
03
二叉树的性质
Chapter
深度最大的二叉树
总结词
深度最大的二叉树是指具有最大 可能深度的二叉树。
详细描述
在二叉树中,深度最大的二叉树 是满二叉树,即每个层级都完全 填满,没有空缺的节点。满二叉 树的深度等于其节点总数减一。
02
二叉树的表示方法
Chapter
图形表示法
总结词:直观明了
详细描述:通过图形的方式展示二叉树的结构,每个节点用圆圈或方框表示,节 点间的关系用线段表示,直观易懂,易于理解。
计算机二级公共基础专题探究——二叉树
公共基础专题探究——二叉树1.6 树与二叉树树是一种简单的非线性结构,所有元素之间具有明显的层次特性。
在树结构中,没有前件的结点只有一个,称为树的根结点,简称树的根。
每一个结点可以有多个后件,称为该结点的子结点。
没有后件的结点称为叶子结点。
在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。
为该结点的左子树与右子树。
二叉树的基本性质:必考的题目(1)在二叉树的第k层上,最多有2k-1(k≥1)个结点;(2)深度为m的二叉树最多有2m-1个结点;(3)度为0的结点(即叶子结点)总是比度为2的结点多一个;(4)二叉树中 n = n0 +n1 +n2k层上有2k-1个结点深度为m的满二叉树有2m-1个结点。
若干结点。
二叉树的遍历:(一般画个图要你把顺序写出来)后序遍历(访问根结点在访问左子树和访问右子树之后)重点题型:二叉树的遍历例1:某二叉树的前序序列为ABCD,中序序列为DCBA,则后序序列为(DCBA )。
【解析】前序序列为ABCD,可知A为根结点。
根据中序序列为DCBA可知DCB是A的左子树。
根据前序序列可知B是CD的根结点。
再根据中序序列可知DC是结点B的左子树。
根据前序序列可知,C是D的根结点,故后序序列为DCBA例2:对下列二叉树进行前序遍历的结果为 ABDYECFXZ例3:设二叉树如下,则后序序列为 DGEBHFCA【解析】本题中前序遍历为ABDEGCFH,中序遍历为DBGEAFHC,后序遍历为DGEBHFCA完全二叉树指除最后一层外,每一层上的结点数均达到最大值,在最后堆排序问题:例1:已知前序序列与中序序列均为ABCDEFGH,求后序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 已知ABCDEFGH中:L-D-R 已知ABCDEFGH后:L-R-D 待求由此可知,L=0,D-R= ABCDEFGH故R-D=HGFEDCBA,即后序序列= HGFEDCBA变式训练1:已知后序序列与中序序列均为ABCDEFGH,求前序序列答案:HGFEDCBA,(这次R=0)结论:若前序序列与中序序列均为某序列,则后序序列为该序列的倒序,且为折线;同样地,若后序序列与中序序列均为某序列,则前序序列为该序列的倒序,且为折线例2:已知前序序列=ABCD,中序序列=DCBA,求后序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 已知ABCD中:L-D-R 已知DCBA后:L-R-D 待求因为ABCD与DCBA正好相反,由此可知,R=0所以D-L=ABCD,即L-D=DCBA所以后序序列= DCBA变式训练2-1:中序序列=BDCA,后序序列=DCBA,求前序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 待求中:L-D-R 已知BDC,A后:L-R-D 已知DCB,A通过观察可知,R=0,L={B,D,C},D=A中、后变换时,{B,D,C}发生了变化,说明左子树结构特殊,进一步令中’:L’-D’-R’已知B,DC后’:L’-R’-D’已知DC,B可知L’=0,即D’=B,R’= DC可以画出二叉树示意图为:Array所以前序序列= ABCD变式训练2-2:中序序列=ABC,后序序列=CBA,求前序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 待求中:L-D-R 已知ABC后:L-R-D 已知通过观察可知,L=0,D-R=ABC,R-D=CBA所以前序序列=D-L-R= D-R=ABC变式训练2-3:前序序列=ABC,中序序列=CBA,求后序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 已知A,BC中:L-D-R 已知CB,A后:L-R-D 待求通过观察可知,D=A ,L={B,C},R=0所以后序序列=CBA (一边偏)题型二:求二叉树的深度。
计算机二级二叉树知识点
计算机二级二叉树知识点1.二叉树的定义:二叉树是一种常见的树形结构,其中每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的节点结构通常包括一个数据元素和指向左右子节点的指针。
2.二叉树的性质:(1)二叉树的第i层最多有2^(i-1)个节点。
(2)高度为h的二叉树最多有2^h-1个节点。
(3)对于任意一棵二叉树,如果其叶子节点数为n0,度为2的节点数为n2,则n0=n2+1(4)一棵深度为k且节点总数为n的二叉树,当且仅当其满足2^(k-1)<=n<=2^k-1时,才称为完全二叉树。
3.二叉树的分类:(1)满二叉树:除了叶子节点之外,每个节点都有两个子节点,且所有叶子节点在同一层次上。
(2)完全二叉树:最后一层之前的层都是满的,并且最后一层的节点都靠左排列。
(3)平衡二叉树:左右子树的高度差不超过1的二叉树。
(4)线索二叉树:对于每个节点,除了指向其左右子节点的指针外,还包含指向其在其中一种序列下的前驱节点和后继节点的指针。
4.二叉树的遍历方法:(1)前序遍历:先访问根节点,然后递归地遍历左子树,最后递归地遍历右子树。
(2)中序遍历:先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。
(3)后序遍历:先递归地遍历左子树,然后递归地遍历右子树,最后访问根节点。
(4)层次遍历:按照从上到下、从左到右的顺序逐层访问每个节点。
5.二叉树:二叉树(Binary Search Tree,BST)是一种特殊的二叉树,它的每个节点的值都大于其左子树中的所有节点值,小于其右子树中的所有节点值。
因此,对于一个二叉树,可以采用中序遍历的方法得到一个有序序列。
二叉树的插入操作:按照二叉树的定义,从根节点开始,将要插入的值与当前节点的值比较,如果小于当前节点的值,则向左子树递归插入,如果大于当前节点的值,则向右子树递归插入,直至找到一个空节点,然后插入新节点。
二叉树的删除操作:删除一个节点需要考虑三种情况:删除节点没有子节点、只有一个子节点、有两个子节点。
二叉树知识点总结
二叉树知识点总结二叉树是一种常见的数据结构,它由节点和边组成,每个节点最多有两个子节点。
以下是关于二叉树的知识点总结。
1. 二叉树的基本概念二叉树是一种树形结构,它由节点和边组成。
每个节点最多有两个子节点,分别称为左子节点和右子节点。
如果一个节点没有子节点,则称其为叶子节点。
二叉树可以为空。
2. 二叉树的遍历方式遍历是指按照一定顺序访问二叉树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历:先访问当前节点,然后递归访问左子树和右子树。
中序遍历:先递归访问左子树,然后访问当前节点,最后递归访问右子树。
后序遍历:先递归访问左子树和右子树,最后访问当前节点。
3. 二叉搜索树二叉搜索树(Binary Search Tree)也称为有序二叉树或排序二叉树。
它是一种特殊的二叉树,在满足以下条件的情况下被称为“搜索”:对于任意节点,其左子树中的所有节点的值都小于该节点的值。
对于任意节点,其右子树中的所有节点的值都大于该节点的值。
左右子树也分别为二叉搜索树。
二叉搜索树支持快速查找、插入和删除操作。
它还有一些变种,如平衡二叉搜索树(AVL Tree)和红黑树(Red-Black Tree)等。
4. 二叉堆二叉堆是一种特殊的完全二叉树,它分为最大堆和最小堆两种类型。
最大堆满足父节点的值大于等于其子节点的值,最小堆满足父节点的值小于等于其子节点的值。
在最大堆中,根节点是整个堆中最大的元素;在最小堆中,根节点是整个堆中最小的元素。
二叉堆常用来实现优先队列(Priority Queue),即按照一定优先级顺序处理元素。
5. 二叉树常见问题5.1 判断是否为平衡二叉树平衡二叉树(Balanced Binary Tree)是指任意节点左右子树高度差不超过1的二叉搜索树。
判断一个二叉搜索树是否为平衡二叉树可以通过递归遍历每个节点,计算其左右子树的高度差。
5.2 判断是否为完全二叉树完全二叉树(Complete Binary Tree)是指除了最后一层外,其他层都是满的,并且最后一层的节点都靠左排列的二叉树。
计算机数据结构知识点梳理 二叉树的定义及其主要特征
当 n ≠ 2k , 即 n 不是2的方幂或者 n = 2k 但是一棵满二叉树,其高度为
。
当 n = 2k 但是非满二叉树,其高度为
。
②有n个结点的完全k叉树的高度为
。
性质5推广:一棵满k叉树,如果按层次顺序从1开始对全部结点编号,
①编号为p=1的结点无父结点,否则编号为p结点的父结点的编号是
(k≥2);
[题1]若一棵二叉树有126个结点,在第7层(根结点在第1层)至多有( )个结点。
A.32
B.64
C.63
D.不存在第7层
分析:根据二叉树的性质,第7层至多有64(27-1)个结点,但是题目中给出了二叉树的结点 总数126,由此来判断第7层是否可以有64个结点?
要在二叉树的第7层达到最多的结点个数,其上面6层必须是一个满二叉树,深度为6的满 二叉树有63(26-1)个结点,由此可以判断出此二叉树的第7层不可能达到64个结点,最 多是126-63=63个结点。
(2)完全二叉树:一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到 右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树 中的位置相同,则这棵二叉树称为完全二叉树。它的特点是:叶子结点只能出现在最下 层和次下层,且最下层的叶子结点集中在树的左部。
任何完全二叉树中度为1的结点只有0个或1个。
中的所有结点从1开始顺序编号,则对于任意的序号为i的结点,有:
(1)如果i>1,则序号i的结点的双亲结点的序号为 ;如果i=1,则序号为i的结点是根 结点,无双亲结点。
(2)如果2i≤n,则序号为i的结点的左孩子结点的序号为2i;如果2i>n,则序号为i的结 点无左孩子。
(3)如果2i+1≤n,则序号为i的结点的右孩子结点的序号为2i+1;如果2i+1>n,则 序号为i的结点无右孩子。
二叉排序树(二叉链表结构存储)数据结构课程设计报告
二叉排序树(二叉链表结构存储)数据结构课程设计报告目录1需求分析 (1)1.1课程设计题目、任务及要求 (1)1.2课程设计思想 (1)2概要设计 (2)2.1 二叉排序树的定义 (2)2.2二叉链表的存储结构 (2)2.3建立二叉排序树 (2)2.4二叉排序树的生成过程 (3)2.5中序遍历二叉树 (3)2.6二叉排序树的查找 (3)2.7二叉排序树的插入 (4)2.8平均查找长度 (4)3详细设计和实现 (4)3.1主要功能模块设计 (4)3.2主程序设计 (5)4调试与操作说明 (12)4.1程序调试 (12)4.2程序操作说明 (13)总结 (16)致谢 (17)参考文献 (19)1需求分析1.1课程设计题目、任务及要求二叉排序树。
用二叉链表作存储结构(1)以(0)为输入结束标志,输入数列L,生成一棵二叉排序树T;(2)对二叉排序树T作中序遍历,输出结果;(3)计算二叉排序树T查找成功的平均查找长度,输出结果;(4)输入元素x,查找二叉排序树T:若存在含x的结点,则删除该结点,并作中序遍历(执行操作2);否则输出信息“无x”;1.2课程设计思想建立二叉排序树采用边查找边插入的方式。
查找函数采用递归的方式进行查找。
如果查找成功则不应再插入原树,否则返回当前结点的上一个结点。
然后利用插入函数将该元素插入原树。
对二叉排序树进行中序遍历采用递归函数的方式。
在根结点不为空的情况下,先访问左子树,再访问根结点,最后访问右子树。
由于二叉排序树自身的性质,左子树小于根结点,而根结点小于右子树,所以中序遍历的结果是递增的。
计算二插排序树的平均查找长度时,仍采用类似中序遍历的递归方式,用s记录总查找长度,j记录每个结点的查找长度,s置初值为0,采用累加的方式最终得到总查找长度s。
平均查找长度就等于s/i(i为树中结点的总个数)。
删除结点函数,采用边查找边删除的方式。
如果没有查找到,则不对树做任何的修改;如果查找到结点,则分四种情况分别进行讨论:1、该结点左右子树均为空;2、该结点仅左子树为空;3、该结点仅右子树为空;4、该结点左右子树均不为空。
数据结构二叉树知识点总结
数据结构二叉树知识点总结二叉树是指每个节点最多有两个子节点的树结构。
它是一种重要的数据结构,在算法和程序设计中被广泛应用。
下面是对二叉树的主要知识点进行详细总结。
1.二叉树的基本概念:-树节点:树的基本单元,包含数据项(节点值)和指向其他节点的指针。
-根节点:树的第一个节点。
-叶节点(又称为终端节点):没有子节点的节点。
-子节点:一些节点的下一级节点。
-父节点:一些节点的上一级节点。
-兄弟节点:拥有同一父节点的节点。
-深度:从根节点到当前节点的路径长度。
-高度:从当前节点到最远叶节点的路径长度。
2.二叉树的分类:-严格二叉树:每个节点要么没有子节点,要么有两个子节点。
-完全二叉树:除了最后一层外,其他层的节点数都达到最大,并且最后一层的节点依次从左到右排列。
-满二叉树:每个节点要么没有子节点,要么有两个子节点,并且所有叶节点都在同一层上。
-平衡二叉树:任意节点的两棵子树的高度差不超过13.二叉树的遍历:-前序遍历:根节点->左子树->右子树。
递归实现时,先访问当前节点,然后递归遍历左子树和右子树。
-中序遍历:左子树->根节点->右子树。
递归实现时,先递归遍历左子树,然后访问当前节点,最后递归遍历右子树。
-后序遍历:左子树->右子树->根节点。
递归实现时,先递归遍历左子树,然后递归遍历右子树,最后访问当前节点。
-层序遍历:从上到下,从左到右依次访问每个节点。
使用队列实现。
4.二叉查找树(BST):-二叉查找树是一种有序的二叉树,对于树中的每个节点,其左子树的节点的值都小于当前节点的值,右子树的节点的值都大于当前节点的值。
-插入操作:从根节点开始,递归地比较要插入的值和当前节点的值,根据比较结果向左或向右移动,直到找到插入位置为止。
-查找操作:从根节点开始,递归地比较要查找的值和当前节点的值,根据比较结果向左或向右移动,直到找到目标节点或到叶节点。
-删除操作:有三种情况:-被删除节点是叶节点:直接将其删除。
二叉树顺序存储结构和链式存储结构
二叉树顺序存储结构和链式存储结构二叉树是一种非常重要的数据结构,它在计算机科学中有着广泛的应用。
在二叉树中,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以用两种方式进行存储,分别是顺序存储结构和链式存储结构。
一、二叉树顺序存储结构二叉树顺序存储结构是将二叉树中的节点按照层次顺序依次存储在一个一维数组中。
具体来说,假设二叉树的深度为d,那么数组的长度就应该为2^d-1。
对于任意一个节点i,它的左子节点的下标为2i,右子节点的下标为2i+1,它的父节点的下标为i/2。
二叉树顺序存储结构的优点是可以快速地访问任意一个节点,因为它们在数组中是连续存储的。
同时,由于不需要额外的指针来存储节点之间的关系,因此空间利用率比较高。
但是,它的缺点也很明显,那就是当二叉树的深度比较大时,数组中会存在大量的空节点,造成空间浪费。
二、二叉树链式存储结构二叉树链式存储结构是将二叉树中的每个节点看作一个对象,每个对象包含三个属性,分别是节点的值、左子节点的指针和右子节点的指针。
通过这种方式,可以将二叉树中的节点按照任意顺序存储在内存中。
二叉树链式存储结构的优点是可以有效地利用内存空间,因为只有实际存在的节点才会占用内存。
同时,由于每个节点都有指向左右子节点的指针,因此可以方便地进行节点的插入、删除和查找操作。
但是,它的缺点也很明显,那就是需要额外的指针来存储节点之间的关系,因此空间利用率比较低。
三、二叉树顺序存储结构和链式存储结构的比较二叉树顺序存储结构和链式存储结构各有优缺点,具体使用哪种方式取决于具体的应用场景。
一般来说,如果需要频繁地进行节点的插入、删除和查找操作,那么应该选择链式存储结构;如果需要快速地访问任意一个节点,那么应该选择顺序存储结构。
二叉树的存储结构还可以根据具体的应用场景进行优化。
例如,在某些情况下,可以使用哈希表来存储二叉树中的节点,以提高访问速度和空间利用率。
二叉树是一种非常重要的数据结构,它的存储结构对于算法的效率和空间利用率有着重要的影响。
二叉树知识点总结
二叉树知识点总结二叉树是数据结构中常见且重要的一种形式,它可以用于解决许多实际问题,并在算法和编程中扮演着重要的角色。
本文将对二叉树的基本概念、性质以及常见的应用进行总结。
一、基本概念和性质1. 二叉树的定义:二叉树是一种特殊的树形结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
左子节点小于等于父节点,右子节点大于等于父节点。
2. 二叉树的特点:二叉树具有递归性质,即每个子节点都可以视为一棵二叉树。
同时,二叉树的遍历方式有前序遍历、中序遍历、后序遍历和层次遍历等。
3. 二叉树的性质:a. 二叉树的第i层至多有2^(i-1)个节点;b. 深度为k的二叉树至多有2^k - 1个节点;c. 对于任意一棵二叉树,若其叶节点数为n0,度为2的节点数为n2,则n0 = n2 + 1;d. 具有n个节点的完全二叉树的深度为(log2 n) + 1。
二、二叉树的应用1. 二叉搜索树:二叉搜索树(BST)是一种特殊的二叉树,它满足左子节点小于父节点,右子节点大于父节点的条件。
BST的特性使得查找、插入和删除操作的时间复杂度为O(log n),因此在数据库、图形处理等领域经常被使用。
2. 平衡二叉树:由于BST的特性,如果数据插入的顺序不合理,可能导致树的高度过高,使得操作效率降低。
为了解决这个问题,人们提出了平衡二叉树(AVL)的概念。
AVL树通过旋转操作保持树的平衡,使得左右子树的高度差不超过1,从而保证了操作的效率。
3. 红黑树:红黑树是一种自平衡的二叉查找树,它在AVL树的基础上做了一些调整。
红黑树的特点是节点可以为红色或黑色,并且满足以下规则:根节点为黑色,叶节点为黑色且为空,红色节点的两个子节点都是黑色。
红黑树在C++标准库(STL)中的map和set等容器中得到了广泛应用。
4. 堆:堆是一种完全二叉树,它可以分为大顶堆和小顶堆。
大顶堆中,父节点的值大于或等于两个子节点的值,小顶堆则相反。
堆在排序算法中有广泛应用,如堆排序、优先队列等。
二叉树的基本概念
二叉树的基本概念一、引言二叉树是计算机科学中最基础的数据结构之一,它是由节点和边组成的树形结构,其中每个节点最多有两个子节点。
在计算机科学中,二叉树被广泛应用于搜索、排序、编译器等领域。
本文将详细介绍二叉树的基本概念。
二、定义二叉树是一种特殊的树形结构,其中每个节点最多有两个子节点。
通常将左子节点称为左子树,右子节点称为右子树。
三、基本术语1. 根节点:二叉树的顶层节点称为根节点。
2. 叶子节点:没有任何子节点的节点称为叶子节点。
3. 父节点和子节点:一个父亲可以有多个儿子,但是一个儿子只能有一个父亲。
4. 兄弟:具有相同父亲的两个或多个儿子称为兄弟。
5. 深度:从根到某个节点所经过的边数称为该节点的深度。
6. 高度:从某个节点到其所有后代中深度最大者加一(即包括该结点)称为该结点所在的二叉树的高度。
四、分类1. 满二叉树:一棵深度为k且有2^k-1个节点的二叉树称为满二叉树。
2. 完全二叉树:对于一棵深度为k的,有n个节点的二叉树,当且仅当其每一个节点都与深度为k的满二叉树中编号从1至n的节点一一对应时,称之为完全二叉树。
3. 平衡二叉树:平衡二叉树也称为AVL树,是一种自平衡的排序二叉搜索树。
它具有以下性质:左右子树高度差不超过1,并且左右子树也是平衡二叉树。
五、遍历遍历是指按照某种顺序访问每个节点。
常见的遍历方式有三种:1. 前序遍历(Pre-order):先访问当前节点,再依次遍历左子树和右子树。
2. 中序遍历(In-order):先依次遍历左子树,再访问当前节点,最后遍历右子树。
3. 后序遍历(Post-order):先依次遍历左子树和右子树,最后访问当前节点。
六、应用1. 搜索算法:在搜索算法中,二叉树被广泛应用于二分查找。
2. 排序算法:在排序算法中,二叉树被广泛应用于堆排序和快速排序。
3. 编译器:在编译器中,二叉树被广泛应用于语法分析和代码生成。
七、总结本文介绍了二叉树的基本概念、术语、分类、遍历以及应用。
数据结构+二叉树及遍历课件
A
B
C
D
E F GH I J
K
L
M
node
Ver. 1.0
4
课程13
数据结构和算法
定义树结构(续)
中的每一个 点在其 下可能有子 。
root A
B
C
D
E F GH I J
K
L
M
node
Ver. 1.0
5
课程13
数据结构和算法
树结构术语 我 来 构常用的一些 。 叶子 点:指没有子 点的 点。
C 点的度 1
D节点的度为2
D
A节点的度为3
B节点的度为4
J
K
L
M
Ver. 1.0
8
课程13
数据结构和算法
树结构术语(续)
兄弟:它指同一个 点的子 点。
A
B、C和D 点互 兄弟
点。
B
C
D
E、F、G和H互为兄弟节点。
E F GH I J
K
L
M
Ver. 1.0
9
课程13
数据结构和算法
树结构术语(续)
使用 接列表来 一个二叉 。 接表示中的每个 点都具有以下信息:
数据 左子 点的引用 右子 点的引用
如果一个 点不含有左子 点或右子 点,或一个子 点都没 有,相 的左(右)子 点字段就指向NULL。
Ver. 1.0
Data
Node
18
课程13
数据结构和算法
表示一个二叉树(续)
内部 点:它指根 点与叶子 点之 的中 点 。
点的 :它指一个 点与根 点之 的距离(按 点数 目 算)。根 点永 位于0 。
二叉树的顺序存储结构代码
二叉树的顺序存储结构代码介绍二叉树是一种常用的数据结构,它由节点组成,每个节点最多有两个子节点。
在计算机中,我们通常使用顺序存储结构来表示二叉树。
顺序存储结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一个数组中。
本文将详细介绍二叉树的顺序存储结构代码,包括初始化、插入节点、删除节点以及遍历等操作。
二叉树的顺序存储结构代码实现初始化二叉树首先,我们需要定义一个数组来存储二叉树的节点。
假设数组的大小为n,则二叉树的最大节点数量为n-1。
# 初始化二叉树,将数组中所有元素置为空def init_binary_tree(n):binary_tree = [None] * nreturn binary_tree插入节点在二叉树的顺序存储结构中,节点的插入操作需要保持二叉树的特性,即左子节点小于父节点,右子节点大于父节点。
插入节点的算法如下:1.找到待插入位置的父节点索引parent_index。
2.如果待插入节点小于父节点,将其插入到父节点的左子节点位置,即数组索引2*parent_index+1处。
3.如果待插入节点大于父节点,将其插入到父节点的右子节点位置,即数组索引2*parent_index+2处。
# 插入节点def insert_node(binary_tree, node):index = 0 # 当前节点的索引值,初始值为根节点的索引值while binary_tree[index] is not None:if node < binary_tree[index]:index = 2 * index + 1 # 插入到左子节点else:index = 2 * index + 2 # 插入到右子节点binary_tree[index] = node删除节点删除节点需要保持二叉树的特性,即在删除节点后,仍然满足左子节点小于父节点,右子节点大于父节点的条件。
删除节点的算法如下:1.找到待删除节点的索引delete_index。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A D、H、I、F、G B、E、C 结点B 结点B、C A 兄弟结点 3 2 1 0 3 4
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
森林的定义
森林: ( 森林:m(m>0)棵不相交的树组成的集合。 )棵不相交的树组成的集合。
《C语言与数据结构》
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
二叉树的链式存储
二叉树的链式存储结构是指用链表来表示一棵二叉树, 二叉树的链式存储结构是指用链表来表示一棵二叉树,即 是指用链表来表示一棵二叉树 用链表来指示元素的逻辑关系。 用链表来指示元素的逻辑关系。 常见的有二叉链表 三叉链表。 二叉链表和 常见的有二叉链表和三叉链表。 二叉链表中每个结点由三个域组成,除了数据域外, 二叉链表中每个结点由三个域组成,除了数据域外,还有 两个指针域,一个指向左孩子,一个指向右孩子。 两个指针域,一个指向左孩子,一个指向右孩子。结点的存 储结构为: 储结构为: lch data rch 三叉链表的结点比二叉链表多了一个指向双亲的指针域。 三叉链表的结点比二叉链表多了一个指向双亲的指针域。 的结点比二叉链表多了一个指向双亲的指针域 结点的存储结构为: 结点的存储结构为: lch data parent
二叉树不是树的特殊情形
《C语言与数据结构》
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
二叉树的五种基本形态
二叉树有五种基本形态。 二叉树有五种基本形态。
Ф
图 9-3
二叉树的五种基本形态
表示空二叉树
《C语言与数据结构》
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
ree) 树(tree)是由一个或多个结点组 成的有限集合T。其中: 成的有限集合T 其中: B C (1)有一个特定的结点称为该树的根 (1)有一个特定的结点称为该树的根 root)结点; (root)结点; E D F G (2)除根结点之外的其余结点可分为 (2)除根结点之外的其余结点可分为 m≥0)个互不相交的有限集合T1 T1、 m(m≥0)个互不相交的有限集合T1、 T2、…、Tm,且其中每一个集合本 T2、 Tm, H I 身又是一棵树, 身又是一棵树, 称之为根的子树 图 9-1 树结构示意图 subtree)。 (subtree)。
《C语言与数据结构》
rch
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
二叉链表
二叉链表结点类型定义 struct tree_node { Elemtype data; struct tree_node *lch, *rch; };
《C语言与数据结构》
这种数据结构由于像一棵倒长的树,因此而得名。 这种数据结构由于像一棵倒长的树,因此而得名。
《C语言与数据结构》
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
与树有关的几个概念
根结点:没有前驱结点的结点(起点)。 根结点:没有前驱结点的结点(起点)。 叶结点:没有后继结点的结点(终点)。 叶结点:没有后继结点的结点(终点)。 分支结点:既有前驱结点、又有后继结点的结点。 分支结点:既有前驱结点、又有后继结点的结点。 父结点或双亲结点( 父结点或双亲结点(parent):每个结点的前驱结点。 ) 每个结点的前驱结点。 子结点或孩子结点( 子结点或孩子结点(child):每个结点的后继结点。 ) 每个结点的后继结点。 兄弟结点( 兄弟结点(brothers):具有同一父结点的子结点。 ) 具有同一父结点的子结点。 结点的度数:每个结点孩子结点的个数。 结点的度数:每个结点孩子结点的个数。 树的度数:该树中所有结点的最大度数。 树的度数:该树中所有结点的最大度数。 树的深度或高度:树中每个结点有一个层次值, 树的深度或高度:树中每个结点有一个层次值,根结点为 第1层,其儿子结点为第 层,以此类推。树的深度或高度是 层 其儿子结点为第2层 以此类推。树的深度或高度是 树中结点的最大层次值。 指树中结点的最大层次值。
第9章 章
二叉树的顺序存储
二叉树的顺序存储:用一组连续的存储单元(数组) 二叉树的顺序存储:用一组连续的存储单元(数组)存放 二叉树中的结点。 二叉树中的结点。 二叉树是一种非线性结构,用数组来存储二叉树, 二叉树是一种非线性结构,用数组来存储二叉树,存储二 叉树结点元素的值和结点之间的非线性关系。 叉树结点元素的值和结点之间的非线性关系。二叉树结点之 间的非线性关系实质是父子关系。 间的非线性关系实质是父子关系。 对于完全二叉树,结点的编号是连续的,所以顺序存储结 对于完全二叉树,结点的编号是连续的,所以顺序存储结 比较适合完全二叉树的存储。 完全二叉树的存储 构比较适合完全二叉树的存储。 对于普通二叉树,只要按照相同高度的完全二叉树来编号, 对于普通二叉树,只要按照相同高度的完全二叉树来编号, 也可以用顺序存储结构来存储。 也可以用顺序存储结构来存储。 有什么缺点? 有什么缺点?
1 3 7
2
4
5
8
9
10
6 图 9-2 一个由 3 棵树组成的森林
《C语言与数据结构》
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
二叉树的定义
二叉树( 二叉树(Binary Tree)的定义 ) 二叉树是n n>=0)个结点的有限集合。 二叉树是n(n>=0)个结点的有限集合。它或为空树 n=0),或为非空树。对于非空树有: ),或为非空树 (n=0),或为非空树。对于非空树有: (1)有一个特定的称之为根的结点 有一个特定的称之为根的结点。 (1)有一个特定的称之为根的结点。 (2)除根结点以外的其余结点分为两个互不相交的称之为左 (2)除根结点以外的其余结点分为两个互不相交的称之为左 子树和右子树的二叉树构成。 子树和右子树的二叉树构成。 二叉树中,每个结点最多有两个孩子。 二叉树中,每个结点最多有两个孩子。左边的子结点称为 左孩子,右边的子结点称为右孩子 右孩子。 左孩子,右边的子结点称为右孩子。 注意: 注意: 二叉树的左右两个孩子的顺序是不能颠倒的。 二叉树的左右两个孩子的顺序是不能颠倒的。
《C语言与数据结构》
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
两种特殊形态的二叉树
满二叉树 一棵二叉树满足性质(2),即每层结点数都达到最大, 一棵二叉树满足性质 ,即每层结点数都达到最大,则 称为满二叉树。 称为满二叉树。 完全二叉树 一棵高度为h的二叉树 的二叉树, 层是满二叉树, 一棵高度为 的二叉树,前h-1层是满二叉树,第h层的结 层是满二叉树 层的结 点由左至右连续排列,则称为完全二叉树。 点由左至右连续排列,则称为完全二叉树。 满二叉树也是完全二叉树。反之不然。 满二叉树也是完全二叉树。反之不然。 请问: 请问:哪个是 满二叉树? 满二叉树?哪 个是完全二叉 树?
第9章 章
二叉树的数学性质
二叉树的数学性质: 二叉树的数学性质: 层上至多有2 (1)二叉树第 层上至多有 i-1个结点; )二叉树第i层上至多有 个结点; 的二叉树上至多有2 个结点 个结点; (2)高度为 的二叉树上至多有 h-1个结点; )高度为h的二叉树上至多有 的二叉树至少有h个结点 (3)高度为 的二叉树至少有 个结点。 )高度为h的二叉树至少有 个结点。
《C语言与数据结构》
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
二叉树顺序存储数据结构描述
二叉树的顺序存储表示可描述为 二叉树的顺序存储表示可描述为: 表示可描述 #define MAXSIZE 100 /*二叉树的最大结点数 二叉树的最大结点数*/ 二叉树的最大结点数 struct seqtree { Elemtype data[MAXSIZE] ; int num; /*结点个数 结点个数*/ 结点个数 };
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
三叉链表
三叉链表结点类型定义 struct tree_node { Elemtype data; struct tree_node *lch, *parent, *rch; };
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
学 习 诀 窍
首页
《C语言与数据结构》
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
教案
教学主题 二叉树的定义及存储结构 通过本次课的学习,使学生掌握森林、 通过本次课的学习,使学生掌握森林、树和 教学目标 二叉树的定义,满二叉树和完全二叉树,以及二 二叉树的定义,满二叉树和完全二叉树, 叉树的存储结构。 叉树的存储结构。 教学重点 1.二叉树的定义 二叉树的定义 2.二叉树的顺序存储和链式存储 二叉树的顺序存储和链式存储的实现 二叉树的顺序存储和链式存储的实现
《C语言与数据结构》
第13次课----二叉树的定义及存储结构 次课----二叉树的定义及存储结构 次课----
第9章 章
树举例
对于下图,请回答问题。 对于下图,请回答问题。 根结点是? A 叶结点分别是? 分支结点为? 结点A为?的父结点 B C B、C为?的子结点 结点B、C互为? E D F G 结点B的度数为? A、E的度数为? H C的度数为? I 其他结点的度数为? 图 9-1 树结构示意图 树的度数为? 树的高度为?