matlab2运算基础
matlab第二章矩阵运算基础
南京信息工程大学
4
例2.1 创建矩阵
>>x=[1 2 3;4 5 6;7 8 9] >>x=[1 2 3 456 7 8 9] >>x=[a b c;e f g;u v w] >>x=[1 2 3;4 5 6]; y=[2 3 4;5 6 7] >>Q=x*y >>a=2;b=3 >>x=a*b
2010-12-29
2010-12-29 南京信息工程大学 6
2.1 矩阵的创建
2、 赋值语句 MATLAB赋值语句有两种格式:
变量=表达式(或数) 表达式
2010-12-29
南京信息工程大学
7
【例2.2】 x=[1,2,3;4,5,6;7,8,9] 与[1,2,3;4,5,6;7,8,9]。
5 + cos 47
【例2.3】计算
2010-12-29
南京信息工程大学
25
§2.2 矩阵和数组的算术运算 六、点运算
C=A.*B C=A.\B
C=A./B C=A.^B
2010-12-29
南京信息工程大学
26
§2.2 矩阵和数组的算术运算 七、幂运算
C=A^B C=A.^B
2010-12-29
南京信息工程大学
27
例2.12 例2.13 例2.14 例2.15
find(x)
检查x是 否全为1
南京信息工程大学 42
2010-12-29
例2.20 建立矩阵A,然后找出大于4的元素位置 (1)建立A >>A=[4 -6 5 -54 0 6 56 0 67 -45 0] (2)找出大于4的元素位置 >>find(A>4)
第二讲 MATLAB基本运算
矩阵下标的用途
访问超出矩阵范围时,产生 Index exceeds matrix dimentions 存储超出矩阵范围时,矩阵自动调节 大小,将指定位置元素置入,其他没 指定数的位置默认为零。
2010-12-25
21
矩阵下标的用途
(2)矩阵连接 例:a=[1 2;3 4] b=[a a+5; a-5 zeros(size(a)] 将小矩阵嵌套入大矩阵,实现矩阵连接。
将矩阵按创建原则写入一个M文件, 在MATLAB的命令窗口或程序中直接执 行该M文件,即将矩阵调入工组空间。
2010-12-25
15
利用MATLAB函数创建矩阵 利用MATLAB函数创建矩阵 MATLAB
ones( m, n) - m行n列的1阵产生 zeros(m, n) -产生m行n列的全0阵 rand(m, n) -产生m行n列均匀分布全列的在 [0,1]区间的随机阵 randn(m, n) -产生m行n列的正态分布矩阵 eye(n) -产生n维单位阵
2010-12-25 18
2.2.3 矩阵的下标 .2.3
子矩阵提取A(v1, v2)
v1表示子矩阵包含的行标构成的向量 v2表示子矩阵包含的列标构成的向量 B1=A(:, [1, 3]) 为:时表示要提取所有行(列) B2=A(1:2:end, :) end表示最后一行(列) B3=A([3,2,1],[2,3,4]) 例: B4=A(:, end:-1:1) 提取A矩阵所有行、1,3列 提取A矩阵 3,2,1 行、2,3,4 列构成子矩阵 提取A矩阵全部奇数行,所有列 将A矩阵左右翻转
2010-12-25
13
直接输入法创建矩阵
例:创建矩阵
1-2matlab运算基础
1、变量与常量
(1)常量(特殊的变量) • eps — 容差变量,定义为1.0到最近浮点数 的距离,在 pc机上= 2-52 • pi — 圆周率的近似值3.1415926 • inf或Inf — 表示正无穷大,定义为1/0 • NaN — 非数,它产生于0× ,0/0,/ 等运算
A<B ans=[0 0 1 1] A<1 ans=[0 0 1 1]
> 大于
A>B ans=[1 0 0 0] A>1 ans=[0 1 0 0]
<= 小于等于 A<=B ans=[0 1 1 1]
>= 大于等于 A>=B ans=[1 1 0 0]
== 等于
A=B ans=[0 1 0 0] ; A=1 ans=[1 0 0 0]
00 》ones(2) ans=
11 11
》V=[5 7 2]; A=diag(V) 如果已知A为方阵,则V=diag(A)可以提
A=
取A的对角元素构成向量V。
500
070
002
2.矩阵元素提取
MATLAB通过确认矩阵下标,可以对矩阵进行插入子块,提取子块和 重排子块的操作。
(赋值),则该矩阵会自动扩展行列数,并在该位置上添加这个 数,而且在其他没有指定的位置补零。
消除子块:如果将矩阵的子块赋值为空矩阵[ ],则相当于消除了相应 的矩阵子块。
3.矩阵运算
1、转置:对于实矩阵用(’)符号或(.’)求转置
结果是一样的;然而对于含复数的矩阵,则(’)将
同时对复数进行共轭处理,而 (.’)则只是将其排列
A(m,n):提取第m行,第n列元素 A(:,n):提取第n列元素 A(m,:):提取第m行元素 A(m1:m2,[n1,n2]):提取第m1行到第m2行的第n1列和
MATLAB2 - 符号运算
二、符号表达式的代数运算
符号运算与数值运算的区别主要有以下几点: 1. 传统的数值型运算因为要受到计算机所保留的有效位数的 限制,它的内部表示法总是采用计算机硬件提供的 8位浮 点表示法,因此每一次运算都会有一定的截断误差,重复 的多次数值运算就可能会造成很大的累积误差。符号运算 不需要进行数值运算,不会出现截断误差,因此符号运算 是非常准确的。 2. 符号运算可以得出完全的封闭解或任意精度的数值解。
三、 符号表达式的操作和转换
符号表达式中自由变量的确定
1. 自由变量的确定原则 MATLAB将基于以下原则选择一个自由变量:
(1) 小写字母i和j不能作为自由变量。 (2) 符号表达式中如果有多个字符变量,则按照以下顺序 选择自由变量:首先选择x作为自由变量;如果没有x,则 选择在字母顺序中最接近x的字符变量;如果与x相同距离, 则在x后面的优先。 (3) 大写字母比所有的小写字母都靠后。
符号矩阵
用sym和syms命令也可以创建符号矩阵。
例如,使用syms命令创建相同的符号矩阵:
syms a b c d A=[a b; c d] A =[ a, b] [ c, d] 例3 比较符号矩阵与字符串矩阵的不同。 A=sym('[a,b; c,d]') %创建符号矩阵 A =[ a, b] [ c, d] B='[a,b;c,d]' %创建字符串矩阵 B =[a,b; c,d] A*2 v.s. B*2
例9 三种形式的符号表达式的表示。
符号表达式的化简
同一个数学函数的符号表达式的可以表示成三种形式,例 如以下的f(x)就可以分别表示为:
(1) 多项式形式的表达方式:f(x)=x3-6x2+11x-6 (2) 因式形式的表达方式:f(x)=(x-1)(x-2)(x-3) (3) 嵌套形式的表达方式:f(x)=x(x(x-6)+11)-6
实验项目1 MATLAB熟悉使用及编程基础2
实验项目1 MATLAB熟悉使用及编程基础MATLAB是美国Mathworks公司推出的一套高件能的数值分析和计算软件,它将矩阵运算、数值分析、图形处理、编程处术结合在一起,为用户提供了一个强有力的科学及工程问题分析计算和程序设计的工具。
MATLAB本身也在不断改进和创新,特别是2000年以出的版本6,无论在界面设计、计算方法、编程阶段和工具等方面都有了巨大的突破,全面引入了面向对象编程的概念和方法,使MATLAB真正成为了具有全部高级语言功能和特征的新一代软件开发平台。
MATLAB开发环境是一组工具和组件的集成,这些工具是图形化的用户接口,它们包括 MATLAB桌面、命令窗口、命令历史窗口、编辑调试窗口以及帮助信信息、工作空间、文件和搜索路径等浏览器。
MATLAB集成了丰富的数学函数库,其强大的计算能力覆盖了从基本函数(如求和、正弦、余弦和复数运算等)到特殊函数(如矩阵求逆、矩阵特征值、贝塞尔函数和快速傅里叶变换等)的范围。
MATLAB语言是一种高级编程语言,包括控制流的描述、函数、数据结构、输入输出及面对对象编程,既可以编制适用于快速使用的小程序,也可以编制大型复杂的应用程序。
MATLAB提供了功能强大的图形系统,既可以完成二维和三维数据的可视化、图像处理、动画和图形表达等功能,也可以定制图形的外观,如建立一个完整的图形用户界由的应用程序。
1.实验目的:掌握MA TLAB编程语言和偏微分方程PDE工具箱对电磁场的基本问题进行仿真;2 实验内容:1、MATLAB启动MA TLAB安装到硬盘后,启动方法有:(1)点击Windows桌面上自动生成的快捷方式图标;(2)点击matlab 6\文件夹下快捷方式图标令MATLAB(3)点击matlab/bin/win32文件夹中的Matlab.exe2、m文件编写熟悉基本指令、基本数学运算,借助help、lookfor等命令实现在线帮助。
建立M文件的一般步骤如下:(1)打开文件编辑器:指的是MA TLAB内部编辑/调试器,可以有几种不同的方法打开文件编辑器,最简单的方法是在操作桌面助工具栏上选择蹦(建立新文件)或选择瞪(打开已有的文件),也可以在命令窗口输入命令edit建立新文件或输入命令edit filename,打开名为fi1ename的M文件。
MATLAB基础教程 第2章 数组、矩阵及其运算
写出MATLAB表达式。 解:根据MATLAB的书写规则,以上MATLAB表达式为: (1)y=1/(a*log(1-x-1)+C1) (2)f=2*log(t)*exp(t)*sqrt(pi) (3)z=sin(abs(x)+abs(y))/sqrt(cos(abs(x+y))) (4)F=z/(z-exp(T*log(8)))
命令:X(3:-1:1)
命令:X(find(X>0.5)) 命令:X([1 2 3 4 4 3 2 1])
第二章 数组、矩阵及其运算
2.1 数组(矩阵)的创建和寻访
2. 二维数组的创建和寻访
例2-3 综合练习。将教材P.31~P.44的实例按顺序在MATLAB的 command窗口中练习一遍,观察并体会其输出结果。 (注意变量的大小写要和教材上的严格一致。)
A./B
B.\A
A的元素被B的对应元素相除
(与上相同)
第二章 数组、矩阵及其运算
2.3 数组、矩阵的其他运算
1. 乘方开方运算
数组的乘方运算与power函数 格式:c=a.^k或c=power(a,k) 例如: >> g=[1 2 3;4 5 6] >>g.^2 矩阵的乘方运算与mpower函数 格式:C=A^P或C=mpower(A,P) 注意:A必须为方阵
第二章 数组、矩阵及其运算
2.2 数组、矩阵的运算
3. 矩阵的加法、减法
运算规则是:若A和B矩阵的维数相同,则可以执行矩阵的加减运算, A和B矩阵的相应元素相加减。如果维数不相同,则MATLAB将给出
出错信息。
第二章 数组、矩阵及其运算
2.2 数组、矩阵的运算
3. 矩阵的乘法
Matlab中的复数运算基础教程
Matlab中的复数运算基础教程引言:在科学计算和工程领域中,复数运算是一项非常重要的技术。
Matlab作为一种强大的数值计算软件,提供了灵活而高效的复数运算工具。
本文将介绍Matlab中的复数运算基础知识,涵盖了复数的表示、基本运算、共轭和幅角的计算等。
1. 复数的表示复数是由实数和虚数组成的数。
在Matlab中,复数可以用a + bi的形式表示,其中a是实部,b是虚部。
例如,3 + 2i就是一个复数。
在Matlab中,可以直接输入复数,例如:z = 3 + 2i;这样就定义了一个复数变量z。
2. 基本运算Matlab中的复数运算基本与实数一致。
支持加法、减法、乘法和除法等运算。
例如,可以使用"+"运算符计算两个复数的和:z1 = 3 + 2i;z2 = 1 + 4i;z = z1 + z2;这样,z的值将是4 + 6i。
3. 共轭运算在复数运算中,共轭运算是一个重要的概念。
复数的共轭是将虚部的符号取反得到的结果。
在Matlab中,可以使用conj函数对复数进行共轭运算。
例如:z = 3 + 2i;w = conj(z);这样,w的值将是3 - 2i。
4. 幅角运算在复数的表示中,幅角是指复数与正实轴之间的夹角。
在Matlab中,可以使用angle函数计算复数的幅角。
angle函数的结果以弧度形式表示。
例如:z = 3 + 2i;theta = angle(z);这样,theta的值将是0.5880弧度。
5. 赋值运算在进行复数运算时,经常需要将结果赋值给一个变量。
在Matlab中,可以使用等号将计算结果赋值给一个变量。
例如:z1 = 3 + 2i;z2 = 1 + 4i;z = z1 + z2;在这个例子中,z1和z2分别是两个复数,将它们相加的结果赋值给z。
6. 数值计算与绘图Matlab中的复数运算不仅支持基本的数值计算,还能与绘图功能结合。
通过使用plot函数和复数运算,可以绘制出复平面上的曲线。
第二章matlab02数值运算功能2
2.4.3矩阵的关系和逻辑运算 矩阵的关系和逻辑运算
1.矩阵的关系运算符:<, >, <=, >=, = =, ~= 矩阵的关系运算符: 矩阵的关系运算符 • 矩阵之间的每个元素进行比较,运算结果 矩阵之间的每个元素进行比较, 为与原矩阵大小一样的由0 为与原矩阵大小一样的由0和1组成的矩阵 注意:1=<a<=2错误 注意: 错误 例: 1<=a<=2正确 = 正确
• •
§2.4 矩阵的运算
矩阵的数学运算 矩阵的点(数组 运算 矩阵的点 数组)运算 数组 矩阵的关系和逻辑运算
2.4.1矩阵的数学运算 矩阵的数学运算
矩阵运算符 含义 A’ 矩阵转置 A+B 矩阵相加 A-B 矩阵相减 A*B 矩阵相乘 A/B 矩阵相除(右除) 矩阵相除(右除) B\A 矩阵相除(左除) 矩阵相除(左除) A^n A阵的 n次幂 阵的 次幂
x X = y z
10 B = 5 −1
要解上述的联立方程式, 要解上述的联立方程式,可利用矩阵左除 \ 做运 时要求A、 的行数相等 相等。 算,即:X=A\B, 左除时要求 、B的行数相等。 , 左除时要求
如果将原方程式改写成 X*A=B,且令 X, A 和 B , 分别为
matlab基础matlab数值运算
04
数值运算进阶
线性方程组求解
直接法
使用高斯消元法、LU分解等直接求解线性方程组的方法。
迭代法
使用如雅可比迭代、高斯-赛德尔迭代等迭代方法求解线性方程 组。
预处理技术
通过预处理手段改进直接法或迭代法的收敛速度和稳定性。
数值积分与微分
数值积分
使用如梯形法、辛普森法等数值积分方法计算 函数的积分值。
频谱分析
通过快速傅里叶变换等数值方法对信号进行频谱分析,提 取信号的频率成分和特征,用于音频、雷达、通信等领域。
信号压缩
利用数值方法对信号进行压缩编码,减小存储和传输成本, 用于音频、视频、遥感等领域。
在图像处理中的应用
图像增强
通过数值运算对图像进 行增强处理,提高图像 的对比度、清晰度等, 用于医学影像、安防监 控等领域。
数值微分
通过差分法计算函数的导数值,如前向差分、 后向差分和中心差分。
自动微分
利用Matlab的符号计算功能,自动求取函数的导数。
插值与拟合
一维插值
使用如拉格朗日插值、牛顿插值等一维插值方法。
多维插值
使用如样条插值、克里金插值等多维插值方法。
曲线拟合
通过最小二乘法等手段对数据进行曲线拟合。
数值优化
流体动力学模拟
通过数值方法求解流体动力学方程,模拟流体流动、传热等现象, 用于航空航天、流体机械等领域。
电磁场模拟
利用数值方法求解电磁场方程,模拟电磁波的传播、散射等现象, 用于雷达、通信、电磁兼容等领域。
在信号处理中的应用
信号滤波
利用数值运算对信号进行滤波处理,去除噪声、增强信号 特征,用于语音、图像、通信等领域。
图像去噪
利用数值方法对图像进 行去噪处理,去除图像 中的噪声和干扰,用于 遥感影像、医学影像等 领域。
MATLAB编程及应用 李辉 PPT课件 第2章 MATLAB基本计算和基础知识
2.2.2 系统预定义变量
MATLAB系统提供了一些用户不能清除的特殊变量,
即系统预定义变量。
MATALB系统预定义变量及其含义
预定义变量名
含义
ans pi eps nan或NAN inf i或j
运算结果默认变量名 圆周率 浮点数的精度,也是系统运算时确定的极小值 非数,如0/0 无穷大,如1/0 虚数标志,i=j=sqrt(-1)
1.0000 + 2.0000i >> b=3+4*j b=
3.0000 + 4.0000i
2.3.2 逻辑类型
MATLAB本身并没有专门提供逻辑类型,而借用整型来描
述逻辑类型数据。MATLAB规定,逻辑数据真(true)为1、
逻辑数据假(false)为0。
>> 2<3 ans =
logical 1 >> 2>3 ans = logical 0
>> sin(pi/3) ans =
0.8660
➢ 复数的计算:MATLAB还具有超越计算器的功能, 它认识复数,能够进行复数的计算。
>> (2+3i)+(4+5i) ans =
6.0000 + 8.0000i
Байду номын сангаас
2.2 变量
变量是指在程序执行过程中其值可以变化的量。
变量
用户自定义变量 系统预定义变量
2.3 数据类型
MATLAB数据类型
数值类型 逻辑类型 字符串类型 单元类型 结构类型
2.3.1 数值类型
数值类型分类方法
根据数据存 储空间和方 式分类
根据数据结 构分类
matlab中的基本运算
matlab中的基本运算基本运算是MATLAB中最基础的操作之一,它涵盖了数值计算、数据处理和绘图等各个方面。
本文将详细介绍MATLAB中的基本运算,包括算术运算、矩阵运算、逻辑运算和位运算等。
一、算术运算算术运算是最基本的运算之一,MATLAB中支持的算术运算包括加法、减法、乘法和除法等。
例如,可以使用"+"符号进行两个数的加法运算,用"-"符号进行减法运算,用"*"符号进行乘法运算,用"/"符号进行除法运算。
此外,还可以使用"^"符号进行幂运算,使用"sqrt"函数进行开方运算。
二、矩阵运算MATLAB中的矩阵运算是其强大功能之一。
可以使用矩阵进行加法、减法、乘法和除法等运算。
例如,可以使用"+"符号进行矩阵的逐元素加法运算,用"-"符号进行逐元素减法运算,用"*"符号进行矩阵的乘法运算,用"./"符号进行矩阵的逐元素除法运算。
三、逻辑运算逻辑运算在MATLAB中广泛应用于判断条件和控制流程。
MATLAB 支持的逻辑运算有与、或、非和异或等。
例如,可以使用"&&"符号进行逻辑与运算,用"||"符号进行逻辑或运算,用"~"符号进行逻辑非运算,用"xor"函数进行逻辑异或运算。
四、位运算位运算是对二进制数进行逐位操作的运算。
MATLAB支持的位运算有与、或、非、异或、左移和右移等。
例如,可以使用"&"符号进行位与运算,用"|"符号进行位或运算,用"~"符号进行位非运算,用"xor"函数进行位异或运算,用"<<"符号进行左移运算,用">>"符号进行右移运算。
MATLAB运算基础(第2章)答案
实验01讲评、参考答案讲评未交实验报告的同学名单数学:6人(11、12级)信科:12-04, 12-22, 13-47批改情况:问题1:不仔细,式子中出错。
问题2:提交的过程不完整。
问题3:使用语句尾分号(;)不当,提交的过程中不该显示的结果显示。
问题4:截屏窗口没有调整大小。
附参考答案:《MATLAB软件》课内实验王平实验01 MATLAB运算基础(第2章MATLAB数据及其运算)一、实验目的1. 熟悉启动和退出MATLAB 的方法。
2. 熟悉MATLAB 命令窗口的组成。
3. 掌握建立矩阵的方法。
4. 掌握MATLAB 各种表达式的书写规则以及常用函数的使用。
二、实验内容1. 数学表达式计算先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。
1.1 计算三角函数122sin 851z e=+(注意:度要转换成弧度,e 2如何给出) 示例:点击Command Window 窗口右上角的,将命令窗口提出来成悬浮窗口,适当调整窗口大小。
命令窗口中的执行过程:1.2 计算自然对数221ln(1)2z x x =++,其中2120.455i x +⎡⎤=⎢⎥-⎣⎦(提示:clc 命令擦除命令窗口,clear 则清除工作空间中的所有变量,使用时注意区别,慎用clear 命令。
应用点乘方) 命令窗口中的执行过程:1.3 求数学表达式的一组值0.30.330.3sin(0.3)ln , 3.0, 2.9,,2.9,3.022a a e e a z a a --+=++=--提示:利用冒号表达式生成a 向量,求各点的函数值时用点乘运算。
命令窗口中的执行过程:1.4 求分段函数的一组值2242011122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t =0:0.5:2.5提示:用逻辑表达式求分段函数值。
命令窗口中的执行过程:1.5 对工作空间的操作接着显示MATLAB当前工作空间的使用情况并保存全部变量提示:用到命令who, whos, save, clear, load,请参考教材相关内容。
MATLAB基础(矩阵运算和矩阵操作)2
223445.68
数学运算符号及标点符号
+ — * .* / ./ ^ 减法运算 乘法运算 点乘运算 除法运算 点除运算 乘幂运算
加法运算,适用于两个数或两个同阶矩阵相加
(1)MATLAB的每条命令后,若为逗号或无标点符号, .^ 点乘幂运算 则显示命令的结果;若命令后为分号,则禁止显示结果. \ 后面所有文字为注释. (2)“%” 反斜杠表示左除. 36 (3) “...”表示续行.
10
命令窗口
11
工作间
12
当前目录
13
历史命令
14
设置路径搜索 当前目录
15
进入搜索对话框
16
设置搜索路径对话框
17
18
Editpath or pathtool
20
‘帮助’的使用
help 命令:已知命令 lookfor命令:知道命令的关键词 MATLAB Help:命令查找,索引,说明书 Demo
2.2345e+005
>> format rat >> 223445.6778987654
>> format bank >> 223445.6778987654
ans =
ans =
670337/3 >> format long e >> 223445.6778987654 ans = 2.234456778987654e+005
39
clear命令用于删除MATLAB工作空间中的变 量。 who和whos这两个命令用于显示在MATLAB工 作空间中已经驻留的变量名清单。 who命令只显示出驻留变量的名称,whos在给 出变量名的同时,还给出它们的大小、所占 字节数及数据类型等信息。
matlab实验:运算基础并且附有答案 (1)
实验二、MATLAB运算基础一、实验目的掌握MATLAB各种表达式的书写规则及常用函数的使用。
掌握MATLAB中字符串、元胞数组和结构的常用函数的使用。
二、实验内容及步骤1、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 1718 19 20;21 22 23 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 1311]1)求它们的乘积C >>C=A*B2)将矩阵C的右下角3x2子矩阵赋给D >>I=[3 4 5];J=[2 3];D=C(I,J)也可以用>>D=C([3 4 5],[2 3])D =520 397705 557890 7172、完成下列操作1)求[100,999]之间能被61整除的数及其个数(提示:先利用冒号表达式,再利用find和length函数。
)>> a=100:999;find(rem(a,61)==0)ans =23 84 145 206 267 328 389 450 511572 633 694 755 816 877>> b=a(ans)b =122 183 244 305 366 427 488 549 610 671 732 793 854 915 976>> length(b)ans =152)建立一个字符串向量,删除其中的大写字母(提示:利用find函数和空矩阵。
)a=’I am maying’;a( find(a>’A’&a<’Z’))=[]3、已知A=[23 10 -78 0;41 -45 65 5;32 5 0 32;6 -54 92 14],取出其前3行构成矩阵B,其前两列构成矩阵C,其左下角3x2子矩阵构成矩阵D,B与C的乘积构成矩阵E,分别求E<D、E&D、E|D、~E|~D。
MATLAB程序设计与应用(第二版)课后实验答案
Matlab课后实验题答案实验一 MATLAB运算基础1. 先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。
(1)0 122sin851ze =+(2)21ln(2z x=,其中2120.455ix+⎡⎤=⎢⎥-⎣⎦(3)0.30.330.3sin(0.3)ln, 3.0, 2.9,,2.9,3.0 22a ae e az a a--+=++=--(4)2242011122123t tz t tt t t⎧≤<⎪=-≤<⎨⎪-+≤<⎩,其中t=0:0.5:2.52. 已知:1234413134787,2033657327A B --⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦求下列表达式的值:(1) A+6*B 和A —B+I(其中I 为单位矩阵) (2) A*B 和A.*B (3) A^3和A.^3 (4) A/B 及B\A(5) [A,B ]和[A ([1,3],:);B^2] 解:3. 设有矩阵A 和B123453166789101769,111213141502341617181920970212223242541311A B ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1) 求它们的乘积C 。
(2) 将矩阵C 的右下角3×2子矩阵赋给D 。
(3) 查看MATLAB 工作空间的使用情况。
4. 完成下列操作:(1) 求[100,999]之间能被21整除的数的个数。
(2) 建立一个字符串向量,删除其中的大写字母。
解:(1) 结果:(2).建立一个字符串向量 例如: ch='ABC123d4e56Fg9';则要求结果是:实验二 MATLAB 矩阵分析与处理1。
设有分块矩阵33322322E R A O S ⨯⨯⨯⨯⎡⎤=⎢⎥⎣⎦,其中E 、R 、O 、S 分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证22E R RS A OS +⎡⎤=⎢⎥⎣⎦。
2、MATLAB的数学运算基础
例子: 计算表达式的值,并显示计算结果。
在MATLAB命令窗口输入命令: x=1+2i; y=3-sqrt(17); z=(cos(abs(x+y))-sin(78*pi/180))/(x+abs(y)) 输出结果是:
z= -0.3488 + 0.3286i
六、MATLAB的数值显示格式 的数值显示格式
• 和其他的程序设计语言不同,MATLAB能 自动根据赋值和操作来识别变量类型。即 变量使用之前,不需要指定变量的数据类 型,也不必事先声明变量。
MATLAB中变量的作用域一般默认为局 部变量,仅在当前调用的M文件中有效。如 果要定义全局变量,则必须用global来声明。 一般情况下,为了和局部变量有所区别, 常将全局变量用大写字母表示,但这并不 是必需的,只是人为的一种约定而已。
• • • •
>> clear xy yx %删除变量xy及yx >> whos >> xy %这时变量xy已经不存在了 ??? Undefined function or variable 'xy'.
其它
• 保存工作空间
命令格式: >>save filename variables
• 将变量列表variables所列出的变量保存到磁盘文 件filename中 • Variables所表示的变量列表中,不能用逗ariables时,表示将当前工作空间中所有 变量都保持到磁盘文件中。 • 缺省的磁盘文件扩展名为“.mat”,可以使用“-” 定义不同的存储格式(ASCII、V4等)
• 5.2、表达式的规则
MATLAB的表达规则与一般手写算式基 本相同。
• a) 表达式由变量名、运算符和函数名组成。 • b) 表达式按优先级自左向右运算,括号可改变优 先级顺序。 • c)优先级顺序由高到底为:指数运算、乘除运算、 加减运算。 • d)表达式中赋值符“=”和运算符两侧允许有空格。
实验一Matlab运算基础
利用不同的方法对 =z
x2 − y2 16 9
在(-3,3)上的二维插值效果
进行比较。
三、实验总结
结合平时生活、学习经验,体会本次实验各种 方法的用处和重要性。
实验六 Matlab的基本应用3: 常微分方程求解
一、实验目的
1、学会用Matlab进行常微分方程的求解、 随机试验和统计作图
2、掌握相关数据分析函数库的内容
quit或exit
关闭/推出MATALB
二、实验内容
矩阵创建
直接输入 用语句生成 矩阵连接 创建矩阵函数 矩阵操作 复数
矩阵运算 元素群运算
P86, 4.1,4.2, 4.3,4.10
三、实验分析
1 2 3
4 6 8
矩阵A= 4 5 6 ,B= 5 5 6
7 8 9
3 2 2
(1)计算A*B, A.*B, 并比较两者的区别? (2)expm,sqrtm,logm与exp,sqrt,log的区别?
二、实验内容
(1)已知矩阵A=
5 9
2 1
,B=
1 9
2 2
,
做简单的关系运算A>B, A==B, A<B, 并做逻辑 运算(A==B)&(A<B), (A==B)&(A>B)。
(2)编写程序(分别用for 和while),实现:
用公式 π =1− 1 + 1 − 1 +…… 求π 的近似值,
4 357
直到某一项的绝对值小于10-6 为止。
三、实验分析与总结
对流程控制语句和结构进行分析和总结。
实验三 Matlab绘图
一、实验目的
1、了解并掌握matlab的基本绘图
matlab2
2.矩阵拆分 .
(1) 利用冒号表达式获得子矩阵 表示取A矩阵的第 列全部元素; ① A(:,j)表示取 矩阵的第 列全部元素; 表示取 矩阵的第j列全部元素 A(i,:)表示 矩阵第 行的全部元素;A(i,j)表 表示A矩阵第 行的全部元素; 表示 矩阵第i行的全部元素 表 示取A矩阵第 矩阵第i行 列的元素。 示取 矩阵第 行、第j列的元素。 列的元素 A(i:i+m,:)表示取 矩阵第i~i+m行的 表示取A矩阵第 ② A(i:i+m,:)表示取A矩阵第i~i+m行的 全部元素; 表示取A矩阵第 全部元素;A(:,k:k+m)表示取 矩阵第 ~ 表示取 矩阵第k~ k+m列的全部元素,A(i:i+m,k:k+m)表示取 列的全部元素, 列的全部元素 表示取 A矩阵第 ~i+m行内,并在第 ~k+m列中 矩阵第i~ 行内, 矩阵第 行内 并在第k~ 列中 的所有元素。 的所有元素。
(2) 范得蒙矩阵 范得蒙(Vandermonde)矩阵最后一列全为 , 矩阵最后一列全为1, 范得蒙 矩阵最后一列全为 倒数第二列为一个指定的向量, 倒数第二列为一个指定的向量,其他各列是其后 列与倒数第二列的点乘积。 列与倒数第二列的点乘积。可以用一个指定向量 生成一个范得蒙矩阵。 生成一个范得蒙矩阵。在MATLAB中,函数 中 vander(V)生成以向量 为基础向量的范得蒙矩阵。 生成以向量V为基础向量的范得蒙矩阵 生成以向量 为基础向量的范得蒙矩阵。 例如, 例如,A=vander([1;2;3;5])即可得到上述范得蒙 即可得到上述范得蒙 矩阵。 矩阵。
3.2 MATLAB运算 运算 一、代数运算
1.基本算术运算 . MATLAB的基本算术运算有:+ 加)、- 减)、*(乘)、 的基本算术运算有:+ 、-(减 、 乘 、 的基本算术运算有:+(加 、- /(右除 、\(左除 、^(乘方 。 右除)、 左除 左除)、 乘方 乘方)。 右除 注意,运算是在矩阵意义下进行的, 矩阵意义下进行的 注意,运算是在矩阵意义下进行的,单个数据的算术运算只 是一种特例。 是一种特例。 矩阵加减运算 运算符 + - 对应元素的加减 适用于两矩阵同阶或其一是标量的情况。如果 与B的维 如果A与 的维 如果 数不相同, 将给出错误信息, 数不相同,则MATLAB将给出错误信息,提示用户两个 将给出错误信息 矩阵的维数不匹配
matlab平方运算
matlab平方运算在MATLAB中,平方运算是一种非常常见的数学运算。
平方运算可以对一个数值进行操作,得到这个数值的平方值。
在MATLAB中,可以使用乘法运算符(*)来进行平方运算。
例如,如果我们想计算2的平方,我们可以输入以下代码:```matlabresult = 2 * 2;```在这个例子中,代码将2与自身相乘,得到4。
因此,结果变量result 的值将为4。
除了使用乘法运算符进行平方运算外,MATLAB还提供了一个方便的函数来执行平方运算,即power函数。
该函数的语法如下:```matlabresult = power(x, n);```其中,x为要进行平方运算的数值,n为平方的次数。
例如,如果我们想计算3的平方,我们可以输入以下代码:```matlabresult = power(3, 2);```在这个例子中,代码将计算3的平方数,结果result将为9。
除了对单个数值进行平方运算外,MATLAB还可以对矩阵、向量及数组等进行平方运算。
当对矩阵进行平方运算时,运算将对矩阵中的每个元素进行平方。
例如,如果我们有一个3x3的矩阵A,我们可以使用以下代码进行平方运算:```matlabresult = A .* A;```在这个例子中,代码将对矩阵A中的每个元素进行平方运算,得到一个新的矩阵result,其中每个元素都是对应位置的元素的平方。
总之,MATLAB提供了多种方法来进行平方运算,包括使用乘法运算符和power函数。
这些方法可以对单个数值、矩阵、向量及数组等进行平方运算,帮助我们快速计算数值的平方值。