1电力电子器件PPT课件
电力电子技术概述PPT课件

电力电子技术概述PPT课件•电力电子技术基本概念•电力电子器件•电力电子变换技术•电力电子系统分析与设计•典型应用案例剖析•发展趋势与挑战01电力电子技术基本概念它涉及到电力、电子、控制等多个领域,是现代电力工业的重要组成部分。
电力电子技术的核心是对电能进行高效、可靠、可控的转换,以满足各种用电设备的需求。
电力电子技术是一门研究利用半导体器件对电能进行转换和控制的学科。
电力电子技术定义从早期的整流器、逆变器到现在的高频开关电源、智能电网等,电力电子技术经历了多个发展阶段。
发展历程目前,电力电子技术已经广泛应用于工业、交通、通信、家电等各个领域,成为现代社会不可或缺的一部分。
现状随着新能源、智能电网等技术的不断发展,电力电子技术的应用前景将更加广阔。
未来趋势发展历程及现状工业领域电机驱动、电力系统自动化、工业加热等。
电动汽车、高速铁路、航空航天等。
通信电源、数据中心、云计算等。
变频空调、LED照明、智能家居等。
随着新能源技术的不断发展,电力电子技术在太阳能、风能等领域的应用将更加广泛;同时,智能电网的建设也将为电力电子技术的发展提供新的机遇。
交通领域家电领域前景展望通信领域应用领域与前景02电力电子器件电力二极管(Power Diode)结构简单,工作可靠导通和关断不可控主要用于整流电路晶闸管(Thyristor)四层半导体结构,三个电极导通可控,关断不可控主要用于相控整流电路可关断晶闸管(GTO)通过门极负脉冲可使其关断关断时间较长,需要较大的关断电流主要用于大容量场合电力晶体管(GTR)电流驱动的双极型晶体管导通和关断可控,但驱动电路复杂主要用于中等容量场合电力场效应晶体管(Power MOSFET )电压驱动的单极型晶体管导通电阻小,开关速度快01主要用于中小容量场合02绝缘栅双极型晶体管(IGBT)03结合了MOSFET和GTR的优点01电压驱动,大电流容量,快速开关02目前应用最广泛的电力电子器件之一03电力电子变换技术整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用将交流电转换为直流电。
《电力电子技术》 ppt课件

《电力电子技术》
电力电子技术
《电力电子技术》
引言 电力电子器件 电力电子电路 脉宽调制(PWM)技术和软开关技术
第2页
电力电子技术
《电力电子技术》
➢ 什么是电力电子技术? ➢ 电力电子技术的发展史 ➢ 电力电子技术的应用
第3页
电力电子技术
《电力电子技术》
➢ 电子技术: 信息电子技术 电力电子技术
电力电子技术
IGBT的结构(显示图)
– 图a—N沟道VDMOSFET与GTR组合——N沟道IGBT
(N-IGBT)。 – IGBT比VDMOSFET多一层P+注入区,形成了一个大面
积的P+N结J1。 – ——使IGBT导通时由P+注入区向N基区发射少子,从
而对漂移区电导率进行调制,使得IGBT具有很强的通流 能力。 – 简化等效电路表明,IGBT是GTR与MOSFET组成的达林 顿结构,一个由MOSFET驱动的厚基区PNP晶体管。 – RN为晶体管基区内的调制电阻。
第17页
电力电子技术
《电力电子技术》
1.不可控器件——电力二极管
2.半控型器件——晶闸管 3. 典型全控型器件
(1)门极可关断晶闸管 (2)电力晶体管 (3)电力场效应晶体管 (4)绝缘栅双极晶体管
★
第18页
电力电子技术
《电力电子技术》
1. IGBT的结构和工作原理
三端器件:栅极G、集电极C和发射极E
➢ 全控型器件(复合型器件)
80年代后期开始,以绝缘栅极双极型晶体管(IGBT)为代 表的全控型器件因驱动功率小、开关速度快、载流能力大等得 到迅猛的发展。
★
第10页
电力电子技术
电力电子技术(完整幻灯片PPT

2.1.1 电力电子器件的概念和特征
电力电子器件的损耗 通态损耗
主要损耗 断态损耗 开关损耗
开通损耗 关断损耗
通态损耗是器件功率损耗的主要成因。
器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
1-4
2.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路
恢复特性的软度:下降时间与
延复迟系时数间,用的S比r表值示tf。/td,或称恢uFFra bibliotek2V0
b) tfr
t
图2-6 电力二极管的动态过程波形
a) 正向偏置转换为反向偏置
b) 零偏置转换为正向偏置
1-17
2.2.2 电力二极管的基本特性
关断过程
IF
diF
dt
trr
须经过一段短暂的时间才能重新获 UF
td
A
G
KK
A A
G
G
P1 N1 P2 N2
J1 J2 J3
K
K G
A
a)
b)
c)
图2-7 晶闸管的外形、结构和电气图形符号
a) 外形 b) 结构 c) 电气图形符号
外形有螺栓型和平板型两种封装。
四层三结三极。
螺栓型封装,通常螺栓是其阳极,能与散热器紧 密联接且安装方便。
平板型晶闸管可由两个散热器将其夹在中间。
电力电子技术(完整幻灯片 PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
(2024年)电力电子技术完整版全套PPT电子课件

实验报告撰写与答辩
讲解实验报告的撰写要求和答辩技巧 ,提高学生的综合素质和能力。
36
08
电力电子技术应用案例
2024/3/26
37
新能源发电系统中电力电子技术应用
光伏发电系统
最大功率点跟踪(MPPT )技术、逆变器并网技术 、孤岛检测与保护技术等 。
2024/3/26
风力发电系统
变桨距控制技术、变速恒 频技术、直驱式永磁风力 发电技术等。
2024/3/26
13
可控整流电路分析与应用
可控整流电路原理
可控整流电路通过控制触发角α的大小,实现对输出电压的调 节。
2024/3/26
可控整流电路应用
可控整流电路广泛应用于直流调速、电力拖动、电解、电镀 等领域。
14
滤波电路原理与设计方法
滤波电路原理
滤波电路是利用电容、电感等元件对交流电的频率特性进行滤波,从而得到平 滑的直流电的电路。
高性能器件选择
选用高性能的功率器件和驱动电路,提高电路的工作频率和可靠性。例如,选用低导通电阻和低栅极电荷的 MOSFET可以降低电路的导通损耗和开关损耗;选用高耐压和高电流的IGBT可以提高电路的带负载能力等 。
系统优化与热设计
对系统进行全面的优化和热设计,确保电路在高负载、高温等恶劣环境下仍能稳定可靠地工作。例如,采用 合理的散热结构和风扇控制策略可以降低电路的工作温度;采用模块化设计可以提高电路的维修性和可扩展 性等。
2024/3/26
功率场效应晶体管(Power MOSFE…
阐述Power MOSFET和IGBT的结构、特点以及在电力电子电路中的 广泛应用。
11
03
整流与滤波技术
2024/3/26
电力电子器件晶闸管幻灯片PPT

稍大于两个晶体管漏电流之和。
开通状态:注入触发电流使晶体管的发射极电流增大
以致1+2趋近于1的话,流过晶闸管的电流IA,将趋 近于无穷大,实现饱和导通。IA实际由外电路决定。
4.2.2 晶闸管的根本特性
晶闸管正常工作时的特性总结如下:
✓ 承受反向电压时,不管门极是否有触发电流,晶 闸管都不会导通。
trr URRM tgr
关断时间tq以上两者之和 tq=trr+tgr 〔1-7)
图1-9 晶闸管的开通和关断过程波形
4.2.3 晶闸管的主要参数
1〕电压定额
断态重复峰值电压UDRM
—— 在 门 极 断 路 而 结 温 为 额 定值时,允许重复加在器件上的 正向峰值电压。
反向重复峰值电压URRM
使用注意:
电力电子器件晶闸管幻灯 片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
4.1 电力电子器件的概念
2〕同处理信息的电子器件相比的一般特征:
4.2 半控型器件—晶闸管
4.2.1 晶闸管的构造与工作原理 4.2.2 晶闸管的根本特性 4.2.3 晶闸管的主要参数 4.2.4 晶闸管的派生器件
4.2.1 晶闸管的构造与工作原理
晶闸管〔Thyristor〕:晶体闸流管,可控硅整 流器〔Silicon Controlled Rectifier——SCR〕
G KK
A A G
a)Biblioteka AGP1 N1 P2 N2
《电力电子技术 》课件

主要器件和电路拓扑
在电力电子领域中,存在各种各样的器件和电路拓扑。我们将研究和比较这 些器件,如晶闸管、IGBT和MOSFET,并了解它们在不同电力电子应用中的使 用情况。此外,我们还将探讨各种电路拓扑,如半桥、全桥和谐振转换器。
电力电子转换技术
电力电子转换技术是将电能从一种形式转换为另一种形式的过程。我们将学 习不同类型的转换技术,如直流-直流转换器、直流-交流逆变器和交流-交流 变频器。通过研究这些技术,我们可以更好地理解电力电子在能源转换和控 制中的作用。
学习目标
通过学习《电力电子技术》,我们的目标是:
1 掌握电力电子的基础概念和原理。 3 熟悉电力电子转换技术及其应用。
2 了解主要的电力电子器件和电路拓
扑。
4 通过案例分析深入了解电力电子技
术。
电力电子基础概念
电力电子是一门研究电能的转换和控制的学科。它涉及到将电力从一种形式 转换为另一种形式的技术。我们将学习不同类型的电力电子器件和它们的工 作原理,例如功率变换器、逆变器和整流器。
总结和讨论
在这门课程的最后,我们将回顾所学的内容,并进行总结和讨论。我们将强调电力电子技术的重要性,并展望 未来的发展方向。通过本课程,我们希望能够激发学生对电力电子技术的兴趣,并为将来从事相关领域的研究 和工作打下坚实的基础。
ቤተ መጻሕፍቲ ባይዱ
《电力电子技术 》PPT课 件
欢迎来到《电力电子技术》课程的PPT课件。在本次课程中,我们将介绍电力 电子的基础概念、主要器件和电路拓扑、电力电子转换技术以及其应用领域。 通过案例分析,我们将更深入地了解这一领域。最后,我们将总结和讨论所 学内容。
课程介绍
这门课程旨在帮助学生掌握电力电子技术的基本概念和原理。我们将深入研 究不同种类的电力电子器件和电路,并了解它们在各个领域中的应用。通过 这门课程,学生将获得实际应用和解决问题的技能。
《电力电子技术》PPT课件

可控硅时代
通过控制电流导通角,实现电 压和功率的调节。
现代电力电子时代
以IGBT、MOSFET等为代表 ,实现高效、快速的电能转换
。
电力电子技术的应用领域
电力系统
用于高压直流输电、无 功补偿、有源滤波等, 提高电力系统的稳定性
和效率。
电机驱动
用于电动汽车、电动自 行车、电梯等电机驱动 系统,实现高效、节能
照明控制
通过电力电子技术可实现 对照明设备的调光和调色 ,提高照明质量和节能效 果。
加热与焊接
电力电子技术可用于控制 加热设备的功率和温度, 实现精确控温和高效能焊 接。
交通运输应用
电动汽车驱动
电力电子技术是电动汽车 驱动系统的核心,可实现 高效能、低排放的驱动控 制。
轨道交通牵引
通过电力电子技术可实现 轨道交通车辆的牵引控制 和制动能量回收。
交流-交流变流电路的工作原理
通过电力电子器件的开关作用,改变输入交流电 的电压和频率,得到所需的输出交流电。Fra bibliotekABCD
交流-交流变流电路的分类
变频电路、变压电路等。
交流-交流变流电路的应用
电机调速、风力发电、太阳能发电并网等。
一般工业应用
01
02
03
电机驱动
电力电子技术可用于控制 电机的速度和转矩,提高 电机的效率和性能。
通过求解系统微分方程或差分方程,得到系统输 出与输入之间的关系,进而分析系统性能。
频域分析法
利用傅里叶变换将时域信号转换为频域信号,通 过分析系统频率响应特性来评估系统性能。
3
状态空间分析法
通过建立系统状态空间模型,分析系统状态变量 的变化规律,从而研究系统的稳定性和动态性能 。
《电力电子》课件

智能控制是一种基于人工智能的控制 方法,其工作原理是通过人工智能算 法实现电力电子设备的智能控制。
数字控制
数字控制是一种现代的控制方法,其 工作原理是通过数字电路和微控制器 实现电力电子设备的控制。
03
电力电子系统设计
系统设计方法
确定系统目标
明确电力电子系统的功能要求,如电压转换、功 率控制等。
电力电子的发展历程
1940年代
1950年代
1960年代
1970年代
1980年代至今
开关管和硅整流器的出 现,开始应用于信号放 大和处理。
晶体管的发明,开始应 用于信号放大和处理以 及无线通信等领域。
可控硅整流器(SCR) 的出现,开始应用于电 机控制和电力系统等领 域。
出现了可关断晶闸管( GTO)等更加高效的电 力电子器件。
• 高效性:电力电子技术可以实现高效地转换和控制电能,从而提高能源利用效率。 • 灵活性:电力电子器件具有较小的体积和重量,可以方便地集成到各种系统中,实现灵活的电能转换和控制。 • 应用广泛:电力电子技术在能源转换、电机控制、电网管理和可再生能源系统中有着广泛的应用。
电力电子的应用领域
电机控制
电网管理
05
电力电子技术技术
随着电力电子器件性能的不断提 升,电力电子系统的频率逐渐提 高,实现了更高的转换效率和更 小的体积。
高效化技术
为了降低能源消耗和减少环境污 染,电力电子系统正在不断追求 更高的效率。高效化技术包括拓 扑结构优化、控制策略改进等。
电力电子在智能电网中的应用前景
THANK YOU
感谢观看
IGBT是一种广泛应用于电力电子领域的半导体器 件,其工作原理是通过控制栅极电压来调节漏极 和源极之间的电流。
电力电子技术完整版全套PPT电子课件

contents
目录
• 电力电子技术概述 • 电力电子器件 • 电力电子电路 • 电力电子技术的控制策略 • 电力电子技术的实验与仿真
01
电力电子技术概述
电力电子技术的定义与发展
定义
电力电子技术是一门研究利用半 导体器件对电能进行变换和控制 的科学。
发展历程
饱和压降等特性
05
广泛应用于电机控制、电源转
换等领域
06
03
电力电子电路
整流电路
整流电路的工作原理
介绍整流电路的基本工作原理,包括 半波整流、全波整流和桥式整流等。
整流电路的应用
列举整流电路在电力电子领域的应用 ,如电源供应器、电池充电器和电机 驱动器等。
整流电路的类型
详细阐述不同类型的整流电路,如单 相半波整流电路、单相全波整流电路 、三相半波整流电路和三相全波整流 电路等。
光调光器和电加热温度控制器等。
一般工业应用
01
02
03
电动机控制
利用电力电子技术实现对 电动机的启动、调速、制 动等控制,提高工业生产 效率。
电热控制
通过电力电子技术对电热 设备进行控制,实现精确 的温度控制和节能效果。
照明控制
利用电力电子技术研发的 照明控制系统,可实现对 照明设备的智能控制和节 能管理。
。
应用领域
适用于对控制精度要求不高、成 本敏感的场合,如某些电源管理
、电机驱动等。
优缺点分析
优点在于实现简单、成本低;缺 点在于控制精度低、易受干扰、
调试困难。
数字控制技术
原理与特点
基于数字电路和微处理器实现控制,具有控制精度高、灵活性好 、易于实现复杂控制算法等特点。
电工电子学完整ppt课件

02
直流电路分析
直流电路基本概念
电流、电压和电阻的定义 及单位
电路的组成及作用
电动势、电功率和电能的 定义及单位
电路图和电路元件的符号
欧姆定律与电阻串并联
01
欧姆定律的内容及公式
02
电阻的串并联计算
03
电阻的星形与三角形连接及其等效变换
04
非线性电阻的伏安特性
基尔霍夫定律及其应用
基尔霍夫电流定律(KCL)
电力电子器件分类
按照控制信号的性质,可分为模拟器件和数字器件;按照功率处理 能力,可分为小功率器件、中功率器件和大功率器件。
特性参数
包括额定电压、额定电流、开关速度、导通压降、关断时间等。
整流与逆变技术原理及应用
01
整流技术
将交流电转换为直流电的过程,主要应用包括电源供应器、电池充电器
等。
02
逆变技术
常见组合逻辑电路 详细介绍编码器、译码器、数据选择器、比较器 等常见组合逻辑电路的工作原理和设计方法。
3
组合逻辑电路中的竞争与冒险 分析组合逻辑电路中可能出现的竞争与冒险现象, 介绍消除竞争与冒险的方法。
时序逻辑电路设计与分析方法
时序逻辑电路基本概念
阐述时序逻辑电路的定义、特点以及基本分析方法,包括状态方 程和输出方程的建立。
通过改变交流电的频率,实现对电机的调速和节能。主要应用包括空调、冰箱、洗衣机等家 电,以及工业领域的风机、水泵等。
斩波与变频技术应用实例
如家用空调的变频器,可根据室内温度自动调节压缩机转速,实现节能和舒适性的提高。
电力电子技术应用实例
新能源发电
太阳能、风能等新能源发电系统中,电力电子 技术用于实现最大功率点跟踪(MPPT)和并 网逆变等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.3 电力电子器件的分类
1.1.3 电力电子器件的分类 ➢ 按照器件能够被控制电路信号所控制的程
度,分为以下三类:
(1) 半控型器件——通过控制信号可以控制 其导通而不能控制其关断
➢ 晶闸管(Thyristor)及其大部分派生器件 ➢ 器件的关断由其在主电路中承受的电压和电流
决定
1.1.3 电力电子器件的分类
➢ 控制电路按系统的工作要求形成控制信号,通过 驱动电路去控制主电路中电力电子器件的通或断,
来完成整个系统的功能
1.1.2 应用电力电子器件的系统组成
➢ 有的电力电子系统中,还需要有检测电路。广义上 往往其和驱动电路等主电路之外的电路都归为控制 电路,从而粗略地说电力电子系统是由主电路和控 制电路组成的。
1.1.1 电力电子器件的概念和特征
➢ 广义上电力电子器件可分为电真空器件和半导体 器件两类。
➢ 两 类 中 , 自 20 世 纪 50 年 代 以 来 , 真 空 管 仅 在 频率很高(如微波)的大功率高频电源中还在 使用,而电力半导体器件已取代了汞弧整流器 ( Mercury Arc Rectifier ) 、 闸 流 管 (Thyratron)等电真空器件,成为绝对主力。 因此,电力电子器件目前也往往专指电力半导 体器件。
➢ 主电路中的电压和电流一般都较大,而控制电路的 元器件只能承受较小的电压和电流,因此在主电路 和控制电路连接的路径上,如驱动电路与主电路的 连接处,或者驱动电路与控制信号的连接处,以及 主电路与检测电路的连接处,一般需要进行电气隔 离,而通过其它手段如光、磁等来传递信号。
1.1.2 应用电力电子器件的系统组成
(2) 电力电子器件一般都工作在开关状态
➢ 导通时(通态)阻抗很小,接近于短路,管压降接 近于零,而电流由外电路决定
➢ 阻断时(断态)阻抗很大,接近于断路,电流几乎 为零,而管子两端电压由外电路决定
➢ 电力电子器件的动态特性(也就是开关特性)和参 数,也是电力电子器件特性很重要的方面,有些时 候甚至上升为第一位的重要问题。
➢ 由于主电路中往往有电压和电流的过冲,而电力电子 器件一般比主电路中普通的元器件要昂贵,但承受过 电压和过电流的能力却要差一些,因此,在主电路和 控制电路中附加一些保护电路,以保证电力电子器件 和整个电力电子系统正常可靠运行,也往往是非常必 要的。
➢ 器件一般有三个端子(或称极或管角),其中两个联 结在主电路中,而第三端被称为控制端(或控制极)。 器件通断是通过在其控制端和一个主电路端子之间加 一定的信号来控制的,这个主电路端子是驱动电路和 主电路的公共端,一般是主电路电流流出器件的端子。
1.1 电力电子器件概述
➢1.1.1 电力电子器件的概念和特征
➢主电路(main power circuit)——电气设备 或电力系统中,直接承担电能的变换或控制任 务的电路
➢电力电子器件(power electronic device)— —可直接用于处理电能的主电路中,实现电能 的变换或控制的电子器件
➢ 电力半导体器件所采用的主要材料仍然是硅。
1.1.1 电力电子器件的概念和特征
➢同处理信息的电子器件相比,电力 电子器件的一般特征:
(1) 能处理电功率的大小,即承受电 压和电流 的能力,是最重要的参数
➢其处理电功率的能力小至毫瓦级,大 至兆瓦级, 大多都远大于处理信息的电 子器件。
1.1.1 电力电子器件的概念和特征
➢ 器件开关频率较高时,开关损耗会随之增大而可 能成为器件功率损耗的主要因素
1.1.2 应用电力电子器件的系统组成
1.1.2 应用电力电子器件的系统组成
➢ 电力电子系统:由控制电路、驱动电路和以电力 电子器件为核心的主电路组成
控
检测
电路
制
V1 LR
电
•
驱动
路电路Βιβλιοθήκη V2 主电路图1-1 电力电子器件在实际应用中的系统组成
(2) 全控型器件——通过控制信号既可控制 其导通又可控制其关断,又称自关断器件
➢ 绝 缘 栅 双 极 晶 体 管 ( Insulated-Gate Bipolar Transistor——IGBT)
➢ 电力场效应晶体管(Power MOSFET,简称为 电力MOSFET)
➢ 门极可关断晶闸管(Gate-Turn-Off Thyristor — GTO)
➢ 导通时器件上有一定的通态压降,形成通态损耗
1.1.1 电力电子器件的概念和特征
➢ 阻断时器件上有微小的断态漏电流流过,形成断 态损耗
➢ 在器件开通或关断的转换过程中产生开通损耗和 关断损耗,总称开关损耗
➢ 对某些器件来讲,驱动电路向其注入的功率也是 造成器件发热的原因之一
➢ 通常电力电子器件的断态漏电流极小,因而通态 损耗是器件功率损耗的主要成因
➢ 作电路分析时,为简单起见往往用理想开关来代替
1.1.1 电力电子器件的概念和特征
(3) 实用中,电力电子器件往往需要由信息电子电 路来控制。
➢ 在主电路和控制电路之间,需要一定的中间电路 对控制电路的信号进行放大,这就是电力电子器 件的驱动电路。
(4) 为 保 证 不 致 于 因 损 耗 散 发 的 热 量 导 致 器 件 温 度过高而损坏,不仅在器件封装上讲究散热设计, 在其工作时一般都要安装散热器。
《ESP training》 电子教案
第1章 电力电子器件
第1章 电力电子器件
引言
1.1 电力电子器件概述 1.2 不可控器件——电力二极管 1.3 半控型器件——晶闸管 1.4 典型全控型器件 1.5 其他新型电力电子器件 1.6 电力电子器件的驱动 1.7 电力电子器件的保护 1.8 电力电子器件的串联和并联使用
小结
引言
➢ 电子技术的基础 —— 电子器件:晶体管和 集成电路
➢ 电力电子电路的基础 —— 电力电子器件
➢ 本章主要内容:
简要概述电力电子器件的概念、特点和分类等 问题
介绍各种常用电力电子器件的工作原理、基本特 性,主要参数以及选择和使用中应注意的一些问题
■
1.1 电力电子器件概述
1.1 电力电子器件概述 1.1.1 电力电子器件的概念和特征 1.1.2 应用电力电子器件的系统组成 1.1.3 电力电子器件的分类 1.1.4 本章内容和学习要点